
MASTER THESIS

Mr.
Mehrdad Mohannazadeh Bakhtiari

Mathematical Considerations on
Soft Learning Vector Quantisation

and Robust Soft Learning Vector
Quantisation

2018

Faculty of Applied Computer Sciences and
Biosciences

MASTER THESIS

Mathematical Considerations on
Soft Learning Vector Quantisation

and Robust Soft Learning Vector
Quantisation

Author:
Mehrdad Mohannazadeh Bakhtiari

Study Programme:
Applied Mathematics in Digital Media

Seminar Group:
MA15w2-M

First Referee:
Prof. Dr. Thomas Villmann

Second Referee:
Dr. Marika Kaden

Mittweida, April 2018

Bibliographic Information

Mohannazadeh Bakhtiari, Mehrdad: Mathematical Considerations on Soft Learning Vector Quan-
tisation an Robust Soft Learning Vector Quantisation, 57 pages, 7 figures, Hochschule Mittweida,
University of Applied Sciences, Faculty of Applied Computer Sciences and Biosciences

Master Thesis, 2018

Abstract

Soft Learning Vector Quantisation (SLVQ) and Robust Soft Learning Vector Quantisation (RSLVQ)
are supervised data classification methods, that have been applied successfully to real world
classification problems. The performance of SLVQ and RSLVQ, however, reduces, when they
are applied to more complicated classification problems. In this thesis, we have introduced modi-
fications to SLVQ and RSLVQ, in order to have more capable versions of them. A few possibilities
to modify SLVQ and RSLVQ are considered, some of them are not successful enough and they
have been included for the sake of completeness. The fruits of the thesis are plenty, includ-
ing Tangent Soft Learning Vector Quantisation-Strong (TSLVQ-S), together with its more stable
version Tangent Robust Soft Learning Vector Quantisation-Strong (TRSLVQ-S), Attraction Soft
Learning Vector Quantisation (ASLVQ) and Grassmannian Soft Learning Vector Quantisation
(GSLVQ).

88 0

Table of Content

1- Introduction———————————————————————————————————————-2

2- Definitions and notations ———————————————————————————————-3

3- An introduction and discussions on SLVQ and RSLVQ————————————————5

 3-1- Stochastic Gradient Ascent Learning————————————————————6

 3-2- Soft Learning Vector Quantisation (SLVQ)—————————————————6

 3-3- SLVQ variant, with attraction (no repulsion)———————————————13

 3-4- Robust Soft Learning Vector Quantisation (RSLVQ)———————————-17

4- Tangent Distances————————————————————————————————————19

5- Integrating Tangent Distances into SLVQ and RSLVQ————————————————22

 5-1- SLVQ, using Tangent Distances (Simard Assumption)——————————-23

 5-2- SLVQ, using Tangent Distances (Saralajew-Villmann)——————————-30

 5-3- RSLVQ, using Tangent Distances (TRSLVQ)—————————————————39

 5-4- PCA, Tangent Space of local data, TDSLVQ and TDRSLVQ————————44

 5-5- Performance of SLVQ (RSLVQ), based on Tangent Distances——————-50

6- Grassmannian Manifolds, an introduction and its application in SLVQ—————-51

 6-1- Introduction to Grassmannian Manifolds—————————————————-52

 6-2- SLVQ, using Grassmannian Manifolds and Geodesic Distance——————57

 6-3- Validity of the result of GSLVQ———————————————————————-63

7- Conclusion——-64

8- Matlab programs—————————————————————————————————————65

9- List of abbreviations———————————————————————————————————85

10- Appendices——86

11- References——88 

Page � of �1 88

1- Introduction

SLVQ (Soft Learning Vector Quantisation) and its modified version RSLVQ (Robust Soft
Learning Vector Quantisation), which brings more stability in the learning process, are

rather successful classifiers of data in . The two methods were proposed by S. Seo
and K. Obermayer [1] and the corresponding paper would be the main reference for
what is included, about SLVQ and RSLVQ, in this thesis. Although the methods are known
to give good classifications, they have a fundamental disadvantage. To be clear, the
Euclidean distance is assumed to be a valid dissimilarity measurement to compare two

objects in . This assumption is too naïve for real world problems. An example would
be given to make the point more clear, in the first paragraph of section 4. To overcome
the problem, we would like to use tangent distances and Geodesic distance (defined on
a Grassmannian manifold), as substitutions for the Euclidean distance. The concept of
tangent distances is well explained in papers by P. Simard et al. [2] and S. Saralajew and
T. Villmann [3]. Although the papers have different assumptions, the underlying concept
stays the same. For Grassmannian manifolds and the corresponding distances, defined
on the manifolds, basic information can be found on a paper by S.Chepushtanova and
M.Kirby [8].

Intuitively, one may replace the Euclidean distance with a tangent distance, which is not
quite correct, as it conflicts the philosophy of what is described in the paper by S. Seo
and K. Obermayer [1]. Therefore, we would like to mention the right way to make the
transition from the original SLVQ to SLVQ, with tangent distances as the dissimilarity
measurement. The right way comes with complexity of the corresponding updating rule.
Therefore, as inaccurate alternatives, simplifying assumptions would be made and the
corresponding updating rules would be derived.

After using tangent distances in SLVQ, we would like to have Grassmannian manifolds as
the fundamental structure, on which SLVQ is applied. The motivation is to have a tool
that does not depend on the differentiability of the data manifolds (with tangent
distances, it is assumed that the data manifolds are differentiable). Grassmannian
concept gives us the opportunity to make new abstract points, from the original data
points. In the new data space, a new distance measurement (usually geodesic) is
introduced. The new space, together with the dissimilarity measurement, is supposed to
reflect the non-Euclidean dissimilarity of data points.

Here is a short description of what is coming in the next sections. In section 2, some of
the definitions and symbols, that would be used throughout the thesis, are included.
There might be symbols that are not defined in section 2. Those symbols are described
locally. Sections 3 and 4 give a brief introduction on SLVQ and tangent distances,
respectively. Section 5 is dedicated to explain how tangent distances should be
integrated in SLVQ. Grassmannian SLVQ is treated in Section 6, where we start with an
introduction to Grassmannian manifolds and explain the way it should be combined with
SLVQ. The result would be GSLVQ (Grassmannian Soft Learning Vector Quantisation),
which is not to be confused with “Generalised Learning

ℝn

ℝn

Page � of �2 88

Vector Quantisation” (GLVQ). In sections 7, conclusions have been made. Section 8
contains the Matlab programs, that are written to test the developed methods,
described in this thesis. Note that there would be no programs provided for GSLVQ. In
sections 9 and 10, a list of abbreviations, that are used in the thesis, and references are
included, respectively.

2- Definitions and notations

The main problem is a classification problem, in . For all , we would like to

have a function , where is the set of possible classes. The

function is called a classifier that assigns each to a class . We

would be interested in a certain classification, given by , dictated by a finite training

set . Therefore, a primary

intension is to find a function , such that . A function

 is defined to contain the relation , in the set . is allowed

to accept any other values for an , for which there is no relation in the training set

 . would be called the training function, with respect to the training set .

In order to assess the suitability of function , with respect to a test set ,

classification error rate is commonly used. is of the same format as (it can be
itself), but usually with new samples. Note that classification error rate should be
minimised and it is as below.

 is Dirac delta function. Although is the main cost function, it is not used in
the learning process, but rather, it would be the final check for the performance of the
learning algorithms.

To find a suitable function , one needs to define a model for , with some adaptive
parameters (this is a regular process in machine learning). The model, that is used in
“Learning Vector Quantization” (LVQ, introduced by T. Kohonen), is as follows. A set of
prototypes is defined.

ℝn " ∈ ℝn

F : ℝn → L L = {1,2,...,c}
F(") = l " ∈ ℝn l ∈ L

F
T = {("i, yi) |"i ∈ ℝn, yi ∈ L, i = 1,2,..., ∣ T ∣ }

F F("i) = yi ∀i = 1,2,..., |T |
CT("i) = yi ("i, yi) T CT(")

"
T CT(") T

F T′�
T′� T T

CER =
∑|T′�|

i= 1 1 −δ(F("i) −CT′�("i))
|T′�| (1)

δ(x) CER

F F

W = {* j
i ∈ ℝn| j ∈ L, i = 1,2,...,kj, kj ∈ ℕ}

Page � of �3 88

 prototypes are dedicated to a class . Having , the function can be defined as
below.

where is the Euclidean norm. Note that takes two arguments, in the relation
above. However, it would only depend on a single argument, when the training phase is
finished and becomes fixed.

Having a set of prototypes in , the Voronoi cell of a prototype

 , with respect to , written as is define as below.

The model, described so far, is called crisp classification. In contrast, fuzzy classifiers

assign to each object a probability vector . The -th element of the vector

 gives the probability that the object belongs to the class . At the end of a

fuzzy learning process, one has the option of classifying an object into the class

 , for which is the largest. However, in some applications, if two or more

largest elements of are close to each other, the data point is preferred not be
classified, as there is a notable level of uncertainty. According to the definition of a
fuzzy classifier, “Soft Learning Vector Quantisation”
(SLVQ) can be thought as a fuzzy classifier, as it implicitly uses probabilities to adapt
prototypes.

To achieve a desirable function , parameters may be changed, according to an

online learning scheme. is initialised randomly (or using a more intelligent method).

At time , a sample is chosen randomly, with all the members having an
equal probability of being selected. Then, the update happens according to certain
rules, in such a way that gives a better classification.

Gaussian distribution is a key element in SLVQ and RSLVQ. Therefore, its notation is

mentioned here. denotes a Gaussian distribution, with mean and standard

deviation . A variation of the same notation is used to address a point (vector) in ,

that is produced, using a Gaussian distributed sample producer, with parameters and

 . Note that and . The notation is . Therefore,

kj j W F

F(", W) = arg j(mini, j | |" −* j
i | |) (2)

| | . | | F

W

W = {*i | i = 1,...,k} ℝn

*i ∈ W W V(*i |W)

V(*i |W) = {" ∈ ℝn| | |" −*i | | ≤ | |" −*j | | ∀j ≠ i}

" P(") j
Pj(") " j

"
j ∈ L Pj(")

P(") "

F W
W

t (", y) ∈ T

F(", W)

N(μ, σ) μ
σ ℝn

μ
σ μ ∈ ℝn σ ∈ ℝ Nℝn(μ, σ) Nℝn(μ, σ)

Page � of �4 88

denotes a random vector in , whose production probability is (refer to
equation (4)).

When the probability of a point is to be measured, given the distribution is

 , the following formula is used.

In the above formula, and are vectors in and is a general distance
measure.

Having a matrix , the element, that is located at row and column , is denoted by

Every now and then, it is required to extract a certain row or column of a matrix . For
that purpose, we would like to use notations, that are used in Matlab programming. To

indicate the -th row and -th column of matrix , notations and are used,

respectively.

Finally, the vectorisation operation, on a matrix , is denoted by and it

is defined as below. is a column vector, with elements.

Where and . Note that is the

remainder of dividing by and is the floor function.

3- An introduction and discussions on SLVQ and RSLVQ

Section 3-1 gives a general framework for stochastic gradient learning. In sections 3-2
and 3-4, Soft Learning Vector Quantisation (SLVQ) and Robust Soft Learning Vector
Quantisation (RSLVQ) are introduced. Not only the key concepts are mentioned in order

" ℝn p(" |μ, σ)

" ∈ ℝn

N(*, σ)

p(" |*, σ) = 1
2πσ2

exp(−d 2(", *)
2σ2) (3)

* " ℝn d (. , .)

A i j

Aij or {A}ij

A

i j A Ai,: A:, j

m × n A vec(A)
vec(A) n× m

{vec(A)}i = Aa,b

a = rem(i −1,n) + 1 b = ⌊ i −1
n

⌋ + 1 rem(p, q)
p q ⌊ . ⌋

Page � of �5 88

to integrate the new modifications into the original concepts more meaningfully, but
also a few comments, about the original SLVQ and RSLVQ are made.

Section 3-3 explains a new way of looking at SLVQ. A fruit of the new approach is
Attraction SLVQ (ASLVQ).

 3-1- Stochastic Gradient Ascent learning

We introduce a general framework, which is going to be used throughout the paper. A

Likelihood function is defined, where is a training set and is a set of

adaptable parameters. Moreover is defined as

 is the partial likelihood function. In words, can be written as the

product of partial likelihood function , each depending on a single training

sample from .

Given a random , at time , the Stochastic Gradient Ascent Learning (SGAL), with

respect to , is defined as

The updating rule of the adaptable parameters would always be

 .

 is the updating rate, which is a constant.

For the rest of the thesis, the updating rules will not be included. Only the
corresponding SGALs would be included, assuming the reader knows how to apply SGALs
to update parameters.

3-2- Soft learning vector quantisation (SLVQ)

S. Seo and K. Obermayer [1] proposed a method of learning vector quantisation, called
“Soft Learning Vector Quantisation” (SLVQ). A flaw in traditional LVQ methods is that the

same updating rate is applied to all the prototypes, at a certain time . So, no matter

which prototype gets updated, at time , the rate would be . Equations (9a) and
(9b) will make it clear that the updating rule of SLVQ depends on more parameters, to
pinpoint the right updating rate. In this section, we are going to introduce the
philosophy of SLVQ and then argue that, although there are minor issues with SLVQ, it
may serve as a nice framework to learn classification problems.

Lr(T, W) T W
Lr(T, W)

Lr(T, W) = ∏
"∈T

Lp(", W)

Lp(", W) Lr(T, W)
Lp(", W)

T

" ∈ T t
* ∈ W

SGAL(Lp, ", *) = ∂
∂* Lp(", W)

W(t)
(4a)

* ∈ W

*(t + 1) = *(t) + α . SGAL(Lp, ") (4b)

α

α t
t α(t)

Page � of �6 88

A goal of the paper, published by S. Seo and K. Obermayer [1], is to define a learning
model that is easy to treat mathematically. In a key step, they assume that the data
points are produced by a Homogeneous Gaussian Mixture model. To describe it, in a
simple way, each prototype is assumed to be responsible for a Gaussian distribution
 , in . The standard deviation is unknown (it would be initialised and

adapted, in the learning process). As explained in the same paper, homogeneity
addresses the fact that a prototype would only produce data points of class . With a

class and a prototype , probabilities and are associated, respectively. is the

probability that an arbitrary prototype, from class , is given the chance to produce a

point, in , and is the probability that the prototype is the prototype to

produce a data point, in . According to what is described so far, to have a rough idea

about the distribution of data in , one may choose a prototype , with probability

 , and a point , is randomly generated, according to . To emphasise, this is

the model that is assumed to be responsible for producing the training set .
Assuming a Gaussian mixture model, being responsible for data production, S. Seo and K.
Obermayer [1] proposed a learning method to adapt the prototypes. The method is
based on the following cost function.

In the above expression, is the probability that is produced by a

prototype, responsible for class , given that the prototypes are distributed as given by

 . Mathematically, it can be written as

 .

In a rather similar manner, is the probability that is produced by a

prototype, responsible for a class other than , given that the prototypes are

distributed as given by . It can be written as

 .

The conditional probability is the probability that is produced, when

prototype is the producer. Its value is readily given by a Gaussian component of the

mixture, using formula (4).

N(* j
i, σ j

i) ℝn σ j
i

* j
i j

j * j
i p j p j

i p j

j
ℝn p j

i * j
i

ℝn

ℝn * j
i

p j
i " N(* j

i, σ j
i)

T

Lr(T, W) =
|T|

∏
i= 1

p("i, yi |W)
p("i, ȳi |W) (5)

p("i, yi |W) "i
yi

W

p("i, yi |W) = ∑
t

p("i |*yi
t) . pyi

t (6)

p("i, ȳi |W) "i
yi

W

p("i, ȳi |W) = ∑
k≠yi

∑
t

p("i |*k
t) . pk

t (7)

p(" |* j
i) "

* j
i

Page � of �7 88

Note that is assumed to be fixed for all the prototypes. Therefore, it would not be
mentioned in the argument of the conditional probability. In a more general treatment,
one can have different standard deviations for different prototypes. We are not going to
investigate the general form in this thesis.

The logarithmic version of cost function (5) is

The partial likelihood function of (8) is

According to equation (8b)

Using chain rule, the following is obtained. Note that is a general dissimilarity
measurement.

In case the Euclidean distance is chosen for , follows the Gaussian

distribution, as stated in equation (3), and and are as
described in formulas (6) and (7), equation (9a) becomes

σ

log Lr(T, W) =
|T|

∑
i= 1

log
p("i, yi |W)
p("i, ȳi |W) (8a)

log Lp((", y), W) = log
p(", y |W)
p(", ȳ |W) (8b)

SGAL(Lp, (", y), * j
i) = ∂

∂* j
i
log p(", y |W) − ∂

∂* j
i
log p(", ȳ |W) (9a)

d (", 2)

∂
∂* j

i
log p(", y |W) = 1

p(", y |W) . ∂p(", y |W)
∂p(" |* j

i)
.

∂p(" |* j
i)

∂d (", * j
i)

.
∂d (", * j

i)
∂* j

i
(9b)

∂
∂* j

i
log p(", ȳ |W) = 1

p(", ȳ |W) . ∂p(", ȳ |W)
∂p(" |* j

i)
.

∂p(" |* j
i)

∂d (", * j
i)

.
∂d (", * j

i)
∂* j

i
(9c)

d (", * j
i) p(" |* j

i)
p(", y |W) p(", ȳ |W)

Page � of �8 88

Function is Dirac delta function.

Another way to calculate the gradient is as the following. It can be done by dividing the

summation, over all , in two terms. If the derivative is taken with respect to ,

the first term is all , such that . For the second term, holds.

The gradient of the expression above is

The gradient can be further simplified to get

In case of online learning, we have the above relation, simplified to

The gradient, given by (9d) and (10), is similar to Learning Vector Quantisation (LVQ)
gradient, introduced by T. Kohonen [13], except the updating rates are different for

different prototypes. As one can observe, the coefficient of the vector ,

depends on the probability that is produced by prototype , given we know that

is produced by a prototype of class .

