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Abstract

Soft Learning Vector Quantisation (SLVQ) and Robust Soft Learning Vector Quantisation (RSLVQ)
are supervised data classification methods, that have been applied successfully to real world
classification problems. The performance of SLVQ and RSLVQ, however, reduces, when they
are applied to more complicated classification problems. In this thesis, we have introduced modi-
fications to SLVQ and RSLVQ, in order to have more capable versions of them. A few possibilities
to modify SLVQ and RSLVQ are considered, some of them are not successful enough and they
have been included for the sake of completeness. The fruits of the thesis are plenty, includ-
ing Tangent Soft Learning Vector Quantisation-Strong (TSLVQ-S), together with its more stable
version Tangent Robust Soft Learning Vector Quantisation-Strong (TRSLVQ-S), Attraction Soft
Learning Vector Quantisation (ASLVQ) and Grassmannian Soft Learning Vector Quantisation
(GSLVQ).
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1- Introduction  

SLVQ (Soft Learning Vector Quantisation) and its modified version RSLVQ (Robust Soft 
Learning Vector Quantisation), which brings more stability in the learning process, are 

rather successful classifiers of data in  . The two methods were proposed by S. Seo 
and K. Obermayer [1] and the corresponding paper would be the main reference for 
what is included, about SLVQ and RSLVQ, in this thesis. Although the methods are known 
to give good classifications, they have a fundamental disadvantage. To be clear, the 
Euclidean distance is assumed to be a valid dissimilarity measurement to compare two 

objects in  . This assumption is too naïve for real world problems. An example would 
be given to make the point more clear, in the first paragraph of section 4. To overcome 
the problem, we would like to use tangent distances and Geodesic distance (defined on 
a Grassmannian manifold), as substitutions for the Euclidean distance. The concept of 
tangent distances is well explained in papers by P. Simard et al. [2] and S. Saralajew and 
T. Villmann [3]. Although the papers have different assumptions, the underlying concept 
stays the same. For Grassmannian manifolds and the corresponding distances, defined 
on the manifolds, basic information can be found on a paper by S.Chepushtanova and 
M.Kirby [8].  

Intuitively, one may replace the Euclidean distance with a tangent distance, which is not 
quite correct, as it conflicts the philosophy of what is described in the paper by S. Seo 
and K. Obermayer [1]. Therefore, we would like to mention the right way to make the 
transition from the original SLVQ to SLVQ, with tangent distances as the dissimilarity 
measurement. The right way comes with complexity of the corresponding updating rule. 
Therefore, as inaccurate alternatives, simplifying assumptions would be made and the 
corresponding updating rules would be derived.  

After using tangent distances in SLVQ, we would like to have Grassmannian manifolds as 
the fundamental structure, on which SLVQ is applied. The motivation is to have a tool 
that does not depend on the differentiability of the data manifolds (with tangent 
distances, it is assumed that the data manifolds are differentiable). Grassmannian 
concept gives us the opportunity to make new abstract points, from the original data 
points. In the new data space, a new distance measurement (usually geodesic) is 
introduced. The new space, together with the dissimilarity measurement, is supposed to 
reflect the non-Euclidean dissimilarity of data points. 

Here is a short description of what is coming in the next sections. In section 2, some of 
the definitions and symbols, that would be used throughout the thesis, are included. 
There might be symbols that are not defined in section 2. Those symbols are described 
locally. Sections 3 and 4 give a brief introduction on SLVQ and tangent distances, 
respectively. Section 5 is dedicated to explain how tangent distances should be 
integrated in SLVQ. Grassmannian SLVQ is treated in Section 6, where we start with an 
introduction to Grassmannian manifolds and explain the way it should be combined with 
SLVQ. The result would be GSLVQ (Grassmannian Soft Learning Vector Quantisation), 
which is not to be confused with “Generalised Learning  

ℝn

ℝn
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Vector Quantisation” (GLVQ). In sections 7, conclusions have been made. Section 8 
contains the Matlab programs, that are written to test the developed methods, 
described in this thesis. Note that there would be no programs provided for GSLVQ. In 
sections 9 and 10, a list of abbreviations, that are used in the thesis, and references are 
included, respectively.  

  

2- Definitions and notations  

The main problem is a classification problem, in  . For all  , we would like to 

have a function  , where   is the set of possible classes. The 

function   is called a classifier that assigns each   to a class  . We 

would be interested in a certain classification, given by  , dictated by a finite training 

set  . Therefore, a primary 

intension is to find a function  , such that . A function 

  is defined to contain the relation  , in the set  .   is allowed 

to accept any other values for an  , for which there is no relation in the training set 

 .    would be called the training function, with respect to the training set  . 

In order to assess the suitability of function  , with respect to a test set  , 

classification error rate is commonly used.   is of the same format as   (it can be   
itself), but usually with new samples. Note that classification error rate should be 
minimised and it is as below. 

     

  is Dirac delta function. Although   is the main cost function, it is not used in 
the learning process, but rather, it would be the final check for the performance of the 
learning algorithms.  

To find a suitable function  , one needs to define a model for  , with some adaptive  
parameters (this is a regular process in machine learning). The model, that is used in 
“Learning Vector Quantization” (LVQ, introduced by T. Kohonen), is as follows. A set of 
prototypes is defined. 

      

ℝn " ∈ ℝn

F : ℝn → L L = {1,2,...,c}
F(") = l " ∈ ℝn l ∈ L

F
T = {("i, yi) |"i ∈ ℝn, yi ∈ L, i = 1,2,..., ∣ T ∣ }

F F("i) = yi ∀i = 1,2,..., |T |
CT("i) = yi ("i, yi) T CT(")

"
T CT(") T

F T′�
T′� T T

CER =
∑|T′�|

i= 1 1 −δ(F("i) −CT′�("i))
|T′�| (1)

δ(x) CER

F F

W = {* j
i ∈ ℝn| j ∈ L, i = 1,2,...,kj, kj ∈ ℕ}

Page �  of �3 88



  prototypes are dedicated to a class  . Having  , the function   can be defined as 
below. 

     

where   is the Euclidean norm. Note that   takes two arguments, in the relation 
above. However, it would only depend on a single argument, when the training phase is 
finished and   becomes fixed. 

Having a set of prototypes  in  , the Voronoi cell of a prototype 

 , with respect to  , written as   is define as below. 

 

The model, described so far, is called crisp classification. In contrast, fuzzy classifiers 

assign to each object   a probability vector  . The  -th element of the vector 

  gives the probability that the object   belongs to the class  . At the end of a 

fuzzy learning process, one has the option of classifying an object   into the class 

 , for which   is the largest. However, in some applications, if two or more 

largest elements of   are close to each other, the data point   is preferred not be 
classified, as there is a notable level of uncertainty. According to the definition of a 
fuzzy classifier, “Soft Learning Vector Quantisation”  
(SLVQ) can be thought as a fuzzy classifier, as it implicitly uses probabilities to adapt 
prototypes.  

To achieve a desirable function  , parameters   may be changed, according to an 

online learning scheme.   is initialised randomly (or using a more intelligent method). 

At time  , a sample   is chosen randomly, with all the members having an 
equal probability of being selected. Then, the update happens according to certain 
rules, in such a way that   gives a better classification.  

Gaussian distribution is a key element in SLVQ and RSLVQ. Therefore, its notation is 

mentioned here.   denotes a Gaussian distribution, with mean   and standard 

deviation  . A variation of the same notation is used to address a point (vector) in  , 

that is produced, using a Gaussian distributed sample producer, with parameters   and 

 . Note that   and  . The notation is  . Therefore,   

kj j W F

F(", W ) = arg j(mini, j | |" −* j
i | | ) (2)

| | . | | F

W

W = {*i | i = 1,...,k} ℝn

*i ∈ W W V(*i |W )

V(*i |W ) = {" ∈ ℝn| | |" −*i | | ≤ | |" −*j | | ∀j ≠ i}

" P(") j
Pj(") " j

"
j ∈ L Pj(")

P(") "

F W
W

t (", y) ∈ T

F(", W )

N(μ, σ) μ
σ ℝn

μ
σ μ ∈ ℝn σ ∈ ℝ Nℝn(μ, σ) Nℝn(μ, σ)

Page �  of �4 88



denotes a random vector  in  , whose production probability is   (refer to 
equation (4)). 

When the probability of a point   is to be measured, given the distribution is 

 , the following formula is used.  

     

In the above formula,   and   are vectors in   and   is a general distance 
measure. 

Having a matrix  , the element, that is located at row   and column  , is denoted by 

       

Every now and then, it is required to extract a certain row or column of a matrix  . For 
that purpose, we would like to use notations, that are used in Matlab programming. To 

indicate the  -th row and  -th column of matrix  , notations   and   are used, 

respectively. 

Finally, the vectorisation operation, on a   matrix  , is denoted by   and it 

is defined as below.   is a column vector, with   elements. 

       

Where   and  . Note that   is the 

remainder of dividing   by   and   is the floor function. 

3- An introduction and discussions on SLVQ and RSLVQ 

Section 3-1 gives a general framework for stochastic gradient learning. In sections 3-2 
and 3-4, Soft Learning Vector Quantisation (SLVQ) and Robust Soft Learning Vector 
Quantisation (RSLVQ) are introduced. Not only the key concepts are mentioned in order 

" ℝn p(" |μ, σ)

" ∈ ℝn

N(*, σ)

p(" |*, σ) = 1
2πσ2

exp(−d 2(", *)
2σ2 ) (3)

* " ℝn d ( . , . )

A i j

Aij or {A}ij

A

i j A Ai,: A:, j

m × n A vec(A)
vec(A) n× m

{vec(A)}i = Aa,b

a = rem(i −1,n) + 1 b = ⌊ i −1
n

⌋ + 1 rem(p, q)
p q ⌊ . ⌋
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to integrate the new modifications into the original concepts more meaningfully, but 
also a few comments, about the original SLVQ and RSLVQ are made. 

Section 3-3 explains a new way of looking at SLVQ. A fruit of the new approach is 
Attraction SLVQ (ASLVQ). 

    3-1- Stochastic Gradient Ascent learning 

We introduce a general framework, which is going to be used throughout the paper. A 

Likelihood function   is defined, where   is a training set and   is a set of 

adaptable parameters. Moreover   is defined as 

       

  is the partial likelihood function. In words,   can be written as the 

product of partial likelihood function  , each depending on a single training 

sample from  . 

Given a random  , at time  , the Stochastic Gradient Ascent Learning (SGAL), with 

respect to  , is defined as 

       

The updating rule of the adaptable parameters   would always be 

      . 

  is the updating rate, which is a constant. 

For the rest of the thesis, the updating rules will not be included. Only the 
corresponding SGALs would be included, assuming the reader knows how to apply SGALs 
to update parameters. 

3-2- Soft learning vector quantisation (SLVQ)  

S. Seo and K. Obermayer [1] proposed a method of learning vector quantisation, called 
“Soft Learning Vector Quantisation” (SLVQ). A flaw in traditional LVQ methods is that the 

same updating rate   is applied to all the prototypes, at a certain time  . So, no matter 

which prototype gets updated, at time  , the rate would be  . Equations (9a) and 
(9b) will make it clear that the updating rule of SLVQ depends on more parameters, to 
pinpoint the right updating rate. In this section, we are going to introduce the 
philosophy of SLVQ and then argue that, although there are minor issues with SLVQ, it 
may serve as a nice framework to learn classification problems.  

Lr(T, W ) T W
Lr(T, W )

Lr(T, W ) = ∏
"∈T

Lp(", W )

Lp(", W ) Lr(T, W )
Lp(", W )

T

" ∈ T t
* ∈ W

SGAL(Lp, ", *) = ∂
∂* Lp(", W)

W(t)
(4a)

* ∈ W

*(t + 1) = *(t) + α . SGAL(Lp, ") (4b)

α

α t
t α(t)
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A goal of the paper, published by S. Seo and K. Obermayer [1], is to define a learning 
model that is easy to treat mathematically. In a key step, they assume that the data 
points are produced by a Homogeneous Gaussian Mixture model. To describe it, in a 
simple way, each prototype is assumed to be responsible for a Gaussian distribution 
 , in  . The standard deviation   is unknown (it would be initialised and 

adapted, in the learning process). As explained in the same paper, homogeneity 
addresses the fact that a prototype   would only produce data points of class  . With a 

class   and a prototype  , probabilities  and   are associated, respectively.   is the 

probability that an arbitrary prototype, from class  , is given the chance to produce a 

point, in  , and   is the probability that the prototype   is the prototype to 

produce a data point, in  . According to what is described so far, to have a rough idea 

about the distribution of data in  , one may choose a prototype  , with probability 

 , and a point  , is randomly generated, according to  . To emphasise, this is 

the model that is assumed to be responsible for producing the training set  .  
Assuming a Gaussian mixture model, being responsible for data production, S. Seo and K. 
Obermayer [1] proposed a learning method to adapt the prototypes. The method is 
based on the following cost function. 

     

In the above expression,   is the probability that   is produced by a 

prototype, responsible for class  , given that the prototypes are distributed as given by 

 . Mathematically, it can be written as 

    . 

In a rather similar manner,   is the probability that   is produced by a 

prototype, responsible for a class other than  , given that the prototypes are 

distributed as given by  . It can be written as 

    . 

The conditional probability   is the probability that   is produced, when 

prototype   is the producer. Its value is readily given by a Gaussian component of the 

mixture, using formula (4). 

N(* j
i, σ j

i ) ℝn σ j
i

* j
i j

j * j
i p j p j

i p j

j
ℝn p j

i * j
i

ℝn

ℝn * j
i

p j
i " N(* j

i, σ j
i )

T

Lr(T, W ) =
|T|

∏
i= 1

p("i, yi |W )
p("i, ȳi |W ) (5)

p("i, yi |W ) "i
yi

W

p("i, yi |W ) = ∑
t

p("i |*yi
t ) . pyi

t (6)

p("i, ȳi |W ) "i
yi

W

p("i, ȳi |W ) = ∑
k≠yi

∑
t

p("i |*k
t ) . pk

t (7)

p(" |* j
i) "

* j
i
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Note that   is assumed to be fixed for all the prototypes. Therefore, it would not be 
mentioned in the argument of the conditional probability. In a more general treatment, 
one can have different standard deviations for different prototypes. We are not going to 
investigate the general form in this thesis. 

The logarithmic version of cost function (5) is 

     

The partial likelihood function of (8) is 

     

According to equation (8b) 

   

Using chain rule, the following is obtained. Note that   is a general dissimilarity 
measurement. 

 

  

 

  

In case the Euclidean distance is chosen for  ,   follows the Gaussian 

distribution, as stated in equation (3), and   and   are as 
described in formulas (6) and (7), equation (9a) becomes 

σ

log Lr(T, W ) =
|T|

∑
i= 1

log
p("i, yi |W )
p("i, ȳi |W ) (8a)

log Lp((", y), W) = log
p(", y |W )
p(", ȳ |W ) (8b)

SGAL(Lp, (", y), * j
i) = ∂

∂* j
i
log p(", y |W ) − ∂

∂* j
i
log p(", ȳ |W ) (9a)

d (", 2 )

∂
∂* j

i
log p(", y |W ) = 1

p(", y |W ) . ∂p(", y |W )
∂p(" |* j

i)
.

∂p(" |* j
i)

∂d (", * j
i)

.
∂d (", * j

i)
∂* j

i
(9b)

∂
∂* j

i
log p(", ȳ |W ) = 1

p(", ȳ |W ) . ∂p(", ȳ |W )
∂p(" |* j

i)
.

∂p(" |* j
i)

∂d (", * j
i)

.
∂d (", * j

i)
∂* j

i
(9c)

d (", * j
i) p(" |* j

i)
p(", y |W ) p(", ȳ |W )
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Function   is Dirac delta function. 

Another way to calculate the gradient is as the following. It can be done by dividing the 

summation, over all  , in two terms. If the derivative is taken with respect to  , 

the first term is all  , such that  . For the second term,   holds. 

