

BACHELORARBEIT

Herr

Christian Roth

➢ <

Developing of a methodology

for evaluation of targeted cy-

ber attacks using exploits on

ARM-based Industrial IoT de-

vices

Mittweida, 2020

Fakultät: Angewandte Computer- und Biowis-

senschaften

BACHELORARBEIT

Entwicklung einer Methodik

zur Erforschung von zielgerich-

teten Angriffen mittels Exploits

auf ARM-basierte Industrial I-

oT-Geräte

Autor:

Herr

Christian Roth

Studiengang:

Angewandte Informatik IT-Sicherheit

Seminargruppe:

IF16wI-B

Erstprüfer:

Prof. Dr. rer. pol. Dirk Pawlaszczyk

Zweitprüfer:

Heiner Winkler, M.Sc.

Einreichung:

Kulmbach, 31.08.2020

Faculty of Applied Computer- and Biology Sci-

ences

BACHELOR THESIS

Developing of a methodology

for evaluation of targeted cy-

ber attacks using exploits on

ARM-based Industrial IoT de-

vices

author:

Mr.

Christian Roth

course of studies:

Applied Computer Science IT-Security

seminar group:

IF16wI-B

first examiner:

Prof. Dr. rer. pol. Dirk Pawlaszczyk

second examiner:

M.Sc. Heiner Winkler

submission:

Kulmbach, 31.08.2020

Bibliografische Beschreibung:

Christian Roth:

Entwicklung einer Methodik zur Erforschung von zielgerichteten Angriffen

mittels Exploits auf ARM-basierte Industrial IoT-Geräte

2020 - 103 Seiten.

Mittweida, Hochschule Mittweida (FH), University of Applied Sciences,

Fakultät Angewandte Computer- und Biowissenschaften, Bachelorarbeit,

2020

Referat:

Diese Arbeit beschäftigt sich mit der Entwicklung einer Methodik / eines

Konzeptes um zielgerichtete Angriffe auf IIoT / IoT Geräte zu analysieren.

Aufbauend auf den recherchierten Grundlagen über Honeypots, Fileless

Malware und Injection Techniken wird eine Methodik erstellt, die zu einem

Konzept eines Honeypot Analysesystems führt. Dieses System dient dem

spezialisierten Detektieren und Analysieren von neuartigen Gefahren wie

Fileless Attacks die häufig von Advanced Persistent Threats genutzt werden.

Ein Teil dieses Systems wird implementiert und durch einen simulierten An-

griff welcher Fileless Attacks nutzt getestet. Die entsprechende Effektivität

der Implementierung wird bewertet und diskutiert.

Bibliographic description :

Christian Roth:

Developing of a methodology for evaluation of targeted cyber attacks using

exploits on ARM-based Industrial IoT devices

2020 - 103 Seiten.

Mittweida, Hochschule Mittweida (FH), University of Applied Sciences,

Faculty of Applied Computer- and Biology Sciences, Bachelor Thesis, 2020

Abstract:

This thesis deals with the development of a methodology / concept to analy-

se targeted attacks against IIoT / IoT devices. Building on the established

background knowledge about honeypots, fileless malware and injection

techniques a methodology is created that leads to a concept of a honeypot

analyzation system. The system is created to analyse and detect novel thre-

ats like fileless attacks which are often utilized by Advanced Persistent Thre-

ats. That system is partially implemented and later evaluated by performing

a simulated attack utilizing fileless attacks. The effectiveness is discussed and

rated based on the results.

Content I

Content

Content ... I

Table of figures ... III

List of tables .. IV

Index of Abbreviations ... V

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Goals ... 2

1.3 Chapter overview ... 3

2 Background .. 5

2.1 Internet of Things and Industrial Internet of Things 5

2.2 Different ways to compromise ... 7

2.2.1 Traditional Malware ... 7

2.2.2 Fileless Attacks / Malware ... 9

2.2.3 Advanced Persistent Threats .. 17

2.3 Post Exploitation utilizing Injection Techniques .. 17

2.3.1 Process Hollowing .. 18

2.3.2 Injection and Persistence via Registry Modficiations 18

2.3.3 Hook Injection via SetWindowsHookEX ... 19

2.3.4 IAT Hooking and Inline Hooking ... 19

2.3.5 Anonymous File Creation through memfd_create()...................................... 19

2.3.6 Reflective DLL injection ... 20

2.3.7 Ptrace injection .. 21

2.3.8 Doppelgänging Injection ... 22

2.4 Forensic Investigation / Detection of Fileless Attacks 22

2.5 Honeypots .. 26

2.6 Intrusion Detection Systems ... 30

II Content

3 Methodology .. 32

3.1 Layer 1 .. 32

3.2 Layer 2 .. 42

3.3 Layer 3 .. 47

4 Layer 1 Implementation .. 49

4.1 Implementation ... 49

4.2 Attack simulation... 54

4.3 Results .. 57

5 Discussion / Conclusion ... 62

5.1 Result Interpretation ... 62

5.2 Restrictions and Limitations ... 64

5.3 Future Work ... 65

5.4 Conclusion ... 66

Bibliography ... 67

Appendices .. 73

Appendix 1 ... A-I

Appendix 2 .. A-VII

Selbstständigkeitserklärung

Table of Figures III

Table of Figures

Figure 1: SCADA Components (cf. United States General Accounting Office, 2002) 7

Figure 2: The four different monitoring modules of the Raspberry Pi Honeypot 33

Figure 3: Windows paths that should be monitored (cf Johnson, et al., 2017) 43

Figure 4: Fileless malware honeypot detection concept ... 48

Figure 5: The layout of the Layer 1 implementation test .. 49

Figure 6: /etc/audit/audit.rules ruleset ... 53

Figure 7: Wireshark capture of SSH bruteforce ... 55

Figure 8: Syscall number memfd_create .. 57

Figure 9: Wireshark intercepting OpenSSH handshake .. 58

Figure 10: ausearch -f /etc/passwd log results... 59

Figure 11 auditd systemcall log for memfd_create ... 60

Figure 12 console forensics to show memfd files ... 60

Figure 13 module.dwarf error upon loading the profile ... 61

IV List of Tables

List of Tables

Table 1: WMI objects used for reconnaissance (cf. Graeber, 2015) 12

Table 2: Linux blind files post exploitation (Adrian, 2019) ... 15

Table 3: Useful ptrace operations (Chester, 2017) .. 21

Table 4: Useful WMI Objects for forensic investigation (Buddy, 2019) 24

Table 5: characteristics of honeypot interaction levels ..

(Nawrocki, Wählisch, Schmidt, Keil, & Schönfelder, 2016) ... 27

Table 6: Important Linux directories for monitoring attacks (cf. Smith, 2017) 36

Index of Abbreviations V

Index of Abbreviations

IoT Internet of Things

IIoT Industrial Internet of Things

APT Advanced Persistent Threat

ICS Industrial Control System

LPWAN Low Power Wide Area Network

SCADA Supervisory Control and Data Acquisition

ASLR Address space layout randomization

DEP Data Execution Prevention

WMI Windows Management Instrumentation

DoS Denial of Service

SSH Secure Shell

WQL Windows Management Instrumentation Query Language

DLL Dynamic Link Library

IDS Intrusion Detection System

API Application Programming Interface

ELF Executable and Linkable Format

TCP Transmission Control Protocol

UDP User Datagram Protocol

ICMP Internet Control Message Protocol

URL Uniform Resource Locator

OS Operating System

PLC Programmable Logic Controller

VI Index of Abbreviations

HIDS Host-based Intrusion Detection System

GCC GNU Compiler Collection

Introduction 1

1 Introduction

In this chapter the motivation and goals of this thesis are discussed. A small overview

over the individual chapters is also presented.