∂
∂* j

i
log Lr(T, W) = 2.[δ(j −y)

p j
i p(" |* j

i)
σ2p(", y |W) −(1 −δ(j −y))

p j
i p(" |"j

i)
σ2p(", ȳ |W)](" −* j

i) (9d)

δ(x)

" ∈ T * j
i

" CT(") = j CT(") ≠ j

log Lr(T, W) =
|T|

∑
i= 1

log p("i, yi |W) −
|T|

∑
i= 1

log p("i, ȳi |W)

∂
∂* j

i
log Lr(T, W) = ∑

":CT (")= j

p j
i

p(", y |W) ×
∂p(" |* j

i)
∂* j

i
− ∑

":CT (")≠j

p j
i

p(", ȳ |W) ×
∂p(" |* j

i)
∂* j

i

∂
∂* j

i
log Lr(T, W) =

2p j
i

σ2 ∑
":CT (")= j

1
p(", y |W) p(" |* j

i)(" −* j
i) −

2p j
i

σ2 ∑
":CT (")≠j

1
p(", ȳ |W) p(" |* j

i)(" −* j
i)

∂
∂* j

i
log Lr(T, W) =

2p j
i p(" |* j

i)
σ2 (δ(CT(") −j)

p(", y |W) −1 −δ(CT(") −j)
p(", ȳ |W))(" −* j

i) (10)

" −* j
i

" * j
i "

j
Page � of �9 88

A Matlab program for SLVQ function is included in Matlab programs part, under the name
program1.

S. Seo and K. Obermayer [1] claimed, in the paper, that the original LVQ [13] methods
are based on heuristics. We would like to introduce a cost function that its gradient
gives the gradient descent rule that is used in LVQ, introduced by Kohonen. However,
this cost function is valid, only if the classification problem is a binary classification. To
find the cost function, we would like to be inspired by a similar cost function for
unsupervised LVQ that is included in a book, written by H. Ritter et al. [4], in which the
cost function, minimised by unsupervised LVQ method, is

where is the nearest prototype, in , to . is the probability density of

the input data space. If one calculates the gradient of equation (11), with respect to ,
the averaged updating rule is derived as the following.

 is the Voronoi cell of prototype , with respect to , and is

the learning rate.

Assuming that we would like to do online stochastic learning, equation (12) would be
reduced to

which is the simple unsupervised VQ learning method.

For a binary supervised LVQ, with labels , the cost function can be defined
as below.

Where is the winner prototype, when only the prototypes of class 1 are

considered. Similarly, is the winner prototype, when prototypes of class -1 are

E = ∫ | |" −*S(") | |2 p(")d " (11)

*S(") W " p(")
W

* j
i(t + 1) = * j

i(t) + 2ϵ∫V(* j
i|W)

(" −*s("))p(")d " (12)

V(* j
i |W) * j

i W 0 < ϵ ≪ 1

* j
i(t + 1) = * j

i(t) + 2ϵ(" −*S(")) = * j
i(t) + ϵ′ �(" −*S(")) (13)

L = {1, −1}

E = ∫ (| |" −*1
S(") | |2 −| |" −*−1

S(") | |2)CT(")p(")d " (14)

*1
S(")

*−1
S(")

Page � of �10 88

taken into account. is the training function, with respect to (refer to

definitions in section 2). We would like to define it as such that if

 , then . There is a family of functions that are eligible to be

 . As an example, we may consider the Voronoi cells of all the prototypes and

map a data to the label of the closest prototype. In case the data point is on the
boundary Voronoi cells, then the mapping would be done randomly to 1 or -1. If we

make the assumption that is bounded and countably discontinuous, then the
boundaries oft he Voronoi cells have measure zero and the integral, in the cost function
is well-defined. Under the mentioned conditions the gradient of the cost function would
be

 and contain prototypes and , respectively. As in the

unsupervised case, the online version of the updating rules, when (", 4) is given

randomly, is as below.

 is the winner prototype, among the prototypes that have the same label as the

provided data point . is the winner prototype, among the prototypes that have

the opposite label, compared to the provided data point .

Unfortunately, the author of this article do not know if a similar cost function can be
found for a classification problem, with the number of classes greater than 2. In case
such function exists, for an arbitrary number of classes, then the argument that LVQ is
based on heuristics is not valid.

Regarding the convergence of SLVQ, we would like to point out that, in case of
convergence, the prototypes will not converge to the prototypes that are assumed to be

CT(") T
CT : ℝn → {1, −1}

(", y) ∈ T CT(") = y
CT(") *

" "

p(")

∂E
∂*1

i
= 2∫V(*1

i |W1)
(" −*1

i)CT(")p(")d "

∂E
∂*−1

i
= −2∫V(*−1

i |W−1)
(" −*−1

i)CT(")p(")d "

W1 W−1 *1
i ∀i *−1

i ∀i

*S+ (")(t + 1) = *S+ (")(t) + μ(" −*S+ (")) (15a)

*S−(")(t + 1) = *S−(")(t) −μ(" −*S−(")) (15b)

*S+ (")
" *S−(")

"

Page � of �11 88

responsible for producing the training set , according to the Gaussian mixture model.
To explain it, we may consider an easy problem. Assume a classification problem with

two classes + and −, on the real line . To each class, there is a prototype. , for

class + and , for class −. is placed at and is placed at .

Each prototype has a Gaussian distribution, with . So far, we have described the

Gaussian mixture model. Now, we would like to write the dynamical behaviour of .
One can easily see that, on average, the change in *+, as a function of its position, is as

the following.

For , it would be

 is , as explained in equation (4), and is .

Having a look at the equation above, one can see that the first term of right hand side
has a unique fixed point at and the second term of has a unique fixed point at

 . It simply means that cannot be a fixed point of both of them
together. Consequently, it is proven that prototypes would not settle at the assumed
positions, as the Gaussian mixture model. However, one may argue that SLVQ is a
Bayesian classifier, in which the probability of misclassification is minimised. Therefore,

we do not care if the prototypes approach the positions, in , where they are
supposed to be, as suggested by a Gaussian mixture model.

Regardless of the issues mentioned in previous paragraphs, SLVQ has a nice
mathematical framework that makes a nice platform to conduct further investigation
on. As an example, when studying the dynamics of traditional LVQ, Voronoi cells of

prototypes are defined and Voronoi cell of a prototype , created by a set of

prototypes , depends on the position of other prototypes. This makes the dynamics of
LVQ to be a hard problem to treat. The problem would vanish in SLVQ, as it follows a
different learning scheme.

T

ℝ *+

*− *+ " = 1 *− " = −1
σ = 1

*+

Δ*+ = ∫
+ ∞

−∞
(" −*+)p+ (")d " −∫

+ ∞

−∞
(" −*+)p−(")d "

*−

Δ*− = ∫
+ ∞

−∞
(" −*−)p+ (")d " −∫

+ ∞

−∞
(" −*−)p−(")d "

p+ (") p(" |1,1) p−(") p(" | −1,1)

*+ = 1
*+ = −1 *+ = 1

ℝn

* j
i

W

Page � of �12 88

3-3- SLVQ variant with attraction (no repulsion)

In this section, a new way of looking at the original SLVQ method is introduced. The new
variant results in an updating rule that applies only attraction. If instead of
 and their normalised quantities are used, then some
interesting results may be achieved. The material, provided in this section, can be found
in an article Written by M. Mohannazadeh and T. Villmann [12].
We would like to define the quantities below.

Given that has happened, is the probability that data point is

produced by a prototype of class . In a similar way, given that has happened,

 is the probability that data point is produced by a prototype of a

class different from . Note that becomes equal to , when

it is divided by . The same is true for and .

The terms, defined in equations (16a) and (16b), are used to define a new maximum
likelihood ratio function.

Note that there is no difference between the function in (17) and the one given in (5),
as the factor appears in both the nominator and the denominator of (17).

Despite the fact that cost functions (5) and (17) are the same, they result in different
updating rules. The difference arises from the quantities that are used in the cost

functions. and add up to one and, consequently, they make

full probabilistic model. However, we cannot make the same conclusion for quantities

 and , as they do not add up to 1. In other words, with the
probabilities, defined in equation (5), we may lose information as the learning phase is
performed.

The partial likelihood function, based on (17),is

p("i, yi |W) p("i, ȳi |W)

p(*y |") = 1
p(") ∑

t
p(" |*y

t) . py
t (16a)

p(* ȳ |") = 1
p(") ∑

j≠y
∑

t
p(" |* j

t) . p j
t (16b)

" p(*y |") "
y "

p(* ȳ |") "
y p("i, yi |W) p(*y |")

p(") p("i, ȳi |W) p(* ȳ |")

Lr(T, W) =
|T|

∏
i= 1

p(*yi |"i)
p(* ȳi |"i)

=
|T|

∏
i= 1

p(*yi |"i)
1 −p(*yi |"i)

(17a)

1/p(")

P(*yi |"i) P(* ȳi |"i)
p("i, yi |W) p("i, ȳi |W)

Page � of �13 88

In case of online learning (sample), when the logarithm of the function

 is used, the gradient is

In (18a), the partial derivatives are as below.

If (16a) and (16b) are used

If the distribution is Gaussian, as defined in (3)

 .

If the distance measurement is Euclidean

 .

 is assumed to be constant and known.

In the new version, only the prototypes of the class (same class as the presented data

point) are updated.
A Matlab program for ASLVQ function is included in Matlab programs part, under the
name program2.

Another approach, to deal with the problem of the dependence of prototypes in SLVQ
model, is to use Lagrange multipliers optimisation. One can see that, in likelihood
function (5), some prototypes do not have a full degree of freedom. Those prototypes
are the prototypes that are responsible for a different class, with respect to a data point

 , that is given at time . The equation that makes the prototypes dependent is

Lp((", y), W) = p(*y |")
1 −p(*y |") (17b)

(", y)
Lp((", y), W)

SGAL(Lp, (", y), *y
i) =

∂log Lp(", W)
∂p(" |*y

i)
.

∂p(" |*y
i)

∂d (", *y
i)

.
∂d (", *y

i)
∂*y

i
(18a)

∂log Lp(T, W)
∂p(" |*y

i)
=

py
i

p(") . (1
p(*y |") + 1

1 −p(*y |")) (18b)

∂p(" |*y
i)

∂d (", *y
i)

= −
p(" |*y

i)
σ2 . d (", * j

i) (18c)

∂d (", *y
i)

∂*y
i

= − 1
d (", *y

i)
. (" −*y

i) (18d)

p(")

y
"

" t

p(", y |W) + p(", ȳ |W) = ∑
t

py
t p(" |*y

t) + ∑
j≠y

∑
t

p j
t P(" |* j

t) = p(") (20)

Page � of �14 88

In (20), it is assumed that is known, at least for data points that are in the

training set . In (16), on the contrary, is not required to be known and it is
estimated using formula (19).

Now, to apply gradient ascent learning, there are two options. One way is to calculate

the gradient, with respect to the independent variables (prototypes of class , when

 is provided). This is exactly ASLVQ, which is explained earlier. In the second way,
we can take all the prototypes into account. The authors of the article [12] are under
the impression that if one intends to keep all the prototypes in the likelihood functions,
then the optimisation problem is a constraint optimisation problem and, therefore, the
cost function should be modified to reflect the fact. Therefore, a new function, using
the concept of Lagrange multipliers, is defined as the following. Based on function (5)

The gradient, with respect to , is

The gradient, with respect to , is simply the constraint

which can be plugged in the previous formula to achieve the updating rule below.

p(") "
T p(")

y
(", y)

F(", W) = log
p(", y |W)
p(", ȳ |W) + λ(p(", y |W) + p(", ȳ |W) −p(")) (21)

W

∂F(", W)
∂* j

i
=

p j
i p(" |* j

i)
σ2 (δ(C(") −j)

p(", y |W) −1 −δ(C(") −j)
p(", ȳ |W) + λ)(" −* j

i)

λ

p(", y |W) + p(", ȳ |W) = p(")

∂F(", W)
∂* j

i
=

p j
i p(" |* j

i)
σ2 (δ(y −j)

p(", y |W) − 1 −δ(y −j)
p(") −p(", y |W) + λ)(" −* j

i) (22)

Page � of �15 88

Finally, two remarks are made. Firstly, the constant , which should be found in
each learning step, is not the same as relation (19), for if the relation (19) is used, the
penalty function in relation (21) would always be equal to zero. Therefore, as a
drawback of this method, we are required to have an estimation of the distribution of
the data space, that is to be classified.

Secondly, note that the new set of adaptive parameters is and would be
initiated randomly.

The updating model (22) becomes more accurate if a special is dedicated to each class

 , because, according to the class of data point , the function is different.

Hence, we may define for a class . Consequently, the , in gradient (22), is

substituted by to have the new gradient.

Relation (23) suggests to have multiple online functions to maximise, as the main
function itself varies, when data points , with different classes, are provided to the
system.

The last unanswered question, in this section, is “how to estimate the distribution
 , for LSLVQ”. If we do not have a prior knowledge of the distribution , then a
solution might be to perform an unsupervised density estimation (for example
unsupervised LVQ or Neural Gas), parallel to the main classification problem, in order to

find an estimation of . Note that the estimation improves as the number of
learning steps increases.

The rest of this section gives experimental results on ASLVQ and LSLVQ. A binary
classification problem, which is called the butterfly problem, is given to two programs,
one using SLVQ and the other one using ASLVQ algorithm. The butterfly problem is as
follows.

On plane, a point is of class 1, iff and it is of class 2
otherwise.

The Matlab program, to produce a training set, a test set and initiate prototypes for the
butterfly problem, is include in “Matlab Program” part of this article, under the name
“program 3”.

The reason why the butterfly program is chosen is that, with Euclidian distance
measurement, we cannot actually achieve an appropriate classification, for reasonable
number of prototypes.

p(")

W ∪ λ λ

λ
j y " F(", W)

λj j λ
λy

∂F(", W)
∂* j

i
=

p j
i p(" |* j

i)
σ2 (δ(y −j)

p(", y |W) − 1 −δ(y −j)
p(") −p(", y |W) + λy)(" −* j

i) (23)

"

p(") p(")

p(")

ℝ2 x = (x1, x2) x1 × x2 ≥ 0

Page � of �16 88

For instance, the problem of classifying hand written characters was given to both SLVQ
and ASLVQ and no improvements in the classification was achieved. Therefore, the
butterfly problem serves as a nice problem to compare SLVQ and ASLVQ.

After one million learning steps, having 20 prototypes per class, the misclassification
error rates are 0.178 and 0.057, for SLVQ and ASLVQ, respectively. The initial error rate
(before learning) was 0.605. Also, the standard deviation was chosen to be 1.

Note that the error rates highly depend on the initialisation on prototypes, which is done
totally randomly. Therefore, the error rates are compared relatively. In this thesis, the
author tries to avoid initiating prototypes in desirable regions, as done by some
researchers, for we believe that in real world problems it is rather impractical.

It is emphasised that ASLVQ successfully achieved a less error rate, compared to SLVQ.
The practical result backs up the mathematical theory of ASLVQ.

For LSLVQ, although the theoretical ground was laid, the author of this thesis was unable
to find a way to make the theory work in practice. The instability of the method was
also mentioned by a few colleagues.

3-4- Robust soft learning vector quantisation (RSLVQ)

It is explicitly mentioned by S. Seo and K. Obermayer [1] that RSLVQ has been proposed
to deal with the stability problem of SLVQ. In other words, RSLVQ is the stable version of
SLVQ. For RSLVQ, a new cost function is defined as below.

The cost function can be explained as the following. We need to look at partial cost

functions that are defined for each training data point , i.e.

The maximum that it can achieve is limited, whole it is not the case for

Lr(T, W) =
|T|

∏
i= 1

p("i, yi |W)
p("i, yi |W) + p("i, ȳi |W) (24a)

("i, yi)

p("i, yi |W)
p("i, yi |W) + p("i, ȳi |W) (24b)

p("i, yi |W)
p("i, ȳi |W)

Page � of �17 88

as it can achieve infinity. Now, one needs to imagine that the cost function of SLVQ has

as many as points in space, for which the value of the cost function is . In

case is initialised near any of these points, it would automatically be sucked into a
wrong region and the regions contain prototypes 9 that cause the scenario that all the

prototypes, with a certain class, are located at a single point, while the rest are pushed
to infinity. This effect can be reduced by limiting the maximum, each partial cost
function can achieve (as in RSLVQ). Consequently, even if the prototypes are initialised
in a wrong region, there is still a chance for them to get back in the right region, as the
cost function is rather smoother. The updating rule of RSLVQ, with respect to the new
cost function (24), is as the following.

With defined as in (24b). The elaboration of the partial derivative of (25a)is as
below.

The first and the second terms of the right hand side of (25b) are as below, respectively.

Using chain rule, the following is obtained. Again, is a general dissimilarity
measurement.

|T | W ∞
W

* j
i(t + 1) = * j

i(t) + μ
∂

∂* j
i
log Lr(T, W) (25a)

Lr(T, W)

∂
∂* j

i
log Lr(T, W) = ∂

∂* j
i
log p(", y |W) − ∂

∂* j
i
log (p(", ȳ |W) + p(", y |W)) (25b)

∂
∂* j

i
log p(", y |W) = 1

p(", y |W) . ∂
∂* j

i
p(", y |W) (25c)

∂
∂* j

i
log (p(", ȳ |W) + p(", y |W)) = 1

p(", ȳ |W) + p(", y |W) . ∂
∂* j

i
(p(", ȳ |W) + p(", y |W)) (25d)

d (", 2)

Page � of �18 88

In case the Euclidean distance is chosen for and and

are as described in formulas (6) and (7), equation (9c) becomes

The corresponding Matlab program is included in the programs section. One can notice
that, using butterfly problem, RSLVQ works notably better than SLVQ. However, its
performance is still worse than ASLVQ. This conclusion does not necessarily hold for
other classification problems.

4- Tangent distances

It is often the case, in application, that Euclidean distance (denoted by) of two

points, in space, does not give an appropriate dissimilarity measurement, according
to a certain classification task. A common example is the classification of optical
characters. A certain character and its rotation are supposed to be classified in the same
class. It means that if we are given a dissimilarity function, then it should return a
negligible dissimilarity, when a character and its rotation are passed to the function.
However, mostly this is not the case, when using Euclidean distance, as a dissimilarity
function, for Euclidean distance compares vectors component-wise. As a solution, the
idea of tangent distance was offered by P. Simard et.al [2] and elaborated by S.
Saralajew and T. Villmann [3], in recent years. Tangent distance and tangent learning
are computationally efficient simplifications of a more general idea, that is briefly
introduced here.