    

The gradient of the expression above is 

  

The gradient can be further simplified to get 

  

In case of online learning, we have the above relation, simplified to 

  

The gradient, given by (9d) and (10), is similar to Learning Vector Quantisation (LVQ) 
gradient, introduced by T. Kohonen [13], except the updating rates are different for 

different prototypes. As one can observe, the coefficient of the vector  , 

depends on the probability that   is produced by prototype  , given we know that   

is produced by a prototype of class  .  

∂
∂* j

i
log Lr(T, W ) = 2.[δ( j −y)

p j
i p(" |* j

i)
σ2p(", y |W ) −(1 −δ( j −y))

p j
i p(" |"j

i)
σ2p(", ȳ |W ) ](" −* j

i) (9d )

δ(x)

" ∈ T * j
i

" CT(") = j CT(") ≠ j

log Lr(T, W ) =
|T|

∑
i= 1

log p("i, yi |W ) −
|T|

∑
i= 1

log p("i, ȳi |W )

∂
∂* j

i
log Lr(T, W ) = ∑

":CT (")= j

p j
i

p(", y |W ) ×
∂p(" |* j

i)
∂* j

i
− ∑

":CT (")≠j

p j
i

p(", ȳ |W ) ×
∂p(" |* j

i)
∂* j

i

∂
∂* j

i
log Lr(T, W ) =

2p j
i

σ2 ∑
":CT (")= j

1
p(", y |W ) p(" |* j

i)(" −* j
i) −

2p j
i

σ2 ∑
":CT (")≠j

1
p(", ȳ |W ) p(" |* j

i)(" −* j
i)

∂
∂* j

i
log Lr(T, W ) =

2p j
i p(" |* j

i)
σ2 ( δ(CT(") −j )

p(", y |W ) −1 −δ(CT(") −j )
p(", ȳ |W ) )(" −* j

i) (10)

" −* j
i

" * j
i "

j
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A Matlab program for SLVQ function is included in Matlab programs part, under the name 
program1.  

S. Seo and K. Obermayer [1] claimed, in the paper, that the original LVQ [13] methods 
are based on heuristics. We would like to introduce a cost function that its gradient 
gives the gradient descent rule that is used in LVQ, introduced by Kohonen. However, 
this cost function is valid, only if the classification problem is a binary classification. To 
find the cost function, we would like to be inspired by a similar cost function for 
unsupervised LVQ that is included in a book, written by H. Ritter et al. [4], in which the 
cost function, minimised by unsupervised LVQ method, is 

     

where   is the nearest prototype, in  , to  .   is the probability density of 

the input data space. If one calculates the gradient of equation (11), with respect to  , 
the averaged updating rule is derived as the following. 

    

  is the Voronoi cell of prototype  , with respect to  , and   is 

the learning rate.  

Assuming that we would like to do online stochastic learning, equation (12) would be 
reduced to 

   

which is the simple unsupervised VQ learning method.  

For a binary supervised LVQ, with labels  , the cost function can be defined 
as below. 

    

Where   is the winner prototype, when only the prototypes of class 1 are 

considered. Similarly,   is the winner prototype, when prototypes of class -1 are 

E = ∫ | |" −*S(") | |2 p(")d " (11)

*S(") W " p(")
W

* j
i(t + 1) = * j

i(t) + 2ϵ∫V(* j
i|W )

(" −*s("))p(")d " (12)

V(* j
i |W ) * j

i W 0 < ϵ ≪ 1

* j
i(t + 1) = * j

i(t) + 2ϵ(" −*S(")) = * j
i(t) + ϵ′ �(" −*S(")) (13)

L = {1, −1}

E = ∫ (| |" −*1
S(") | |2 −| |" −*−1

S(") | |2 )CT(")p(")d " (14)

*1
S(")

*−1
S(")
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taken into account.   is the training function, with respect to   (refer to 

definitions in section 2). We would like to define it as   such that if 

 , then  . There is a family of functions that are eligible to be 

 . As an example, we may consider the Voronoi cells of all the prototypes   and 

map a data   to the label of the closest prototype. In case the data point   is on the 
boundary Voronoi cells, then the mapping would be done randomly to 1 or -1. If we 

make the assumption that   is bounded and countably discontinuous, then the 
boundaries oft he Voronoi cells have measure zero and the integral, in the cost function 
is well-defined. Under the mentioned conditions the gradient of the cost function would 
be 

     

     

  and   contain prototypes   and  , respectively. As in the 

unsupervised case, the online version of the updating rules, when (", 4) is given 

randomly, is as below. 

     

     

  is the winner prototype, among the prototypes that have the same label as the 

provided data point  .   is the winner prototype, among the prototypes that have 

the opposite label, compared to the provided data point  . 

Unfortunately, the author of this article do not know if a similar cost function can be 
found for a classification problem, with the number of classes greater than 2. In case 
such function exists, for an arbitrary number of classes, then the argument that LVQ is 
based on heuristics is not valid. 

Regarding the convergence of SLVQ, we would like to point out that, in case of 
convergence, the prototypes will not converge to the prototypes that are assumed to be 

CT(") T
CT : ℝn → {1, −1}

(", y) ∈ T CT(") = y
CT(") *

" "

p(")

∂E
∂*1

i
= 2∫V(*1

i |W1)
(" −*1

i )CT(")p(")d "

∂E
∂*−1

i
= −2∫V(*−1

i |W−1)
(" −*−1

i )CT(")p(")d "

W1 W−1 *1
i ∀i *−1

i ∀i

*S+ (")(t + 1) = *S+ (")(t) + μ(" −*S+ (")) (15a)

*S−(")(t + 1) = *S−(")(t) −μ(" −*S−(")) (15b)

*S+ (")
" *S−(")

"
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responsible for producing the training set  , according to the Gaussian mixture model. 
To explain it, we may consider an easy problem. Assume a classification problem with 

two classes + and −, on the real line  . To each class, there is a prototype.  , for 

class + and  , for class −.   is placed at   and   is placed at  . 

Each prototype has a Gaussian distribution, with  . So far, we have described the 

Gaussian mixture model. Now, we would like to write the dynamical behaviour of  . 
One can easily see that, on average, the change in *+, as a function of its position, is as 

the following. 

   

For  , it would be 

   

  is  , as explained in equation (4), and   is  .  

Having a look at the equation above, one can see that the first term of right hand side 
has a unique fixed point at   and the second term of has a unique fixed point at 

 . It simply means that   cannot be a fixed point of both of them 
together. Consequently, it is proven that prototypes would not settle at the assumed 
positions, as the Gaussian mixture model. However, one may argue that SLVQ is a 
Bayesian classifier, in which the probability of misclassification is minimised. Therefore, 

we do not care if the prototypes approach the positions, in  , where they are 
supposed to be, as suggested by a Gaussian mixture model.  

Regardless of the issues mentioned in previous paragraphs, SLVQ has a nice 
mathematical framework that makes a nice platform to conduct further investigation 
on. As an example, when studying the dynamics of traditional LVQ, Voronoi cells of 

prototypes are defined and Voronoi cell of a prototype  , created by a set of 

prototypes  , depends on the position of other prototypes. This makes the dynamics of 
LVQ to be a hard problem to treat. The problem would vanish in SLVQ, as it follows a 
different learning scheme. 

T
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3-3- SLVQ variant with attraction (no repulsion) 

In this section, a new way of looking at the original SLVQ method is introduced. The new 
variant results in an updating rule that applies only attraction. If instead of 
  and   their normalised quantities are used, then some 
interesting results may be achieved. The material, provided in this section, can be found 
in an article Written by M. Mohannazadeh  and T. Villmann [12]. 
We would like to define the quantities below.  

    

    

Given that   has happened,   is the probability that data point   is 

produced by a prototype of class  . In a similar way, given that   has happened, 

  is the probability that data point   is produced by a prototype of a 

class different from  . Note that   becomes equal to  , when 

it is divided by  . The same is true for  and  .  

The terms, defined in equations (16a) and (16b), are used to define a new maximum 
likelihood ratio function. 

    

Note that there is no difference between the function in (17) and the one given in (5), 
as the factor   appears in both the nominator and the denominator of (17).  

Despite the fact that cost functions (5) and (17) are the same, they result in different 
updating rules. The difference arises from the quantities that are used in the cost 

functions.   and   add up to one and, consequently, they make 

full probabilistic model. However, we cannot make the same conclusion for quantities 

  and  , as they do not add up to 1. In other words, with the 
probabilities, defined in equation (5), we may lose information as the learning phase is 
performed. 

The partial likelihood function, based on (17),is 

p("i, yi |W ) p("i, ȳi |W )

p(*y |") = 1
p(") ∑

t
p(" |*y

t ) . py
t (16a)

p(* ȳ |") = 1
p(") ∑

j≠y
∑

t
p(" |* j

t) . p j
t (16b)

" p(*y |") "
y "

p(* ȳ |") "
y p("i, yi |W ) p(*y |")

p(") p("i, ȳi |W ) p(* ȳ |")

Lr(T, W ) =
|T|

∏
i= 1

p(*yi |"i)
p(* ȳi |"i)

=
|T|

∏
i= 1

p(*yi |"i)
1 −p(*yi |"i)

(17a)

1/p(")

P(*yi |"i) P(* ȳi |"i)
p("i, yi |W ) p("i, ȳi |W )
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In case of online learning (sample  ), when the logarithm of the function 

  is used, the gradient is 

   

In (18a), the partial derivatives are as below. 

If (16a) and (16b) are used 

    

If the distribution is Gaussian, as defined in (3) 

   . 

If the distance measurement is Euclidean 

   . 

  is assumed to be constant and known. 

In the new version, only the prototypes of the class   (same class as the presented data 

point  ) are updated.  
A Matlab program for ASLVQ function is included in Matlab programs part, under the 
name program2.  

Another approach, to deal with the problem of the dependence of prototypes in SLVQ 
model, is to use Lagrange multipliers optimisation. One can see that, in likelihood 
function (5), some prototypes do not have a full degree of freedom. Those prototypes 
are the prototypes that are responsible for a different class, with respect to a data point 

 , that is given at time  . The equation that makes the prototypes dependent is 

  

Lp((", y), W ) = p(*y |")
1 −p(*y |") (17b)

(", y)
Lp((", y), W )

SGAL(Lp, (", y), *y
i ) =

∂log Lp(", W )
∂p(" |*y

i )
.

∂p(" |*y
i )

∂d (", *y
i )

.
∂d (", *y

i )
∂*y

i
(18a)

∂log Lp(T, W )
∂p(" |*y

i )
=

py
i

p(") . ( 1
p(*y |") + 1

1 −p(*y |") ) (18b)

∂p(" |*y
i )

∂d (", *y
i )

= −
p(" |*y

i )
σ2 . d (", * j

i) (18c)

∂d (", *y
i )

∂*y
i

= − 1
d (", *y

i )
. (" −*y

i ) (18d )

p(")

y
"

" t

p(", y |W ) + p(", ȳ |W ) = ∑
t

py
t p(" |*y

t ) + ∑
j≠y

∑
t

p j
t P(" |* j

t) = p(") (20)
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In (20), it is assumed that   is known, at least for data points   that are in the 

training set  . In (16), on the contrary,   is not required to be known and it is 
estimated using formula (19).  

Now, to apply gradient ascent learning, there are two options. One way is to calculate 

the gradient, with respect to the independent variables (prototypes of class  , when 

  is provided). This is exactly ASLVQ, which is explained earlier. In the second way, 
we can take all the prototypes into account. The authors of the article [12] are under 
the impression that if one intends to keep all the prototypes in the likelihood functions, 
then the optimisation problem is a constraint optimisation problem and, therefore, the 
cost function should be modified to reflect the fact. Therefore, a new function, using 
the concept of Lagrange multipliers, is defined as the following. Based on function (5) 

   

The gradient, with respect to  , is 

  

The gradient, with respect to  , is simply the constraint 

      

which can be plugged in the previous formula to achieve the updating rule below. 

  

p(") "
T p(")

y
(", y)

F(", W ) = log
p(", y |W )
p(", ȳ |W ) + λ(p(", y |W ) + p(", ȳ |W ) −p(")) (21)

W

∂F(", W )
∂* j

i
=

p j
i p(" |* j

i)
σ2 ( δ(C(") −j )

p(", y |W ) −1 −δ(C(") −j )
p(", ȳ |W ) + λ)(" −* j

i)

λ

p(", y |W ) + p(", ȳ |W ) = p(")

∂F(", W )
∂* j

i
=

p j
i p(" |* j

i)
σ2 ( δ(y −j )

p(", y |W ) − 1 −δ(y −j )
p(") −p(", y |W ) + λ)(" −* j

i) (22)
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Finally, two remarks are made. Firstly, the constant  , which should be found in 
each learning step, is not the same as relation (19), for if the relation (19) is used, the 
penalty function in relation (21) would always be equal to zero. Therefore, as a 
drawback of this method, we are required to have an estimation of the distribution of 
the data space, that is to be classified.  

Secondly, note that the new set of adaptive parameters is   and   would be 
initiated randomly. 

The updating model (22) becomes more accurate if a special   is dedicated to each class 

 , because, according to the class   of data point  , the function   is different. 

Hence, we may define   for a class  . Consequently, the  , in gradient (22), is 

substituted by   to have the new gradient. 

  

Relation (23) suggests to have multiple online functions to maximise, as the main 
function itself varies, when data points  , with different classes, are provided to the 
system.  

The last unanswered question, in this section, is “how to estimate the distribution 
 , for LSLVQ”. If we do not have a prior knowledge of the distribution  , then a 
solution might be to perform an unsupervised density estimation (for example 
unsupervised LVQ or Neural Gas), parallel to the main classification problem, in order to 

find an estimation of  . Note that the estimation improves as the number of 
learning steps increases. 

The rest of this section gives experimental results on ASLVQ and LSLVQ. A binary 
classification problem, which is called the butterfly problem, is given to two programs, 
one using SLVQ and the other one using ASLVQ algorithm. The butterfly problem is as 
follows. 

On   plane, a point   is of class 1, iff   and it is of class 2 
otherwise. 

The Matlab program, to produce a training set, a test set and initiate prototypes for the 
butterfly problem, is include in “Matlab Program” part of this article, under the name 
“program 3”.  

The reason why the butterfly program is chosen is that, with Euclidian distance 
measurement, we cannot actually achieve an appropriate classification, for reasonable 
number of prototypes.  

p(")

W ∪ λ λ

λ
j y " F(", W )

λj j λ
λy

∂F(", W )
∂* j

i
=

p j
i p(" |* j

i)
σ2 ( δ(y −j )

p(", y |W ) − 1 −δ(y −j )
p(") −p(", y |W ) + λy)(" −* j

i) (23)
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For instance, the problem of classifying hand written characters was given to both SLVQ 
and ASLVQ and no improvements in the classification was achieved. Therefore, the 
butterfly problem serves as a nice problem to compare SLVQ and ASLVQ.  

After one million learning steps, having 20 prototypes per class, the misclassification 
error rates are 0.178 and 0.057, for SLVQ and ASLVQ, respectively. The initial error rate 
(before learning) was 0.605. Also, the standard deviation was chosen to be 1.  

Note that the error rates highly depend on the initialisation on prototypes, which is done 
totally randomly. Therefore, the error rates are compared relatively. In this thesis, the 
author tries to avoid initiating prototypes in desirable regions, as done by some 
researchers, for we believe that in real world problems it is rather impractical.  

It is emphasised that ASLVQ successfully achieved a less error rate, compared to SLVQ. 
The practical result backs up the mathematical theory of ASLVQ. 

For LSLVQ, although the theoretical ground was laid, the author of this thesis was unable 
to find a way to make the theory work in practice. The instability of the method was 
also mentioned by a few colleagues. 

3-4- Robust soft learning vector quantisation (RSLVQ)  

It is explicitly mentioned by S. Seo and K. Obermayer [1] that RSLVQ has been proposed 
to deal with the stability problem of SLVQ. In other words, RSLVQ is the stable version of 
SLVQ. For RSLVQ, a new cost function is defined as below. 