1.1 Motivation

During recent years cyberattacks on IoT1 / IIoT2 devices have increased rapidly. In 2019

alone reports from F-Secure claimed a surge of Cyberattacks targeting IoT devices by

300% within a single year (cf. Doffman, 2019).

In 2017 FIREEYE detailed in a blog post the malware TRITON3 which targeted ICS4 Sys-

tems (cf Johnson, et al., 2017). The attack could have led to potential disruptions of critical

infrastructure. It was one of the many APT5 attacks targeting industrial networks. One of

the reasons for the popularity of IoT cyberattacks is that existing security systems are of-

ten not compatible with IoT. In addition, the resource constrained nature makes it difficult

to create reliable endpoint / network security systems. Furthermore, software and proto-

cols in use are often outdated or have simply not been designed to fulfil security require-

ments. ICS often lack cybersecurity measures, as they were designed with isolated envi-

ronments in mind. Protocols like Modbus6 and Profinet7 are missing important features

providing secure authentication and detection of unusual behaviour. Deployment of de-

vices / technologies from different vendors introduces different security levels leading to

potential risks too. (cf. Trend Micro, 2020)

1 IoT means Internet of Things and is the interconnection of various devices over the Internet

2 IIoT is a more specialized description of IoT devices, which are primarily deployed in industrial networks

3 TRITION is an ICS Attack Framework malware https://www.fireeye.com/blog/threat-research/2017/12/attack-
ers-deploy-new-ics-attack-framework-triton.html

4 ICS describes various kinds of control systems used to operate and monitor industrial processes

5 APT are extremely well funded attacks that usually persist for a long time and are executed with extreme
caution utilizing modern techniques and undiscovered vulnerabilities

6 Modbus is a Protocol used to establish client-server communication between intelligent devices, sensors and
instruments for field device monitoring using PCs and HMIs https://modbus.org/faq.php

7 Profinet is an advanced industrial ethernet protocol used to exchange data between controllers and devices
https://us.profinet.com/technology/profinet/

2 Introduction

As IoT is a rather novel technology, it also lacks the years of research from traditional

system security.

In recent years especially fileless malware attacks have gained popularity because of

their powerful and stealthy characteristics. A security report of Kaspersky Lab in 2017

revealed that over 140 enterprises in 40 different countries were affected by this kind

of malware (cf. Kaspersky GREAT Global Research & Analysis Team, 2017). Recently re-

searchers from the MobiSys19 conference created the HoneyCloud8 platform to ana-

lyse fileless attacks9. They reported that up to 9.7% of successful breaches captured

within their honeypots10 could be identified as fileless attacks. Fileless attacks are es-

pecially dangerous as they leave no footprint, can be extremely stealthy and thus are

hard to detect with existing security solutions making them a reliable APT tool. Systems

with weak credential authentication are especially prawn to be targeted.

(cf. Fan, et al., 2019)

As the popularity of such attacks keeps increasing, more complex and sophisticated

attacks will emerge, endangering the security of industrial sectors. New defensive

measures must be created and evaluated to secure the future of IIoT.

1.2 Goals

This thesis deals with potential modern IoT / IIoT threats focusing on APT utilizing file-

less malware and fileless attack trends. Possible attack techniques in this category are

described with a special focus on memory injection for post exploitation.

The goal is to create a concept for a security platform which can be used to analyse

fileless attacks of advanced persistent actors and gather intel for possible further in-

vestigations of new attack patterns or trends. Especially the detection and functionality

of memory injection plays a major role as it serves as a distinguishment from basic

threats. For this the necessary background knowledge is gathered from literature

about the components employed in the system and the nature and techniques of file-

less attacks. The security platform is created with extensibility in mind to open the pos-

sibility of adding any number of honeypots that suit the necessary situation. Due to the

high complexity and big scope of the thematic only the first layer of the proposed con-

cept is implemented utilizing a Raspberry Pi device acting as a honeypot. The honeypot

8 A honeypot system created to analyse IoT attacks based on Linux devices https://honeycloud.github.io/

9 Fileless attacks / Fileless malware utilizes techniques that don’t require persistent files unlike traditional mal-
ware

10 Honeypots are systems deceiving intruders into believing they are legitimate to extract information about
newly arising attack patterns or simply detect threats

Introduction 3

will monitor various characteristics to deduce malicious activity from changes that are

easily observable in an isolated state. Afterwards a possible attack is showcased to as-

sess the effectivity of the system to monitor fileless attack activity. At the end, the ef-

fectivity of the implementation is discussed while comparing it to current research on

fileless attacks.

1.3 Chapter overview

After the chapter overview the background is presented consisting of current research

information about IoT / IIoT, the nature of fileless attacks, post exploitation injection

techniques, forensic investigation of fileless malware, honeypots and Intrusion Detec-

tion Systems. Upon this research a Methodology is created step by step which leads to

the final concept of the honeypot platform at the end of the chapter. One layer of the

proposed concept is implemented to assess the effectivity of the proposed methods

and afterwards evaluated by simulating an attack in the following chapter. The result-

ing monitored activity is used to further discuss the effectivity of the implementation.

Finally, the results and their implications are discussed at the end, as well as limitations

and future possibilities.

4 Introduction

Background 5

2 Background

To understand the components used in in the analyzation platform and the modern

threats endangering IoT / IIoT networks and systems this chapter describes the neces-

sary elemental knowledge needed.

2.1 Internet of Things and Industrial Internet of Things

The IoT can be summarized as a mass of smart devices which interact with their sur-

rounding environments by sensing and then processing and transmitting the data back

to the environment. All those objects are interconnected through the internet and lead

to sustainability and safety of industries and society. The IIoT is a subset of the IoT,

focusing specifically on the machine-to-machine interaction as well as industrial com-

munication technologies. IIoT requires to have a support of very large number with

cost efficiency in mind, work with resource constrained devices and be energy efficient.

Low latency and reliability are important to ensure the timeless and guaranteed exe-

cution of critical procedures. While IoT and IIoT are closely related in nature, there are

key differences. When referring to the regular IoT mostly the consumer IoT is meant.

Such devices are mostly used to improve human awareness of the surrounding envi-

ronment and can be classified as machine-to-user interaction. IIoT on the other hand

tries to connect the entirety of all industrial assets with each other interconnecting ma-

chines, control systems, information systems and business processes. Data acquired

this way can be used for analytics optimization of industrial operations. Important ac-

tivities include monitoring/supervision, closed-loop control and interlocking control11.

Closed-loop control12, inter-locking and control applications require minimal delay and

very high reliability in communication. Depending on the use case huge amounts of

data are being transmitted in IIoT networks.