We are given a space . A point (object) is assumed to be a representative of

a dimensional manifold. It is assumed that the manifold of is

produced according to a function , � , where is a

parameter (can be varied like a knob). Also, we would like to define .

∂
∂* j

i
p(", y |W) = ∂

∂d (", * j
i)

p(", y |W) . ∂
∂* j

i
d (", * j

i) (25e)

∂
∂* j

i
(p(", ȳ |W) + p(", y |W)) = ∂

∂d (", * j
i) (p(", ȳ |W) + p(", y |W)) . ∂

∂* j
i
d (", * j

i) (25f)

d (", * j
i) p(", y |W) p(", ȳ |W)

∂
∂* j

i
log

p(", y |W)
p(", ȳ |W) =

p j
i p(" |* j

i)
σ2 (δ(j −y)

p(", y |W) − 1
p(", y |W) + p(", ȳ |W))(" −* j

i) (25g)

dE
ℝn

ℝn " ∈ ℝn

ℝm (m < n) " ∈ ℝn

M : ℝn× ℝm → ℝn M(", θ) θ ∈ ℝm

M(",0) = "

Page � of �19 88

If , to explain in a simple way, the function takes an object and

a parameter and outputs another object , that is basically the same object as the

first one, from the classification problem point of view (and are not necessarily

equal in). We may assume that the manifold makes equivalence classes on , which

means if, and only if, . If there is a dissimilarity measure

 is defined, according to the new model, then, ideally, iff

 . This may not be always possible in practice. For instance, as mentioned by P.
Simard et.al [4], optical characters "6" and "9" are not to be classified in the same
category. However, if the rotation of an object is the same as the object, then, the two
characters would be categorised in the same class.

With the equivalence classes of data in , one can use Hausdorff distance [5]

to find the level of dissimilarity between two data points and .

It might be possible to make some simplifying assumptions on the function . It

can be thought of a composition of functions . and .

Functions would be called basic functions. Each of the basic
functions corresponds to a particular transformation that preserves the class of an
object. For instance, rotation and thickening in optical characters. The mathematical
expression for combining the basic functions is as below.

 , for , is a reordering of numbers 1 to . denotes the -th elements of

the vector . The notation is used, in the above relation, to emphasise on the

assumption that the order of composing the basic functions do not matter, in a sense

that the output of always satisfies . With different orders one

may get different outputs (different functions). Also notice that basic
functions are not necessarily commutative. Nonetheless, it is assumed that different
functions, achieved by composing the basic functions in different orders, give the same
manifold, as long as their inputs are from the same class. Therefore, the basic functions
are composed, in an arbitrary order, and would be kept fixed for the rest of the analysis
and application.

Although the general theory, explained in previous paragraphs, is mathematically
accurate, it is impractical to be implemented in machine learning systems, as there is
no analytical expression for the distance, in general. A solution is to find the tangent
hyper-plane, induced by the function , around the point . If is

differentiable, with respect to , then the affine is the partial derivative of ,

with respect to , evaluated at and , which is a matrix .

2 ∈ ℝn 2 = M(", θ) "
θ 2

2 "
ℝn ℝn

" ∼2 ∃θ : 2 = M(", θ)
dM(", 2) dM(", 2) = 0
" ∼2

ℝn dH(", 2)
" 2

M(", θ)
Mθ

i ("), i ∈ {1,2,...,t} t ∈ ℕ θ ∈ ℝ
Mθ

i : ℝn× ℝ → ℝn

M(", θ) = Mθt
it

∘ . . . ∘ Mθ2
i2

∘ Mθ1
i1

(") (26)

ij j = {1,2,...,t} t θi i
θ ∈ ℝm ij

M(", θ) M(", θ) ∼"
M(", θ)

M(", θ) "0 M(", θ)
θ M(", θ)

θ "0 θ = 0 n× m A"0

Page � of �20 88

 , when , gives an object that is supposed to be in the

same class as .

If is written as a composition of basic functions, then the -th column of ,

denoted by , can be expressed as below.

There might be a need to take the differential of , with respect to . As is a
matrix function, we may put it into vector form, in order to calculate its differential.

At this point, there are two possibilities to define a distance, using the tangent space
approximation of a manifold. The first, used by P. Simard et.al[4], is the double-sided

tangent distance. If one needs to find , the tangent spaces of and , that

are and respectively, are found. Then, the distance is defined as
below.

The parameters and , for which the Euclidian distance is minimised, can be

calculated and, hence, is computable. This version of tangent distance gives a

A"0 = ∂M(", θ)
∂θ

θ= 0,"= "0

(27)

"1 = "0 + A"0θ | |θ | | ≈ 0 "1

"0

M("0, θ) k A"0

(A"0)k

(A"0)k = [(
m

∏
d= k+ 1

∂Mθ
id

∂") ×
∂Mθ

ik

∂θk]
θ= 0,"= "0

(28)

A" " A"

∂vec(A")
∂"

d (", 2) " 2
" + A"θ 2 + A2 γ

dd(", 2) = infθ,γ{dE(" + A"θ, 2 + A2 γ)} (29)

θ γ
d (", 2)

Page � of �21 88

fair measure of dissimilarity. As a remark, double-sided distance is not a metric, for it
violates triangular inequality property of a metric on a metric space.

The second variation of tangent distance is called single-sided tangent distance.
Although one may assume, theoretically, that single-sided tangent distance is less
accurate than the double-sided version, it has been shown by D.M. Keysers, in his PhD
thesis [11], that single-sided tangent works as good as the double sided version, in
practice. Consequently single-sided tangent distance is preferred over the double-sided
variation, since it gives us an analytical solution for the distance between a point

 and a tangent space in . In order to define the single-sided distance

 , the tangent plane of the first argument is considered. Having that,
one can define the single-sided distance as below.

As mentioned by S. Saralajew and T. Villmann [3], , for which is
minimised, is as below.

An obvious consequence of the transition, from double-sided to single-sided, is that we

lose symmetry of the distance, i.e. .

A rather obvious property of both double-sided and single-sided tangent distance is

5- Integrating tangent distances into SLVQ and RSLVQ

In this section, tangent distances would be used as the dissimilarity measurement and
they are supposed to substitute the Euclidean distance. The integration of tangent
distances into SLVQ and RSLVQ is not an straightforward problem, however. We are going
to have to make assumptions for different scenarios and, also, to make necessary
simplifications, so there would be a learning rule after all. A key assumption, throughout
this section, is that we assume the manifolds, defined in the data space of the learning
problem, are always differentiable.

" ∈ ℝn ℝn

ds(", 2) " + A"θ

ds(", 2) = infθ{dE(" + A"θ, 2)} (30)

θ dE(" + A"θ, 2)

θ* = AT
"(2 −") (31)

∃", 2 : ds(", 2) ≠ ds(2, ")

ds(", 2) ≤ dE(", 2)

dd(", 2) ≤ dE(", 2)

Page � of �22 88

5-1- SLVQ, using tangent distances (Simard Assumption)

Let’s assume a specific classification problem in , for which Euclidean distance does
not offer an appropriate dissimilarity measurement, when comparing two objects
 . We would like to use a version of tangent distance instead. To do so, one

needs to introduce a set of transformations, denoted by in the previous section,
that describe variations of an object, in data space. Note that, assuming that we are
given the class preserving transformations, we are adapting the idea that was developed
by P. Simard et.al [2]. This variant is explained in this section. In the next section, it
would be assumed that the class preserving transforms are not known. Therefore, a
learning method should locally approximate the transformations. This is exactly what is
assumed by S. Saralajew and T. Villmann [3],when applying tangent distances to
classification problems.

The transformations are composed to have . Then, whenever or

 is required, the local tangent spaces (gradient of , with respect to)
are found and the formulas (27) and (28) are used. Now, in order to learn the

classification problem, according to the training set , SLVQ is utilised. However, this
time, we would like to use tangent distances instead of the Euclidean distance. The
procedure is explained in more detail, in the next paragraphs.

Remark: Note that is, to a high extent, what it needed to clarify the very first
sentence of the previous paragraph, which contains “a specific classification problem”).
Also, having , a considerable amount of information is added to the original

training set . This is the reason for the result of this approach to be much more
reliable (compared to normal SLVQ), as the amount of information, contained in the

training set, is rather not comparable to the case where we only have the training set .

Having a look at the introduction on SLVQ in this thesis, one may start to imagine how
the Gaussian mixture model produces data samples, when the distance is tangent
distance. Let’s imagine a component of the Gaussian mixture. If the tangent space at

 , given by , is shifted by , we get the linear space . is a

matrix, where is the dimensions of the parameter space (recall).

The complement space of can be created by a matrix , such that

column vectors of and are mutually orthogonal. Roughly speaking, we would like
to have a Gaussian distribution on each of the spaces (tangent space and the

complement space), centred at , while they have different standard deviations. The
standard deviation of the complement space should be much smaller, in comparison.

Therefore, component produces points, on , according to the following formula.

ℝn

", 2 ∈ ℝn

Mθ
i (")

M(", θ) dd(", 2)
ds(", 2) M(", θ) θ

T

M(", θ)

M(", θ)
T

T

*
* M(*, θ) −* A*θ A* n× r

r M : ℝn× ℝr → ℝn

A*θ n× (n−r) Ac
*

A* Ac
*

*

* ℝn

Page � of �23 88

 is a random point in (refer to section 2), that follows a Gaussian
distribution.

As the first attempt, we would like to combine SLVQ and single-sided tangent distance,
by substituting the Euclidean distance with single-sided tangent distance and its
orthogonal complement component. This approach, in which the distance on the tangent
space is also taken into account, is called the strong approach. As before, the function,
to be maximised, is equation (5).

with the terms in the nominator and the denominator defined in relations (6) and (7).

So far there has been no differences, regarding the symbols. The difference becomes

clear as soon as one writes , considering single-sided tangent distance.

The relation (32a) can be read as the following. The probability that the data point is

produced, given the producer prototype is , is the probability that the component of

the random vector on the tangent space is and the component

of the random vector on the complement space is .

* + A* Nℝr(0,σ1) + Ac
* Nℝn−r(0,σ2) , σ1 ≫ σ2 > 0 (31)

Nℝr(0,σ1) ℝr

Lr(T, W) =
|T|

∏
i= 1

p("i, yi |W)
p("i, ȳi |W)

p(" |* j
i)

p(" |* j
i) = 1

2πσ2
1

exp(−
| |A(AT A)−1AT(" −* j

i) | |2

2σ2
1)

× 1

2πσ2
2

exp(−
| |Ac((Ac)T Ac)−1(Ac)T(" −* j

i) | |2

2σ2
2) (32a)

"
* j

i

A(AT A)−1AT(" −* j
i)

Ac((Ac)T Ac)−1(Ac)T(" −* j
i)

Page � of �24 88

After simplifications, we achieve

In the relations (32a) and (32b), for brevity, is used to indicate and to indicate

 . In order to understand relation (32), firstly, we would like to mention the

assumption that choosing a random point on (is the dimensions of the tangent

space), with distribution on the tangent space and choosing another random

point on , with distribution on the complement space, are

independence events. Therefore, one can see the product of Gaussian terms in equation

(32a). Note that is written as the product of two Gaussian random variables,

for the spaces and are orthogonal spaces and they make a basis for . Secondly,

the arguments of the exponential functions in relations (32a) and (32b) are explained as

the following.

 is basically the projection of the vector on the

tangent space . is the projection of

on the complement space . For a more information, the reader is referred to [3].

Another point is that in case , we get the same result as when we use the

Euclidean distance (original SLVQ). Therefore, and put weights on the terms (in the

argument of the exponential function) in (32b) (one in the tangent space, the other one

in the complement space), when they add up.

If the logarithmic version of the maximum likelihood function is used and the learning
scheme is online, given a random input ", then the gradient would be

p(" |* j
i) = 1

2πσ1σ2
exp(−

| |A AT(" −* j
i) | |2

2σ2
1

−
| |Ac(Ac)T(" −* j

i) | |2

2σ2
2) (32b)

A A* j
i

Ac

A c
* j

i

ℝr r
Nℝr(0,σ1)

ℝn−r Nℝn−r(0,σ2)

p(", * j
i)

A Ac ℝn

| |A(AT A)−1AT(" −* j
i) | | (" −* j

i)
A* j

i
| |Ac((Ac)T Ac)−1(Ac)T(" −* j

i) | | (" −* j
i)

A c
* j

i

σ1 = σ2

σ1 σ2

Page � of �25 88

where

and

Finally, the derivative of , with respect to is required.

with

At this point, an argument would be made to show the reason that the author thinks the
strong approach is theoretically more valid than the weak approach, in which only the
tangent distance mistaken into account (the distance on the complement space is
ignored).

∂
∂* j

i
log

p(", y |W)
p(", ȳ |W) = ∂

∂* j
i
log p(", y |W) − ∂

∂* j
i
log p(", ȳ |W) (33a)

∂
∂* j

i
log p(", y |W) =

δ(j −y)p j
i

p(", y |W) ×
∂p(" |* j

i)
∂* j

i
(33b)

∂
∂* j

i
log p(", ȳ |W) =

(1 −δ(j −y))p j
i

p(", ȳ |W) ×
∂p(" |* j

i)
∂* j

i
(33c)

p(" |* j
i) * j

i

∂p(" |* j
i)

∂* j
i

= p(" |* j
i)(−

A AT(" −* j
i)U1

σ2
1

−
Ac(Ac)T(" −* j

i)U2
σ2

2) (33d)

U1 = ∂A
∂* j

i
AT(" −* j

i) + A
∂AT

∂* j
i
(" −* j

i) −A AT (33e)

U2 = ∂Ac

∂* j
i
(Ac)T(" −* j

i) + Ac ∂(Ac)T

∂* j
i

(" −* j
i) −(Ac)(Ac)T (33f)

Page � of �26 88

In basic SLVQ, a Gaussian mixture model is assumed to be responsible for data
distribution on the data space. So each Gaussian component, which is a vector, produces
other vectors, on the same space, according to the Gaussian distribution. With the same

reasoning, one may attempt to define a space to be a prototype. So, a

prototype is a space now, rather than a vector. Then, the prototype is

supposed to produce a data point of the same class, according to a Gaussian

distribution. We know that should be located on one of the affine spaces, that are

parallel to . The probability of any of the affine spaces to be the one, on

which is located is also known to be

However, which of the points, on the affine space should be taken to be ? A solution

might be to produce a random vector in the space , with equal probability of having
any of them. If this solution is accepted, then we have used the weak approach. This
approach ignores the fact that manifolds of data, with the same class, can be fairly
complicated. Therefore, the author offers to consider a Gaussian distribution on the

space , which makes the process of data production more local.

After explaining the accuracy of the strong approach, the weak approach is investigated
in the next paragraphs.

Although the expressions (33a) to (33f) are mathematically accurate, they become long

and rather hard to handle. Note that and are functions of prototypes and shall

not be treated as constant matrices. In case there is not much information on , it is

not possible to continue with the strong approach, as numerical values are required to

update the position of the prototypes. To overcome this problem, we may consider the

tangent space of the random data point , that is presented in an online scheme. This

approach deviates from the assumption that prototypes produce data points, according

to

* + A*θ
* + A*θ

" ∈ ℝn

"
* + A*θ

"

1

2πσ2
2

exp(| |Ac(Ac)T(" −* j
i) | |2

2σ2
2)

"
A*

A*

A Ac * j
i
∂Ac

∂* j
i

"

* + A* Nℝr(0,σ1) + Ac
* Nℝn−r(0,σ2) , σ1 ≫ σ2 > 0

Page � of �27 88

and because single-sided tangent distance is non-symmetrical, considering the tangent

space of , may not optimise the same problem. The only hope here is to get a more
convenient updating rule. The gradient, when the weak approach is adopted, is as in
equation (33a), using

where

Note that one can find that .
Having (34), we compute the required terms in (33a), as below.

In the rest of the paper, the first approach, resulting in the updating rules described in
(33a) to (33f), is called the strong approach and the other approach, described in
equations (34) to (35b), is called the weak approach.

An example is given to show the way one should think about the Simard approach in

learning a classification problem. An artificial classification problem, in , is generated

the following. We would like to define a family of curves , on which data points

are equivalent. In other words, if and are on the same curve, which

means there are and such that and , then

 . For a data point , the corresponding curve is
defined as

"

p(" |* j
i) = 1

2πσ2
exp(−

d 2
s (* j

i, ")
2σ2

2) (34)

ds(* j
i, ") = | | (I −A"AT

")(* j
i −") | |

Ac = (I −A AT)

∂
∂* j

i
log p(", y |W) =

δ(j −y)p j
i

σ2
2 p(", y |W) p(" |* j

i)(I −A"AT
")2(" −* j

i) (35a)

∂
∂* j

i
log p(", ȳ |W) =

−(1 −δ(j −y))p j
i

σ2
2 p(", ȳ |W) p(" |* j

i)(I −A"AT
")2(" −* j

i) (35b)

ℝ2

M(", θ)
"1 ∈ ℝ2 "2 ∈ ℝ2

θ1 θ2 "2 = M("1, θ1) "1 = M("2, θ2)
dM("1, "2) = 0 " = [x1, x2]T ∈ ℝ2

M(", θ) = g (f ("), θ)

Page � of �28 88

where

and

We can calculate and , consequently, and . The constant ,

which indicates a family of curves, can also be found as below.

One can easily check if , which gives a one-dimensional manifold in ,

satisfies the required property .

The tangent space, induced by , is calculated here.

Consequently, we get

f ([x1
x2]) =

x2
1 + x2

2

tan−1(x2
x1

)

g ([α
θ0], θ) = α × [cos(θ + θ0)

0.5sin(θ + θ0)] = α × [cosθcosθ0 −sinθsinθ0
0.5sinθcosθ0 −0.5cosθsinθ0]

tanθ0 = 2x2
x1

cosθ0 sinθ0 α

α = x1
cosθ0

= x2
1 + 4x2

2

M(", θ) ℝ2

M(", θ)
θ= 0

= "

M(", θ)

∂M(", θ)
∂θ

= α × [−sinθcosθ0 −cosθsinθ0
0.5cosθcosθ0 + 0.5sinθsinθ0]

Page � of �29 88

5-2- SLVQ, using tangent distances (Saralajew-Villmann Assumption)

As mentioned in section 5-1, the class preserving transformations are usually not known
in advance. As a more general approach, S. Saralajew and T. Villmann[3] estimate the

local tangent spaces, according to the training data set , as the corresponding learning
process is being performed. To be precise, the tangent space, corresponding to each

prototype , is adapted using the gradient descent learning. Hence, the tangent

spaces of prototypes would be added to the set of adaptable parameters.