     

The cost function can be explained as the following. We need to look at partial cost 

functions that are defined for each training data point  , i.e. 

      

The maximum that it can achieve is limited, whole it is not the case for 

       

Lr(T, W ) =
|T|

∏
i= 1

p("i, yi |W )
p("i, yi |W ) + p("i, ȳi |W ) (24a)

("i, yi)

p("i, yi |W )
p("i, yi |W ) + p("i, ȳi |W ) (24b)

p("i, yi |W )
p("i, ȳi |W )

Page �  of �17 88



as it can achieve infinity. Now, one needs to imagine that the cost function of SLVQ has 

as many as   points in   space, for which the value of the cost function is  . In 

case   is initialised near any of these points, it would automatically be sucked into a 
wrong region and the regions contain prototypes 9 that cause the scenario that all the 

prototypes, with a certain class, are located at a single point, while the rest are pushed 
to infinity. This effect can be reduced by limiting the maximum, each partial cost 
function can achieve (as in RSLVQ). Consequently, even if the prototypes are initialised 
in a wrong region, there is still a chance for them to get back in the right region, as the 
cost function is rather smoother. The updating rule of RSLVQ, with respect to the new 
cost function (24), is as the following. 

    

With   defined as in (24b). The elaboration of the partial derivative of (25a)is as 
below. 

  

The first and the second terms of the right hand side of (25b) are as below, respectively. 

   

 

  

Using chain rule, the following is obtained. Again,   is a general dissimilarity 
measurement. 

|T | W ∞
W
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∂* j
i
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∂
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In case the Euclidean distance is chosen for   and   and   

are as described in formulas (6) and (7), equation (9c) becomes 

  

The corresponding Matlab program is included in the programs section. One can notice 
that, using butterfly problem, RSLVQ works notably better than SLVQ. However, its 
performance is still worse than ASLVQ. This conclusion does not necessarily hold for 
other classification problems. 

4- Tangent distances  

It is often the case, in application, that Euclidean distance (denoted by  ) of two 

points, in   space, does not give an appropriate dissimilarity measurement, according 
to a certain classification task. A common example is the classification of optical 
characters. A certain character and its rotation are supposed to be classified in the same 
class. It means that if we are given a dissimilarity function, then it should return a 
negligible dissimilarity, when a character and its rotation are passed to the function. 
However, mostly this is not the case, when using Euclidean distance, as a dissimilarity 
function, for Euclidean distance compares vectors component-wise. As a solution, the 
idea of tangent distance was offered by P. Simard et.al [2] and elaborated by S. 
Saralajew and T. Villmann [3], in recent years. Tangent distance and tangent learning 
are computationally efficient simplifications of a more general idea, that is briefly 
introduced here. 

We are given a space  . A point (object)   is assumed to be a representative of 

a   dimensional manifold. It is assumed that the manifold of   is 

produced according to a function  , � , where   is a 

parameter (can be varied like a knob). Also, we would like to define  . 
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If  , to explain   in a simple way, the function takes an object  and 

a parameter   and outputs another object  , that is basically the same object as the 

first one, from the classification problem point of view (  and   are not necessarily 

equal in  ). We may assume that the manifold makes equivalence classes on  , which 

means   if, and only if,  . If there is a dissimilarity measure 

  is defined, according to the new model, then, ideally,   iff 

 . This may not be always possible in practice. For instance, as mentioned by P. 
Simard et.al [4], optical characters "6" and "9" are not to be classified in the same 
category. However, if the rotation of an object is the same as the object, then, the two 
characters would be categorised in the same class.   

With the equivalence classes of data in  , one can use Hausdorff distance [5]  

to find the level of dissimilarity between two data points   and  .  

It might be possible to make some simplifying assumptions on the function  . It 

can be thought of a composition of functions  .   and  . 

Functions   would be called basic functions. Each of the basic 
functions corresponds to a particular transformation that preserves the class of an 
object. For instance, rotation and thickening in optical characters. The mathematical 
expression for combining the basic functions is as below. 

     

 , for  , is a reordering of numbers 1 to  .    denotes the  -th elements of 

the vector  . The notation   is used, in the above relation, to emphasise on the 

assumption that the order of composing the basic functions do not matter, in a sense 

that the output of   always satisfies  . With different orders one 

may get different outputs (different functions  ). Also notice that basic 
functions are not necessarily commutative. Nonetheless, it is assumed that different 
functions, achieved by composing the basic functions in different orders, give the same 
manifold, as long as their inputs are from the same class. Therefore, the basic functions 
are composed, in an arbitrary order, and would be kept fixed for the rest of the analysis 
and application. 

Although the general theory, explained in previous paragraphs, is mathematically 
accurate, it is impractical to be implemented in machine learning systems, as there is 
no analytical expression for the distance, in general. A solution is to find the tangent 
hyper-plane, induced by the function  , around the point  . If   is 

differentiable, with respect to  , then the affine is the partial derivative of  , 

with respect to  , evaluated at   and  , which is a   matrix  . 
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 , when  , gives an object   that is supposed to be in the 

same class as  . 

If   is written as a composition of basic functions, then the  -th column of  , 

denoted by  , can be expressed as below.  

     

There might  be a need to take the differential of  , with respect to  . As   is a 
matrix function, we may put it into vector form, in order to calculate its differential. 

       

At this point, there are two possibilities to define a distance, using the tangent space 
approximation of a manifold. The first, used by P. Simard et.al[4], is the double-sided 

tangent distance. If one needs to find  , the tangent spaces of   and  , that 

are   and   respectively, are found. Then, the distance is defined as 
below. 

     

The parameters   and  , for which the Euclidian distance is minimised, can be 

calculated and, hence,   is computable. This version of tangent distance gives a 

A"0 = ∂M(", θ )
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∏
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∂Mθ
id
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ik
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fair measure of dissimilarity. As a remark, double-sided distance is not a metric, for it 
violates triangular inequality property of a metric on a metric space. 

The second variation of tangent distance is called single-sided tangent distance. 
Although one may assume, theoretically, that single-sided tangent distance is less 
accurate than the double-sided version, it has been shown by D.M. Keysers, in his PhD 
thesis [11], that single-sided tangent works as good as the double sided version, in 
practice. Consequently single-sided tangent distance is preferred over the double-sided 
variation, since it gives us an analytical solution for the distance between a point 

  and a tangent space in  . In order to define the single-sided distance 

 , the tangent plane   of the first argument is considered. Having that, 
one can define the single-sided distance as below. 

     

As mentioned by S. Saralajew and T. Villmann [3],  , for which   is 
minimised, is as below. 

      

An obvious consequence of the transition, from double-sided to single-sided, is that we 

lose symmetry of the distance, i.e.  . 

A rather obvious property of both double-sided and single-sided tangent distance is 

      

      

5- Integrating tangent distances into SLVQ and RSLVQ  

In this section, tangent distances would be used as the dissimilarity measurement and 
they are supposed to substitute the Euclidean distance. The integration of tangent 
distances into SLVQ and RSLVQ is not an straightforward problem, however. We are going 
to have to make assumptions for different scenarios and, also, to make necessary 
simplifications, so there would be a learning rule after all. A key assumption, throughout 
this section, is that we assume the manifolds, defined in the data space of the learning 
problem, are always differentiable. 

" ∈ ℝn ℝn

ds(", 2 ) " + A"θ

ds(", 2 ) = infθ{dE(" + A"θ, 2 )} (30)

θ dE(" + A"θ, 2 )
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∃", 2 : ds(", 2 ) ≠ ds(2, ")

ds(", 2 ) ≤ dE(", 2 )

dd(", 2 ) ≤ dE(", 2 )
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5-1- SLVQ, using tangent distances (Simard Assumption)  

Let’s assume a specific classification problem in  , for which Euclidean distance does 
not offer an appropriate dissimilarity measurement, when comparing two objects 
 . We would like to use a version of tangent distance instead. To do so, one 

needs to introduce a set of transformations, denoted by   in the previous section, 
that describe variations of an object, in data space. Note that, assuming that we are 
given the class preserving transformations, we are adapting the idea that was developed 
by P. Simard et.al [2]. This variant is explained in this section. In the next section, it 
would be assumed that the class preserving transforms are not known. Therefore, a 
learning method should locally approximate the transformations. This is exactly what is 
assumed by S. Saralajew and T. Villmann [3],when applying tangent distances to 
classification problems. 

The transformations are composed to have  . Then, whenever   or 

  is required, the local tangent spaces (gradient of  , with respect to  ) 
are found and the formulas (27) and (28) are used. Now, in order to learn the 

classification problem, according to the training set  , SLVQ is utilised. However, this 
time, we would like to use tangent distances instead of the Euclidean distance. The 
procedure is explained in more detail, in the next paragraphs.  

Remark: Note that   is, to a high extent, what it needed to clarify the very first 
sentence of the previous paragraph, which contains “a specific classification problem”). 
Also, having  , a considerable amount of information is added to the original 

training set  . This is the reason for the result of this approach to be much more 
reliable (compared to normal SLVQ), as the amount of information, contained in the 

training set, is rather not comparable to the case where we only have the training set  .  

Having a look at the introduction on SLVQ in this thesis, one may start to imagine how 
the Gaussian mixture model produces data samples, when the distance is tangent 
distance. Let’s imagine a component   of the Gaussian mixture. If the tangent space at 

 , given by  , is shifted by  , we get the linear space  .   is a   

matrix, where   is the dimensions of the parameter space (recall  ). 

The complement space of   can be created by a   matrix  , such that 

column vectors of   and   are mutually orthogonal. Roughly speaking, we would like 
to have a Gaussian distribution on each of the spaces (tangent space and the 

complement space), centred at  , while they have different standard deviations. The 
standard deviation of the complement space should be much smaller, in comparison. 

Therefore, component   produces points, on  , according to the following formula. 

ℝn
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  is a random point in   (refer to section 2), that follows a Gaussian 
distribution.  

As the first attempt, we would like to combine SLVQ and single-sided tangent distance, 
by substituting the Euclidean distance with single-sided tangent distance and its 
orthogonal complement component. This approach, in which the distance on the tangent 
space is also taken into account, is called the strong approach. As before, the function, 
to be maximised, is equation (5). 

      

with the terms in the nominator and the denominator defined in relations (6) and (7). 

So far there has been no differences, regarding the symbols. The difference becomes 

clear as soon as one writes  , considering single-sided tangent distance.  

  

    

The relation (32a) can be read as the following. The probability that the data point   is 

produced, given the producer prototype is  , is the probability that the component of 

the random vector on the tangent space is   and the component 

of the random vector on the complement space is . 

* + A* Nℝr(0,σ1) + Ac
* Nℝn−r(0,σ2) , σ1 ≫ σ2 > 0 (31)

Nℝr(0,σ1) ℝr

Lr(T, W ) =
|T|

∏
i= 1

p("i, yi |W )
p("i, ȳi |W )

p(" |* j
i)

p(" |* j
i) = 1

2πσ2
1

exp( −
| |A(AT A)−1AT(" −* j

i) | |2

2σ2
1 )

× 1

2πσ2
2

exp( −
| |Ac((Ac)T Ac)−1(Ac)T(" −* j

i) | |2

2σ2
2 ) (32a)

"
* j

i

A(AT A)−1AT(" −* j
i)

Ac((Ac)T Ac)−1(Ac)T(" −* j
i)
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After simplifications, we achieve 

  

In the relations (32a) and (32b), for brevity,   is used to indicate   and   to indicate 

 . In order to understand relation (32), firstly, we would like to mention the 

assumption that choosing a random point on   (  is the dimensions of the tangent 

space), with distribution   on the tangent space and choosing another random 

point on  , with distribution   on the complement space, are 

independence events. Therefore, one can see the product of Gaussian terms in equation 

(32a). Note that   is written as the product of two Gaussian random variables, 

for the spaces   and   are orthogonal spaces and they make a basis for  . Secondly, 

the arguments of the exponential functions in relations (32a) and (32b) are explained as 

the following. 

  is basically the projection of the vector   on the 

tangent space  .  is the projection of   

on the complement space  . For a more information, the reader is referred to [3]. 

Another point is that in case  , we get the same result as when we use the 

Euclidean distance (original SLVQ). Therefore,   and   put weights on the terms (in the 

argument of the exponential function) in (32b) (one in the tangent space, the other one 

in the complement space), when they add up. 

If the logarithmic version of the maximum likelihood function is used and the learning 
scheme is online, given a random input ", then the gradient would be 

p(" |* j
i) = 1

2πσ1σ2
exp( −

| |A AT(" −* j
i) | |2

2σ2
1

−
| |Ac(Ac)T(" −* j

i) | |2

2σ2
2 ) (32b)

A A* j
i

Ac

A c
* j

i

ℝr r
Nℝr(0,σ1)

ℝn−r Nℝn−r(0,σ2)

p(", * j
i)

A Ac ℝn

| |A(AT A)−1AT(" −* j
i) | | (" −* j

i)
A* j

i
| |Ac((Ac)T Ac)−1(Ac)T(" −* j

i) | | (" −* j
i)

A c
* j

i

σ1 = σ2

σ1 σ2
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where 

    

and 

    

Finally, the derivative of  , with respect to   is required. 

  

with 

    

    

At this point, an argument would be made to show the reason that the author thinks the 
strong approach is theoretically more valid than the weak approach, in which only the 
tangent distance mistaken into account (the distance on the complement space is 
ignored). 

∂
∂* j

i
log

p(", y |W )
p(", ȳ |W ) = ∂

∂* j
i
log p(", y |W ) − ∂

∂* j
i
log p(", ȳ |W ) (33a)

∂
∂* j

i
log p(", y |W ) =

δ( j −y)p j
i

p(", y |W ) ×
∂p(" |* j

i)
∂* j

i
(33b)

∂
∂* j

i
log p(", ȳ |W ) =

(1 −δ( j −y))p j
i

p(", ȳ |W ) ×
∂p(" |* j

i)
∂* j

i
(33c)

p(" |* j
i) * j

i

∂p(" |* j
i)

∂* j
i

= p(" |* j
i)( −

A AT(" −* j
i)U1

σ2
1

−
Ac(Ac)T(" −* j

i)U2
σ2

2 ) (33d )

U1 = ∂A
∂* j

i
AT(" −* j

i) + A
∂AT

∂* j
i
(" −* j

i) −A AT (33e)

U2 = ∂Ac

∂* j
i
(Ac)T(" −* j

i) + Ac ∂(Ac)T

∂* j
i

(" −* j
i) −(Ac)(Ac)T (33f )
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In basic SLVQ, a Gaussian mixture model is assumed to be responsible for data 
distribution on the data space. So each Gaussian component, which is a vector, produces 
other vectors, on the same space, according to the Gaussian distribution. With the same 

reasoning, one may attempt to define a space   to be a prototype. So, a 

prototype is a space now, rather than a vector. Then, the prototype   is 

supposed to produce a data point   of the same class, according to a Gaussian 

distribution. We know that   should be located on one of the affine spaces, that are 

parallel to  . The probability of any of the affine spaces to be the one, on 

which   is located is also known to be  

     

However, which of the points, on the affine space should be taken to be  ? A solution 

might be to produce a random vector in the space  , with equal probability of having 
any of them. If this solution is accepted, then we have used the weak approach. This 
approach ignores the fact that manifolds of data, with the same class, can be fairly 
complicated. Therefore, the author offers to consider a Gaussian distribution on the 

space  , which makes the process of data production more local. 

After explaining the accuracy of the strong approach, the weak approach is investigated 
in the next paragraphs.  