(cf. Sisinni, Saifullah, Han, Jennehag, & Gidlund, 2018)

A popular approach to describe IIoT architecture is the three-tier pattern. The first do-

main within this architecture is the Enterprise, which encompasses business and appli-

cation domains, providing analytics, management options, archives as well as User

11 Interlocking Systems are mostly used in rail operations to ensure safety by checking if sections are free and
determining possible routes https://www.mobility.siemens.com/global/en/portfolio/rail/automation/interlocking-
systems.html

12 Closed loop control systems do not require any manual input regulating processes by themselves

6 Background

Interfaces. Monitoring, control and safety is contained by the edge domain. IIoT com-

ponents interact with one another within this domain, consisting of various compo-

nents like sensors, controllers and actuators within multiple independent local area

networks. Edge gateways connect the smaller local networks to larger ones. Finally, the

Platform tier creates a link between the other tiers, providing a secure and shared mes-

sage bus. The lower layers of the IIoT network stack describes the exchange of physical

signals as well as the protocols used to link the devices together. One well accepted

standard is based on IEEE802.15.413 compliant radio, however it was not designed with

supporting many devices in mind. Another such solution is LPWAN14 which allows com-

munication over long distances at very low transmission power. The upper layer aims

to ensure interoperability using common data structures and fixated rules for infor-

mation exchange. It consists of the transport layer exchanging variable length mes-

sages among the individual devices and the framework layer transferring structured

data with higher abstraction levels. Messaging protocols are utilized for Horizontal in-

tegration. (cf. Sisinni, Saifullah, Han, Jennehag, & Gidlund, 2018)

One of many key technologies for IIoT are Supervisory Control and Data Acquisition

(SCADA) systems. SCADA is being used to control many critical infrastructures such as

electrical power generation and transmission, water treatment, mass transit and man-

ufacturing. Figure 1 shows the components of such a system. The Supervisory control

and monitoring station consist of a redundant application server, an engineering work-

station as well as a human-machine interface which logs information acquired by re-

mote stations and sends commands in response to events. Alarms and status infor-

mation is also displayed by the human-machine interface. Local stations have remote

terminal units, programmable logic controllers or other controllers build into them,

which receive signals from local sensors and transmits information to the control

equipment. The enterprise network is often interconnected with the control systems.

(cf. United States General Accounting Office, 2002)

13 IEEE802.15.4 is a low data rate solution with extensive battery life and low complexity

http://www.ieee802.org/15/pub/TG4.html

14 LPWAN means Low Power Wide Area Network and consist of wireless technologies providing large cover-
age of areas, low bandwidth, small packet size and long battery life https://tools.ietf.org/id/draft-ietf-lpwan-
overview-09.html

Background 7

Figure 1 SCADA Components (cf. United States General Accounting Office, 2002)

2.2 Different ways of compromise

2.2.1 Traditional malware

Malware is short for malicious software and can consist of various types which is harm-

ful to systems. A short overview of common different categories will be given in this

chapter.

A backdoor is malicious code intended to give an attacker hidden access to a computer

without rightful authentication, by installing itself and thus allowing to execute com-

mands. (cf. Sikorski & Honig, 2012)

Botnets are very similar to backdoors. However, they are mostly utilized to receive cer-

tain single commands from command-and-control servers. (cf. Sikorski & Honig, 2012)

Downloaders function as a first step tool to download the actual payload once they are

installed / executed. This allows the attacker to first infect the system with a very small

footprint file, making it easier to successfully compromise a system.

(cf. Sikorski & Honig, 2012)

Information stealing malware, also called spyware, secretly collects private information

and transmits it to the attacker’s system. Examples are keyloggers, password hash

8 Background

grabbers and sniffers. After extracting the information, the attacker can use the stolen

information to get access to password protected services or sell the stolen intellectual

property / private data. (cf. Sikorski & Honig, 2012)

Launchers have a similar concept to downloaders except that they simply execute an-

other piece of malware. This technique is used to increase the stealth, making it harder

to target down the main threat or to start processes in higher privileged modes.

(cf. Sikorski & Honig, 2012)

Rootkits are y designed to especially remain stealthy making detection a cumbersome

process. They are usually paired with different kind of malware to conceal their exist-

ence. (cf. Sikorski & Honig, 2012)

Any malware trying to scare a user into paying a ransom or buying something is la-

belled Scareware. They are often designed in a way to intimidate the user into making

irrational decisions. Buy scaring the user with messages that their PC has been com-

promised, they attempt to make the user buy software to remove the seeming virus.

In the end the bought software either does nothing or simply removes the scareware.

(cf. Sikorski & Honig, 2012)

Spam-sending malware uses innocent systems to send spam to services. It is a way to

generate income for bad actors by attempting to phish / scam people.

(cf. Sikorski & Honig, 2012)

Worms and Viruses copy themselves to infect additional computers. The main differ-

ence is that a virus infects a host file to propagate itself while the worm propagates

through a network on its own. (cf. Sikorski & Honig, 2012)

Ransomware is a modern version of Scareware. The difference is that ransomware uti-

lizes encryption algorithms to encrypt entire drives. Afterwards a ransom is required

to receive the private key necessary to decrypt the drive again. Without backups the

encrypted data is forever gone, forcing a payment. However, as such malware is uti-

lized by bad actors, there is no guarantee that the drive will be unlocked on payment.

(cf. Grimes, 2019)

Trojan horse malware masquerade themselves to deceive users into thinking they are

using legitimate software. They also must be executed by the victim to work. They are

mostly distributed by tricking users into installing them, thus security software and

measurements are only limitedly effective against this kind of threat. (cf. Grimes, 2019)

Adware is one of the most harmless categories which is used to display unwanted, po-

tentially malicious advertising to the user. Most often browsers are infected, which can

be used to redirect users onto sites with malicious ads or product promotions.

(cf. Grimes, 2019)

Background 9

Exploits use weaknesses in legitimate software to infect computers. They are mostly

utilized by cyber criminals to infiltrate an organizations network. Upwards of 90% of

reported data breaches are used in at least some steps within the attack chain. Multiple

mitigation techniques such as ASLR and DEP have been developed to counteract ex-

ploits, however attacking techniques also develop further each year. (cf. SOPHOS, 2018)

Finally, fileless malware utilizes techniques so no persistent files must be used. The

malicious code is directly injected into memory by either exploiting legitimate pro-

cesses or loading malicious code directly into memory. In addition, legitimate tools al-

ready available on the system can be utilized for an attack. For persistence operating

system objects, registries, APIs and scheduled tasks can be manipulated.

(cf. Grimes, 2019)

Overall, there are various categorizations of malware. As stated in the beginning of the

thesis, fileless malware has been on the raise in recent years and is one of the top

threats. For that reason, fileless malware is the specific focus of upcoming captures

and is explained in depth in the next chapter.

2.2.2 Fileless Attacks / Malware

Characteristics

Fileless Malware uses legitimate processes, namely Living off the Land Binaries15 and

various built-in tools provided by operating systems to compromise a system. Neither

do they download any malicious files nor is any content written to non-volatile

memory. The attack vectors are vulnerabilities in applications which are used to inject

the code directly into volatile memory, simple authentication brute forcing or phishing

campaigns. The life cycle can be divided into three different steps. First, an attack vector

which is used to initially target the victim is found. After that, the initial malicious attack

alters system settings to achieve persistence or invoke instances of a shell. By creating

a new instance of a shell / command line / etc. attackers open the ability of injecting

malicious programs / code into legitimate process memory. No files are being down-

loaded to the file system. The entire attack only alters RAM making the attack harder

to detect. Those characteristics make it unlikely for Anti-virus to detect such a threat.