In the previous section, two learning approaches (weak and strong) were described. The
question is that whether we can use any of them in this section. Before continuing with
the discussion, it is pointed out that, in the previous section, the tangent spaces were
always made on the data side (not the prototype side), when the single-sided tangent
distance was to be calculated. therefore, the discussion, made in this paragraph and the
next one, is based on the mentioned assumption. With the weak approach, we have
assumed that the tangent space, required to calculate single-sided tangent distance, is

estimated on the presented data point , at a certain time. With Simard assumption,

we readily have the tangent space , as the transformation is given.

However, with Saralajew-Villmann assumption, it is not practically possible to have ,

for all . The reason is that there is a huge number of data points in a training set
and if a tangent space is considered for each, we would be left with an even greater
number of adapting parameters. Even if it is done, we would not have enough
information to meaningfully train the model. Therefore the weak approach is not an
option in this section. The solution would be to modify the weak approach by having the
tangent spaces defined on the prototype side.

The strong approach is closer to what is required in this section, in a sense that the
tangent space is created for each prototype . However, one can see, by examining

the updating rule of the strong approach, that the gradient of , with respect to ,
still should be known, in order to calculate the updates.

The mentioned difficulties make it hard to directly use either of weak or strong

approaches in this section (with Saralajew-Villmann assumption). Therefore, a

simplifying assumption is made: “The tangent space of the prototype is

independent of ”. The assumption suggests that can be treated as a constant

matrix, when the partial derivatives of the likelihood function is taken, with respect to

 . This assumption is generally not true. However, it reduces the complexity of the

A" = ∂M(", θ)
∂θ

θ= 0

= [−αsinθ0
0.5αcosθ0] = [−2x2

0.5x1]

T

* j
i

"
A" M(", θ)

A"
" T

* j
i

A "

A* j
i

* j
i

* j
i A* j

i

* j
i

Page � of �30 88

algorithm, with the cost of having a model that deviates from the original model. The

learning algorithm, in the new scenario is as the following. The set of adaptive

parameters is , where and

 is a orthogonal matrix, associated with the prototype . It is assumed

that the dimensions of the manifold is known. Members of are
initialised randomly, similar to what is done to prototypes. If the learning scheme is
online, the log likelihood function is defined as

The gradient for the prototypes is

At this point, we would like to mention that both weak and strong approaches, with the
tangent space defined on the prototype side, would be treated in this section. It can be
shown practically that the strong approach has a better performance, as expected, since
it acts more locally. First, we assume the distance measurement is based on the weak
approach. The updating rules would be as below and the method is called TSLVQ. Later
in this section, we would do the same, with strong approach, and the method would be
called TSLVQ_S (the “S”, at the end, stands for strong).

The first term of the right hand side of (37a), using the weak approach, is

The second term of the right hand side of (37a) is

W ∪ Ar(W) Ar(W) = {Ar(* j
i) | j ∈ L, i = {1,2,...,kj}}

Ar(* j
i) n× r * j

i
r M(", θ) Ar(W)

Lr(", W, Ar(W)) = log
p(", y |*, Ar(W))
p(", ȳ |", Ar("))

(36)

∂
∂* j

i
log

p(", y |W, Ar(W))
p(", ȳ |W, Ar(W))

= ∂
∂* j

i
log p(", y |W, Ar(W)) − ∂

∂* j
i
log p(", ȳ |W, Ar(W)) (37a)

∂
∂* j

i
log p(", y |W, Ar(W)) =

δ(j −y)p j
i

σ2
2 p(", y |W, Ar(W)) p(" |* j

i, Ar(* j
i))(I −Ar(* j

i)(Ar(* j
i))

T)2(" −* j
i) (37b)

∂
∂* j

i
log p(", ȳ |W, Ar(W)) =

Page � of �31 88

With

where is the single-sided tangent distance.

The gradient of the tangent spaces is

with

and

In Appendix A, a few steps, that was taken to achieve (38b) and (38c), are included.

Simply, if the label of the presented is the same as the label of a prototype , the

derivative of the first term (38b) is used, while for the opposite case, the derivative of
the second term (38c) is used.
Till this point, we have only derived the derivatives, according to the gradient descent
learning scheme. The updated tangent spaces, however, matrices, associated with the
tangent spaces, are not necessarily in the orthogonal form. Orthonormal form being that

 , for all prototypes . Therefore, after each adapting step,

(1 −δ(j −y))p j
i

σ2
2 p(", ȳ |W, Ar(W)) p(" |* j

i, Ar(* j
i))(I −Ar(* j

i)(Ar(* j
i))

T)2(" −* j
i) (37c)

p(" |* j
i, Ar(* j

i)) = 1

2πσ2
2

exp(−
d 2

s (", * j
i)

2σ2
2)

ds
Ar(* j

i)

∂
∂Ar(* j

i)
log

p(", y |W, Ar(W))
p(", ȳ |W, Ar(W)) =

∂
∂Ar(* j

i)
log p(", y |W, Ar(W)) − ∂

∂Ar(* j
i)

log p(", ȳ |W, Ar(W)) (38a)

∂
∂Ar(* j

i)
log p(", y |W, Ar(W)) =

δ(j −y)(2p j
i p(" |* j

i, Ar(* j
i))

σ2
2 p(", y |W, Ar(W)) × (" −* j

i)(" −* j
i)

T(I −Ar(* j
i)(Ar(* j

i))
T))Ar(* j

i) (38b)

∂
∂Ar(* j

i)
log p(", ȳ |W, Ar(W)) =

(1 −δ(j −y))(2p j
i p(" |* j

i, Ar(* j
i))

σ2
2 p(", ȳ |W, Ar(W)) × (" −* j

i)(" −* j
i)

T(I −Ar(* j
i)(Ar(* j

i))
T))Ar(* j

i) (38c)

y " * j
i

(Ar(* j
i))

T Ar(* j
i) = I * j

i

Page � of �32 88

tangent spaces are put in the orthonormal form. This process is necessary as in each

learning step the distance between a presented data point and prototypes are
calculated, using a formula that assumes the tangent spaces to be orthonormal.
At this point, two fundamental questions are addressed, Firstly, one needs to find an

appropriate dimensions of the manifolds , embedded in the original space.
Secondly, it is not known whether the tangent spaces preserve their rank after being
updated, at each learning step.

The second problem is rather easier to deal with. An adapted tangent space ,

corresponding to a prototype *, would be of the following form(according to (38b) and

(38c)).

where

or

 Note that the unnecessary notation is dropped, in the above expressions, for brevity.

Then, we may factor out and rewrite the expression as below.

If the intension is to preserve the rank of the matrix , we would better have the matrix

"

r M(", θ)

Ar(*)

A ± c(" −*)(" −*)T(I −A AT)A

c =
2p j

i p(" |* j
i, Ar(* j

i))
σ2

2 p(", y |W, Ar(W)) ≠ 0

c =
2p j

i p(" |* j
i, Ar(* j

i))
σ2

2 p(", ȳ |W, Ar(W)) ≠ 0

A

(I ± c(" −*)(" −*)T(I −A AT))A

A

Page � of �33 88

to be a full rank matrix. Because, if it is the case, the rank of the product would be

exactly . In order to make sure that the above matrix is full rank, we may use a special

case of the “Matrix Determinant Lemma”. It says that if are column vectors,
then

We may take and . Hence, we get

Consequently, if

then, we have got a full rank matrix. This an easy task to prove that the above relation
always holds, for the case

as long as is an orthogonal matrix. One needs to know that is a positive
semidefinite matrix, meaning that

To show the truth of the expression above, it is expanded.

Since is orthogonal,

I ± c(" −*)(" −*)T(I −A AT)

r
u , v ∈ ℝn

d et(I + u vT) = 1 + u Tv

u = c(" −*) vT = (" −*)T(I −A AT)

d et(I ± c(" −*)(" −*)T(I −A AT)) = 1 ± c(" −*)T(I −A AT)(" −*)

c(" −*)T(I −A AT)(" −*) ∉{−1,1}

c(" −*)T(I −A AT)(" −*) ∉{−1}

A (I −A AT)

xT(I −A AT)x ≥ 0 ∀x

xT(I −A AT)x = xT x −(AT x)T(AT x) = | |x | | −| |Ax | |

A
Page � of �34 88

Therefore, it is proven that the first case always holds and consequently, we do not

need to worry about the rank of the tangent spaces to decrease.

However, we may fail to prove the following

It means that the repulsion mechanism, in TSLVQ is troublesome. Although the
probability of

Is small, but there is still a small chance we have to reduce the rank of a tangent space.
Hopefully, we may prevent such a problem, by taking a small updating rate, which

makes the factor to be small. More formally

Which is valid, when is an orthonormal matrix. Therefore

Now, if we have

we can assume that we are safe. Note that we need to have some estimation on the

maximum value of and it definitely depends on the classification
problem.

| |Ax | | ≤ | |A | | . | |x | | = | |x | |

A

c(" −*)T(I −A AT)(" −*) ∉{1}

c(" −*)T(I −A AT)(" −*) ∈ {1}

c

(" −*)T(I −A AT)(" −*) ≤ | |" −* | |2

(I −A AT)

c(" −*)T(I −A AT)(" −*) ≤ c | |" −* | |2

c < 1
| |" −* | |2

| |" −* | |2

Page � of �35 88

TSLVQ, with Saralajew-Villmann assumption, was used to learn the butterfly problem
(described in section 3-2), with the dimensions of tangent spaces set to be 1, i.e., lines

in would be prototypes. The result reveals that the algorithm reduces the initial
misclassification error rate, significantly. Approximately, with an initial CER of 0.5, the
final CER would become 0.1, when 105 learning steps are taken. However, TSLVQ is not
as effective as ASLVQ (although it works better than SLVQ). This is not an expected
result, for the structure of the classification problem is more compatible with the
version of SLVQ, in which lines are taken as prototypes. The suspicion is on the unstable
behaviours of SLVQ. In the next section, TRSLVQ would be used as an alternative to see if
a better result is achieved.

The Matlab program of TSLVQ is included in the programs section, as program 4.

As the second version of TSLVQ (TSLVQ_S), we would like to use the strong approach. In
theory, one should observe improvement by using the strong approach. We are going to
derive the updating rules first and, then, it would be practically examined.

The likelihood function and the gradient, with respect to a prototype , are the same

as in (36) and (37a), respectively. However, the probability of producing , when

prototype (with) is chosen to produce, differs a bit, just to take the strong

approach into account. It would be

Having (39), the first and the second term of the right hand side of (37a), would be as
below, respectively.

and

ℝ2

* j
i
"

* j
i Ar(* j

i)

p(" |* j
i, Ar(* j

i)) =

1
2πσ1σ2

exp(−
| |(I −Ar(* j

i)(Ar(* j
i))T)(" −* j

i) | |2

2σ2
2

−
| |Ar(* j

i)(Ar(* j
i))T(" −* j

i) | |2

2σ2
1) (39)

∂
∂* j

i
log p(", y |W, Ar(W)) =

δ(j −y)p j
i

p(", y |W, Ar(W)) p(" |* j
i, Ar(* j

i))

× ((I −Ar(* j
i)(Ar(* j

i))T)2(" −* j
i)

σ2
2

+ (Ar(* j
i)(Ar(* j

i))T)2(" −* j
i)

σ2
1) (40a)

Page � of �36 88

In order to update the tangent spaces, the gradient of the tangent spaces would be as
(38a), with the first and the second terms of the right hand side of (38a) being as the
following, respectively.

and

A single computing step, regarding the derivation of (41a), is included in appendix B.

We would like to investigate the rank of the updated versions of the tangent spaces.
The procedure would be the same as what was done for the weak approach. The
updated version of the tangent space matrix would be of form

∂
∂* j

i
log p(", ȳ |W, Ar(W)) = (1 −δ(j −y))p j

i

p(", ȳ |W, Ar(W)) p(" |* j
i, Ar(* j

i))

× ((I −Ar(* j
i)(Ar(* j

i))T)2(" −* j
i)

σ2
2

+ (Ar(* j
i)(Ar(* j

i))T)2(" −* j
i)

σ2
1) (40b)

∂
∂Ar(* j

i)
log P(", y |W, Ar(W)) =

δ(j −y)(2p j
i p(" |* j

i, Ar(* j
i))

p(", y |W, Ar(W)))(−
(" −* j

i)(" −* j
i)T(I −Ar(* j

i)(Ar(* j
i))T)

σ2
2

+

(" −* j
i)(" −* j

i)T(Ar(* j
i)(Ar(* j

i))T)
σ2

1)Ar(* j
i) (41a)

∂
∂Ar(* j

i)
log P(", ȳ |W, Ar(W)) =

(1 −δ(j −y))(2p j
i p(" |* j

i, Ar(* j
i))

p(", ȳ |W, Ar(W)))(−
(" −* j

i)(" −* j
i)T(I −Ar(* j

i)(Ar(* j
i))T)

σ2
2

+

(" −* j
i)(" −* j

i)T(Ar(* j
i)(Ar(* j

i))T)
σ2

1)Ar(* j
i) (41b)

Page � of �37 88

Where

Then, the matrix, in the big parenthesis should be full rank. We may use the “Matrix
Determinant Lemma”

to have the determinant of the matrix as below.

It is required to have

Since

A ± c(−(" −*)(" −*)T(I −A AT)
σ2

2
+ (" −*)(" −*)T(A AT)

σ2
1)A =

(I ± c(−(" −*)(" −*)T(I −A AT)
σ2

2
+ (" −*)(" −*)T(A AT)

σ2
1))A

c =
2p j

i p(" |* j
i, Ar(* j

i))
p(", ȳ |W, Ar(W))

d et(I + u vT) = 1 + u Tv

1 ± c
σ2

1σ2
2

(σ2
2 −σ2

1)(" −*)T(" −*) = 1 ± c
σ2

1σ2
2

(σ2
2 −σ2

1) | |" −* | |2

c
σ2

1σ2
2

(σ2
2 −σ2

1) | |" −* | |2 ∉{−1,1}

Page � of �38 88

We only need to check the inequality below, to be safe.

We may choose parameters such that

and for that, an estimation on the maximum value of is required.

Lastly, a piece of practical advice is given. When applying TSLVQ_S to problems with high
dimensions, it is necessary to increase and relatively. Otherwise the sums

 and tend to become too small, so that the
updating expressions, that have the sums in their denominators, go to infinity and,
consequently, Matlab would update the parameters to be “Not a Number” (NaN). If it
happens, then we cannot continue with the rest of the algorithm, computationally.
TSLVQ_S was examined practically and the result was much better and more stable than
TSLVQ. The Matlab program of TSLVQ_S can be found under the name Program 8, in
Matlab programs section.

5-3- RSLVQ, using tangent distances (TRSLVQ)

Robust soft learning vector quantisation (RSLVQ), introduced earlier in section 3-3, is a
more stable version of SLVQ, in which prototypes do not diverge. In this section, tangent
distances would be used, as distance measurements, in RSLVQ and the corresponding
updating rule would be derived. Assuming that the main philosophy is developed in

c
σ2

1σ2
2

(σ2
2 −σ2

1) | |" −* | |2 ≤ 0

c
σ2

1σ2
2

(σ2
2 −σ2

1) | |" −* | |2 ∉{−1}

c < σ2
1 σ2

2

(σ2
1 −σ2

2) | |" −* | |2

| |" −* | |2

σ1 σ2
p(", y |W, Ar(W)) p(", ȳ |W, Ar(W))

Page � of �39 88

previous sections (while developing TSLVQ), we are going include the main issues here.
Also, only Saralajew-Villmann assumption would be treated in this section and the set of
prototypes and their corresponding tangent spaces would be assumed to be
independent, as in the previous section.

First, we start with the weak approach. The log likelihood function would be as the
following.

The gradient, with respect to the prototypes is

With the first and the second terms, in (43a) as

and

The gradient, with respect to the tangent spaces is as below.

Lr(", W, Ar(W)) = log
p(", y |W, Ar(W))

p(", y |W, Ar(W)) + p(", ȳ |W, Ar(W)) = log
p(", y |W, Ar(W))
p(" |W, Ar(W)) (42)

∂
∂* j

i
log p(", y |W, Ar(W)) − ∂

∂* j
i
log (p(", y |W, Ar(W)) + p(", ȳ |W, Ar(W))) (43a)

∂
∂* j

i
log p(", y |W, Ar(W)) =

δ(j −y)p j
i

σ2
2 p(", y |W, Ar(W)) p(" |* j

i)(I −Ar(* j
i)(Ar(* j

i))
T)

2
(" −* j

i) (43b)

∂
∂* j

i
log (p(", y |W, Ar(W)) + p(", ȳ |W, Ar(W))) = ∂

∂* j
i
log p(") =

−p j
i

σ2
2 p(") p(" |* j

i)(I −Ar(* j
i)(Ar(* j

i))
T)

2
(" −* j

i) (43c)

Page � of �40 88

with

and

We would like to check if the updated tangent spaces are of the same rank as the initial
tangent spaces. The form of the updates would be similar to the case of TSLVQ, in the

previous section. The only difference is that the coefficient is different now.

∂
∂Ar(* j

i)
log p(", y |W, Ar(W)) − ∂

∂Ar(* j
i)

log (p(", y |W, Ar(W)) + p(", ȳ |W, Ar(W))) (44a)

∂
∂Ar(* j

i)
log p(", y |W, Ar(W)) =

δ(j −y)(2p j
i p(" |* j

i, Ar(* j
i))

σ2
2 p(", y |W, Ar(W)) (" −* j

i)(" −* j
i)

T(I −Ar(* j
i)(Ar(* j

i))
T))Ar(* j

i) (44b)

∂
∂Ar(* j

i)
log (p(", y |W, Ar(W)) + p(", ȳ |W, Ar(W))) =

(2p j
i p(" |* j

i, Ar(* j
i))

σ2
2 p(") (" −* j

i)(" −* j
i)

T(I −Ar(* j
i)(Ar(* j

i))
T))Ar(* j

i) (44c)

c
Page � of �41 88

Therefore, we need to have the following constraint on .