Although the expressions (33a) to (33f) are mathematically accurate, they become long 

and rather hard to handle. Note that   and   are functions of prototypes  and shall 

not be treated as constant matrices. In case there is not much information on , it is 

not possible to continue with the strong approach, as numerical values are required to 

update the position of the prototypes. To overcome this problem, we may consider the 

tangent space of the random data point  , that is presented in an online scheme. This 

approach deviates from the assumption that prototypes produce data points, according 

to 

    

* + A*θ
* + A*θ

" ∈ ℝn

"
* + A*θ

"

1

2πσ2
2

exp( | |Ac(Ac)T(" −* j
i) | |2

2σ2
2 )

"
A*

A*

A Ac * j
i
∂Ac

∂* j
i

"

* + A* Nℝr(0,σ1) + Ac
* Nℝn−r(0,σ2) , σ1 ≫ σ2 > 0
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and because single-sided tangent distance is non-symmetrical, considering the tangent 

space of  , may not optimise the same problem. The only hope here is to get a more 
convenient updating rule. The gradient, when the weak approach is adopted, is as in 
equation (33a), using 

     

where 

     

Note that one can find that  . 
Having (34), we compute the required terms in (33a), as below. 

  

  

In the rest of the paper, the first approach, resulting in the updating rules described in 
(33a) to (33f), is called the strong approach and the other approach, described in 
equations (34) to (35b), is called the weak approach. 

An example is given to show the way one should think about the Simard approach in 

learning a classification problem. An artificial classification problem, in  , is generated 

the following. We would like to define a family of curves  , on which data points 

are equivalent. In other words, if   and   are on the same curve, which 

means there are   and   such that   and  , then 

 . For a data point  , the corresponding curve is 
defined as 

       

"

p(" |* j
i) = 1

2πσ2
exp( −

d 2
s (* j

i, ")
2σ2

2 ) (34)

ds(* j
i, ") = | | (I −A"AT

")(* j
i −") | |

Ac = (I −A AT)

∂
∂* j

i
log p(", y |W ) =

δ( j −y)p j
i

σ2
2 p(", y |W ) p(" |* j

i)(I −A"AT
")2(" −* j

i) (35a)

∂
∂* j

i
log p(", ȳ |W ) =

−(1 −δ( j −y))p j
i

σ2
2 p(", ȳ |W ) p(" |* j

i)(I −A"AT
")2(" −* j

i) (35b)

ℝ2

M(", θ )
"1 ∈ ℝ2 "2 ∈ ℝ2

θ1 θ2 "2 = M("1, θ1) "1 = M("2, θ2)
dM("1, "2) = 0 " = [x1, x2]T ∈ ℝ2

M(", θ ) = g ( f ("), θ )
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where 

       

and 

   

We can calculate   and , consequently,   and  . The constant  , 

which indicates a family of curves, can also be found as below. 

      

One can easily check if  , which gives a one-dimensional manifold in  , 

satisfies the required property  . 

The tangent space, induced by  , is calculated here. 

     

Consequently, we get 

f ([x1
x2]) =

x2
1 + x2

2

tan−1( x2
x1

)

g ([α
θ0], θ ) = α × [ cos(θ + θ0)

0.5sin(θ + θ0)] = α × [ cosθcosθ0 −sinθsinθ0
0.5sinθcosθ0 −0.5cosθsinθ0]

tanθ0 = 2x2
x1

cosθ0 sinθ0 α

α = x1
cosθ0

= x2
1 + 4x2

2

M(", θ ) ℝ2

M(", θ )
θ= 0

= "

M(", θ )

∂M(", θ )
∂θ

= α × [ −sinθcosθ0 −cosθsinθ0
0.5cosθcosθ0 + 0.5sinθsinθ0]
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5-2- SLVQ, using tangent distances (Saralajew-Villmann Assumption)  

As mentioned in section 5-1, the class preserving transformations are usually not known 
in advance. As a more general approach, S. Saralajew and T. Villmann[3] estimate the 

local tangent spaces, according to the training data set  , as the corresponding learning 
process is being performed. To be precise, the tangent space, corresponding to each 

prototype  , is adapted using the gradient descent learning. Hence, the tangent 

spaces of prototypes would be added to the set of adaptable parameters. 

In the previous section, two learning approaches (weak and strong) were described. The 
question is that whether we can use any of them in this section. Before continuing with 
the discussion, it is pointed out that, in the previous section, the tangent spaces were 
always made on the data side (not the prototype side), when the single-sided tangent 
distance was to be calculated. therefore, the discussion, made in this paragraph and the 
next one, is based on the mentioned assumption. With the weak approach, we have 
assumed that the tangent space, required to calculate single-sided tangent distance, is 

estimated on the presented data point  , at a certain time. With Simard assumption, 

we readily have the tangent space  , as the transformation   is given. 

However, with Saralajew-Villmann assumption, it is not practically possible to have  , 

for all  . The reason is that there is a huge number of data points in a training set   
and if a tangent space is considered for each, we would be left with an even greater 
number of adapting parameters. Even if it is done, we would not have enough 
information to meaningfully train the model. Therefore the weak approach is not an 
option in this section. The solution would be to modify the weak approach by having the 
tangent spaces defined on the prototype side. 

The strong approach is closer to what is required in this section, in a sense that the 
tangent space is created for each prototype  . However, one can see, by examining 

the updating rule of the strong approach, that the gradient of  , with respect to  ,  
still should be known, in order to calculate the updates.  

The mentioned difficulties make it hard to directly use either of weak or strong 

approaches in this section (with Saralajew-Villmann assumption). Therefore, a 

simplifying assumption is made: “The tangent space   of the prototype   is 

independent of  ”. The assumption suggests that   can be treated as a constant 

matrix, when the partial derivatives of the likelihood function is taken, with respect to 

 . This assumption is generally not true. However, it reduces the complexity of the 

A" = ∂M(", θ )
∂θ

θ= 0

= [ −αsinθ0
0.5αcosθ0] = [−2x2

0.5x1]

T

* j
i

"
A" M(", θ )

A"
" T

* j
i

A "

A* j
i

* j
i

* j
i A* j

i

* j
i
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algorithm, with the cost of having a model that deviates from the original model. The 

learning algorithm, in the new scenario is as the following. The set of adaptive  

parameters is  , where  and 

  is a   orthogonal matrix, associated with the prototype  . It is assumed 

that the dimensions   of the manifold   is known. Members of   are 
initialised randomly, similar to what is done to prototypes. If the learning scheme is 
online, the log likelihood function is defined as 

   

The gradient for the prototypes is 

  

At this point, we would like to mention that both weak and strong approaches, with the 
tangent space defined on the prototype side, would be treated in this section. It can be 
shown practically that the strong approach has a better performance, as expected, since 
it acts more locally. First, we assume the distance measurement is based on the weak 
approach. The updating rules would be as below and the method is called TSLVQ. Later 
in this section, we would do the same, with strong approach, and the method would be 
called TSLVQ_S (the “S”, at the end, stands for strong). 

The first term of the right hand side of (37a), using the weak approach, is 

  

  

The second term of the right hand side of (37a) is 

  

W ∪ Ar(W ) Ar(W ) = {Ar(* j
i) | j ∈ L, i = {1,2,...,kj}}

Ar(* j
i) n× r * j

i
r M(", θ ) Ar(W )

Lr(", W, Ar(W )) = log
p(", y |*, Ar(W ))
p(", ȳ |", Ar("))

(36)

∂
∂* j

i
log

p(", y |W, Ar(W ))
p(", ȳ |W, Ar(W ))

= ∂
∂* j

i
log p(", y |W, Ar(W )) − ∂

∂* j
i
log p(", ȳ |W, Ar(W )) (37a)

∂
∂* j

i
log p(", y |W, Ar(W )) =

δ( j −y)p j
i

σ2
2 p(", y |W, Ar(W )) p(" |* j

i, Ar(* j
i))(I −Ar(* j

i)(Ar(* j
i))

T)2(" −* j
i) (37b)

∂
∂* j

i
log p(", ȳ |W, Ar(W )) =
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With 

    

where   is the single-sided tangent distance. 

The gradient of the tangent spaces   is 

  

   

with  

  

  

and 

  

  

In Appendix A, a few steps, that was taken to achieve (38b) and (38c), are included. 

Simply, if the label   of the presented   is the same as the label of a prototype  , the 

derivative of the first term (38b) is used, while for the opposite case, the derivative of 
the second term (38c) is used.  
Till this point, we have only derived the derivatives, according to the gradient descent 
learning scheme. The updated tangent spaces, however, matrices, associated with the 
tangent spaces, are not necessarily in the orthogonal form. Orthonormal form being that 

 , for all prototypes  . Therefore, after each adapting step, 

(1 −δ( j −y))p j
i

σ2
2 p(", ȳ |W, Ar(W )) p(" |* j

i, Ar(* j
i))(I −Ar(* j

i)(Ar(* j
i))

T)2(" −* j
i) (37c)
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2πσ2
2
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∂
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log p(", ȳ |W, Ar(W )) =

(1 −δ( j −y))( 2p j
i p(" |* j

i, Ar(* j
i))

σ2
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tangent spaces are put in the orthonormal form. This process is necessary as in each 

learning step the distance between a presented data point   and prototypes are 
calculated, using a formula that assumes the tangent spaces to be orthonormal.  
At this point, two fundamental questions are addressed, Firstly, one needs to find an 

appropriate dimensions   of the manifolds  , embedded in the original space. 
Secondly, it is not known whether the tangent spaces preserve their rank after being 
updated, at each learning step.  

The second problem is rather easier to deal with. An adapted tangent space  , 

corresponding to a prototype *, would be of the following form(according to (38b) and 

(38c)). 

     

where  

     

or  

     

 Note that the unnecessary notation is dropped, in the above expressions, for brevity. 

Then, we may factor out   and rewrite the expression as below. 

      

If the intension is to preserve the rank of the matrix  , we would better have the matrix 

"

r M(", θ )

Ar(*)

A ± c(" −*)(" −*)T(I −A AT)A

c =
2p j

i p(" |* j
i, Ar(* j

i))
σ2

2 p(", y |W, Ar(W )) ≠ 0

c =
2p j

i p(" |* j
i, Ar(* j

i))
σ2

2 p(", ȳ |W, Ar(W )) ≠ 0

A

(I ± c(" −*)(" −*)T(I −A AT))A

A
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to be a full rank matrix. Because, if it is the case, the rank of the product would be 

exactly  . In order to make sure that the above matrix is full rank, we may use a special 

case of the “Matrix Determinant Lemma”. It says that if   are column vectors, 
then 

     

We may take   and  . Hence, we get 

   

Consequently, if 

     

then, we have got a full rank matrix. This an easy task to prove that the above relation 
always holds, for the case  

     

as long as   is an orthogonal matrix. One needs to know that   is a positive 
semidefinite matrix, meaning that 

     

To show the truth of the expression above, it is expanded. 

    

Since   is orthogonal, 

I ± c(" −*)(" −*)T(I −A AT)

r
u , v ∈ ℝn

d et(I + u vT) = 1 + u Tv

u = c(" −*) vT = (" −*)T(I −A AT)

d et(I ± c(" −*)(" −*)T(I −A AT)) = 1 ± c(" −*)T(I −A AT)(" −*)

c(" −*)T(I −A AT)(" −*) ∉{−1,1}

c(" −*)T(I −A AT)(" −*) ∉{−1}

A (I −A AT)

xT(I −A AT)x ≥ 0 ∀x

xT(I −A AT)x = xT x −(AT x)T(AT x) = | |x | | −| |Ax | |

A
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Therefore, it is proven that the first case always holds and consequently, we do not 

need to worry about the rank of the tangent spaces   to decrease. 

However, we may fail to prove the following 

     

It means that the repulsion mechanism, in TSLVQ is troublesome. Although the 
probability of 

     

Is small, but there is still a small chance we have to reduce the rank of a tangent space. 
Hopefully, we may prevent such a problem, by taking a small updating rate, which 

makes the factor   to be small. More formally  

     

Which is valid, when  is an orthonormal matrix. Therefore 

     

Now, if we have 

       

we can assume that we are safe. Note that we need to have some estimation on the 

maximum value of   and it definitely depends on the classification 
problem.  

| |Ax | | ≤ | |A | | . | |x | | = | |x | |

A

c(" −*)T(I −A AT)(" −*) ∉{1}

c(" −*)T(I −A AT)(" −*) ∈ {1}

c

(" −*)T(I −A AT)(" −*) ≤ | |" −* | |2

(I −A AT)

c(" −*)T(I −A AT)(" −*) ≤ c | |" −* | |2

c < 1
| |" −* | |2

| |" −* | |2
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TSLVQ, with Saralajew-Villmann assumption, was used to learn the butterfly problem 
(described in section 3-2), with the dimensions of tangent spaces set to be 1, i.e., lines 

in   would be prototypes. The result reveals that the algorithm reduces the initial 
misclassification error rate, significantly. Approximately, with an initial CER of 0.5, the 
final CER would become 0.1, when 105 learning steps are taken. However, TSLVQ is not 
as effective as ASLVQ (although it works better than SLVQ). This is not an expected 
result, for the structure of the classification problem is more compatible with the 
version of SLVQ, in which lines are taken as prototypes. The suspicion is on the unstable 
behaviours of SLVQ. In the next section, TRSLVQ would be used as an alternative to see if 
a better result is achieved.  

The Matlab program of TSLVQ is included in the programs section, as program 4.  

As the second version of TSLVQ (TSLVQ_S), we would like to use the strong approach. In 
theory, one should observe improvement by using the strong approach. We are going to 
derive the updating rules first and, then, it would be practically examined.  

The likelihood function and the gradient, with respect to a prototype   , are the same 

as in (36) and (37a), respectively. However, the probability of producing  , when 

prototype   (with  ) is chosen to produce, differs a bit, just to take the strong 

approach into account. It would be 

  

  

Having (39), the first and the second term of the right hand side of (37a), would be as 
below, respectively. 
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In order to update the tangent spaces, the gradient of the tangent spaces would be as 
(38a), with the first and the second terms of the right hand side of (38a) being as the 
following, respectively. 

  

  

     

and 

  

  

    

A single computing step, regarding the derivation of (41a), is included in appendix B. 

We would like to investigate the rank of the updated versions of the tangent spaces.  
The procedure would be the same as what was done for the weak approach. The 
updated version of the tangent space matrix would be of form 
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p(", ȳ |W, Ar(W )) )( −
(" −* j

i)(" −* j
i)T(I −Ar(* j

i)(Ar(* j
i))T)

σ2
2

+

(" −* j
i)(" −* j

i)T(Ar(* j
i)(Ar(* j

i))T)
σ2

1 )Ar(* j
i) (41b)

Page �  of �37 88



  

  

Where 

      

Then, the matrix, in the big parenthesis should be full rank. We may use the “Matrix 
Determinant Lemma” 

      

to have the determinant of the matrix as below. 

  

It is required to have 
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We only need to check the inequality below, to be safe. 

      

We may choose parameters such that 

      

and for that, an estimation on the maximum value of   is required.  

Lastly, a piece of practical advice is given. When applying TSLVQ_S to problems with high 
dimensions, it is necessary to increase   and   relatively. Otherwise the sums 

  and   tend to become too small, so that the 
updating expressions, that have the sums in their denominators, go to infinity and, 
consequently, Matlab would update the parameters to be “Not a Number” (NaN). If it 
happens, then we cannot continue with the rest of the algorithm, computationally.  
TSLVQ_S was examined practically and the result was much better and more stable than 
TSLVQ. The Matlab program of TSLVQ_S can be found under the name Program 8, in 
Matlab programs section.  

  

5-3- RSLVQ, using tangent distances (TRSLVQ)  

Robust soft learning vector quantisation (RSLVQ), introduced earlier in section 3-3, is a 
more stable version of SLVQ, in which prototypes do not diverge. In this section, tangent 
distances would be used, as distance measurements, in RSLVQ and the corresponding 
updating rule would be derived. Assuming that the main philosophy is developed in 

c
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previous sections (while developing TSLVQ), we are going include the main issues here. 
Also, only Saralajew-Villmann assumption would be treated in this section and the set of 
prototypes and their corresponding tangent spaces would be assumed to be 
independent, as in the previous section.  