In addition, their nature of being designed to behave like a benign process leads to

evasion of most behaviour-based detection mechanisms. The biggest difference be-

tween ordinary malware and fileless malware is the lack of methods to achieve persis-

tence (although it is possible) and the lack of actual files / source code. However, both

15 Living of the land binaries are typically legitimate admin tools being repurposed by an attacker
https://www.paloaltonetworks.com/cyberpedia/what-are-fileless-malware-attacks

10 Background

traditional malware and fileless malware utilize advanced obfuscation to hide the in-

tent from any analysts and avoid detection. (cf. Sudhakar & Kumar, 2020)

Attack lifecycle

The lifecycle can be divided into four different stages. In the first stage the attacker

utilizes exploits, password brute forcing or social engineering to gain initial access to

the victim’s system. Two different strategies can be used to deploy the attack. Either

the malicious files are directly downloaded into memory to be executed, avoiding sig-

nature-based detection or trusted / whitelisted applications are used so security soft-

ware will not inspect the application. PowerShell16 is a powerful tool on windows for

fileless attacks as it supports functionalities for memory-based download and execu-

tion.

The second stage tries to achieve persistence as any memory within RAM will be erased

after a restart. Naturally, such attacks are short-lived, however techniques exist for per-

sistence. Malicious code can be stored in unusual locations associated with valid oper-

ating system files or common utilities. Those utilities include the Windows Registry17,

WMI18 Store, SQL tables and Scheduled Tasks. Activities coming from those processes

are generally seen as legitimate improving evasion.

Thirdly, windows internal tools such as PowerShell and Macro execution of office doc-

uments are used for stage execution. As most tools provide countless of privileges and

functionality, fileless attacks offer a wide variety of possibilities.

Lastly, achieving the objective is the goal which can range from reconnaissance and

credential harvesting to cyberespionage and damage.

(cf. Sanjay, Rakshith, & Akash, 2018)

Categories

Fileless Malware is divided into RAM-resident and Script-based. This is just a broad dis-

tinction, a more in-depth taxonomy especially on IoT focused Fileless Malware follows

in the next subchapter. Executing exclusively in RAM avoids verification of digital signa-

tures and malware signatures. By avoiding any writes to disk or changes to the system

the malware avoids any trigger-based detection. Run-time solutions might be able to

detect abnormalities, however usually evidence of an attack is only subtle and not un-

failingly. False positives could lead to the shutdown of legitimate processes leading to

16 PowerShell consists of a command-line shell and scripting language built on top of the .NET Common Lan-
guage Runtime https://docs.microsoft.com/en-us/powershell/

17 The Registry is a central hierarchical database storing information about configurations from users, applica-
tions and hardware devices https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page

18 WMI is an infrastructure for management data and operations on Windows systems https://docs.mi-
crosoft.com/en-us/windows/win32/wmisdk/wmi-start-page

Background 11

data loss and data damage. Background processes of applications are exploited to en-

sure longer persistence, as those keep running even after the application is closed. An

in-depth review of memory injection techniques is presented in following sub-chapters.

Scripts exploit existing systems and applications which can run them. In the windows

landscape Visual Basic19 Scripts were a popular tool for script-based malware. How-

ever, windows operating system entities limited the possibilities and made it difficult

to compromise a system. A modern alternative is PowerShell, a powerful command

line utility shell developed to help system administrators. Access to sensitive memory

like registries, files, kernel configuration and even digital signature certificates is possi-

ble. (cf. Sanjay, Rakshith, & Akash, 2018)

In Linux IoT fileless attacks access is often gained through weak authentication. As IoT

devices often lack appropriate patching and security measures, exploits can also open

an entry gate. Afterwards the established connection makes it possible to use a shell

with privileged access, which can be used to issue versatile commands like “kill” to

shutdown monitoring services and query system parameters to gather information to

build up more advanced attacks afterwards. (cf. Fan, et al., 2019)

IoT taxonomy

The researchers behind HoneyCloud have divided the taxonomy of fileless malware

into eight different types based on their findings.

The first type is occupying end systems by altering password files, securing future ac-

cess or preventing access from other parties.

The second type damages system data by removing or altering files or programs via

the use of commands.

Thirdly, prevention of system monitoring/auditing services is ensured by killing watch-

dog processes / services or disabling firewalls / security software.

Type 4 encompasses any kinds of attempt to extract hardware or system information

via commands. This intel can be used to develop further advanced attacks against the

system.

The fifth type steals valuable information such as passwords or config files. Obtained

password hashes are attempted to be cracked.

The next sixth type launches network attacks of different types to launch DoS20 attacks.

Other typical attacks such Heartbleed21 and SQL Injection have also been abused.

19 Visual Basic is a programming / scripting language to create .NET apps https://docs.microsoft.com/en-
us/dotnet/visual-basic/

20 DoS is short for Denial of Service which are attacks aiming to disrupt a service from being accessible / oper-
ating

21 Heartbleed is a vulnerability in the OpenSSL cryptographic library which allowed attackers to steal protected
information https://heartbleed.com/

12 Background

Type 7 cannot be directly classified as they issue other different shell commands with-

out any clear reasons for the motive.

The last type conducts attacks with no shell commands in use. A typical example is SSH

Tunnelling22 by port forwarding to conceal the original IP and make it seem like the

attack was launched from the compromised device. (cf. Fan, et al., 2019)

Windows

The execution mechanism behind fileless attacks on windows relies mostly on invoca-

tion of a PowerShell instance using a WMI object with VBscript or Javascript. WMI stands

for windows management instrumentation and is an excellent tool for reconnaissance,

Anti-Virus / Virtual Machine detection, code execution, lateral movement, covert data

storage and persistence. (cf. Sudhakar & Kumar, 2020)

Following fileless attacks utilizing WMI techniques are discussed based on Graeber’s

Blackhat paper. Some of the advantages of using WMI are that it is installed on all ver-

sions dating back to Windows 98, it is stealthier than psexec, permanent event sub-

scriptions run as System, unawareness about WMIs opens capabilities to launch multi-

purpose attacks, nearly every operating system action is capable of triggering WMI

events and no payloads touch the disk.

WMI can be used for common reconnaissance by quiring the following objects:

 Win32_OperatingSystem, Win32_ComputerSystem (OS information)

 CIM_DataFile (File and directory listings)

 Win32_Volume (Disk volume listings)

 StdRegProv (Registry operations)

 Win32_Process (Running processes)

 Win32_Service (Service listing)

 Win32_NtLogEvent (Event log)

 Win32_LoggedOnUser (Logged on accounts)

 Win32_share (Mounted shares)

 Win32_QuickFixEngineering (Installed patches)

Table 1 WMI objects used for reconnaissance (cf. Graeber, 2015)

With the WQL Query

Select * FROM AntiVirusProduct

it is possible to gather information about installed Anti-Virus products, as those often

register themselves in WMI via the AntiVirusProduct class, which is contained in either

22 SSH tunnelling stands for Secure Shell tunnelling and is a method of transporting arbitrary networking data
over an encrypted SSH connection https://www.ssh.com/ssh/tunneling/

Background 13

root\SecurityCenter or root\SecurityCenter2. In PowerShell the command

Get-WmiObject -Namespace root\SecurityCenter2 -Class AntiVirusProduct

returns the necessary information. It will display the name, the path to the signed prod-

uct exe, instanceGuid and various other meta data.

The next query is a generic way to evaluate if any sandbox environment is present. It

assesses if the physical memory is limited to less than 2GB or if only a single processor

core is available. Those conditions are unlikely to be true except for very outdated sys-

tems.

