TY - CPAPER U1 - Konferenzveröffentlichung A1 - Merker, Jochen A1 - Schuldt, Gregor T1 - An attempt to explain double descent in modern machine learning T2 - 26. Interdisziplinäre Wissenschaftliche Konferenz Mittweida N2 - This article aims to explain mathematically, why the so called double descent observed by Belkin et al., Reconciling modern machine-learning practice and the classical bias-variance trade-off, PNAS 116(32) (2019), p. 15849-15854, occurs on the way from the classical approximation regime of machine learning to the modern interpolation regime. We argue that this phenomenon may be explained by a decomposition of mean squared error plus complexity into bias, variance and an unavoidable irreducible error inherent to the problem. Further, in case of normally distributed output errors, we apply this decomposition to explain, why LASSO provides reliable predictors avoiding overfitting. KW - Maschinelles Lernen KW - Komplexität KW - bias-variance KW - double descent Y1 - 2021 UN - https://nbn-resolving.org/urn:nbn:de:bsz:mit1-opus4-122935 SN - 1437-7624 SS - 1437-7624 U6 - https://doi.org/10.48446/opus-12293 DO - https://doi.org/10.48446/opus-12293 IS - 002 SP - 141 EP - 144 S1 - 4 PB - Hochschule Mittweida CY - Mittweida ER -