First, we start with the weak approach. The log likelihood function would be as the 
following. 

   

  

The gradient, with respect to the prototypes is 

 

  

With the first and the second terms, in (43a) as 

  

   

and 

  

   

The gradient, with respect to the tangent spaces is as below. 

Lr(", W, Ar(W )) = log
p(", y |W, Ar(W ))

p(", y |W, Ar(W )) + p(", ȳ |W, Ar(W )) = log
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p(" |W, Ar(W )) (42)
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with 

  

  

and 

  

  

We would like to check if the updated tangent spaces are of the same rank as the initial 
tangent spaces. The form of the updates would be similar to the case of TSLVQ, in the 

previous section. The only difference is that the coefficient   is different now.  
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Therefore, we need to have the following constraint on  . 

       

The maximum of  , in practice, should be found to find a suitable  .  

As promised, in the previous section, TRSLVQ is used to learn the butterfly problem and 
the result is much better than TSLVQ. With an initial CER of 0.5, the final CER, after 105 
learning steps, is around 0.05. In a similar situation, ASLVQ gives a final CER of 0.01, 
which is still better. However, one important issue is that ASLVQ achieves the CER quick, 
but not much of a progress is made, when the number of steps are increased. On the 
other hand, TRSLVQ would continue to get better as the number of learning iterations is 
increased.  

The Matlab program of TRSLVQ is included in the programs section, under the name 
program-5. 

As the second version of TRSLVQ, TRSLVQ_S, equipped with the strong approach, is 
presented here. The gradient would be as in (43a), with the first and the second terms 
of the right hand side to be 

  

    

  

  

and  

  

c =
2p j

i p(" |* j
i, Ar(* j

i))
σ2

2 ( 1
p(", y |W, Ar(W )) − 1

p(") )
c

c < 1
| |" −* | |2

| |" −* | |2 c

∂
∂* j

i
log p(", y |W, Ar(W )) =

δ( j −y)p j
i

p(", y |W, Ar(W )) p(" |* j
i, Ar(* j

i))

× ((I −Ar(* j
i)(Ar(* j

i))T)2

σ2
2

+
(Ar(* j

i)(Ar(* j
i))T)2

σ2
1 )(" −* j

i) (45a)

∂
∂* j

i
log p(") =

Page �  of �42 88



  

  

  

Note that 

  

  

The gradient of the tangent spaces is as in (44a), with 

  

  

and 

  

  

  

  

TRSLVQ_S is the best method of the family of tangent distance SLVQ (RSLVQ), when 
attacking a classification problem. Its excellence (with respect to similar alternatives) 
has been expected, theoretically, as we tried to make the assumptions stronger and use 
the more stable version, i.e. RSLVQ. Also, in practice, it was observed that TRSLVQ_S, 
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together with TSLVQ_S, are the only algorithms, provided in this paper (excluding 
Grassmannian method that comes later) that can actually deal with a real world 
problem, with high dimensions. The rest may show nice results, when applied to toy 
problems. 

The Matlab  program of TRSLVQ_S is included in the programs part, under the name 
program-9.   

5-4- PCA, tangent space for local data, TDSLVQ and TDRSLVQ 

Although TSLVQ (TSLVQ_S)and TRSLVQ (TRSLVQ_S) are rather successful, in this section, a 
new approach is provided. We stick to Saralajew-Villmann assumption and, also, we 
would like to use the strong approach here. More precisely, we do not know the class-
preserving transforms, but we would like to have Gaussian distribution on both the 
tangent and the complement space. To pave the way for this approach, we would like to 
use local data points, given by the training set, to approximate the tangent space at a 

certain data point  . Having the tangent space (call it  ), the distances of a prototype 

  to   can be calculated as below. 

      

      

The approximation of tangent space, at a data point  , is done as the following. Data 

point   is presented to the system, by the online scheme. An open ball around   is 

considered and all the data points, in the training set   that lie in the open ball and 

have label  , are used to approximate the  -affine (  is the dimensions of the tangent 

space) that best fits the collection of data. In order to approximate the  -affine, we 

may use PCA. The final output of this step is a matrix  , containing the tangent 

space of  . Note that, with this method, the cost function, to be minimised by the best 

 -affine, is as below. 

     

In (47), the data point collection is   and the  -affine is  , where   is the 

free variable,   is an offset vector, and   has   columns. 
The gradients would be as below. 
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with  

  

  

Note that there would be no tangent spaces associated with the prototypes, which is an 
advantage, since we have reduced the number of adapting parameters.  

This approach would be named TDSLVQ, which stands for “Tangent Data SLVQ”. The 
corresponding program would be found under the name program6 in Matlab program 
section. 

Program 6 uses a function called “ -affine”, that is also included in programs part, 
under the name program 7. 

One can see that TDSLVQ uses less parameters. However, it is notably slower than TSLVQ 

and TRSLVQ. The reason is the process of finding a  -affine for a collection of data 
points. Also, the performance appears to be lower.  

The last thing, to be investigated in this section, is TDRSLVQ, which is the same as 
TDSLVQ, but it uses RSLVQ cost function instead. As before, we are seeking a more stable 
version of TDSLVQ. 

With the very same philosophy as in the case of TDSLVQ, the gradient of TDRSLVQ is as 
below. 
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and 

  

  

The advantage of TDSLVQ and TDRSLVQ is that we can have the strong approach and still 
we are able to derive the updating rules, without much trouble (refer to 5-1, where the 
strong approach, with Simard assumption, was left incomplete). It was not the case for 
TSLVQ and TRSLVQ, where we defined the tangent spaces on the prototype side and 
treated data points as simple points. The disadvantage of TDSLVQ and TDRSLVQ is an 
issue that makes the learning methods practically useless for real-time system. Because, 
after the training phase, if a new data point is given to the system, to be classified, the 
system is requires to approximate the tangent space at the point and not only it would 
be time consuming, but also it requires  a considerable number of data points of the 
same class. Note that, in online learning, it is assumed that no memory is dedicated to 
store the previously observed input data.  

After providing the updating rules of TDSLVQ and TDRSLVQ, we would like to explain the 
reason that it is thought to work better, using a simple example. Assume the half-circle, 

defined as below in  , serves as a one-dimensional manifold in  . The manifold only 
contains data of the same class. 
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Also, we assume that we have a prototype   to be adapted. The probability of all 

points   on the manifold, to be given to the online system, are equal. Now, we would 
like to consider 3 scenarios and find the fixed-points of each case. In the first case, we 
use updating rule of LVQ (we have dropped coefficients for simplicity), in the second 
case, we use the updating rule of the weak approach and, finally, we would assume the 
last case to use the strong approach, as described in this section.  

For the last case, one notices that, given   as the random point, vector   is 

decomposed to component  , which moves parallel to the tangent at  , 

and component  , which moves in the direction that is perpendicular 

to the tangent space at  . Therefore, not only   gets closer to the tangent spaces, but 
also to the cluster of the points on the manifold, with respect to Euclidean distance. To 
be more accurate, we would like to show that the strong approach (the third case) is a 
compromise between SLVQ and TSLVQ and it takes both Euclidean and tangent distances 
into account. 

The fixed-point for  , when the three methods are applied to the problem, can be 
found as the following. Note that the mathematical knowledge, that is used in the rest 
of this section, can be found on textbook “Analysis on Manifolds”, written by J.R. 
Munkres [10]. 

Firstly, a prototype   is a fixed point, when it would not change position, on average, 
when an updating rule is applied to it, in a certain learning problem. Mathematically, 
for the first case, it can be expressed as below. 

      

Since the manifold is a subset of  , we may need to go through some steps. First, 

 , that appears in the integral, is a vector. Therefore, we may consider each of its 
components separately. Hence the problem is reduced to 
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Note that  can be thought as a function on the space ℝ2. If we call the function 

 , which is basically a shift by  , we can write the integral as below. 

      

�  is the volume of the parallelepiped that is made by the vectors in �  and the 

formula for it is as below. 

�

In the problem in hand,  . Therefore, the integral becomes 

      

      

Putting them equal to zero, we achieve the fixed-points   and  , for the 

first scenario. 

Going through similar processes, for the second and the third cases (the integration part 
is more difficult), we find the fixed-points to be (respectively)  

   

   

Note that the tangent spaces, required for the second and the third cases, can be found, 
theoretically, by calculating the following partial derivative. 
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Having a close look at the fixed-points of the second and the third case, one sees that 

the fixed-points of the weak approach does not depend  , while in the third case 
(strong approach), the learning scheme is more flexible to adapt to the nature of the 

classification problem, since it depends on the ratio  . Furthermore, the third case 

would act like the second case, if  , which can be interpreted that we have 
chosen the dimensions of the manifolds correctly and we do not expect much movement 
in the direction of the perpendicular space to the tangent space. However, it is assumed 
that it is practically hard to predict the correct dimensions of the class preserving 

manifolds. Therefore, we may choose   not to be ignorable (although it should be less 

that  ).  
As the last point we would like to mention the general equations to derive the weak and 
strong approaches fixed-points. In a similar manner to the half-circle example, that was 
discussed earlier, we would like to assume a general case, in which the class-preserving 
manifold is described as  , where   is the dimensions of the manifold and 

  is the space containing the data space. Assuming that tangent spaces are denoted by 

 , the fixed-points of the weak approach should be derived from the equation 
below. 

  

For the strong approach, we need to solve the following equation, which is a little 
different, since the integrals have different coefficients. 

  

In order to investigate the stability of fixed points, one can find the Jacobean of the 
map that is used for the learning method. The Jacobean would be as below. 
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One can notice that the Jacobean does not depend on   and the stability of the fixed 

points only depends on the manifold (which affects  ) and the parameters  ,  , and 

 . However, this is true to deduce that, for a certain problem, all the fixed points would 
be either stable or non-stable. The reason is that all the analysis was based on a single 
prototype *. The way we would like to think about it is to have each prototype to be 

responsible for a region in  . Therefore, the integral  

       

  
 may give different outputs, on different regions and, consequently, the stability of the 
fixed points changes accordingly. As a result, there might be regions, for which there are 
no stable fixed points.  
The practical experience on real problems shows that TDSLVQ and TDRSLVQ converge 

quickly to local optima and changing   and   may help to avoid early convergence.  

  

5-5- Performance of SLVQ and RSLVQ, based on tangent distances  

It is a difficult task to investigate the performance of SLVQ and RSLVQ, with the 
Euclidean distance, analytically and the versions, in which tangent distances are 
utilised, are even more complicated to deal with. In order to have an idea about how 
successful the new versions of SLVQ and RSLVQ are, we may assume that we know how to 
measure the performance of simple SLVQ and RSLVQ and, then, try to convert the data 
space of a classification problem to one that can be dealt with, using simple SLVQ and 
RSLVQ.  

Let’s assume we are given a classification problem, in which class-preservative 
manifolds exist and these manifolds capture the structure of the data space, with 
respect to the classification problem. Also, we assume that the strong assumption is 
applicable, which means that if   is a prototype and   is the tangent space at  , 

data points  , around  , are produced according the following formula.  

     

The set of prototypes would be   and  . Then, we may map the data points 

as the following. If   satisfies  
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then, 

    

Or equivalently  

     

What this map basically does is to arrange points in a way that Euclidean distance 
becomes valid, in a sense that it gives a correct dissimilarity measurement, with respect 
to the classification problem in hand. 

According to what is said so far, we would like to (roughly) claim that the performance 
of SLVQ or RSLVQ, with tangent distances, is in direct relation to the performance of 
simple SLVQ or RSLVQ, when they are applied to the version of the data point, created 
using the map above.  

6- Grassmannian Manifolds, an introduction and its application in SLVQ  

In the last few years, papers on machine learning, in which the concept of Grassmannian 
Manifolds are used, have been published. Grassmannian Manifolds provide a way of 
making new topologies, from the given input space, such that the new topology provides 
us a better chance of classifying the original objects. In this section, first a basic 
introduction on Grassmannian manifolds is provided. Then, the concept would be used 
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to obtain a dissimilarity measurement, that is going to be a substitution for Euclidean 
distance, used in basic SLVQ by S. Seo and K. Obermayer [1].  

6-1- Introduction to Grassmannian Manifolds  

Classification methods, introduced in section 5, were based on tangent distances. In 
order to calculate tangent distances, one needs to have tangent spaces of the 
manifolds, that exist in the data space. Therefore, it is necessary to have manifolds that 
are differentiable and all the methods, in section 5, are valid as long as we know the 
manifolds are differentiable. It would be good if did not have to make such assumption, 
for there might be spaces such that either they have manifold that are not 
differentiable (at some points) or it is not easy to prove the manifolds are differentiable 
everywhere in the data space. Luckily, Grassmannian manifolds, would give us the 
opportunity to drop the assumption that the class-preserving manifolds, in the data 
space, are differentiable and, consequently, learning methods, that are based on 
Grassmannian manifolds, are applicable to a greater class of problems (including the 
differentiable problems).  

First, we would like to formally define a Grassmannian and its corresponding quantities. 
Part of the information is taken from a paper by S. Chepushtanova and M. Kirby [5].  

Definition:   is the space of all  -dimensional subspaces in   and it is 
generally called the Grassmannian manifold.  

Definition: A  -dimensional topological manifold is a topology  , with   being a 

set and   being a topology defined on  , such that for each   there exists a 

neighbourhood of   that is homeomorphic to an open set of  .  

Theorem: In general,   is a  -dimensional topological manifold, with 

 .  

A proof is not provided here, as it is necessary to go into technical details. However, if 

we accept that   is a manifold, then in order to find the dimensions, one needs 

to notice how one abstract point in   can be represented as a  
orthonormal matrix, which is basically a basis for the subspace. First, we define an 

equivalence relation between two matrices   and  , both with dimensions  . 

  if and only if there exists a full-rank matrix  , of dimensions  , such that 

 . 

We claim that each point in   is of form 

       

G(m, ℝn) k ℝn

k (", T") "
T" " x ∈ "

N(") ∈ T" ℝk

G(m, ℝn) k
k = m × (n−m)

G(m, ℝn)
G(m, ℝn) n× m

A B n× m
A ∼B P m × m
AP = B

G(m, ℝn)

F = [ Im
R(n−m)×m]
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where   is the identity matrix of dimension   and   is an arbitrary matrix of 

dimensions  . The reason is that the rank of matrix   is exactly  , which 

gives a  -dimensional basis in  . Therefore ,  is an  -dimensional subspace. On the 

other hand, if we are given a subspace @ of dimensions  , we may use Gauss-

Jordan elimination method to turn   into a matrix of form  , without changing the 

column space of  . Finally, we need to show that there is no free variable in  . Note 

that all the variables are in  . Let’s assume that for   and   ( ),   

and   are the same subspace in  , therefore,   (see the previous paragraph 
for the definition of the equivalence). Hence, we may write  

      

which means that  . Therefore, all the variables in   part of matrix   are 

independent and, consequently, the dimensions of   is the dimensions of  , 

which is  . 

  is a   dimensional manifold, which means that it locally 

resembles  , when  . In  , there are different distances defined. 
The most famous of them all is the Euclidean distance measurement. Although we can 

take   back to  , according to a continuous map, in order to find the distance 
between two subspaces, it is more desirable to be able to define a distance, that can be 

calculated in  . We would like to use the vectors, defining each subspace, to 

define a distance. A well-known dissimilarity measure on   is called “The 

Geodesic Distance”. If   are two   orthonormal matrices, then 

the singular values of the matrix   give what is required.  

The geodesic distance is defined as the following. 