Select * FROM Win32_ComputerSystem WHERE TotalPhysicalMemory <

214748348

Select * FROM Win32_ComputerSystem WHERE NumberOfLogicalProcessors < 2

Additional Query to detect VMware:

SELECT * FROM Win32_NetworkAdapter WHERE Manufacturer LIKE

"%VMware%"SELECT * FROM Win32_BIOS WHERE SerialNumber LIKE

"%VMware%"SELECT * FROM Win32_Process WHERE Name="vmtoolsd.exe"

SELECT * FROM Win32_NetworkAdapter WHERE Name LIKE "%VMware%"

By using the Win32_Process it is possible to spawn a process locally or remotely, which

is the equivalent of psexec. This PowerShell command would remotely spawn “note-

pad.exe” on a machine with the given IP address:

In addition, event consumers can lead to arbitrary remote code execution. It works by

creating a permanent WMI event subscription. By choosing fitting routines the attacker

opens new possibilities. For example, “__IntervalTimerInstruction” which would fire

an event after a given time or “Win32_ProcessStartTrace” triggering upon the creation

of a “LogonUI.exe” process signifying a user locking their screen.

Various attacks like the “Push Attack” can utilize remotely created WMI classes to store

file data. In the next step PowerShell is used to access the file data and drop them to a

remote file system. A detailed review of specific attacks is out of scope and can be read

in the original paper used to describe this section. (cf. Graeber, 2015)

Wueest Candid and Anand Himanshu from Symantec describes in their report various

fileless malware techniques. For example, Poweliks modifies the registry for persis-

tence using embedded JavaScript code. The complete malware is contained within the

registry and is later extracted on demand. A non-ASCII character is used as a name to

Invoke-WmiMethod -Class Win32_Process -Name Create – ArgumentList ‘note-

pad.exe’ -ComputerName 192.168.72.134 -Credential ‘WIN-B85AAA7ST4U\Ad-

ministrator’

14 Background

obfuscate and confuse tools. Certain access rights are modified to hinder the removal

of the malware. The Powerliks registry run key consists of a call to rundll32 with the

following arguments:

rundll32.exe javascript: “\..\mshtml, RunHTMLApplication “;alert(‘payload’);

Rundll32.exe uses LoadLibrary to load mshtml.dll after several tries to load other

combinations of the arguments. RunHTMLApplication is started as entry point. This

leads to a search of the JavaScript protocol handler. The first part is ignored as it is a

string and the payload after the “,” is executed. A script started this way can do the next

step of the attack by decrypting another registry key. Powerliks uses PowerShell load-

ing yet another DLL23, which also is stored as an encrypted string within the registry.

By using Dual-use tools it is easier to mask the activities as legitimate because it is

harder to distinguish them from malicious activities. Sometimes software cannot be

blacklisted, and often commands are being used by legitimate administrators. A simple

example is the use of the following commands:

 net user /add [username] [password]

 net localgroup administrators [username] /add

This snippet creates a new user and adds it to the group of administrators. It’s hard to

distinguish a legitimate from a malicious use, as this command can be used for valid

reasons like an system admin creating a new admin user An extensive list of more

commands and tools used by attackers can be found within the ISTR Special Report

created by Wueest Candid and Anand Himanshu from Symantec cited in this section.

(cf. Wueest Candid, 2017)

Linux

During exploitation various blind files are available for first information:

/etc/resolv.conf Contains DNS, unlikely to trigger IDS

/etc/motd Message of the Day

/etc/issue Current version of distro

23 DLL means Dynamic Link Library and can be loaded by more than one program and at runtime https://sup-
port.microsoft.com/en-us/help/815065/what-is-a-dll

Background 15

/etc/passwd List of local users

/etc/shadow List of users’ passwords’ hashes

/home/xxx/.bash_history Directory context

Table 2 Linux blind files post exploitation (Adrian, 2019)

Various files and commands also exist to delete history and check for individual distri-

butions, system information, installed package lists, networking information, configu-

ration files, accounts, credentials, important file, etc. Furthermore, certain commands

are useful for creating reverse shells, check suid 0 related things and to cover tracks.

Those can be seen in the Blackhat presentation of Adrian Hendrick. (cf. Adrian, 2019)

Useful frameworks for automation are Metasploit24, Cobalt Strike25 and various open

source frameworks and tools. An example of a powerful Meterpreter command is the

module “checkvm”, which can detect virtual machines. (cf. Adrian, 2019)

Evasion

Documents can function as containers embedding malicious files which are written in

languages like JavaScript. Social engineering can be used to make the victim click on

the malicious embedded file. This is an intended design choice making it harder to de-

tect if an embedded script is malicious or valid. Often documents also support scripting

capabilities which opens another attack vector for bad actors. Software launched by

such malicious files or scripts can be directly executed in memory resulting in fileless

infection.

Compared to compiled malicious files, scripts are harder to detect for anti-malware

vendors. Due to the high flexible nature it is possible to split malicious logic across

several processes decreasing the likelihood of behaviour-based detection. Still, they

can just as ordinary malware be obfuscated to slow down any potential analysts. Ob-

fuscation can also possibly lead to evasion of detection engines. Bohannon Daniel cre-

ated a useful tool compassing most obfuscation techniques for PowerShell commands

24 Metasploit is a framework for penetration and security testing available at
https://github.com/rapid7/metasploit-framework

25 Cobalt Strike is software for Adversary Simulations and Red Team Operations https://www.cobaltstrike.com/

16 Background

and scripts26. Windows includes multiple script interpreters for PowerShell, VBScript

and JavaScript making it a reliable attack vector. (cf. Sanjay, Rakshith, & Akash, 2018)

Built in windows tool are used by adversaries to make it difficult to differentiate be-

tween legitimate and malicious use. For a comprehensive listing of tools and built-in

binaries, libraries and scripts see Oddvar Moe’s LOLBAS project27.

Injecting malicious code directly into RAM hinders common endpoint security solu-

tions, as their main strength are files existing on the drive. This gives the malware the

opportunity to remain in hidden spots and change its shape.

(cf. Sanjay, Rakshith, & Akash, 2018)

Various injection techniques are described in the following chapter.

Detection

Sandboxing is an approach to monitor API calls wrapped by the sandbox and blocking

all susceptible and dangerous calls. Another approach is using the open source code

of PowerShell for emulation. This way it is possible to verify and deobfuscate scripts

before they are run on the actual host. While it is not entirely reliable, the amount of

malicious attacks can be scoped down by heuristics. Scripts / attacks utilizing rather

ubiquitous calls can be filtered out and be deemed suspicious. An especially important

factor is the starting point of the PowerShell process. Documents and browsers are

very suspicious candidates likely indicating malicious intent. A combination of heuris-

tics, behaviour-based detection and memory scanning can detect fileless threats relia-

bly. (cf. Sanjay, Rakshith, & Akash, 2018)

As existing solutions have only limited capabilities to detect such threats, honeypots

are a perfect tool to detect and analyse fileless attacks. Honeypots can be fully isolated

systems that are rarely accessed. As a result, any kind of activity can be instantly

deemed suspicious and it is easier to monitor changes. Almost any kind of activity can

be deemed to be evil and thus complicated algorithms and heuristics deciding the like-

lihood of a true positive can be omitted, simplifying the system (cf. Nawrocki, Wählisch,

Schmidt, Keil, & Schönfelder, 2016). Processes and memory can be scanned for any

changes during their runtime pointing towards injections. Environment variables, reg-

istries and similar configuration entities should also mostly remain constant unless an

attacker actively modifies them. All shell and command line commands can be inter-

cepted as any potential ones must be coming from a malicious actor. The most im-

portant step is monitoring all potential attack vectors rather than deciding the

26 https://github.com/danielbohannon/Invoke-Obfuscation

27 LOLBAS is a collection of Living Off The Land Binaries and Scripts (and also Libraries)

https://github.com/api0cradle/LOLBAS available on 30.08.2020

Background 17

likelihood of an attack. IDS28 can further help detect abnormalities within the network

packages like outgoing DoS attacks.