The maximum of , in practice, should be found to find a suitable .

As promised, in the previous section, TRSLVQ is used to learn the butterfly problem and
the result is much better than TSLVQ. With an initial CER of 0.5, the final CER, after 105
learning steps, is around 0.05. In a similar situation, ASLVQ gives a final CER of 0.01,
which is still better. However, one important issue is that ASLVQ achieves the CER quick,
but not much of a progress is made, when the number of steps are increased. On the
other hand, TRSLVQ would continue to get better as the number of learning iterations is
increased.

The Matlab program of TRSLVQ is included in the programs section, under the name
program-5.

As the second version of TRSLVQ, TRSLVQ_S, equipped with the strong approach, is
presented here. The gradient would be as in (43a), with the first and the second terms
of the right hand side to be

and

c =
2p j

i p(" |* j
i, Ar(* j

i))
σ2

2 (1
p(", y |W, Ar(W)) − 1

p("))
c

c < 1
| |" −* | |2

| |" −* | |2 c

∂
∂* j

i
log p(", y |W, Ar(W)) =

δ(j −y)p j
i

p(", y |W, Ar(W)) p(" |* j
i, Ar(* j

i))

× ((I −Ar(* j
i)(Ar(* j

i))T)2

σ2
2

+
(Ar(* j

i)(Ar(* j
i))T)2

σ2
1)(" −* j

i) (45a)

∂
∂* j

i
log p(") =

Page � of �42 88

Note that

The gradient of the tangent spaces is as in (44a), with

and

TRSLVQ_S is the best method of the family of tangent distance SLVQ (RSLVQ), when
attacking a classification problem. Its excellence (with respect to similar alternatives)
has been expected, theoretically, as we tried to make the assumptions stronger and use
the more stable version, i.e. RSLVQ. Also, in practice, it was observed that TRSLVQ_S,

(1 −δ(j −y))p j
i

p(") p(" |* j
i, Ar(* j

i))((I −Ar(* j
i)(Ar(* j

i))T)2

σ2
2

+
(Ar(* j

i)(Ar(* j
i))T)2

σ2
1)(" −* j

i)+

δ(j −y)p j
i

p(") p(" |* j
i, Ar(* j

i))((I −Ar(* j
i)(Ar(* j

i))T)2

σ2
2

+
(Ar(* j

i)(Ar(* j
i))T)2

σ2
1)(" −* j

i) (45b)

p(" |* j
i, Ar(* j

i)) =
1

2πσ1σ2
exp(−

| |(I −Ar(* j
i)(Ar(* j

i))T)(" −* j
i) | |2

2σ2
2

−
| |Ar(* j

i)(Ar(* j
i))T(" −* j

i) | |2

2σ2
1)

∂
∂Ar(* j

i)
log p(", y |W, Ar(W)) = δ(j −y)(2p j

i p(" |* j
i, Ar(* j

i))
p(", y |W, Ar(W)))

× (−
(" −* j

i)(" −* j
i)T(I −Ar(* j

i)(Ar(* j
i))T)

σ2
2

+
(" −* j

i)(" −* j
i)T(Ar(* j

i)(Ar(* j
i))T)

σ2
1)Ar(* j

i) (46a)

∂
∂Ar(* j

i)
log p(" |W, Ar(W)) = (1 −δ(j −y))(2p j

i p(" |* j
i, Ar(* j

i))
p(" |W, Ar(W)))

× (−
(" −* j

i)(" −* j
i)T(I −Ar(* j

i)(Ar(* j
i))T)

σ2
2

+
(" −* j

i)(" −* j
i)T(Ar(* j

i)(Ar(* j
i))T)

σ2
1)Ar(* j

i)

+ δ(j −y)(2p j
i p(" |* j

i, Ar(* j
i))

p(" |W, Ar(W)))
× (−

(" −* j
i)(" −* j

i)T(I −Ar(* j
i)(Ar(* j

i))T)
σ2

2
+

(" −* j
i)(" −* j

i)T(Ar(* j
i)(Ar(* j

i))T)
σ2

1)Ar(* j
i) (46b)

Page � of �43 88

together with TSLVQ_S, are the only algorithms, provided in this paper (excluding
Grassmannian method that comes later) that can actually deal with a real world
problem, with high dimensions. The rest may show nice results, when applied to toy
problems.

The Matlab program of TRSLVQ_S is included in the programs part, under the name
program-9.

5-4- PCA, tangent space for local data, TDSLVQ and TDRSLVQ

Although TSLVQ (TSLVQ_S)and TRSLVQ (TRSLVQ_S) are rather successful, in this section, a
new approach is provided. We stick to Saralajew-Villmann assumption and, also, we
would like to use the strong approach here. More precisely, we do not know the class-
preserving transforms, but we would like to have Gaussian distribution on both the
tangent and the complement space. To pave the way for this approach, we would like to
use local data points, given by the training set, to approximate the tangent space at a

certain data point . Having the tangent space (call it), the distances of a prototype

 to can be calculated as below.

The approximation of tangent space, at a data point , is done as the following. Data

point is presented to the system, by the online scheme. An open ball around is

considered and all the data points, in the training set that lie in the open ball and

have label , are used to approximate the -affine (is the dimensions of the tangent

space) that best fits the collection of data. In order to approximate the -affine, we

may use PCA. The final output of this step is a matrix , containing the tangent

space of . Note that, with this method, the cost function, to be minimised by the best

 -affine, is as below.

In (47), the data point collection is and the -affine is , where is the

free variable, is an offset vector, and has columns.
The gradients would be as below.

" A
* "

d2(", *) = | | (I −A AT)(" −*) | |

d1(", *) = | |A AT(" −*) | |

"
(", y) "

T
y r r

r
A(")

"
r

f (V, A) =
m

∑
i= 1

| | (I −A AT)("i −V) | | (47)

{"i}m
i= 1 r V + Aθ θ

V ∈ ℝn A r

Page � of �44 88

with

Note that there would be no tangent spaces associated with the prototypes, which is an
advantage, since we have reduced the number of adapting parameters.

This approach would be named TDSLVQ, which stands for “Tangent Data SLVQ”. The
corresponding program would be found under the name program6 in Matlab program
section.

Program 6 uses a function called “ -affine”, that is also included in programs part,
under the name program 7.

One can see that TDSLVQ uses less parameters. However, it is notably slower than TSLVQ

and TRSLVQ. The reason is the process of finding a -affine for a collection of data
points. Also, the performance appears to be lower.

The last thing, to be investigated in this section, is TDRSLVQ, which is the same as
TDSLVQ, but it uses RSLVQ cost function instead. As before, we are seeking a more stable
version of TDSLVQ.

With the very same philosophy as in the case of TDSLVQ, the gradient of TDRSLVQ is as
below.

with

∂
∂* j

i
log p(", y |W) − ∂

∂* j
i
log p(", ȳ |W)

∂
∂* j

i
log p(", y |W) =

δ(j −y)p j
i p(" |* j

i)
2p(", y |W) (A AT

σ2
1

+ I −A AT

σ2
2)(" −* j

i) (48a)

∂
∂* j

i
log p(", ȳ |W) = (1 −δ(j −y))p j

i p(" |* j
i)

2p(", y |W) (A AT

σ2
1

+ I −A AT

σ2
2)(" −* j

i) (48b)

r

r

∂
∂* j

i
log p(", y |W) − ∂

∂* j
i
log p(", ȳ |W)

Page � of �45 88

and

The advantage of TDSLVQ and TDRSLVQ is that we can have the strong approach and still
we are able to derive the updating rules, without much trouble (refer to 5-1, where the
strong approach, with Simard assumption, was left incomplete). It was not the case for
TSLVQ and TRSLVQ, where we defined the tangent spaces on the prototype side and
treated data points as simple points. The disadvantage of TDSLVQ and TDRSLVQ is an
issue that makes the learning methods practically useless for real-time system. Because,
after the training phase, if a new data point is given to the system, to be classified, the
system is requires to approximate the tangent space at the point and not only it would
be time consuming, but also it requires a considerable number of data points of the
same class. Note that, in online learning, it is assumed that no memory is dedicated to
store the previously observed input data.

After providing the updating rules of TDSLVQ and TDRSLVQ, we would like to explain the
reason that it is thought to work better, using a simple example. Assume the half-circle,

defined as below in , serves as a one-dimensional manifold in . The manifold only
contains data of the same class.

∂
∂* j

i
log p(", y |W) =

δ(j −y)p j
i p(" |* j

i)
2 (1

p(", y |W) − 1
p("))(A AT

σ2
1

+ I −A AT

σ2
2)(" −* j

i) (49a)

∂
∂* j

i
log p(") =

(1 −δ(j −y))p j
i p(" |* j

i)
2p(") (A AT

σ2
1

+ I −A AT

σ2
2)(" −* j

i) (49b)

ℝ2 ℝ2

α : (0,π) → ℝ2, α(θ) = [cosθ
Sinθ]

Page � of �46 88

Also, we assume that we have a prototype to be adapted. The probability of all

points on the manifold, to be given to the online system, are equal. Now, we would
like to consider 3 scenarios and find the fixed-points of each case. In the first case, we
use updating rule of LVQ (we have dropped coefficients for simplicity), in the second
case, we use the updating rule of the weak approach and, finally, we would assume the
last case to use the strong approach, as described in this section.

For the last case, one notices that, given as the random point, vector is

decomposed to component , which moves parallel to the tangent at ,

and component , which moves in the direction that is perpendicular

to the tangent space at . Therefore, not only gets closer to the tangent spaces, but
also to the cluster of the points on the manifold, with respect to Euclidean distance. To
be more accurate, we would like to show that the strong approach (the third case) is a
compromise between SLVQ and TSLVQ and it takes both Euclidean and tangent distances
into account.

The fixed-point for , when the three methods are applied to the problem, can be
found as the following. Note that the mathematical knowledge, that is used in the rest
of this section, can be found on textbook “Analysis on Manifolds”, written by J.R.
Munkres [10].

Firstly, a prototype is a fixed point, when it would not change position, on average,
when an updating rule is applied to it, in a certain learning problem. Mathematically,
for the first case, it can be expressed as below.

Since the manifold is a subset of , we may need to go through some steps. First,

 , that appears in the integral, is a vector. Therefore, we may consider each of its
components separately. Hence the problem is reduced to

* ∈ ℝ2

"

" " −*
A AT

σ2
1

(" −*) "

I −A AT

σ2
2

(" −*)

" *

*

*

Δ* = ∫ (" −*)p(")d "

ℝ2

" −*

Δ*i = ∫ ("i −*i)p(")d " , i = 1,2

Page � of �47 88

Note that can be thought as a function on the space ℝ2. If we call the function

 , which is basically a shift by , we can write the integral as below.

� is the volume of the parallelepiped that is made by the vectors in � and the

formula for it is as below.

�

In the problem in hand, . Therefore, the integral becomes

Putting them equal to zero, we achieve the fixed-points and , for the

first scenario.

Going through similar processes, for the second and the third cases (the integration part
is more difficult), we find the fixed-points to be (respectively)

Note that the tangent spaces, required for the second and the third cases, can be found,
theoretically, by calculating the following partial derivative.

"i −*i
f : ℝ2 → ℝ *i

Δ* = 1
π ∫ f ∘ α(θ) × V(D(α))d θ

V(D(α)) D(α)

V(D(α)) = (d et(DT(α)D(α)))
1
2

V(D(α)) = 1

Δ*1 = 1
π ∫

π

0
(cosθ −*1)d θ = −*1

Δ*2 = 1
π ∫

π

0
(sinθ −*2)d θ = 2

π
−*2

*1 = 0 *2 = 2
π

*1 = 0 , *2 = 4
π

− 8
3π

*1 = 0 , *2 =
4
π − 8

3π
σ2

2
σ2

1
+ 1

Page � of �48 88

Having a close look at the fixed-points of the second and the third case, one sees that

the fixed-points of the weak approach does not depend , while in the third case
(strong approach), the learning scheme is more flexible to adapt to the nature of the

classification problem, since it depends on the ratio . Furthermore, the third case

would act like the second case, if , which can be interpreted that we have
chosen the dimensions of the manifolds correctly and we do not expect much movement
in the direction of the perpendicular space to the tangent space. However, it is assumed
that it is practically hard to predict the correct dimensions of the class preserving

manifolds. Therefore, we may choose not to be ignorable (although it should be less

that).
As the last point we would like to mention the general equations to derive the weak and
strong approaches fixed-points. In a similar manner to the half-circle example, that was
discussed earlier, we would like to assume a general case, in which the class-preserving
manifold is described as , where is the dimensions of the manifold and

 is the space containing the data space. Assuming that tangent spaces are denoted by

 , the fixed-points of the weak approach should be derived from the equation
below.

For the strong approach, we need to solve the following equation, which is a little
different, since the integrals have different coefficients.

In order to investigate the stability of fixed points, one can find the Jacobean of the
map that is used for the learning method. The Jacobean would be as below.

D(α) = [−sinθ
cosθ]

σ2

σ2
σ1

σ2 ≪ σ1

σ2
σ1

M : ℝr → ℝn r
ℝn

A(")

∫θ
p(")A AT(M(θ) −*)V(D(M))d θ = ∫θ

p(")(M(θ) −*)V(D(M))d θ

(1 −σ2
2

σ2
1)∫θ

p(")A AT(M(θ) −*)V(D(M))d θ = (1 −σ2
2

σ2
1)∫θ

p(")(M(θ) −*)V(D(M))d θ

(1 − μ
σ2

2 ∫θ
V(D(M))d θ)I + μ(1

σ2
2

− 1
σ2

1
)∫θ

A ATV(D(M))d θ

Page � of �49 88

One can notice that the Jacobean does not depend on and the stability of the fixed

points only depends on the manifold (which affects) and the parameters , , and

 . However, this is true to deduce that, for a certain problem, all the fixed points would
be either stable or non-stable. The reason is that all the analysis was based on a single
prototype *. The way we would like to think about it is to have each prototype to be

responsible for a region in . Therefore, the integral

 may give different outputs, on different regions and, consequently, the stability of the
fixed points changes accordingly. As a result, there might be regions, for which there are
no stable fixed points.
The practical experience on real problems shows that TDSLVQ and TDRSLVQ converge

quickly to local optima and changing and may help to avoid early convergence.

5-5- Performance of SLVQ and RSLVQ, based on tangent distances

It is a difficult task to investigate the performance of SLVQ and RSLVQ, with the
Euclidean distance, analytically and the versions, in which tangent distances are
utilised, are even more complicated to deal with. In order to have an idea about how
successful the new versions of SLVQ and RSLVQ are, we may assume that we know how to
measure the performance of simple SLVQ and RSLVQ and, then, try to convert the data
space of a classification problem to one that can be dealt with, using simple SLVQ and
RSLVQ.

Let’s assume we are given a classification problem, in which class-preservative
manifolds exist and these manifolds capture the structure of the data space, with
respect to the classification problem. Also, we assume that the strong assumption is
applicable, which means that if is a prototype and is the tangent space at ,

data points , around , are produced according the following formula.

The set of prototypes would be and . Then, we may map the data points

as the following. If satisfies

*
A σ1 σ2

μ

ℝn

∫θ
A ATV(D(M))d θ

σ1 σ2

* A(*) *
2 *

2 = * + A* Nℝr(0,σ2
1) + Ac

* Nℝn−r(0,σ2
2) , σ1 ≫ σ2 > 0

W *i, *j ∈ W
"

Page � of �50 88

then,

Or equivalently

What this map basically does is to arrange points in a way that Euclidean distance
becomes valid, in a sense that it gives a correct dissimilarity measurement, with respect
to the classification problem in hand.

According to what is said so far, we would like to (roughly) claim that the performance
of SLVQ or RSLVQ, with tangent distances, is in direct relation to the performance of
simple SLVQ or RSLVQ, when they are applied to the version of the data point, created
using the map above.

6- Grassmannian Manifolds, an introduction and its application in SLVQ

In the last few years, papers on machine learning, in which the concept of Grassmannian
Manifolds are used, have been published. Grassmannian Manifolds provide a way of
making new topologies, from the given input space, such that the new topology provides
us a better chance of classifying the original objects. In this section, first a basic
introduction on Grassmannian manifolds is provided. Then, the concept would be used

σ2
2 | |A*i

AT
*i

(" −*i) | |2 + σ2
1 | | (I −A*i

AT
*i

)(" −*i) | |2 ≤

σ2
2 | |A*j

AT
*j

(" −*j) | |2 + σ2
1 | | (I −A*j

AT
*j

)(" −*j) | |2

" → *i + (I −A*i
AT

*i
)(" −*i) + σ2

2
σ2

1
A*i

AT
*i

(" −*i)

" → " + (σ2
2

σ2
1

−1)A*i
AT

*i
(" −*i)

Page � of �51 88

to obtain a dissimilarity measurement, that is going to be a substitution for Euclidean
distance, used in basic SLVQ by S. Seo and K. Obermayer [1].

6-1- Introduction to Grassmannian Manifolds

Classification methods, introduced in section 5, were based on tangent distances. In
order to calculate tangent distances, one needs to have tangent spaces of the
manifolds, that exist in the data space. Therefore, it is necessary to have manifolds that
are differentiable and all the methods, in section 5, are valid as long as we know the
manifolds are differentiable. It would be good if did not have to make such assumption,
for there might be spaces such that either they have manifold that are not
differentiable (at some points) or it is not easy to prove the manifolds are differentiable
everywhere in the data space. Luckily, Grassmannian manifolds, would give us the
opportunity to drop the assumption that the class-preserving manifolds, in the data
space, are differentiable and, consequently, learning methods, that are based on
Grassmannian manifolds, are applicable to a greater class of problems (including the
differentiable problems).

First, we would like to formally define a Grassmannian and its corresponding quantities.
Part of the information is taken from a paper by S. Chepushtanova and M. Kirby [5].

Definition: is the space of all -dimensional subspaces in and it is
generally called the Grassmannian manifold.

Definition: A -dimensional topological manifold is a topology , with being a

set and being a topology defined on , such that for each there exists a

neighbourhood of that is homeomorphic to an open set of .