       

  are called principal angles, that may be defined according to a 
recursive relation. Some detail about the definition is given in a paper by Y. M. Lui et al. 
[6]. A reasonable property of principal angles is that they are invariant with respect to 
any orthogonal transformations of the whole space. We do not concern ourselves with 
the definition of principal angles here. Instead, we would like to mention that, 
according to a paper by A. Bjorck and G.H. Golub [7], principal angles can be efficiently 

Im m R(n−m)×m
(n−m) × m F m

m ℝn F m
n× m

A F
A F

R(n−m)×m R1 R2 R1 ≠ R2 F1
F2 ℝn F1 ∼F2

∃P : F1P = F2 → {P = Im
R1P = R2

R1 = R2 R F
G(m, ℝn) R

(n−m) × m

G(m, ℝn) m × (n−m)
ℝk k = m × (n−m) ℝk

G(m, ℝn) ℝk

G(m, ℝn)
G(m, ℝn)

", 2 ∈ G(m, ℝn) n× m
"T 2

dg (", 2 ) = (
m

∑
i= 1

θ2
i )

1
2

(50)

θi , (i = 1,2,...,k)
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computed, using Singular Value decomposition (SVD). The process of calculating 

principal angles, given orthonormal  , is as the following. Find singular 

values of   and call them  . Then, the  -th principal angle   is given by the 
following relation. 

        

Note that the reason we need   to be orthonormal is to have the 

singular values  . Consequently, equation (51) would have a solution for  .  

As a final remark on geodesic distance, we would like to point out that there are   

parameters, used in the calculation of  . Although one expects to see a distance 

of   parameters, as in ordinary Euclidean spaces,  is based on 

less number of parameters. To explain the fallacy, one may argue that  , � , that are 
used in the definition of Geodesic distance, depend on parameters, found in the 
matrices   and  , for which the distance is calculated. 

We may continue with a simple example to appreciate the idea of Grassmannian 
manifolds. 

Let’s assume all the linear subspaces of dimension 1 in  . The symbol to indicate the 

space is  . Each subspace (or line) can be thought as an abstract object. Then, 
the distance between two lines is defined to be the smallest angle (in radian) between 

them. More formally, if   and   are two lines in   and  , then the 

distance between   and   is as below. 

      

  is the inner product of the two vectors   and  . Also, it is required to have both   

and   not to be equal to 0 vector. One can see that  , together with the defined 

distance, make a metric space. The distance is always non-negative. If  , then 

      

", 2 ∈ G(m, ℝn)
"T 2 σi i θi

cosθi = σi (51)

", 2 ∈ G(m, ℝn)
0 ≤ σi < 1 θi

m
dg (", 2 )

k = m × (n−m) dg (", 2 )
θi ∀i

" 2

ℝ2

G(1,ℝ2)

" 2 ℝ2 x ∈ ", y ∈ 2
" 2

d (", 2 ) = cos−1 |⟨x, y⟩ |
| |x | | . | |y | |

(52)

⟨x, y⟩ x y x
y G(1,ℝ2)

" = 2

d (", 2 ) = cos−1 |⟨x, x⟩ |
| |x | | . | |x | |

= 0
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If   and  , then   and 

      

Therefore, 

      

According to Cauchy-Schwartz inequality and knowing  , we cannot have the above 
equality to be true. 

The symmetry of the distance is trivial. For the triangle inequality, instead of using the 
defined distance, we may consider the acute angle between lines. This way it becomes 
rather intuitive that the triangle inequality also hold.  

The metric   (  defined in (52)) resembles a circle, from the 

topology point of view. That is why   can be thought as a 1-dimensional 

manifold. To prove the claim, we need to find, for each open set  , an 

open subset   and a one-to-one map  , such that   is continuous, both 

ways, and it is differentiable. First, it is reminded that an open sphere of radius  , 

centred at  , is 

     

Possible open sets on   are of form   or the union of them. So, an arbitrary 

  is treated. If  , then we may take   to be the open set on  .  is 

assumed to be less than  . The function   is defined as 

     

  is a vector that represents its line space. Surely, the function   is one-to-one, 

as  . It can also be proven to be continuous, both ways (  and  ). 

d (", 2 ) = 0 " ≠ 2 x ≠ y

d (", 2 ) = cos−1 |⟨x, y⟩ |
| |x | | . | |y | |

= 0

|⟨x, y⟩ | = | |x | | . | |y | |

x ≠ y

(G(1,ℝ2), d (", 2 )) d (", 2 )
G(1,ℝ2)

U ⊂ G(1,ℝ2)
V ⊂ ℝ ϕ : U → V ϕ

ϵ
" ∈ G(1,ℝ2)

Sϵ(") = {2 ∈ G(1,ℝ2) |d (", 2 ) < ϵ}

G(1,ℝ2) Sϵ(")
Sϵ(") x ∈ " (−ϵ, ϵ) R |ϵ |

π
2 ϕ

ϕ(a) = [cosa −sina
sina cosa ] x , −ϵ < a < ϵ

ϕ(a) ϕ(a)
−π

2 < a < π
2 ϕ ϕ−1
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As another example assume  . In a similar manner as  , one can deduce 

that   is 2-dimensional manifold. The informal reason, why it cannot be a one-

dimensional manifold, is that in   there is 2 degrees of freedom, when going from one 

line to another line. Also, one can go through a similar reasoning to show that   

is a Grassmannian manifold of dimension 2.   and   resemble a sphere, 
from a topological point of view. 

Let’s elaborate more on  .   is a line in   and it is the abstract 
object to consider. We may use the previously defined metric (52) to serve as a metric in 

 . 

Note that   is a member of the subspace   and   is a member of the subspace   and, as 

before   and  . It can be proven that   is a metric space. 

Any metric space has a topology and, as claimed earlier, the topology is a sphere, which 

is a 2-dimensional manifold. In order to prove, for each open set  , we 

need to find an open set   and a map  , such that   is continuous, 
both ways, and it is differentiable. Assume  

        

Then, the function is defined as below. 

     

where  

      

G(1,ℝ3) G(1,ℝ2)
G(1,ℝ3)

ℝ3

G(2,ℝ3)
G(2,ℝ3) G(1,ℝ3)

G(1,ℝ3) " ∈ G(1,ℝ3) ℝ3

G(1,ℝ3)

x " y 2
x ≠ 0 y ≠ 0 (G(1,ℝ3), d (", 2 ))

V ⊂ G(1,ℝ3)
U ⊂ ℝ2 ϕ : U → V ϕ

V = Sϵ(")

ϕ([θ1
θ2]) = Ry(β )Rz(α)Ry(θ2)Rx(θ1)[

0
0
1]

Rx(θ ) =
1 0 0
0 cosθ −sinθ
0 sinθ cosθ
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are rotation matrices in  .   and   are the angles, for which a vector   is 

rotated to vector  . The corresponding open set, on  , is  . 

  

6-2- SLVQ, using Grassmannian manifolds and Geodesic distance  

As in section 2, we are given a classification problem in  . In section 5, tangent 
distances were used as distance measurement, because the Euclidean distance does not 
have enough flexibility to deal with most real world problems. However, dealing with 
tangent distances is a difficult task, for we usually do not know the class-preservative 

manifolds on  . Reviewing recent papers on the application of Grassmannian manifolds 
in machine learning, gives us hope to apply the theory to SLVQ. The papers are written 
by S. Chepushtanova and M. Kirby [5][8] and Y. M. Lui, J. R. Beveridge and M. Kirby [6]. 

The idea is as follows. We are given a training set  .   is going to be partitioned in 

subsets  , for  . The subsets are define as below.  

       

Consequently, we have the following facts. 

         

        

The vector set of a set   is defined to be the matrix produced by tacking all the first 

elements of pairs, that exist in  . Formally  

Ry(θ ) =
cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

Rz(θ ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

ℝ3 α β [0,0,1]T

x ∈ " ℝ2 Sϵ(0)

ℝn

ℝn

T T
Tj j ∈ L

Tj = {(", y) ∈ T |y ∈ j} (53)

⋃
j

T j = T

Tj ∩ Ti = ϕ ∀i, j : i ≠ j

T j

Tj
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If   is a low-dimensional space or the number of sample points in   is low, then we 

may take   to be a representative for the space spanned by  . In this case, if 

we are given a new data point  , to be classified, we can find the distance of   to 

all the subspaces   and choose the closest as the correct class. This scenario, 

however, does not happen often, as real-world problems are in large-dimensional spaces 

and the number of data samples, given in a training set  , is relatively large. The 

solution is to further partition   subsets to smaller subsets. The new partitions would 

be denoted by a subscript. Therefore,   is the  -th partition of  . At this point, we do 

not know the dimensions   to be taken for a subspace of  , which is going to be an 

abstract point in the Grassmannian manifold. However, we certainly know that we would 

like   to have the same dimensions, for all   and  . Because, we want all   to be 

a point in  . This way, they are more meaningfully comparable. 

The next step, would be to define prototypes in  . They would be similar to 

what was defined earlier, with the difference that they are   matrices now. The 

prototypes would be denoted as before, using the notation  , for the  -th prototype of 

class  .   would be filled with vectors of  . 

In order to find the gradient, the partial derivatives of the distance between two 

objects   and  , with respect to  , is calculated.  

       

     

To find (55a), firstly the following derivative is found. 

       

{V(Tj)}:,i = "i : ("i, j ) ∈ Tj (54)

ℝn Tj ∀j
V(Tj) V(Tj)

x ∈ ℝn x
V(Tj)∀j

T
Tj

Tj
i i T j

m ℝn

Tj
i j i Tj

i ∀i, j

G(m, ℝn)

G(m, ℝn)
n× m
* j

i i
j * j

i V(Tj)

* ∈ G(m, ℝn) " ∈ G(m, ℝn) T

dG(*, ") = (
m

∑
i= 1

θ2
i )

1
2

∂dG(*, ")
∂{*}ab

= (∑
i

∂dG(*, ")
∂θi

× ∂θi

∂{*}ab ) (55a)

∂dG(*, ")
∂θi

= (
m

∑
i= 1

θ2
j )θi (55b)
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Secondly, we assume the SVD  . Consequently 

       

 , the  -th element on the diagonal of  , is 

      

therefore, the last piece to find (55a) is as below. 

     

Having (55a) to (55c), the gradient is 

    

We may rewrite the above expression as 

*T" = U ΣVT

Σ = UT *T"V

σi i Σ

σi = {Σ}ii = {UT}i,:*T"{V}:,i

∂θi

∂* = ∂θi

∂σi
× ∂σi

∂* = − 1

1 −σ2
i

. " . {V}:,i . {UT}i,: (55c)

∂dG(*, ")
∂* = −(

m

∑
j= 1

θ2
j )(∑

i
θi

" . {V}:,i . {UT}i,:

1 −σ2
i

) (56a)
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Finally, the most compact form is 

     

  is obtained by applying the function   to the diagonal elements of the 

matrix  . 

We would like to define the probability that   is produced, when 

prototype   is given the chance to produce, as below.  

     

Also, it is pointed out that the probability that a data point   is produced by prototypes 

of the same label and the probability that a data point   is produced by prototypes of 
different labels are defined as in relations (6) and (7). The only difference is the new 
geodesic distance, that has been substituted. 

Now the gradient of Grassmannian Soft Learning Vector Quantisation, or in short GSLVQ, 
is as the following. 

  

∂dG(*, ")
∂* = −dG(*, ")(∑

i
arccosσi

" . {V}:,i . {UT}i,:

1 −σ2
i

) (56b)

∂dG(*, ")
∂* = −dG(*, ")"VS(Σ)UT (56c)

S(Σ) arccosx

1 −x2

Σ

" ∈ G(m, ℝn)
* j

i ∈ G(m, ℝn)

p(" |* j
i, σ) = 1

2πσ2
exp( −d 2

G(*, ")
2σ2 )

"
"

∂
∂* j

i
log

p(", y |W )
p(*, ȳ |W ) =
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As the whole numerical computation is based on the SVD of  , the factor 

  would be written in terms of  . 

     

In the relation above,   of a matrix  , with all the diagonal element less than 

1 and greater than or equal to 0, is obtained by applying   to all the diagonal 

elements of  , while letting the off-diagonal elements to stay the same as before. 

 , denotes the trace of a matrix  . With the new changes, the gradient is further 
simplified as below. 

  

  

In order to test if the updated prototype matrix is orthonormal, the following calculation 
is done. 

  

  

In the above calculation, we have 

   

It seem that the updated prototypes are not necessarily orthonormal, as 

 . Consequently, after each learning step, the 

prototypes must be put in the orthonormal form, as it is necessary to have them 
orthonormal, when calculating the principal angles. A good news, however, is that the 

(δ( j −y)
p j

i p(" |* j
i)

σ2p(", y |W ) −(1 −δ( j −y)) p j
i p(" |* j

i)
σ2p(", ȳ |W ) )(d 2

G(* j
i, ")"VS(Σ)UT)

*T"
d 2

G(* j
i, ") Σ

d 2
G(* j

i, ") = tr(arccos2(Σ)) = R(Σ)

arccos" "
arccos(x)

"
tr(") "

∂
∂* j

i
log

p(", y |W )
p(*, ȳ |W ) =

(δ( j −y)
p j

i p(" |* j
i)

σ2p(", y |W ) −(1 −δ( j −y)) p j
i p(" |* j

i)
σ2p(", ȳ |W ) )(R(Σ)"VS(Σ)UT) (57)

(* j
i(t + 1))T(* j

i(t + 1)) = ((* j
i(t))

T + αUS(Σ)VT"T)(* j
i(t) + α"VS(Σ)UT)

= I + αU ΣS(Σ)UT + αUS(Σ)ΣUT + α2US2(Σ)UT = I + αU(2ΣS(Σ) + αS2(Σ))UT

α = (δ( j −y)
p j

i p(" |* j
i)

σ2p(", y |W ) −(1 −δ( j −y)) p j
i p(" |* j

i)
σ2p(", ȳ |W ) )R(Σ)

αU(2ΣS(Σ) + αS2(Σ))UT ≠ 0
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updated prototypes would be full rank. In order to draw such a conclusion, we may 
assume that 

   

Is not full rank. Then, there should be a non-zero vector  , such that  

     

It can be rewritten as below 

     

which means that   is an eigenvector of  , with its eigenvalue 

to be -1. However, the matrix is positive definite, as   is a diagonal 

matrix, with all diagonal entries to be positive numbers, and   is an orthonormal 
matrix. Positive definite matrices do not have negative eigenvalues and, hence, the 

matrix is full rank, which implies that   has a full column rank.  

We would like to emphasise that the learning method can be implemented practically if 

the SVD of the matrix   is efficiently computable, for all members of  . 

The SVD would provide the matrices   and  , that are explicitly used in the 
gradient. 

Assuming the learning process is over, one would like to see how a new data  

would be classified. A new data  , to be classified, would be a vector in  , not a 
subspace. Hence, we may take two approaches, at this point. The first alternative is to 

calculate the norm of the image of   on every prototype   and the “winner takes 

all” rule would be applied to find the class of  . In other words, if all prototypes are 

orthonormalised, then class   of   is  

      

(* j
i(t + 1))T(* j

i(t + 1)) = I + αU(2ΣS(Σ) + αS2(Σ))UT

x ∈ ℝm

(I + αU(2ΣS(Σ) + αS2(Σ))UT)x = 0

(αU(2ΣS(Σ) + αS2(Σ))UT)x = −x

x αU(2ΣS(Σ) + αS2(Σ))UT

2ΣS(Σ) + αS2(Σ)
U

* j
i(t + 1)

*T" G(m, ℝn)
V, U Σ

x ∈ ℝn

x ℝn

x * j
i ∀i, j

x
F(x) x ∈ ℝn

F(x) = arg j(mini, j | | (* j
i)

T x | |)
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The second alternative for classifying a new data point   is applicable to 
problems, for which a group of class preservative transformations is given. Having the 

transforms, one may produce   new samples of  , with the same class. Then,  and 

its transformed versions are put in a   matrix  , which makes an abstract point in 

 . Consequently, geodesic distance can be used to compare   to all prototypes 

  and, as in the previous alternative, “winner takes all” would introduce the class of 

  (or  ). 