2.2.3 Advanced Persistent Threats

APTs are usually groups of advanced attackers who are well-funded by organizations

or governments. Usually the time the intent is to gain information about an adversary.

Advanced means that the attackers are well founded, giving them access to advanced

tools and methods. This leads to more attack vectors and the exploitation of more se-

cure systems. They are also highly persistent and determined. Attacks are conducted

over long periods, trying to occupy systems as long as possible. Several evasive tech-

niques to elude detection systems and intrusion detection are utilized. The approach

is “low and slow”, taking a lot of caution to increase the chance of success. Threat stems

from possible damage which could be the loss of sensitive data or loss or impediment

of critical components or missions. Many organizations and nations see this as rising

threats. The 5 stages that represent almost any APT are Reconnaissance, Establish

Foothold, Lateral Movement, Exfiltration, Post-Exfiltration. First data is gathered to bet-

ter understand the target, increasing the chance of success. Next, the attacker enters

the targets system / computer network. By this stage a foothold is established within

the victim’s network. After that, they laterally move within the network trying to evade

security / detection systems while searching for sensitive / critical data or their mission

accomplishment. During Exfiltration attackers send the stolen information to their

command and control centre. Destroying or disabling critical components can also be

part of this stage. In the final stage exfiltration is continued and further critical compo-

nents are disabled / destroyed. Importantly the attackers will try to delete any evidence

for a clean exit. (cf. Alshamrani, Myneni, Chowdhary, & Huang, 2019)

2.3 Post Exploitation utilizing Injection Techniques

Process / Memory Injection is an important tool of fileless attacks, as they directly inject

the malicious code into already running and possibly trusted processes or memory

leaving no footprint on the drive. An overview of the most common techniques is given

in this chapter. Hosseini Ashkans blogpost about the ten most common and trending

injection techniques is used as a basis for the first four injection techniques in this

chapter (Hosseini, 2018).

28 IDS are systems monitoring the network according to rules or utilizing AI to detect evil activity

18 Background

2.3.1 Process Hollowing

This technique is named after the functionality of the injection in which the malware

unmaps (hollows out) the legitimate code from memory to overwrite the memory

space of the target process with a malicious executable. On Windows this is done by

calling CreateProcess and setting the Process Creation Flag to CREATE_SUSPENDED. Till

the ResumeThread function is called the new process will remain in a suspended state.

ZwUnmapViewOfSection or NtUnmapViewOfSection unmaps the memory of the pro-

cess pointed to by a section. Next VirtualAllocEx allocates new memory, which can now

be used by WriteProcessMemory for writing the individual malware sections into

memory. SetThreadContext changes the entry point, which is necessary as the con-

tents have changed. Lastly, ResumeThread resumes the process out of the suspended

state. (cf. Hosseini, 2018)

2.3.2 Injection and Persistence via Registry Modifications

Useful registry keys for malware which are both used for persistence and injection:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Ap-

pinit_Dlls

HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVer-

sion\Windows\Appinit_Dlls

HKLM\System\CurrentControlSet\Control\Session Manager\AppCertDlls

HKLM\Software\Microsoft\Windows NT\currentversion\image file execu-

tion options

The libraries in the AppInit_Dlls key are loaded into each process loading User32.dll. As

it is a common library most processes will load the malicious library. It can be used

simply by calling RegCreateKeyEx and modifying the value by calling RegSetValueEx.

(cf. Hosseini, 2018)

AppCertDlls injection approach is almost the same, the only difference is that the reg-

istry keys are loaded upon a process calling the Win 32 API functions CreateProcess,

CreateProcessAsUser, CreateProcessWithLogonW, CreateProcessWithTokenW and

WinExec. (cf. Hosseini, 2018)

Background 19

2.3.3 Hook Injection via SetWindowsHookEX

SetWindowsHookEx is called to install a hook routine. Four arguments are necessary

for the call, the first being the event which describes the hook type. The second argu-

ment points to a function which will be invoked upon the event triggering. As third

argument the module containing the function itself is used. LoadLibrary and GetPro-

cAddress are usually called to achieve this. As last argument the thread associated with

the hook procedure is given. CreateToolhelp32Snapshot and Thread32Next can be

used to target a single thread for less noise. If the last argument is 0, then all threads

perform the procedure, which is not optimal to remain undiscovered.

(cf. Hosseini, 2018)

2.3.4 IAT Hooking and Inline Hooking

This technique is used to change the import address table, so when a valid application

calls an API located in the specific DLL, the malicious function is executed instead of

the original one. In difference to inline hooking (which is omitted due to lower effectiv-

ity) this technique modifies the API function directly. FinFisher29 achieved this by mod-

ifying CreateWindowEx pointers. (cf. Hosseini, 2018)

2.3.5 Anonymous File Creation through memfd_create()

“memfd_create() creates an anonymous file and returns a file descriptor that refers

to it. The file behaves like a regular file, and so can be modified, truncated, memory-

mapped, and so on. However, unlike a regular file, it lives in RAM and has a volatile

backing storage.” (Kerrisk, memfd_create(2) - linux man-pages, 2020)

Stuart, a professional “red teamer” explains such an attack in his blog. The so created

anonymous memory-only file is only visible in the filesystem as symlink in

\prco\<PID>\fd, which can be used by execve(). Perl’s syscall() can be used to avoid

dropping any binaries. The binary of the code to be injected into memory is contained

within the script. Perl’s syscall() lacks access to libc, but the necessary raw system call

number for memfd_create() and numeric constant for MEMFD_CLOEXEC can be both

found in the header files in /usr/include. The final Perl script would look like this:

29 FinFisher also called FinSpy is legally sold spyware for Android, iOS, Windows, macOS and Linux
https://www.kaspersky.com/blog/finspy-commercial-spyware/27606/

20 Background

My $name = “”,
my $fd = syscall(319, $name, 1);

if(-1 == $fd) {

 die “memfd_create: $!”;
}

319 is the system call number on a x64 Linux operating system and 1 represents the

MFD_CLOEXEC constant. After executing this script, a file descriptor to the anonymous

RAM file is saved in $fd.

In the next step the anonymous file needs to be filled with actual ELF30 data. The fol-

lowing Perl script can be used to open a file:

open(my $FH, ‘>&=’ .$fd) or die “open: $!”;

select((select($FH), $|=1)[0]);

This turn the already-open file descriptor into a file handler. Now chunks of binary data

can be written to the anonymous file by using a command like:

perl -e '$/=\32;print"print \$FH pack q/H*/, q/".(unpack"H*")."/\ or die

qq/write: \$!/;\n"while(<>)' ./elfbinary
This Perl print statement creates multiple prints that each write binary data into the

file.