Theorem: In general, is a -dimensional topological manifold, with

 .

A proof is not provided here, as it is necessary to go into technical details. However, if

we accept that is a manifold, then in order to find the dimensions, one needs

to notice how one abstract point in can be represented as a
orthonormal matrix, which is basically a basis for the subspace. First, we define an

equivalence relation between two matrices and , both with dimensions .

 if and only if there exists a full-rank matrix , of dimensions , such that

 .

We claim that each point in is of form

G(m, ℝn) k ℝn

k (", T") "
T" " x ∈ "

N(") ∈ T" ℝk

G(m, ℝn) k
k = m × (n−m)

G(m, ℝn)
G(m, ℝn) n× m

A B n× m
A ∼B P m × m
AP = B

G(m, ℝn)

F = [Im
R(n−m)×m]

Page � of �52 88

where is the identity matrix of dimension and is an arbitrary matrix of

dimensions . The reason is that the rank of matrix is exactly , which

gives a -dimensional basis in . Therefore , is an -dimensional subspace. On the

other hand, if we are given a subspace @ of dimensions , we may use Gauss-

Jordan elimination method to turn into a matrix of form , without changing the

column space of . Finally, we need to show that there is no free variable in . Note

that all the variables are in . Let’s assume that for and (),

and are the same subspace in , therefore, (see the previous paragraph
for the definition of the equivalence). Hence, we may write

which means that . Therefore, all the variables in part of matrix are

independent and, consequently, the dimensions of is the dimensions of ,

which is .

 is a dimensional manifold, which means that it locally

resembles , when . In , there are different distances defined.
The most famous of them all is the Euclidean distance measurement. Although we can

take back to , according to a continuous map, in order to find the distance
between two subspaces, it is more desirable to be able to define a distance, that can be

calculated in . We would like to use the vectors, defining each subspace, to

define a distance. A well-known dissimilarity measure on is called “The

Geodesic Distance”. If are two orthonormal matrices, then

the singular values of the matrix give what is required.

The geodesic distance is defined as the following.

 are called principal angles, that may be defined according to a
recursive relation. Some detail about the definition is given in a paper by Y. M. Lui et al.
[6]. A reasonable property of principal angles is that they are invariant with respect to
any orthogonal transformations of the whole space. We do not concern ourselves with
the definition of principal angles here. Instead, we would like to mention that,
according to a paper by A. Bjorck and G.H. Golub [7], principal angles can be efficiently

Im m R(n−m)×m
(n−m) × m F m

m ℝn F m
n× m

A F
A F

R(n−m)×m R1 R2 R1 ≠ R2 F1
F2 ℝn F1 ∼F2

∃P : F1P = F2 → {P = Im
R1P = R2

R1 = R2 R F
G(m, ℝn) R

(n−m) × m

G(m, ℝn) m × (n−m)
ℝk k = m × (n−m) ℝk

G(m, ℝn) ℝk

G(m, ℝn)
G(m, ℝn)

", 2 ∈ G(m, ℝn) n× m
"T 2

dg (", 2) = (
m

∑
i= 1

θ2
i)

1
2

(50)

θi , (i = 1,2,...,k)

Page � of �53 88

computed, using Singular Value decomposition (SVD). The process of calculating

principal angles, given orthonormal , is as the following. Find singular

values of and call them . Then, the -th principal angle is given by the
following relation.

Note that the reason we need to be orthonormal is to have the

singular values . Consequently, equation (51) would have a solution for .

As a final remark on geodesic distance, we would like to point out that there are

parameters, used in the calculation of . Although one expects to see a distance

of parameters, as in ordinary Euclidean spaces, is based on

less number of parameters. To explain the fallacy, one may argue that , � , that are
used in the definition of Geodesic distance, depend on parameters, found in the
matrices and , for which the distance is calculated.

We may continue with a simple example to appreciate the idea of Grassmannian
manifolds.

Let’s assume all the linear subspaces of dimension 1 in . The symbol to indicate the

space is . Each subspace (or line) can be thought as an abstract object. Then,
the distance between two lines is defined to be the smallest angle (in radian) between

them. More formally, if and are two lines in and , then the

distance between and is as below.

 is the inner product of the two vectors and . Also, it is required to have both

and not to be equal to 0 vector. One can see that , together with the defined

distance, make a metric space. The distance is always non-negative. If , then

", 2 ∈ G(m, ℝn)
"T 2 σi i θi

cosθi = σi (51)

", 2 ∈ G(m, ℝn)
0 ≤ σi < 1 θi

m
dg (", 2)

k = m × (n−m) dg (", 2)
θi ∀i

" 2

ℝ2

G(1,ℝ2)

" 2 ℝ2 x ∈ ", y ∈ 2
" 2

d (", 2) = cos−1 |⟨x, y⟩ |
| |x | | . | |y | |

(52)

⟨x, y⟩ x y x
y G(1,ℝ2)

" = 2

d (", 2) = cos−1 |⟨x, x⟩ |
| |x | | . | |x | |

= 0

Page � of �54 88

If and , then and

Therefore,

According to Cauchy-Schwartz inequality and knowing , we cannot have the above
equality to be true.

The symmetry of the distance is trivial. For the triangle inequality, instead of using the
defined distance, we may consider the acute angle between lines. This way it becomes
rather intuitive that the triangle inequality also hold.

The metric (defined in (52)) resembles a circle, from the

topology point of view. That is why can be thought as a 1-dimensional

manifold. To prove the claim, we need to find, for each open set , an

open subset and a one-to-one map , such that is continuous, both

ways, and it is differentiable. First, it is reminded that an open sphere of radius ,

centred at , is

Possible open sets on are of form or the union of them. So, an arbitrary

 is treated. If , then we may take to be the open set on . is

assumed to be less than . The function is defined as

 is a vector that represents its line space. Surely, the function is one-to-one,

as . It can also be proven to be continuous, both ways (and).

d (", 2) = 0 " ≠ 2 x ≠ y

d (", 2) = cos−1 |⟨x, y⟩ |
| |x | | . | |y | |

= 0

|⟨x, y⟩ | = | |x | | . | |y | |

x ≠ y

(G(1,ℝ2), d (", 2)) d (", 2)
G(1,ℝ2)

U ⊂ G(1,ℝ2)
V ⊂ ℝ ϕ : U → V ϕ

ϵ
" ∈ G(1,ℝ2)

Sϵ(") = {2 ∈ G(1,ℝ2) |d (", 2) < ϵ}

G(1,ℝ2) Sϵ(")
Sϵ(") x ∈ " (−ϵ, ϵ) R |ϵ |

π
2 ϕ

ϕ(a) = [cosa −sina
sina cosa] x , −ϵ < a < ϵ

ϕ(a) ϕ(a)
−π

2 < a < π
2 ϕ ϕ−1

Page � of �55 88

As another example assume . In a similar manner as , one can deduce

that is 2-dimensional manifold. The informal reason, why it cannot be a one-

dimensional manifold, is that in there is 2 degrees of freedom, when going from one

line to another line. Also, one can go through a similar reasoning to show that

is a Grassmannian manifold of dimension 2. and resemble a sphere,
from a topological point of view.

Let’s elaborate more on . is a line in and it is the abstract
object to consider. We may use the previously defined metric (52) to serve as a metric in

 .

Note that is a member of the subspace and is a member of the subspace and, as

before and . It can be proven that is a metric space.

Any metric space has a topology and, as claimed earlier, the topology is a sphere, which

is a 2-dimensional manifold. In order to prove, for each open set , we

need to find an open set and a map , such that is continuous,
both ways, and it is differentiable. Assume

Then, the function is defined as below.

where

G(1,ℝ3) G(1,ℝ2)
G(1,ℝ3)

ℝ3

G(2,ℝ3)
G(2,ℝ3) G(1,ℝ3)

G(1,ℝ3) " ∈ G(1,ℝ3) ℝ3

G(1,ℝ3)

x " y 2
x ≠ 0 y ≠ 0 (G(1,ℝ3), d (", 2))

V ⊂ G(1,ℝ3)
U ⊂ ℝ2 ϕ : U → V ϕ

V = Sϵ(")

ϕ([θ1
θ2]) = Ry(β)Rz(α)Ry(θ2)Rx(θ1)[

0
0
1]

Rx(θ) =
1 0 0
0 cosθ −sinθ
0 sinθ cosθ

Page � of �56 88

are rotation matrices in . and are the angles, for which a vector is

rotated to vector . The corresponding open set, on , is .

6-2- SLVQ, using Grassmannian manifolds and Geodesic distance

As in section 2, we are given a classification problem in . In section 5, tangent
distances were used as distance measurement, because the Euclidean distance does not
have enough flexibility to deal with most real world problems. However, dealing with
tangent distances is a difficult task, for we usually do not know the class-preservative

manifolds on . Reviewing recent papers on the application of Grassmannian manifolds
in machine learning, gives us hope to apply the theory to SLVQ. The papers are written
by S. Chepushtanova and M. Kirby [5][8] and Y. M. Lui, J. R. Beveridge and M. Kirby [6].

The idea is as follows. We are given a training set . is going to be partitioned in

subsets , for . The subsets are define as below.

Consequently, we have the following facts.

The vector set of a set is defined to be the matrix produced by tacking all the first

elements of pairs, that exist in . Formally

Ry(θ) =
cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

Rz(θ) =
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

ℝ3 α β [0,0,1]T

x ∈ " ℝ2 Sϵ(0)

ℝn

ℝn

T T
Tj j ∈ L

Tj = {(", y) ∈ T |y ∈ j} (53)

⋃
j

T j = T

Tj ∩ Ti = ϕ ∀i, j : i ≠ j

T j

Tj

Page � of �57 88

If is a low-dimensional space or the number of sample points in is low, then we

may take to be a representative for the space spanned by . In this case, if

we are given a new data point , to be classified, we can find the distance of to

all the subspaces and choose the closest as the correct class. This scenario,

however, does not happen often, as real-world problems are in large-dimensional spaces

and the number of data samples, given in a training set , is relatively large. The

solution is to further partition subsets to smaller subsets. The new partitions would

be denoted by a subscript. Therefore, is the -th partition of . At this point, we do

not know the dimensions to be taken for a subspace of , which is going to be an

abstract point in the Grassmannian manifold. However, we certainly know that we would

like to have the same dimensions, for all and . Because, we want all to be

a point in . This way, they are more meaningfully comparable.

The next step, would be to define prototypes in . They would be similar to

what was defined earlier, with the difference that they are matrices now. The

prototypes would be denoted as before, using the notation , for the -th prototype of

class . would be filled with vectors of .

In order to find the gradient, the partial derivatives of the distance between two

objects and , with respect to , is calculated.

To find (55a), firstly the following derivative is found.

{V(Tj)}:,i = "i : ("i, j) ∈ Tj (54)

ℝn Tj ∀j
V(Tj) V(Tj)

x ∈ ℝn x
V(Tj)∀j

T
Tj

Tj
i i T j

m ℝn

Tj
i j i Tj

i ∀i, j

G(m, ℝn)

G(m, ℝn)
n× m
* j

i i
j * j

i V(Tj)

* ∈ G(m, ℝn) " ∈ G(m, ℝn) T

dG(*, ") = (
m

∑
i= 1

θ2
i)

1
2

∂dG(*, ")
∂{*}ab

= (∑
i

∂dG(*, ")
∂θi

× ∂θi

∂{*}ab) (55a)

∂dG(*, ")
∂θi

= (
m

∑
i= 1

θ2
j)θi (55b)

Page � of �58 88

Secondly, we assume the SVD . Consequently

 , the -th element on the diagonal of , is

therefore, the last piece to find (55a) is as below.

Having (55a) to (55c), the gradient is

We may rewrite the above expression as

*T" = U ΣVT

Σ = UT *T"V

σi i Σ

σi = {Σ}ii = {UT}i,:*T"{V}:,i

∂θi

∂* = ∂θi

∂σi
× ∂σi

∂* = − 1

1 −σ2
i

. " . {V}:,i . {UT}i,: (55c)

∂dG(*, ")
∂* = −(

m

∑
j= 1

θ2
j)(∑

i
θi

" . {V}:,i . {UT}i,:

1 −σ2
i

) (56a)

Page � of �59 88

Finally, the most compact form is

 is obtained by applying the function to the diagonal elements of the

matrix .

We would like to define the probability that is produced, when

prototype is given the chance to produce, as below.

Also, it is pointed out that the probability that a data point is produced by prototypes

of the same label and the probability that a data point is produced by prototypes of
different labels are defined as in relations (6) and (7). The only difference is the new
geodesic distance, that has been substituted.

Now the gradient of Grassmannian Soft Learning Vector Quantisation, or in short GSLVQ,
is as the following.

∂dG(*, ")
∂* = −dG(*, ")(∑

i
arccosσi

" . {V}:,i . {UT}i,:

1 −σ2
i

) (56b)

∂dG(*, ")
∂* = −dG(*, ")"VS(Σ)UT (56c)

S(Σ) arccosx

1 −x2

Σ

" ∈ G(m, ℝn)
* j

i ∈ G(m, ℝn)

p(" |* j
i, σ) = 1

2πσ2
exp(−d 2

G(*, ")
2σ2)

"
"

∂
∂* j

i
log

p(", y |W)
p(*, ȳ |W) =

Page � of �60 88

As the whole numerical computation is based on the SVD of , the factor

 would be written in terms of .

In the relation above, of a matrix , with all the diagonal element less than

1 and greater than or equal to 0, is obtained by applying to all the diagonal

elements of , while letting the off-diagonal elements to stay the same as before.

 , denotes the trace of a matrix . With the new changes, the gradient is further
simplified as below.

In order to test if the updated prototype matrix is orthonormal, the following calculation
is done.

In the above calculation, we have

It seem that the updated prototypes are not necessarily orthonormal, as

 . Consequently, after each learning step, the

prototypes must be put in the orthonormal form, as it is necessary to have them
orthonormal, when calculating the principal angles. A good news, however, is that the

(δ(j −y)
p j

i p(" |* j
i)

σ2p(", y |W) −(1 −δ(j −y)) p j
i p(" |* j

i)
σ2p(", ȳ |W))(d 2

G(* j
i, ")"VS(Σ)UT)

*T"
d 2

G(* j
i, ") Σ

d 2
G(* j

i, ") = tr(arccos2(Σ)) = R(Σ)

arccos" "
arccos(x)

"
tr(") "

∂
∂* j

i
log

p(", y |W)
p(*, ȳ |W) =

(δ(j −y)
p j

i p(" |* j
i)

σ2p(", y |W) −(1 −δ(j −y)) p j
i p(" |* j

i)
σ2p(", ȳ |W))(R(Σ)"VS(Σ)UT) (57)

(* j
i(t + 1))T(* j

i(t + 1)) = ((* j
i(t))

T + αUS(Σ)VT"T)(* j
i(t) + α"VS(Σ)UT)

= I + αU ΣS(Σ)UT + αUS(Σ)ΣUT + α2US2(Σ)UT = I + αU(2ΣS(Σ) + αS2(Σ))UT

α = (δ(j −y)
p j

i p(" |* j
i)

σ2p(", y |W) −(1 −δ(j −y)) p j
i p(" |* j

i)
σ2p(", ȳ |W))R(Σ)

αU(2ΣS(Σ) + αS2(Σ))UT ≠ 0

Page � of �61 88

updated prototypes would be full rank. In order to draw such a conclusion, we may
assume that

Is not full rank. Then, there should be a non-zero vector , such that

It can be rewritten as below

which means that is an eigenvector of , with its eigenvalue

to be -1. However, the matrix is positive definite, as is a diagonal

matrix, with all diagonal entries to be positive numbers, and is an orthonormal
matrix. Positive definite matrices do not have negative eigenvalues and, hence, the

matrix is full rank, which implies that has a full column rank.

We would like to emphasise that the learning method can be implemented practically if

the SVD of the matrix is efficiently computable, for all members of .

The SVD would provide the matrices and , that are explicitly used in the
gradient.

Assuming the learning process is over, one would like to see how a new data

would be classified. A new data , to be classified, would be a vector in , not a
subspace. Hence, we may take two approaches, at this point. The first alternative is to

calculate the norm of the image of on every prototype and the “winner takes

all” rule would be applied to find the class of . In other words, if all prototypes are

orthonormalised, then class of is

(* j
i(t + 1))T(* j

i(t + 1)) = I + αU(2ΣS(Σ) + αS2(Σ))UT

x ∈ ℝm

(I + αU(2ΣS(Σ) + αS2(Σ))UT)x = 0

(αU(2ΣS(Σ) + αS2(Σ))UT)x = −x

x αU(2ΣS(Σ) + αS2(Σ))UT

2ΣS(Σ) + αS2(Σ)
U

* j
i(t + 1)

*T" G(m, ℝn)
V, U Σ

x ∈ ℝn

x ℝn

x * j
i ∀i, j

x
F(x) x ∈ ℝn

F(x) = arg j(mini, j | | (* j
i)

T x | |)

Page � of �62 88

The second alternative for classifying a new data point is applicable to
problems, for which a group of class preservative transformations is given. Having the

transforms, one may produce new samples of , with the same class. Then, and

its transformed versions are put in a matrix , which makes an abstract point in

 . Consequently, geodesic distance can be used to compare to all prototypes

 and, as in the previous alternative, “winner takes all” would introduce the class of

 (or).

Intuitively, the power of Grassmannian manifolds lies in the fact that data points are
taken to a higher dimensional manifold. This is the trick for many machine learning
techniques, as higher dimensional spaces are harvested to achieve a better separation of
data. Knowing that the dimensions of a Grassmannian manifold is , it is

tempting to have , to maximise the dimensions of the manifold. This intuition

can be backed up by practical experiments, provided by S. Chepushtanova and M. Kirby
[5], as the authors state that increasing the dimensions of Grassmannian manifold would
make the classification accuracy to tent %100.

 6-3- Validity of the result of GSLVQ

In this part, few issues, that may challenge the validity of the result of GSLVQ, are
discussed.

A network, trained by GSLVQ, would classify any scalar multiplication of an input

 , in the same class as itself. This is an acceptable result in a certain type of
problems. For instance, if the task is to classify hand-written grayscale characters, the
average intensity of an image is not a parameter of interest, as we are supposed to find
the structure of characters. Therefore, an image would be the same as itself, multiplied
by a constant F. This type of problems can be called “scale invariant problems”. One

should always check if GSLVQ is applied to a scale invariant problem.