Intuitively, the power of Grassmannian manifolds lies in the fact that data points are 
taken to a higher dimensional manifold. This is the trick for many machine learning 
techniques, as higher dimensional spaces are harvested to achieve a better separation of 
data. Knowing that the dimensions of a Grassmannian manifold is  , it is 

tempting to have  , to maximise the dimensions of the manifold. This intuition 

can be backed up by practical experiments, provided by S. Chepushtanova and M. Kirby 
[5], as the authors state that increasing the dimensions of Grassmannian manifold would 
make the classification accuracy to tent %100. 

 6-3-  Validity of the result of GSLVQ  

In this part, few issues, that may challenge the validity of the result of GSLVQ, are 
discussed. 

A network, trained by GSLVQ, would classify any scalar multiplication of an input 

 , in the same class as   itself. This is an acceptable result in a certain type of 
problems. For instance, if the task is to classify hand-written grayscale characters, the 
average intensity of an image is not a parameter of interest, as we are supposed to find 
the structure of characters. Therefore, an image would be the same as itself, multiplied 
by a constant F. This type of problems can be called “scale invariant problems”. One 

should always check if GSLVQ is applied to a scale invariant problem.  

Another problem is to know how good a subspace, generated by a set of samples of the 
same class, can approximate or contain a class-preservative manifold. Obviously, if a 
character and its rotated version is given, in general, it is not possible to obtain another 
rotated version, by simply making a linear combination of the first two samples. Also, a 
combination of characters, with the same class, may invade the realm of characters of 
different classes. 

In order to deal with the lastly mentioned problem, we need to avoid creating training 

data samples, in  , randomly. To create better data samples, we would like to 

make each abstract point out of samples, of the same class in  , that are relatively 
close to each other, if the measure of closeness is the angle between the samples. In 
other words, abstract point are made to be local. To achieve this goal, we may apply 

neural gas learning or unsupervised LVQ to data points of each class ( ) separately. The 
process is described in the next paragraph. 

x ∈ ℝn

m −1 x x
n× m "

G(m, ℝn) "
* j

i
" x

m × (n−m)
m = n

2

x ∈ ℝn x

G(m, ℝn)
T

Tj
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A single   is taken at a time. All the members of   would be normalised. 

Assume that  , the dimension of the Grassmannian manifold, is known. Prototypes 

 ,  , when  , are randomly initiated. Note it was 

mentioned earlier that   would be set in such a way that it is a multiple of  . 

Also, we would like the prototypes in   to be orthonormal vectors. The distance 

between a vector   and a prototype   would be the Euclidean distance.  

According to an online learning scheme, given that a vector   is provided to 
the network, neural gas learning is utilised to update the prototypes. Each prototype 
should be normalised, before passing to the next learning step. For a theoretical 
treatment of neural gas, the reader is referred to a paper by T. Martinetz et al. [9].  

After the learning phase, the   closest vectors, in  , to the prototype   are put 

in one set. The set is nothing but one abstract point in   that trains the main 
GSLVQ problem. 

  

7- Conclusion  

In this article, tangent distances and Geodesic distances, defined in the framework of  
Grassmannian manifolds, were utilised as dissimilarity measurements to replace the 
Euclidean distance, that was used originally by S. Seo and K. Obermayer [1] in SLVQ and 
RSLVQ. When using tangent distances, we need to make sure that the class-preserving 
manifolds are differentiable. However, Grassmannian manifolds have the advantage of 
not being dependent on the differentiability of the manifolds.  

 As the first alternative, single-sided tangent distance were integrated in SLVQ and 
RSLVQ to make TSLVQ, TSLVQ_S, TRSLVQ, TRSLVQ_S, TDSLVQ, and TDRSLVQ. Each of them 
were established under different conditions and assumptions. Some of the key 
conditions would be as the following. The first condition is whether we would like to use 
strong or weak approach (strong and weak approaches are explained in section 5-1). The 
second condition is whether we use Saralajew-Villmann assumption or Simard 
assumption. The last condition is whether the tangent space (necessary to find single-
sided tangent distance) is made on the data side, while prototypes would act as points, 
or we prefer to have tangent spaces on the prototype side and treat data points as 
points.  

Each of the methods, based on tangent distances, have advantages and disadvantages. 
But, as expected theoretically and proven practically, TRSLVQ_S is the best methods 
among the all methods, that are established in this article. It is worth mentioning that 
TSLVQ_S and TRSLVQ_S are the only methods (between the rest of the methods, 
described in this paper) that show a stable behaviour in real problems, such as hand-
written characters classification.  

V(Tj) V(Tj)
m

W = {*i}d
i= 1 *i ∈ ℝn d = |V(Tj) |

m
|V(Tj) | m

W
x ∈ ℝn *j

v ∈ V(Tj)

m V(Tj) *i
G(m, ℝn)
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Regardless of the new dissimilarity measurements, new ways of looking at basic SLVQ is 
provided in this article, in section 3-2. ASLVQ is the fruit of the investigation, which 
comes with a better probabilistic model. However, it may have problems with a small 
class of classification problems, as it dismisses the repulsion mechanism.  

Finally, it is mentioned that, although the theory of GSLVQ, including the corresponding 
learning rules, was provided in section 6, the corresponding Matlab programs were not 
written, due to lack of time and computational resources. Therefore, GSLVQ is to be 
tested practically.  

8- Matlab Programs 

Program 1 – SLVQ function 

%%% SLVQ (Soft Learning Vector Quantization) 

%% It is a function that gets a training set "T", prototypes (labelled) "prototype", the number of 
classes %%"c", maximum number of learning steps "max"and outputs the updated prototypes, after 
some steps 

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T 
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the 
label of the sample. Label is a number from 1 to c 

%%The prototype matrix "prototype" should be in the same format as 

%%training set matrix T 

function [prototype,error_rate,error_rate0]=SLVQ(T,prototype,test,c,max,u) 

%%find the dimensions of training and prototype matrix 

[T1,T2]=size(T);  
[p1,p2]=size(prototype);  
[ts1,ts2]=size(test); 
%%Define the Gaussian distribution standard deviation SD=1; 

%%misclassification error before learning 

error=0; for i=1:ts2 

nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2); 
[C1,I1]=min(nearest_dist);  
if prototype(end,I1)~=test(end,i) 

error=error+1; 

end end 
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error_rate0=error/ts2; 

%%the recursive adapting part 

uu=u; 
for t=1:max 

%u=uu/t; 

u=u*(0.999); 

%%randomly choose a training data from T 

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prottoypes accordingly partial_sum=0; 

partial_sum_w=0; for j=1:p2 

if prototype(end,j)==x_label d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); 
partial_sum=partial_sum+normpdf(d,0,SD); 

end  
if prototype(end,j)~=x_label 

d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); 

partial_sum_w=partial_sum_w+normpdf(d,0,SD); 

end end 

for j=1:p2 d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); p=normpdf(d,0,SD);  
if prototype(end,j) == x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*(p/partial_sum)*(x_main-
prototype(1:end-1,j)); 

end  
if prototype(end,j) ~= x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/(SD)^2)*(p/partial_sum_w)*(x_main-
prototype(1:end-1,j)); 

end end 

end 

%%misclassification rate 

error=0; for i=1:ts2 

nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2); 
[C1,I1]=min(nearest_dist);  
if prototype(end,I1)~=test(end,i) 

error=error+1; 
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end end 

error_rate=error/ts2; 

Program 2 – ASLVQ function 

%%ASLVQ (Attraction SLVQ) 

%% It is a function that gets a training set "T", prototypes (labelled) "prototype", the number of 
classes %%"c", maximum number of learning steps "max"and outputs the updated prototypes, after 
some steps 

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T 
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the 
label of the sample. Label is a number from 1 to c 

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T 

function [prototype,error_rate,error_rate0]=ASLVQ(T,prototype,test,c,max,u) 

%%find the dimensions of training and prototype matrix 

[T1,T2]=size(T); [p1,p2]=size(prototype); [ts1,ts2]=size(test); RR=p2/T2; 

%%Define the Gaussian distribution standard deviation 

SD=1; 

%%misclassification error before learning 

error=0; for i=1:ts2 

nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2); 
[C1,I1]=min(nearest_dist);  
if prototype(end,I1)~=test(end,i) 

error=error+1; 

end end 

error_rate0=error/ts2; 

%%the recursive adapting part 

uu=u; 
for t=1:max 

%u=uu/t; 

u=u*(0.999); 

%%randomly choose a training data from T 
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x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prottoypes accordingly partial_sum=0; 

for j=1:p2  
if prototype(end,j)==x_label 

d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); 

partial_sum=partial_sum+normpdf(d,0,SD); 

end end 

partial_sum=RR*partial_sum; for j=1:p2 

d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); p=RR*normpdf(d,0,SD);  
if prototype(end,j) == x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*(p/(partial_sum-
partial_sum^2))*(x_main- prototype(1:end-1,j)); 

end end 

end 

%%misclassification rate 

error=0; for i=1:ts2 

nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2); 
[C1,I1]=min(nearest_dist);  
if prototype(end,I1)~=test(end,i) 

error=error+1; 

end end 

error_rate=error/ts2; 

Program 3- Butterfly problem 

%%%butterfly data production 

c=2; 
PPC=20; 
%%make prototypes prototype=random('unif',-1,1,2,PPC*c); labb=repmat(1:c,PPC,1);  
lab=labb(:)'; prototype=vertcat(prototype,lab); %%make training data  
TS=1000; 

TT=random('unif',-2,2,2,TS); labb=sign(TT(1,:).*TT(2,:)); labb=(labb./2)+3/2;  
T=vertcat(TT,labb);  
%%make test data  
TS=1000; 
TT=random('unif',-2,2,2,TS); labb=sign(TT(1,:).*TT(2,:)); labb=(labb./2)+3/2; 

Page �  of �68 88



test=vertcat(TT,labb);  
%%other parameters for SLVQ function max=100000; 

u=0.1; 

%%Normal SLVQ 

[prototype_out,errorS,errorS0]=SLVQ(T,prototype,test,c,max,u); errorS0  
errorS 

%%New ASLVQ 

[prototype_out,errorA,errorA0]=ASLVQ(T,prototype,test,c,max,u); errorA0  
errorA 

Program3 – RSLVQ 

%%% RSLVQ (Robust Soft Learning Vector Quantization) 

%% It is a function that gets a training set "T", prototypes (labelled) "prototype", the number of 
classes %%"c", maximum number of learning steps "max"and outputs the updated prototypes, after 
some steps 

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T 
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the 
label of the sample. Label is a number from 1 to c 

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T 

function [prototype,error_rate,error_rate0]=RSLVQ(T,prototype,test,c,max,u) 

%%find the dimensions of training and prototype matrix 

[T1,T2]=size(T);  
[p1,p2]=size(prototype);  
[ts1,ts2]=size(test); 
%%Define the Gaussian distribution standard deviation SD=1; 

%misclassification error before learning version 1 % error=0; 

%  for i=1:ts2  

%  nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2);  

%  [C1,I1]=min(nearest_dist);  

%  if prototype(end,I1)~=test(end,i)  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%  error=error+1;  

%  end  

%  end  

%  %%misclassification error before learning version 2 error=0; 
for i=1:ts2  
x=test(:,i); x_main=x(1:end-1); x_label=x(end); partial_sum_w=0; partial_sum=0;  
for j=1:p2  
if prototype(end,j)==x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum=partial_sum+normpdf(d,0,SD);  
end  
if prototype(end,j)~=x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum_w=partial_sum_w+normpdf(d,0,SD);  
end end  
if partial_sum_w>partial_sum error=error+1;  
end end  
error_rate0=error/ts2;  
%%the recursive adapting part  
uu=u; 
for t=1:max  
%u=uu/t;  
u=u*(0.999);  
%%randomly choose a training data from T  
x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prottoypes accordingly partial_sum=0;  
partial_sum_w=0; for j=1:p2  
if prototype(end,j)==x_label d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); 
partial_sum=partial_sum+normpdf(d,0,SD);  
end  
if prototype(end,j)~=x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum_w=partial_sum_w+normpdf(d,0,SD);  
end end  

for j=1:p2 d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); p=normpdf(d,0,SD);  
if prototype(end,j) == x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*p*(1/partial_sum- 1/
(partial_sum+partial_sum_w))*(x_main-prototype(1:end-1,j)); 

end  
if prototype(end,j) ~= x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/(SD)^2)*(p/
(partial_sum+partial_sum_w))*(x_main- prototype(1:end-1,j)); 
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end end 

end 

%%misclassification rate version 1 

%  error=0;  

%  for i=1:ts2  

%  nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2);  

%  [C1,I1]=min(nearest_dist);  

%  if prototype(end,I1)~=test(end,i)  

%  error=error+1;  

%  end  

%  end  

%  %%misclassification error before learning version 2  
error=0; for i=1:ts2  
x=test(:,i); x_main=x(1:end-1); x_label=x(end); partial_sum_w=0; partial_sum=0;  
for j=1:p2  
if prototype(end,j)==x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum=partial_sum+normpdf(d,0,SD);  
end  
if prototype(end,j)~=x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum_w=partial_sum_w+normpdf(d,0,SD);  
end end  
if partial_sum_w>partial_sum error=error+1;  
end end  
error_rate=error/ts2;  
Program 4 – TSLVQ  

%%% TSLVQ (Tangent Soft Learning Vector Quantization) 

%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and 
outputs a the updated prototypes 
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%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T 
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the 
label of the sample. Label is a number from 1 to c 

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T 

function [prototype,error_rate,error_rate0]=TSLVQ(T,prototype,test,c,max,u,dim) 

%%find the dimensions of training and prototype matrix 

[T1,T2]=size(T); [p1,p2]=size(prototype); 

%%Define the Gaussian distribution standard deviation 

SD=0.3; 

%%define the dimensions of tangent planes 

tan_dim=dim; 

%%define tangent planes for each prototype 

A=random('unif',-1,1,p1-1,tan_dim,p2); %%normalize the basis  
for i=1:p2 

A(:,:,i)=orth(A(:,:,i)); 

end 

%%find the error rate, before training 

[test1,test2]=size(test); error=0;  
for i=1:test2 

d0=100000; for j=1:p2 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if 
d<d0 

d0=d; 

class=prototype(end,j); 

end end 

if class~=test(end,i) error=error+1; 

end end 

error_rate0=error/test2; 

%%the recursive adapting part 
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uu=u; 
for t=1:max 

u=uu/t; 

%%randomly choose a training data from T 

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prottoypes accordingly partial_sum=0; 

partial_sum_w=0; for j=1:p2 

%%find projection matrix PM 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; if prototype(end,j)==x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); 

partial_sum=partial_sum+normpdf(d,0,SD); 

end  
if prototype(end,j)~=x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); 

partial_sum_w=partial_sum_w+normpdf(d,0,SD); 

end end 

for j=1:p2  
%%find projection matrix PM PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD);  
if prototype(end,j) == x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*(p/partial_sum)*PM*PM*(x_main-
prototype(1:end- 1,j)); 

A(:,:,j)=A(:,:,j)+2*u*(1/(SD)^2)*(p/partial_sum)*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end- 1,j))'*PM*A(:,:,j); 

end  
if prototype(end,j) ~= x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/(SD)^2)*(p/partial_sum_w)*PM*PM*(x_main-
prototype(1:end- 1,j)); 

A(:,:,j)=A(:,:,j)-2*u*(1/(SD)^2)*(p/partial_sum_w)*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end- 1,j))'*PM*A(:,:,j); 

end 

A(:,:,j)=orth(A(:,:,j)); 

end end 
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%%find the error rate, after training 

error=0; 
for i=1:test2 

d0=100000; for j=1:p2 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if 
d<d0 

d0=d; 

class=prototype(end,j); 

end 

end  
if class~=test(end,i) 

error=error+1; 

end end 

error_rate=error/test2; 

Program 5 – TRSLVQ 

%%% TRSLVQ (Tangent Robust Soft Learning Vector Quantization) 

%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and 
outputs a the updated prototypes 

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T 
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the 
label of the sample. Label is a number from 1 to c 

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T 

function [prototype,error_rate,error_rate0]=TRSLVQ(T,prototype,test,c,max,u,dim) 