Finally exec() in perl is called, which is very similar to the native execve() system call:

exec {"/proc/$$/fd/$fd"} "name", "-kvl", "4444", "-e", "/bin/sh" or die "exec:

$!";

The first parameter is the file being passed as a string ($$ returns the pid of the Perl

process and $fd contains the file descriptor). The other parameters are parameters

that are passed to the binary which was injected. The result is an anonymous file run-

ning in RAM without touching the disk. The only differences to a normal file is the

/proc/<PID>/exe symlink and that memfd_create() calls are sticking out during

“strace -f” system call monitoring. (cf. Stuart, 2020)

FireELF31 is a useful framework which utilizes this injection technique.

2.3.6 Reflective DLL injection

Reflective DLL injection creates a DLL that maps itself into memory without using the

windows loader. Import addresses, relocations and DllMain entry point are all handled

by a component within the DLL. This technique leverages large RWX memory sections

that are easy to detect. The overall technique works very similar to shellcode injection,

30 ELF means Executable and Linkable Format and is the standard file format for executable files on linux

31 FireELF can be downloaded at https://github.com/rek7/fireELF

Background 21

which uses OpenProcess to allocate memory within the opened process by using Vir-

tualAllocEx. Next WriteProcessMemory is used to write the DLL to memory and finally

execute by calling CreateRemoteThread. (cf. Desimone, 2019)

2.3.7 Ptrace Injection

Ptrace is exposed by the kernel to offer debuggers the ability to interfere with running

processes. The following table sums up several useful operations possible:

PTRACE_ATTACH Allows one process to attach itself to another for debug-

ging, pausing the remote process

PTRACE_PEEKTEXT Allows the reading of memory from another process’ ad-

dress space

PTRACE_POKETEXT Allows the writing of memory to another process ad-

dress’ space

PTRACE_GETREGS Read the current set of processor registers from a pro-

cess

PTRACE_SETREGS Writes to the current set of processor registers of a pro-

cess

PTRACE_CONT Resumes the execution of an attached process

Table 3 Useful ptrace operations (Chester, 2017)

By calling ptrace(PTRACE_ATTACH, pid, NULL, NULL) with the specific PID of the pro-

cess targeted ptrace is going to get attached. A SIGSTOP is sent resulting in the pausing

of the execution. To ensure a clear resuming afterwards, the current state of the pro-

cessor registers is saved using PTRACE_GETREGS and saving them into a

user_regs_struct struct. Next a place which accepts write operations for future code

injection needs to be found, “/proc/PID/maps” can be parsed to display sections. The

data also needs to be backed up and this can be done using PTRACE_PEEKTEXT. Over-

writing is achieved by using PTRACE_POKETEXT. Both peektext and poketext deal with

1 word of data at a time, thus requiring multiple calls to achieve the goal. Once done,

22 Background

the processes instruction pointer registers need to be pointed towards the injected

code. The earlier saved registers are next written back using PTRACE_SETREGS. Fi-

nally, PTRACE_CONT resumes execution. For a more thorough explanation visit the

cited blog post. (cf. Chester, 2017)

2.3.8 Doppelgänging Injection

First a transaction is opened with hTransaction = CreateTransaction(). A clean file is

opened transacted by calling CreateFileTransacted(“svchost.exe”, GENERIC_WRITE

| GENERIC_READ, …, hTransaction, …) and the returned value saved in hTransacted-

File. Next the file is overwritten with malicious code by calling WriteFile(hTransactedFile,

MALICIOUS_EXE_BUFFER, …).

NTCreateSection(&hSection, …, PAGE_READONLY, SEC_IMAGE, hTransactedFile)

creates a section from the transacted file which points to the malicious executable. Roll-

backTransaction(hTransaction) removes any changes from the file system. Now NtCre-

ateProcessEx(&hProcess, …, hSection, …) and NtCreateThreadEx(&hThread, …,

hProcess, MALICIOUS_EXE_ENTRYPOINT, …) are used to create a thread object. Pro-

cess Parameters are created by calling RtlCreateProcessParametersEx(&Process-

Params, …). Now the created process parameters are copied to the newly created pro-

cess’s address space by first using:

VirtualAllocEx(hProcess, &RemoteProcessParams, …, PAGE_READWRITE), then

WriteProcessMemory(hProcess, RemoteProcessParams, ProcessParams, …) and fi-

nally WriteProcessMemory(hProcess, RemotePeb.ProcessParamters, &RemotePro-

cessParams, …). Lastly, NtResumeThread(hThread, …) starts the execution of the in-

jected process.

This Injection technique is very resistant against even advanced forensic tools and ad-

vanced versions can avoid detection from anti-virus engines while simultaneously working

on all versions since Vista. No “unmapped code” is left and the entire process is entirely

fileless. (cf. Liberman & Kogan, 2017)

2.4 Forensic Investigation / Detection of Fileless Attacks

The most popular tool to investigate memory related incidents is Volatility32. It’s an

open source memory analysis tool. Multiple operating systems such Windows, Linux,

Mac and Android are supported. Virtual Machine images can be inspected as well as

raw dumps, crash dumps and others.

32 Volatility is a memory forensics framework and can be downloaded at https://www.volatilityfounda-

tion.org/releases

Background 23

Windows

Buddy Tancio SANS paper that shows the investigation process of fileless malware is

used in this chapter to describe the used techniques to unveil the malicious code. The

first fileless ransomware SOREBRECT33 utilizes process hollowing. First svchost.exe re-

vealed to lack a parent process. Upon further investigation with Volatility it became

apparent that the parent process has already been unlinked. The malfind plugin de-

tected an irregularity as the PAGE_EXECUTE_READWRITE flag was set, which allows

malware to inject and overwrite process memory. The shimcache plugin can detect

post execution artifacts, showing the execution of PSEXESVC.exe. Finally, the process

was dumped so it could be further investigated by a reverse engineer. (cf. Buddy, 2019)

Another malware investigated is the Dridex Banking Trojan34. This time winver.exe

process was injected with malicious code. Upon investigating the pstree with Volatility

it shows that the parent process drd4.exe has exited right after spawning winver.exe.

In addition, malfind reveals once again a PAGE_EXECUTE_READWRITE flag. The

plugins ldrmodules an hollowfind were ineffective in both variants, probably due to

new API hooking techniques. (cf. Buddy, 2019)

Later on, a Meterpreter shell injection attack is analysed as Meterpreter uses reflective

dll injection. The netscan Volatility command shows an injection into spoolsv.exe to

port 4444, which is the default port number for Meterpreter shells. Malfind once again

shows the PAGE_EXECUTE_READWRITE flag being set. This showcases that volatility

is an excellent tool to monitor changes within memory to detect injections. Malfind is

an immensely useful tool, as a process can only be injected to if the right memory flags

are set, which are revealed by this plugin. As it is compatible with different operating

systems, it can also be used to detect process injections in Linux although those natu-

rally differ in their execution. (cf. Buddy, 2019)

To detect persistence methods of fileless malware multiple possible vectors must be

searched. The Windows registry hive is the first important location. The registry hives

can be found in the following locations:

33 SOREBRECT is a fileless and code-injecting ransomware https://blog.trendmicro.com/trendlabs-security-
intelligence/analyzing-fileless-code-injecting-sorebrect-ransomware/

34 The Dridex Banking Trojan caused millions of dollars’ worth of damage and continues to adapt and attack
successfully https://www.kaspersky.com/about/press-releases/2017_the-dridex-banking-trojan-an-ever-evolv-
ing-threat

24 Background

 C:\Windows\system32\config\system

 C:\Windows\system32\config\<name>

 C:\Windows\system32\config\security

 C:\Windows\system32\config\software

 C:\Users\UserName\NTUSER.dat

 C:\User\UserName\AppData\Local\Microsoft\Windows\UsrClass.dat

The Kovter35 trojan for example issued the registry entries to achieve persistence:

HKEY_CURRENT_USER\Software\Classes\{random key}\shell\open\command

which contains the first malicious script, HKEY_CURRENT_USER\Software\Mi-

crosoft\Windows\CurrentVersion\Run containing the second script and HKEY_CUR-

RENT_USER\Software\Classes\.{random extension} containing the third script.