Another problem is to know how good a subspace, generated by a set of samples of the
same class, can approximate or contain a class-preservative manifold. Obviously, if a
character and its rotated version is given, in general, it is not possible to obtain another
rotated version, by simply making a linear combination of the first two samples. Also, a
combination of characters, with the same class, may invade the realm of characters of
different classes.

In order to deal with the lastly mentioned problem, we need to avoid creating training

data samples, in , randomly. To create better data samples, we would like to

make each abstract point out of samples, of the same class in , that are relatively
close to each other, if the measure of closeness is the angle between the samples. In
other words, abstract point are made to be local. To achieve this goal, we may apply

neural gas learning or unsupervised LVQ to data points of each class () separately. The
process is described in the next paragraph.

x ∈ ℝn

m −1 x x
n× m "

G(m, ℝn) "
* j

i
" x

m × (n−m)
m = n

2

x ∈ ℝn x

G(m, ℝn)
T

Tj

Page � of �63 88

A single is taken at a time. All the members of would be normalised.

Assume that , the dimension of the Grassmannian manifold, is known. Prototypes

 , , when , are randomly initiated. Note it was

mentioned earlier that would be set in such a way that it is a multiple of .

Also, we would like the prototypes in to be orthonormal vectors. The distance

between a vector and a prototype would be the Euclidean distance.

According to an online learning scheme, given that a vector is provided to
the network, neural gas learning is utilised to update the prototypes. Each prototype
should be normalised, before passing to the next learning step. For a theoretical
treatment of neural gas, the reader is referred to a paper by T. Martinetz et al. [9].

After the learning phase, the closest vectors, in , to the prototype are put

in one set. The set is nothing but one abstract point in that trains the main
GSLVQ problem.

7- Conclusion

In this article, tangent distances and Geodesic distances, defined in the framework of
Grassmannian manifolds, were utilised as dissimilarity measurements to replace the
Euclidean distance, that was used originally by S. Seo and K. Obermayer [1] in SLVQ and
RSLVQ. When using tangent distances, we need to make sure that the class-preserving
manifolds are differentiable. However, Grassmannian manifolds have the advantage of
not being dependent on the differentiability of the manifolds.

 As the first alternative, single-sided tangent distance were integrated in SLVQ and
RSLVQ to make TSLVQ, TSLVQ_S, TRSLVQ, TRSLVQ_S, TDSLVQ, and TDRSLVQ. Each of them
were established under different conditions and assumptions. Some of the key
conditions would be as the following. The first condition is whether we would like to use
strong or weak approach (strong and weak approaches are explained in section 5-1). The
second condition is whether we use Saralajew-Villmann assumption or Simard
assumption. The last condition is whether the tangent space (necessary to find single-
sided tangent distance) is made on the data side, while prototypes would act as points,
or we prefer to have tangent spaces on the prototype side and treat data points as
points.

Each of the methods, based on tangent distances, have advantages and disadvantages.
But, as expected theoretically and proven practically, TRSLVQ_S is the best methods
among the all methods, that are established in this article. It is worth mentioning that
TSLVQ_S and TRSLVQ_S are the only methods (between the rest of the methods,
described in this paper) that show a stable behaviour in real problems, such as hand-
written characters classification.

V(Tj) V(Tj)
m

W = {*i}d
i= 1 *i ∈ ℝn d = |V(Tj) |

m
|V(Tj) | m

W
x ∈ ℝn *j

v ∈ V(Tj)

m V(Tj) *i
G(m, ℝn)

Page � of �64 88

Regardless of the new dissimilarity measurements, new ways of looking at basic SLVQ is
provided in this article, in section 3-2. ASLVQ is the fruit of the investigation, which
comes with a better probabilistic model. However, it may have problems with a small
class of classification problems, as it dismisses the repulsion mechanism.

Finally, it is mentioned that, although the theory of GSLVQ, including the corresponding
learning rules, was provided in section 6, the corresponding Matlab programs were not
written, due to lack of time and computational resources. Therefore, GSLVQ is to be
tested practically.

8- Matlab Programs

Program 1 – SLVQ function

%%% SLVQ (Soft Learning Vector Quantization)

%% It is a function that gets a training set "T", prototypes (labelled) "prototype", the number of
classes %%"c", maximum number of learning steps "max"and outputs the updated prototypes, after
some steps

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the
label of the sample. Label is a number from 1 to c

%%The prototype matrix "prototype" should be in the same format as

%%training set matrix T

function [prototype,error_rate,error_rate0]=SLVQ(T,prototype,test,c,max,u)

%%find the dimensions of training and prototype matrix

[T1,T2]=size(T);  
[p1,p2]=size(prototype);  
[ts1,ts2]=size(test); 
%%Define the Gaussian distribution standard deviation SD=1;

%%misclassification error before learning

error=0; for i=1:ts2

nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2);
[C1,I1]=min(nearest_dist);  
if prototype(end,I1)~=test(end,i)

error=error+1;

end end

Page � of �65 88

error_rate0=error/ts2;

%%the recursive adapting part

uu=u; 
for t=1:max

%u=uu/t;

u=u*(0.999);

%%randomly choose a training data from T

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prottoypes accordingly partial_sum=0;

partial_sum_w=0; for j=1:p2

if prototype(end,j)==x_label d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));
partial_sum=partial_sum+normpdf(d,0,SD);

end  
if prototype(end,j)~=x_label

d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));

partial_sum_w=partial_sum_w+normpdf(d,0,SD);

end end

for j=1:p2 d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); p=normpdf(d,0,SD);  
if prototype(end,j) == x_label

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*(p/partial_sum)*(x_main-
prototype(1:end-1,j));

end  
if prototype(end,j) ~= x_label

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/(SD)^2)*(p/partial_sum_w)*(x_main-
prototype(1:end-1,j));

end end

end

%%misclassification rate

error=0; for i=1:ts2

nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2);
[C1,I1]=min(nearest_dist);  
if prototype(end,I1)~=test(end,i)

error=error+1;
Page � of �66 88

end end

error_rate=error/ts2;

Program 2 – ASLVQ function

%%ASLVQ (Attraction SLVQ)

%% It is a function that gets a training set "T", prototypes (labelled) "prototype", the number of
classes %%"c", maximum number of learning steps "max"and outputs the updated prototypes, after
some steps

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the
label of the sample. Label is a number from 1 to c

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T

function [prototype,error_rate,error_rate0]=ASLVQ(T,prototype,test,c,max,u)

%%find the dimensions of training and prototype matrix

[T1,T2]=size(T); [p1,p2]=size(prototype); [ts1,ts2]=size(test); RR=p2/T2;

%%Define the Gaussian distribution standard deviation

SD=1;

%%misclassification error before learning

error=0; for i=1:ts2

nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2);
[C1,I1]=min(nearest_dist);  
if prototype(end,I1)~=test(end,i)

error=error+1;

end end

error_rate0=error/ts2;

%%the recursive adapting part

uu=u; 
for t=1:max

%u=uu/t;

u=u*(0.999);

%%randomly choose a training data from T

Page � of �67 88

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prottoypes accordingly partial_sum=0;

for j=1:p2  
if prototype(end,j)==x_label

d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));

partial_sum=partial_sum+normpdf(d,0,SD);

end end

partial_sum=RR*partial_sum; for j=1:p2

d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); p=RR*normpdf(d,0,SD);  
if prototype(end,j) == x_label

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*(p/(partial_sum-
partial_sum^2))*(x_main- prototype(1:end-1,j));

end end

end

%%misclassification rate

error=0; for i=1:ts2

nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2);
[C1,I1]=min(nearest_dist);  
if prototype(end,I1)~=test(end,i)

error=error+1;

end end

error_rate=error/ts2;

Program 3- Butterfly problem

%%%butterfly data production

c=2; 
PPC=20; 
%%make prototypes prototype=random('unif',-1,1,2,PPC*c); labb=repmat(1:c,PPC,1);  
lab=labb(:)'; prototype=vertcat(prototype,lab); %%make training data  
TS=1000;

TT=random('unif',-2,2,2,TS); labb=sign(TT(1,:).*TT(2,:)); labb=(labb./2)+3/2;  
T=vertcat(TT,labb);  
%%make test data  
TS=1000; 
TT=random('unif',-2,2,2,TS); labb=sign(TT(1,:).*TT(2,:)); labb=(labb./2)+3/2;

Page � of �68 88

test=vertcat(TT,labb);  
%%other parameters for SLVQ function max=100000;

u=0.1;

%%Normal SLVQ

[prototype_out,errorS,errorS0]=SLVQ(T,prototype,test,c,max,u); errorS0  
errorS

%%New ASLVQ

[prototype_out,errorA,errorA0]=ASLVQ(T,prototype,test,c,max,u); errorA0  
errorA

Program3 – RSLVQ

%%% RSLVQ (Robust Soft Learning Vector Quantization)

%% It is a function that gets a training set "T", prototypes (labelled) "prototype", the number of
classes %%"c", maximum number of learning steps "max"and outputs the updated prototypes, after
some steps

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the
label of the sample. Label is a number from 1 to c

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T

function [prototype,error_rate,error_rate0]=RSLVQ(T,prototype,test,c,max,u)

%%find the dimensions of training and prototype matrix

[T1,T2]=size(T);  
[p1,p2]=size(prototype);  
[ts1,ts2]=size(test); 
%%Define the Gaussian distribution standard deviation SD=1;

%misclassification error before learning version 1 % error=0;

% for i=1:ts2  

% nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2);  

% [C1,I1]=min(nearest_dist);  

% if prototype(end,I1)~=test(end,i)  

Page � of �69 88

% error=error+1;  

% end  

% end  

% %%misclassification error before learning version 2 error=0; 
for i=1:ts2  
x=test(:,i); x_main=x(1:end-1); x_label=x(end); partial_sum_w=0; partial_sum=0;  
for j=1:p2  
if prototype(end,j)==x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum=partial_sum+normpdf(d,0,SD);  
end  
if prototype(end,j)~=x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum_w=partial_sum_w+normpdf(d,0,SD);  
end end  
if partial_sum_w>partial_sum error=error+1;  
end end  
error_rate0=error/ts2;  
%%the recursive adapting part  
uu=u; 
for t=1:max  
%u=uu/t;  
u=u*(0.999);  
%%randomly choose a training data from T  
x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prottoypes accordingly partial_sum=0;  
partial_sum_w=0; for j=1:p2  
if prototype(end,j)==x_label d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));
partial_sum=partial_sum+normpdf(d,0,SD);  
end  
if prototype(end,j)~=x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum_w=partial_sum_w+normpdf(d,0,SD);  
end end  

for j=1:p2 d=sqrt(sum((prototype(1:end-1,j)-x_main).^2)); p=normpdf(d,0,SD);  
if prototype(end,j) == x_label

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*p*(1/partial_sum- 1/
(partial_sum+partial_sum_w))*(x_main-prototype(1:end-1,j));

end  
if prototype(end,j) ~= x_label

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/(SD)^2)*(p/
(partial_sum+partial_sum_w))*(x_main- prototype(1:end-1,j));

Page � of �70 88

end end

end

%%misclassification rate version 1

% error=0;  

% for i=1:ts2  

% nearest_dist=sum((prototype(1:end-1,:)-repmat(test(1:end-1,i),1,p2)).^2);  

% [C1,I1]=min(nearest_dist);  

% if prototype(end,I1)~=test(end,i)  

% error=error+1;  

% end  

% end  

% %%misclassification error before learning version 2  
error=0; for i=1:ts2  
x=test(:,i); x_main=x(1:end-1); x_label=x(end); partial_sum_w=0; partial_sum=0;  
for j=1:p2  
if prototype(end,j)==x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum=partial_sum+normpdf(d,0,SD);  
end  
if prototype(end,j)~=x_label  
d=sqrt(sum((prototype(1:end-1,j)-x_main).^2));  
partial_sum_w=partial_sum_w+normpdf(d,0,SD);  
end end  
if partial_sum_w>partial_sum error=error+1;  
end end  
error_rate=error/ts2;  
Program 4 – TSLVQ  

%%% TSLVQ (Tangent Soft Learning Vector Quantization)

%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and
outputs a the updated prototypes

Page � of �71 88

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the
label of the sample. Label is a number from 1 to c

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T

function [prototype,error_rate,error_rate0]=TSLVQ(T,prototype,test,c,max,u,dim)

%%find the dimensions of training and prototype matrix

[T1,T2]=size(T); [p1,p2]=size(prototype);

%%Define the Gaussian distribution standard deviation

SD=0.3;

%%define the dimensions of tangent planes

tan_dim=dim;

%%define tangent planes for each prototype

A=random('unif',-1,1,p1-1,tan_dim,p2); %%normalize the basis  
for i=1:p2

A(:,:,i)=orth(A(:,:,i));

end

%%find the error rate, before training

[test1,test2]=size(test); error=0;  
for i=1:test2

d0=100000; for j=1:p2

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if
d<d0

d0=d;

class=prototype(end,j);

end end

if class~=test(end,i) error=error+1;

end end

error_rate0=error/test2;

%%the recursive adapting part

Page � of �72 88

uu=u; 
for t=1:max

u=uu/t;

%%randomly choose a training data from T

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prottoypes accordingly partial_sum=0;

partial_sum_w=0; for j=1:p2

%%find projection matrix PM

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; if prototype(end,j)==x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2));

partial_sum=partial_sum+normpdf(d,0,SD);

end  
if prototype(end,j)~=x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2));

partial_sum_w=partial_sum_w+normpdf(d,0,SD);

end end

for j=1:p2  
%%find projection matrix PM PM=eye(p1-1)-A(:,:,j)*A(:,:,j)';
d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD);  
if prototype(end,j) == x_label

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*(p/partial_sum)*PM*PM*(x_main-
prototype(1:end- 1,j));

A(:,:,j)=A(:,:,j)+2*u*(1/(SD)^2)*(p/partial_sum)*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end- 1,j))'*PM*A(:,:,j);

end  
if prototype(end,j) ~= x_label

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/(SD)^2)*(p/partial_sum_w)*PM*PM*(x_main-
prototype(1:end- 1,j));

A(:,:,j)=A(:,:,j)-2*u*(1/(SD)^2)*(p/partial_sum_w)*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end- 1,j))'*PM*A(:,:,j);

end

A(:,:,j)=orth(A(:,:,j));

end end

Page � of �73 88

%%find the error rate, after training

error=0; 
for i=1:test2

d0=100000; for j=1:p2

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if
d<d0

d0=d;

class=prototype(end,j);

end

end  
if class~=test(end,i)

error=error+1;

end end

error_rate=error/test2;

Program 5 – TRSLVQ

%%% TRSLVQ (Tangent Robust Soft Learning Vector Quantization)

%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and
outputs a the updated prototypes

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the
label of the sample. Label is a number from 1 to c

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T

function [prototype,error_rate,error_rate0]=TRSLVQ(T,prototype,test,c,max,u,dim)

%%find the dimensions of training and prototype matrix

[T1,T2]=size(T); [p1,p2]=size(prototype);

%%Define the Gaussian distribution standard deviation

SD=0.3;

%%define the dimensions of tangent planes

tan_dim=dim;

%%define tangent planes for each prototype
Page � of �74 88

A=random('unif',-1,1,p1-1,tan_dim,p2); %%normalize the basis  
for i=1:p2

A(:,:,i)=orth(A(:,:,i));

end

%%find the error rate, before training

[test1,test2]=size(test); error=0;  
for i=1:test2

d0=100000; for j=1:p2

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if
d<d0

d0=d; class=prototype(end,j);

end end

if class~=test(end,i) error=error+1;

end end

error_rate0=error/test2;

%%the recursive adapting part

uu=u; 
for t=1:max

u=uu/t;

%%randomly choose a training data from T

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prototypes accordingly partial_sum=0;

partial_sum_w=0; for j=1:p2

%%find projection matrix PM

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; if prototype(end,j)==x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2));

partial_sum=partial_sum+normpdf(d,0,SD);

end  
if prototype(end,j)~=x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2));

partial_sum_w=partial_sum_w+normpdf(d,0,SD);

Page � of �75 88

end end

for j=1:p2  
%%find projection matrix PM PM=eye(p1-1)-A(:,:,j)*A(:,:,j)';
d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD);  
if prototype(end,j) == x_label

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/(SD)^2)*p*(1/partial_sum- 1/
(partial_sum+partial_sum_w))*PM*PM*(x_main-prototype(1:end-1,j));

A(:,:,j)=A(:,:,j)+2*u*(1/(SD)^2)*p*(1/partial_sum-1/(partial_sum+partial_sum_w))*(x_main-
prototype(1:end- 1,j))*(x_main-prototype(1:end-1,j))'*PM*A(:,:,j);

end  
if prototype(end,j) ~= x_label

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/(SD)^2)*(p/
(partial_sum+partial_sum_w))*PM*PM*(x_main- prototype(1:end-1,j));

A(:,:,j)=A(:,:,j)-2*u*(1/(SD)^2)*(p/(partial_sum+partial_sum_w))*(x_main-
prototype(1:end-1,j))*(x_main- prototype(1:end-1,j))'*PM*A(:,:,j);

end

A(:,:,j)=orth(A(:,:,j));

end end

%%find the error rate, after training

error=0; 
for i=1:test2

d0=100000; for j=1:p2

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if
d<d0

d0=d;

class=prototype(end,j);

end end

if class~=test(end,i) error=error+1;

end end

error_rate=error/test2;

Program 6 – TDSLVQ

%%% TDSLVQ (Tangent Data Soft Learning Vector Quantization)

Page � of �76 88

%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and
outputs a the updated prototypes

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the
label of the sample. Label is a number from 1 to c

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T

function [prototype,error_rate,error_rate0]=TDSLVQ(T,prototype,test,c,max,u,dim)

%%find the dimensions of training and prototype matrix

[T1,T2]=size(T); [p1,p2]=size(prototype);