%%find the dimensions of training and prototype matrix 

[T1,T2]=size(T); [p1,p2]=size(prototype); 

%%Define the Gaussian distribution standard deviation 

SD=0.3; 

%%define the dimensions of tangent planes 

tan_dim=dim; 

%%define tangent planes for each prototype 
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A=random('unif',-1,1,p1-1,tan_dim,p2); %%normalize the basis  
for i=1:p2 

A(:,:,i)=orth(A(:,:,i)); 

end 

%%find the error rate, before training 

[test1,test2]=size(test); error=0;  
for i=1:test2 

d0=100000; for j=1:p2 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if 
d<d0 

d0=d; class=prototype(end,j); 

end end 

if class~=test(end,i) error=error+1; 

end end 

error_rate0=error/test2; 

%%the recursive adapting part 

uu=u; 
for t=1:max 

u=uu/t; 

%%randomly choose a training data from T 

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prototypes accordingly partial_sum=0; 

partial_sum_w=0; for j=1:p2 

%%find projection matrix PM 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; if prototype(end,j)==x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); 

partial_sum=partial_sum+normpdf(d,0,SD); 

end  
if prototype(end,j)~=x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); 

partial_sum_w=partial_sum_w+normpdf(d,0,SD); 

Page �  of �75 88



end end 

for j=1:p2  
%%find projection matrix PM PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD);  
if prototype(end,j) == x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*p*(1/partial_sum- 1/
(partial_sum+partial_sum_w))*PM*PM*(x_main-prototype(1:end-1,j)); 

A(:,:,j)=A(:,:,j)+2*u*(1/(SD)^2)*p*(1/partial_sum-1/(partial_sum+partial_sum_w))*(x_main-
prototype(1:end- 1,j))*(x_main-prototype(1:end-1,j))'*PM*A(:,:,j); 

end  
if prototype(end,j) ~= x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/(SD)^2)*(p/
(partial_sum+partial_sum_w))*PM*PM*(x_main- prototype(1:end-1,j)); 

A(:,:,j)=A(:,:,j)-2*u*(1/(SD)^2)*(p/(partial_sum+partial_sum_w))*(x_main-
prototype(1:end-1,j))*(x_main- prototype(1:end-1,j))'*PM*A(:,:,j); 

end 

A(:,:,j)=orth(A(:,:,j)); 

end end 

%%find the error rate, after training 

error=0; 
for i=1:test2 

d0=100000; for j=1:p2 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if 
d<d0 

d0=d; 

class=prototype(end,j); 

end end 

if class~=test(end,i) error=error+1; 

end end 

error_rate=error/test2; 

Program 6 – TDSLVQ 

%%% TDSLVQ (Tangent Data Soft Learning Vector Quantization) 
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%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and 
outputs a the updated prototypes 

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T 
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the 
label of the sample. Label is a number from 1 to c 

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T 

function [prototype,error_rate,error_rate0]=TDSLVQ(T,prototype,test,c,max,u,dim) 

%%find the dimensions of training and prototype matrix 

[T1,T2]=size(T); [p1,p2]=size(prototype); 

%%Define the Gaussian distribution standard deviation 

SD=0.1; 
SD2=1; 
%%define the dimensions of tangent planes tan_dim=dim;  
%%radius of the ball  
BR=1; 
%%find the error rate, before training [test1,test2]=size(test); 

error=0; 
for i=1:test2 

d0=100000; dears=[]; 
for w=1:test2 

ilds=sqrt(sum((test(1:end-1,i)-test(1:end-1,w)).^2)); if ilds <BR && test(end,i)==test(end,w) 

dears=horzcat(dears,test(1:end-1,w)); 

end end 

[A,off]=k_affine(dears,tan_dim); for j=1:p2 

PM=eye(p1-1)-A*A'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if d<d0 

d0=d; 

class=prototype(end,j); 

end end 

if class~=test(end,i) error=error+1; 

end end 

error_rate0=error/test2; 

%%the recursive adapting part 
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uu=u; 
for t=1:max 

u=uu/t; 

%%randomly choose a training data from T 

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prototypes accordingly 

dears=[]; 
for w=1:T2 

ilds=sqrt(sum((x_main-T(1:end-1,w)).^2)); if ilds <BR && x_label==T(end,w) 
dears=horzcat(dears,T(1:end-1,w));  
end 

end 

[A,off]=k_affine(dears,tan_dim); 

PM=eye(p1-1)-A*A'; PM2=A*A'; 

partial_sum=0; partial_sum_w=0; 

for j=1:p2  
if prototype(end,j)==x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum=partial_sum+normpdf(d,0,SD)*normpdf(d2,0,SD2); 

end  
if prototype(end,j)~=x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum_w=partial_sum_w+normpdf(d,0,SD)*normpdf(d2,0,SD2); 

end end 

for j=1:p2 d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); 
d2=sqrt(sum((PM2*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD)*normpdf(d2,0,SD2);  
if prototype(end,j) == x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/2)*(p/partial_sum)*((1/SD2)*PM2+(1/
SD)*PM)*(x_main- prototype(1:end-1,j)); 

end  
if prototype(end,j) ~= x_label 

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/2)*(p/partial_sum)*((1/SD2)*PM2+(1/
SD)*PM)*(x_main- prototype(1:end-1,j)); 

end end 

Page �  of �78 88



end 

%%find the error rate, after training 

error=0; 
for i=1:test2 

d0=100000; dears=[]; 
for w=1:test2 

ilds=sqrt(sum((test(1:end-1,i)-test(1:end-1,w)).^2)); if ilds <BR && test(end,i)==test(end,w) 

dears=horzcat(dears,test(1:end-1,w)); 

end end 

[A,off]=k_affine(dears,tan_dim); for j=1:p2 

PM=eye(p1-1)-A*A'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if d<d0 

d0=d; 

class=prototype(end,j); 

end end 

if class~=test(end,i) error=error+1; 

end end 

error_rate=error/test2; 

program 7 – G-affine estimation 

%%function to use PCA to estimate best k-affine for a set of data points 

%%this function receives the data points and k (the dimension of the %%affine) and returns the 
orthogonal vectors spanning the space, plus the %%offset vector  
%%data points X should be given in a matrix, with each column dedicated to %%one data sample 

function [space,mean]=k_affine(X,k) 

[x1,x2]=size(X); 
mean=sum(X'); 
mean=(1/x2)*(mean');  
%%centered data Y=X-repmat(mean,1,x2);  
sig=(1/x2)*Y*Y'; 
[vec,val]=eig(sig);  
val_signed=sum(val); val_unsigned=abs(val_signed); [temp,ind]=sort(val_unsigned,'descend'); 
space=[]; 

for i=1:k space=horzcat(space,vec(:,ind(i))); 

end 
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Program 8 – TSLVQ_S 

%%% TSLVQ_S (Tangent Soft Learning Vector Quantization strong) 

%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and 
outputs a the updated prototypes 

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T 
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the 
label of the sample. Label is a number from 1 to c 

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T 

function [prototype,error_rate,error_rate0]=TSLVQ_S(T,prototype,test,c,max,u,dim) 

%%find the dimensions of training and prototype matrix 

[T1,T2]=size(T); [p1,p2]=size(prototype); 

%%Define the Gaussian distribution standard deviation 

SD=30; SD2=50; 

%%define the dimensions of tangent planes 

tan_dim=dim; 

%%define tangent planes for each prototype 

A=random('unif',-1,1,p1-1,tan_dim,p2); %%normalize the basis  
for i=1:p2 

A(:,:,i)=orth(A(:,:,i)); 

end 

%%find the error rate, before training 

[test1,test2]=size(test); error=0;  
for i=1:test2 

d0=100000; for j=1:p2 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); 

d2=sqrt(sum((PM2*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); 

d=sqrt(d^2+d2^2); if d<d0 

d0=d; 

class=prototype(end,j); 
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end end 

if class~=test(end,i) error=error+1; 

end end 

error_rate0=error/test2; 

%%the recursive adapting part 

uu=u; 
for t=1:max 

u=uu/t; 

%%randomly choose a training data from T 

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prototypes accordingly partial_sum=0; 

partial_sum_w=0; for j=1:p2 

%%find projection matrix PM 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; PM2=A(:,:,j)*A(:,:,j)';  
if prototype(end,j)==x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum=partial_sum+normpdf(d,0,SD)*normpdf(d2,0,SD2); 

end  
if prototype(end,j)~=x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum_w=partial_sum_w+normpdf(d,0,SD)*normpdf(d2,0,SD2); 

end 

end  
for j=1:p2 

%%find projection matrix PM 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); 
d2=sqrt(sum((PM2*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD)*normpdf(d2,0,SD2); 

if prototype(end,j) == x_label A(:,:,j)=A(:,:,j)+2.*u.*(p/partial_sum).*((-1/(SD)^2).*(x_main-
prototype(1:end-1,j))*(x_main-prototype(1:end- 

1,j))'*PM+(1/(SD2)^2).*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end-1,j))'*PM2)*A(:,:,j); prototype(1:end-1,j)=prototype(1:end-1,j)+u*(p/
partial_sum)*((1/(SD)^2)*PM*PM*(x_main-prototype(1:end- 

1,j))+(1/(SD2)^2)*PM2*PM2*(x_main-prototype(1:end-1,j))); 
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end  
if prototype(end,j) ~= x_label 

A(:,:,j)=A(:,:,j)-2.*u.*(p/partial_sum_w).*((-1/(SD)^2).*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end- 1,j))'*PM+(1/(SD2)^2).*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end-1,j))'*PM2)*A(:,:,j); 

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(p/partial_sum_w)*((1/(SD)^2)*PM*PM*(x_main-
prototype(1:end- 1,j))+(1/(SD2)^2)*PM2*PM2*(x_main-prototype(1:end-1,j))); 

end 

A(:,:,j)=orth(A(:,:,j)); 

end end 

%%find the error rate, after training 

error=0; 
for i=1:test2 

d0=100000; for j=1:p2 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); 

d2=sqrt(sum((PM2*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); 

d=sqrt(d^2+d2^2); if d<d0 

d0=d; 

class=prototype(end,j); 

end end 

if class~=test(end,i) error=error+1; 

end end 

error_rate=error/test2; 

Program 9 – TRSLVQ_S 

%%% TRSLVQ_S (Tangent Robust Soft Learning Vector Quantization strong) 

%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and 
outputs a the updated prototypes 

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T 
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the 
label of the sample. Label is a number from 1 to c 
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%%The prototype matrix "prototype" should be in the same format as %%training set matrix T 

function [prototype,error_rate,error_rate0]=TRSLVQ_S(T,prototype,test,c,max,u,dim) 

%%find the dimensions of training and prototype matrix 

[T1,T2]=size(T); [p1,p2]=size(prototype); 

%%Define the Gaussian distribution standard deviation 

SD=5; 
SD2=30; 
%%define the dimensions of tangent planes tan_dim=dim;  
%%define tangent planes for each prototype A=random('unif',-1,1,p1-1,tan_dim,p2); %%normalize 
the basis  
for i=1:p2 

A(:,:,i)=orth(A(:,:,i)); 

end 

%%find the error rate, before training 

[test1,test2]=size(test); error=0;  
for i=1:test2 

d0=100000; for j=1:p2 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); 

d2=sqrt(sum((PM2*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); 

d=sqrt(d^2+d2^2); if d<d0 

d0=d; 

class=prototype(end,j); 

end end 

if class~=test(end,i) error=error+1; 

end end 

error_rate0=error/test2; 

%%the recursive adapting part 

uu=u; 
for t=1:max 

u=uu/t; 

%%randomly choose a training data from T 
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x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prototypes accordingly partial_sum=0; 

partial_sum_w=0; for j=1:p2 

%%find projection matrix PM 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; PM2=A(:,:,j)*A(:,:,j)';  
if prototype(end,j)==x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum=partial_sum+normpdf(d,0,SD)*normpdf(d2,0,SD2); 

end  
if prototype(end,j)~=x_label 

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum_w=partial_sum_w+normpdf(d,0,SD)*normpdf(d2,0,SD2); 

end end 

for j=1:p2  
%%find projection matrix PM PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); 
d2=sqrt(sum((PM2*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD)*normpdf(d2,0,SD2);  
if prototype(end,j) == x_label 

A(:,:,j)=A(:,:,j)+2.*u.*p*(1/partial_sum-1/(partial_sum+partial_sum_w)).*((-1/(SD)^2).*(x_main-
prototype(1:end- 1,j))*(x_main-prototype(1:end-1,j))'*PM+(1/(SD2)^2).*(x_main-
prototype(1:end-1,j))*(x_main-prototype(1:end- 1,j))'*PM2)*A(:,:,j); 

prototype(1:end-1,j)=prototype(1:end-1,j)+u*p*(1/partial_sum- 1/
(partial_sum+partial_sum_w)).*((1/(SD)^2)*PM*PM*(x_main-prototype(1:end-1,j))+(1/
(SD2)^2)*PM2*PM2*(x_main- prototype(1:end-1,j))); 

end  
if prototype(end,j) ~= x_label 

A(:,:,j)=A(:,:,j)-2.*u.*(p/(partial_sum_w+partial_sum)).*((-1/(SD)^2).*(x_main-
prototype(1:end-1,j))*(x_main- prototype(1:end-1,j))'*PM+(1/(SD2)^2).*(x_main-
prototype(1:end-1,j))*(x_main-prototype(1:end-1,j))'*PM2)*A(:,:,j); 

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(p/(partial_sum_w+partial_sum))*((1/
(SD)^2)*PM*PM*(x_main- prototype(1:end-1,j))+(1/(SD2)^2)*PM2*PM2*(x_main-
prototype(1:end-1,j))); 

end 

A(:,:,j)=orth(A(:,:,j)); 

end end 

%%find the error rate, after training 
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error=0; 
for i=1:test2 

d0=100000; for j=1:p2 

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; PM2=A(:,:,j)*A(:,:,j)'; 

d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); 
d2=sqrt(sum((PM2*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); d=sqrt(d^2+d2^2); 

if d<d0 d0=d; 

class=prototype(end,j); 

end end 

if class~=test(end,i) error=error+1; 

end end 

error_rate=error/test2; 

9- List of abbreviations 

In this section the abbreviations, that are used in this article, are included, along with 
the full name they are abbreviating. For some of the abbreviations, references are 
mentioned, in parenthesis, to explain the underlying concept behind them.  

LVQ : Learning Vector Quantisation  

SLVQ: Soft Learning Vector Quantisation ([1])  

ASLVQ: Attraction Soft Learning Vector Quantisation (explained in this article)  

RSLVQ: Robust Soft Learning Vector Quantisation ([1])  

TSLVQ: Tangent Soft Learning Vector Quantisation (explained in this article)  

TRSLVQ: Tangent Robust Soft Learning Vector Quantisation (explained in this article)  

TDSLVQ: Tangent Data Soft Learning Vector Quantisation (explained in this article)  

TDRSLVQ: Tangent Data Robust Soft Learning Vector Quantisation (explained in this 
article)  

PCA: Principle Component Analysis  

GSLVQ: Grassmannian Soft Learning Vector Quantisation  
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 10- Appendices 

Appendix A 

The following manipulations are done, in order to get (38b) and (38c). Only for (38b), 
the path is shown. 

  

    

    

    

The above partial derivative, can be rewritten, using less symbols, as follows. Note that 
after calculating the result, the notation shall be returned to the original, for it is 
supposed to convey some agreed upon meanings.  

  

    

We would like to put the last result in neat form as below.  
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Where   is the identity matrix, with its  -th diagonal element to be 2, instead of 1. 

Similarly,   is the identity matrix, with its  -th diagonal element being 0, instead of 1. 

  is the  -th member of the standard basis of  , with its  -th element being 1. 

Then the following is done. 

  

      

      

Finally, the partial derivative of the first term of the logarithmic likelihood function 

(36), with respect to   is 

  

  

Appendix B 

Equation (41a) is the first term of the right hand side of (38a). An intermediate stage is 
included here. 
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