%%Define the Gaussian distribution standard deviation

SD=0.1; 
SD2=1; 
%%define the dimensions of tangent planes tan_dim=dim;  
%%radius of the ball  
BR=1; 
%%find the error rate, before training [test1,test2]=size(test);

error=0; 
for i=1:test2

d0=100000; dears=[]; 
for w=1:test2

ilds=sqrt(sum((test(1:end-1,i)-test(1:end-1,w)).^2)); if ilds <BR && test(end,i)==test(end,w)

dears=horzcat(dears,test(1:end-1,w));

end end

[A,off]=k_affine(dears,tan_dim); for j=1:p2

PM=eye(p1-1)-A*A'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if d<d0

d0=d;

class=prototype(end,j);

end end

if class~=test(end,i) error=error+1;

end end

error_rate0=error/test2;

%%the recursive adapting part
Page � of �77 88

uu=u; 
for t=1:max

u=uu/t;

%%randomly choose a training data from T

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prototypes accordingly

dears=[]; 
for w=1:T2

ilds=sqrt(sum((x_main-T(1:end-1,w)).^2)); if ilds <BR && x_label==T(end,w)
dears=horzcat(dears,T(1:end-1,w));  
end

end

[A,off]=k_affine(dears,tan_dim);

PM=eye(p1-1)-A*A'; PM2=A*A';

partial_sum=0; partial_sum_w=0;

for j=1:p2  
if prototype(end,j)==x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum=partial_sum+normpdf(d,0,SD)*normpdf(d2,0,SD2);

end  
if prototype(end,j)~=x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum_w=partial_sum_w+normpdf(d,0,SD)*normpdf(d2,0,SD2);

end end

for j=1:p2 d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2));
d2=sqrt(sum((PM2*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD)*normpdf(d2,0,SD2);  
if prototype(end,j) == x_label

prototype(1:end-1,j)=prototype(1:end-1,j)+u*(1/2)*(p/partial_sum)*((1/SD2)*PM2+(1/
SD)*PM)*(x_main- prototype(1:end-1,j));

end  
if prototype(end,j) ~= x_label

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(1/2)*(p/partial_sum)*((1/SD2)*PM2+(1/
SD)*PM)*(x_main- prototype(1:end-1,j));

end end

Page � of �78 88

end

%%find the error rate, after training

error=0; 
for i=1:test2

d0=100000; dears=[]; 
for w=1:test2

ilds=sqrt(sum((test(1:end-1,i)-test(1:end-1,w)).^2)); if ilds <BR && test(end,i)==test(end,w)

dears=horzcat(dears,test(1:end-1,w));

end end

[A,off]=k_affine(dears,tan_dim); for j=1:p2

PM=eye(p1-1)-A*A'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); if d<d0

d0=d;

class=prototype(end,j);

end end

if class~=test(end,i) error=error+1;

end end

error_rate=error/test2;

program 7 – G-affine estimation

%%function to use PCA to estimate best k-affine for a set of data points

%%this function receives the data points and k (the dimension of the %%affine) and returns the
orthogonal vectors spanning the space, plus the %%offset vector  
%%data points X should be given in a matrix, with each column dedicated to %%one data sample

function [space,mean]=k_affine(X,k)

[x1,x2]=size(X); 
mean=sum(X'); 
mean=(1/x2)*(mean');  
%%centered data Y=X-repmat(mean,1,x2);  
sig=(1/x2)*Y*Y'; 
[vec,val]=eig(sig);  
val_signed=sum(val); val_unsigned=abs(val_signed); [temp,ind]=sort(val_unsigned,'descend');
space=[];

for i=1:k space=horzcat(space,vec(:,ind(i)));

end
Page � of �79 88

Program 8 – TSLVQ_S

%%% TSLVQ_S (Tangent Soft Learning Vector Quantization strong)

%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and
outputs a the updated prototypes

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the
label of the sample. Label is a number from 1 to c

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T

function [prototype,error_rate,error_rate0]=TSLVQ_S(T,prototype,test,c,max,u,dim)

%%find the dimensions of training and prototype matrix

[T1,T2]=size(T); [p1,p2]=size(prototype);

%%Define the Gaussian distribution standard deviation

SD=30; SD2=50;

%%define the dimensions of tangent planes

tan_dim=dim;

%%define tangent planes for each prototype

A=random('unif',-1,1,p1-1,tan_dim,p2); %%normalize the basis  
for i=1:p2

A(:,:,i)=orth(A(:,:,i));

end

%%find the error rate, before training

[test1,test2]=size(test); error=0;  
for i=1:test2

d0=100000; for j=1:p2

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2));

d2=sqrt(sum((PM2*(prototype(1:end-1,j)-test(1:end-1,i))).^2));

d=sqrt(d^2+d2^2); if d<d0

d0=d;

class=prototype(end,j);
Page � of �80 88

end end

if class~=test(end,i) error=error+1;

end end

error_rate0=error/test2;

%%the recursive adapting part

uu=u; 
for t=1:max

u=uu/t;

%%randomly choose a training data from T

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prototypes accordingly partial_sum=0;

partial_sum_w=0; for j=1:p2

%%find projection matrix PM

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; PM2=A(:,:,j)*A(:,:,j)';  
if prototype(end,j)==x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum=partial_sum+normpdf(d,0,SD)*normpdf(d2,0,SD2);

end  
if prototype(end,j)~=x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum_w=partial_sum_w+normpdf(d,0,SD)*normpdf(d2,0,SD2);

end

end  
for j=1:p2

%%find projection matrix PM

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2));
d2=sqrt(sum((PM2*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD)*normpdf(d2,0,SD2);

if prototype(end,j) == x_label A(:,:,j)=A(:,:,j)+2.*u.*(p/partial_sum).*((-1/(SD)^2).*(x_main-
prototype(1:end-1,j))*(x_main-prototype(1:end-

1,j))'*PM+(1/(SD2)^2).*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end-1,j))'*PM2)*A(:,:,j); prototype(1:end-1,j)=prototype(1:end-1,j)+u*(p/
partial_sum)*((1/(SD)^2)*PM*PM*(x_main-prototype(1:end-

1,j))+(1/(SD2)^2)*PM2*PM2*(x_main-prototype(1:end-1,j)));
Page � of �81 88

end  
if prototype(end,j) ~= x_label

A(:,:,j)=A(:,:,j)-2.*u.*(p/partial_sum_w).*((-1/(SD)^2).*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end- 1,j))'*PM+(1/(SD2)^2).*(x_main-prototype(1:end-1,j))*(x_main-
prototype(1:end-1,j))'*PM2)*A(:,:,j);

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(p/partial_sum_w)*((1/(SD)^2)*PM*PM*(x_main-
prototype(1:end- 1,j))+(1/(SD2)^2)*PM2*PM2*(x_main-prototype(1:end-1,j)));

end

A(:,:,j)=orth(A(:,:,j));

end end

%%find the error rate, after training

error=0; 
for i=1:test2

d0=100000; for j=1:p2

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2));

d2=sqrt(sum((PM2*(prototype(1:end-1,j)-test(1:end-1,i))).^2));

d=sqrt(d^2+d2^2); if d<d0

d0=d;

class=prototype(end,j);

end end

if class~=test(end,i) error=error+1;

end end

error_rate=error/test2;

Program 9 – TRSLVQ_S

%%% TRSLVQ_S (Tangent Robust Soft Learning Vector Quantization strong)

%% It is a function that gets a training set, prototypes (labelled) and the number of classes %%and
outputs a the updated prototypes

%%The training set matrix "T" should be in the following format  
%%if there are "| T |" training samples and the problem is n-dimensional then %%The matrix T
would have n+1 rows and | T | columns  
%%Considering a column, The first n rows are dedicated to a vector sample %%The last row is the
label of the sample. Label is a number from 1 to c

Page � of �82 88

%%The prototype matrix "prototype" should be in the same format as %%training set matrix T

function [prototype,error_rate,error_rate0]=TRSLVQ_S(T,prototype,test,c,max,u,dim)

%%find the dimensions of training and prototype matrix

[T1,T2]=size(T); [p1,p2]=size(prototype);

%%Define the Gaussian distribution standard deviation

SD=5; 
SD2=30; 
%%define the dimensions of tangent planes tan_dim=dim;  
%%define tangent planes for each prototype A=random('unif',-1,1,p1-1,tan_dim,p2); %%normalize
the basis  
for i=1:p2

A(:,:,i)=orth(A(:,:,i));

end

%%find the error rate, before training

[test1,test2]=size(test); error=0;  
for i=1:test2

d0=100000; for j=1:p2

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2));

d2=sqrt(sum((PM2*(prototype(1:end-1,j)-test(1:end-1,i))).^2));

d=sqrt(d^2+d2^2); if d<d0

d0=d;

class=prototype(end,j);

end end

if class~=test(end,i) error=error+1;

end end

error_rate0=error/test2;

%%the recursive adapting part

uu=u; 
for t=1:max

u=uu/t;

%%randomly choose a training data from T
Page � of �83 88

x=T(:,random('unid',T2)); x_main=x(1:end-1); x_label=x(end);  
%%update prototypes accordingly partial_sum=0;

partial_sum_w=0; for j=1:p2

%%find projection matrix PM

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; PM2=A(:,:,j)*A(:,:,j)';  
if prototype(end,j)==x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum=partial_sum+normpdf(d,0,SD)*normpdf(d2,0,SD2);

end  
if prototype(end,j)~=x_label

d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2)); d2=sqrt(sum((PM2*(prototype(1:end-1,j)-
x_main)).^2)); partial_sum_w=partial_sum_w+normpdf(d,0,SD)*normpdf(d2,0,SD2);

end end

for j=1:p2  
%%find projection matrix PM PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; 
PM2=A(:,:,j)*A(:,:,j)'; d=sqrt(sum((PM*(prototype(1:end-1,j)-x_main)).^2));
d2=sqrt(sum((PM2*(prototype(1:end-1,j)-x_main)).^2)); p=normpdf(d,0,SD)*normpdf(d2,0,SD2);  
if prototype(end,j) == x_label

A(:,:,j)=A(:,:,j)+2.*u.*p*(1/partial_sum-1/(partial_sum+partial_sum_w)).*((-1/(SD)^2).*(x_main-
prototype(1:end- 1,j))*(x_main-prototype(1:end-1,j))'*PM+(1/(SD2)^2).*(x_main-
prototype(1:end-1,j))*(x_main-prototype(1:end- 1,j))'*PM2)*A(:,:,j);

prototype(1:end-1,j)=prototype(1:end-1,j)+u*p*(1/partial_sum- 1/
(partial_sum+partial_sum_w)).*((1/(SD)^2)*PM*PM*(x_main-prototype(1:end-1,j))+(1/
(SD2)^2)*PM2*PM2*(x_main- prototype(1:end-1,j)));

end  
if prototype(end,j) ~= x_label

A(:,:,j)=A(:,:,j)-2.*u.*(p/(partial_sum_w+partial_sum)).*((-1/(SD)^2).*(x_main-
prototype(1:end-1,j))*(x_main- prototype(1:end-1,j))'*PM+(1/(SD2)^2).*(x_main-
prototype(1:end-1,j))*(x_main-prototype(1:end-1,j))'*PM2)*A(:,:,j);

prototype(1:end-1,j)=prototype(1:end-1,j)-u*(p/(partial_sum_w+partial_sum))*((1/
(SD)^2)*PM*PM*(x_main- prototype(1:end-1,j))+(1/(SD2)^2)*PM2*PM2*(x_main-
prototype(1:end-1,j)));

end

A(:,:,j)=orth(A(:,:,j));

end end

%%find the error rate, after training

Page � of �84 88

error=0; 
for i=1:test2

d0=100000; for j=1:p2

PM=eye(p1-1)-A(:,:,j)*A(:,:,j)'; PM2=A(:,:,j)*A(:,:,j)';

d=sqrt(sum((PM*(prototype(1:end-1,j)-test(1:end-1,i))).^2));
d2=sqrt(sum((PM2*(prototype(1:end-1,j)-test(1:end-1,i))).^2)); d=sqrt(d^2+d2^2);

if d<d0 d0=d;

class=prototype(end,j);

end end

if class~=test(end,i) error=error+1;

end end

error_rate=error/test2;

9- List of abbreviations

In this section the abbreviations, that are used in this article, are included, along with
the full name they are abbreviating. For some of the abbreviations, references are
mentioned, in parenthesis, to explain the underlying concept behind them.

LVQ : Learning Vector Quantisation

SLVQ: Soft Learning Vector Quantisation ([1])

ASLVQ: Attraction Soft Learning Vector Quantisation (explained in this article)

RSLVQ: Robust Soft Learning Vector Quantisation ([1])

TSLVQ: Tangent Soft Learning Vector Quantisation (explained in this article)

TRSLVQ: Tangent Robust Soft Learning Vector Quantisation (explained in this article)

TDSLVQ: Tangent Data Soft Learning Vector Quantisation (explained in this article)

TDRSLVQ: Tangent Data Robust Soft Learning Vector Quantisation (explained in this
article)

PCA: Principle Component Analysis

GSLVQ: Grassmannian Soft Learning Vector Quantisation

Page � of �85 88

 10- Appendices

Appendix A

The following manipulations are done, in order to get (38b) and (38c). Only for (38b),
the path is shown.

The above partial derivative, can be rewritten, using less symbols, as follows. Note that
after calculating the result, the notation shall be returned to the original, for it is
supposed to convey some agreed upon meanings.

We would like to put the last result in neat form as below.

∂
∂Ar(* j

i)
log p(", y |W, Ar(W)) =

p j
i

p(", y |W, Ar(W))

× −1

σ2
2 2πσ2

2

exp(−
| |(I −Ar(* j

i)(Ar(* j
i))T)(" −* j

i) | |2

2σ2
2)

× (" −* j
i)

T(I −Ar(* j
i)(Ar(* j

i))
T)

×
−∂(Ar(* j

i)(Ar(* j
i))T)(" −* j

i)

∂Ar(* j
i)

∂{(A AT)(" −* j
i)}k

∂{A}m,n
=

{
2{(" −* j

i)}k{A}kn+ ∑t≠k {(" −* j
i)}t{A}tn form = k

{(" −* j
i)}m{A}kn form ≠ k

∂(A AT)(" −* j
i)

∂{A}m,n
= Fm{(" −* j

i)}mA:,n+ GmA:,n(" −* j
i)

Tem = 2{(" −* j
i)}mA:,n

Page � of �86 88

Where is the identity matrix, with its -th diagonal element to be 2, instead of 1.

Similarly, is the identity matrix, with its -th diagonal element being 0, instead of 1.

 is the -th member of the standard basis of , with its -th element being 1.

Then the following is done.

Finally, the partial derivative of the first term of the logarithmic likelihood function

(36), with respect to is

Appendix B

Equation (41a) is the first term of the right hand side of (38a). An intermediate stage is
included here.

Gm m
Fm m

em m ℝn m

∂
∂{Ar(* j

i)}m,n
log p(", y |W, Ar(W)) =

2p j
i p(" |* j

i, Ar(* j
i)){(" −* j

i)}m

σ2
2 p(", y |W, Ar(W))

× ((" −* j
i)

T(I −Ar(* j
i)(Ar(* j

i))
T){Ar(* j

i)}:,n)

Ar(* j
i)

∂
∂Ar(* j

i)
log p(", y |W, Ar(W)) =

δ(j −y)(2p j
i p(" |* j

i, Ar(* j
i))

σ2
2 p(", y |W, Ar(W))

× (" −* j
i)(" −* j

i)
T(I −Ar(* j

i)(Ar(* j
i))

T))Ar(* j
i)

∂
∂Ar(* j

i)
log p(", y |W, Ar(W)) =

p j
i

p(", y |W, Ar(W)) × −1
2πσ1σ2

p(" |* j
i, Ar(* j

i))

× ((" −* j
i)T(I −Ar(* j

i)(Ar(* j
i))T)

σ2
2

×
−∂(Ar(* j

i)(Ar(* j
i))T)(" −* j

i)
∂Ar(* j

i)

+
(" −* j

i)T(Ar(* j
i)(Ar(* j

i))T)
σ2

1
×

∂(Ar(* j
i)(Ar(* j

i))T)(" −* j
i)

∂Ar(* j
i))

Page � of �87 88

11- References

1. S. Seo and K. Obermayer – Soft Learning Vector Quantisation – Neural Computation -
MIT Press Jul 2003 - 15(7):1589-604

2. P. Simard, Y.L. Cun and J. Denker – Efficient Pattern Recognition Using a New
Transformation Distance – NIPS’92 proceedings the 5th international conference on
neural information processing systems - pages 50-58 - 1992

3. S. Saralajew and Thomas Villmann – Adaptive Tangent Distances in Generalised
Learning Vector Quantisation for Transformation and Distortion Invariant
Classification Learning – Neural Network (IJCNN), IEEE Explore - 2016

4. H. Ritter, T. Martinetz and K. Schulten – Neural Computation and Self-Organizing
Maps - Textbook - Addison-Wesley Longman publishing Co.1992

5. S. Chepushtanova and M. Kirby – Classification of Hyperspectral Imagery on
Embedded Grassmannians, Hyperspectral image and signal processing: Evolution in
remote sensing (WHISPERS) - 2014

6. Y. M. Lui, J. R. Beveridge and M. Kirby – Action Classification on Product Manifolds -
Computer vision and pattern recognition, IEEE Conference - 2010

7. A. Bjorck and G.H. Golub – Numerical Method for Computing Angles between Linear
Subspaces – Mathematics of Computation 27, 579-594 - 1973

8. S. Chepushtanova and M. Kirby – Sparse Grassmannian Embedding for Hyperspectral
Data Representation and Classification - IEEE Geoscience and remote sensing letters
- Vol 14, Issue 3 - 2017

9. T. Martinetz, S. Berkovich and K. Schulten – “Neural Gas” Network for Vector
Quantization and its application to Time-Series Prediction – IEEE Transaction,Neural
Networks, 4(4):558-69 - 1993

10. J.R. Munkres – Analysis on Manifolds - Textbook - 1991

11. D.M. Keysers – Modelling of Image Variability for Recognition- PhD Thesis - March
2006

12. M. Mohannazadeh and T. Villmann - Soft-LVQ and dependent prototypes - Machine
Learning Reports - MiWoCI Workshop - 2017.

13. Teuvo Kohonen - Learning Vector Quantisation - Self-Organizing Maps. Springer Series
in Information Sciences, vol 30. Springer, Berlin, Heidelberg - 1995

Page � of �88 88