The registry can be analysed with registry explorer36 or Volatility.

regsvr32, http, javascript, mshta, rundll32.exe

Those key words are a good indicator of fileless compromise. (cf. Buddy, 2019)

Next the WMI is an important toolset of fileless attacks on windows as described ear-

lier. The following WMI objects are important:

 __EventFilter Holds conditions to trigger event

 __EventConsumer Containts persistence payload and instructions to

execute malicious script. CommandLineEventCon-

sumer and ActiveScriptEventConsumer hold exe-

cutable scripts

 __FilterToConsumerBinding Connects classes and instances together

Table 4 Useful WMI Objects for forensic investigation (cf. Buddy, 2019)

PowerShell is a powerful tool investigate WMI entries. The WMI database is stored in

35 Kovter is a constantly evolving malware that has evolved multiple times throughout the years
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/kovter-an-evolving-malware-
gone-fileless

36 Registry Explorer is a free tool intended to replace regedit https://ericzimmerman.github.io/#!index.md

Background 25

%System%\System32\webm\Repository\

In the example a cryptocurrency mining malware is investigated and the following

command is issued:

Get-WMIObject -Namespace root\Subscription -Class __EventFilter

This command queries EventFilter, which reveals the malicious entry Windows Event

Filter. The following Query is stored within the malicious entry using a specified time

interval to trigger the event:

SELECT * FROM __InstanceModificationEvent WITHIN 5600 WHERE Target-

Instance ISA ‘Win32_PerfFormattedData_PerfOS_System’

The malicious script is in a CommandLineEventConsumer object in ROOT\subscrip-

tion namespace. This persistence payload is executed whenever the condition is met.

Get -WMIObject -Namespace root\Subscription -Class __EventConsumer

This query reveals the PowerShell script installing the crypto-miner. The malware uses

the __FilterToConsumerBinding object to associate __EventFilter with __EventCon-

sumer classes. This step is needed to ensure that __EventConsumer is executed upon

the condition of __EventFilter being met.

Lastly, this query shows which objects are linked in the __RELPATH section.

Get- WMIObject -Namespace root\Subscription -Class __FilterToConsumerBinding

(cf. Buddy, 2019)

Sysmon37 is a tool to monitor events happening within a windows system. It displays

system process chains, network activity and file modification / creation time. In a blog-

post Perez Carlos explains how WMI can be monitored in Sysmon (cf. Perez, 2017).

Windows Task Scheduler located in C:\Windows\System32\Tasks is another useful

tool, as it shows the corresponding triggers to each task and displays which action is

then executed. In the case of the crypto-miner malware WindowsLogTasks and Sys-

tem Log Security Check both have triggers set that respawn a malicious PowerShell

script using regsvr32. Windows Event Logs is yet another tool which can potentially log

PowerShell scripts and WMI logs. (cf. Buddy, 2019)

37 Sysmon can be downloaded at https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

26 Background

Shimcashe, Muicache, userassists and prefetech contain execution artifacts that can

indicate fileless malware. Some useful keywords are powershell.exe, wscript.exe,

cscript.exe, scrons.exe, cmd.exe, regsvr32.exe, mshta.exe. (cf. Buddy, 2019)

Linux

Memfd_create() attacks can be detected with command line forensics.

ls -alR /proc/*/exe 2> /dev/null | grep memfd:.*\(deleted\)

The following command searches for all running processes within the /proc directory

and checks for the form memfd: (deleted). In a normal running system this command

should not return any results. Anything returned is highly suspicious and should be

investigated.

Netstat can be used afterwards to check for suspicious ports. By using the command

ps, the suspicious process should show up somewhere in the list which matches the

PID. By using cd/proc/<PID> the directory can be explored. A simple ls -al shows in-

formation like data stamps when the process was started, current working directory

where the user started the process and exe link points which usually points to non-

existing binary locations. Cat and strings can be used to check the contents of cmdline.

If the binary name doesn’t match or is oddly weird then it could indicate malware / an

attack. Cat maps shows the binary names and other library files it is using while run-

ning. A reference to the actual binary should be contained within the first part. A refer-

ence to /memfd: (deleted) is suspicious. By checking environ with strings, artefacts of

the process can be found as most user started processes leave information in this ex-

tensive list of environment variables. (cf. Sandfly Security, 2020)

2.5 Honeypots

Honeypots are decoy systems which solely exist to be probed, attacked or compro-

mised. They complement other solutions such as IDS and dynamic firewalls. The goal

is to spot zero-day attacks / techniques and get insight on attackers’ actions as well as

their motivations. (cf. Nawrocki, Wählisch, Schmidt, Keil, & Schönfelder, 2016)

Honeypots can be categorized in different interaction levels. Low interaction honey-

pots lack the ability to launch attacks to an external system. This limits the possible

damage but makes it also easier to detect. Medium interaction level honeypots imple-

ment a limited amount of services. A certain degree of intelligence is built into them to

avoid immediate detection. High interaction honeypots have a full operating system

and an entire range of functionality available. Such systems can be used to launch fur-

ther attacks and pose a possible security threat.

Background 27

The following table signifies the different qualities of the interaction levels

 Low in-

terac-

tion

honey-

pots

Me-

dium in-

terac-

tion

honey-

pots

High in-

teraction

honey-

pots

Real operating System No No Yes

Risk of compromise Low Mid High

Wish of compromise No No Yes

Information gathering Low Mid High

Knowledge to deploy Low Low High

Knowledge to develop Low High High

Maintenance time Low Low Very high

Table 5 characteristics of honeypot interaction levels

(Nawrocki, Wählisch, Schmidt, Keil, & Schönfelder, 2016)

Furthermore, a categorization into three deployment modes is present. Deception

mode are used to attract hackers, being designed in a way to force attackers to use a

big repertoire of their weapons / tools. Responses are manipulated in a way to deceive

the hacker into thinking they are coming from a legitimate system. Intimidation mode

honeypots are strictly secured, and the attacker might even get a message warning

about the monitoring. The goal of this is to scare away novice hackers to mostly detect

techniques of experienced hackers. Such information is more valuable than data from

average attacks. Lastly, the reconnaissance mode is specifically used to capture and

record new attacks on a system. The tools and techniques by the attacker are to be

determined and later used to for example implement heuristic-based rules for IDS sys-

tems. Both internal and external attacks are monitored. The main difference between

intimidation and reconnaissance mode is that the intimidation mode tries to keep the

attacker on the system as long as possible by feeding back engaging information.

28 Background

Finally, the Deployment category splits honeypots into research and production honey-

pots. Research honeypots are used to gather intel on possible new attacks to develop

new security measures, while production honeypots are mostly used to detect attacks

and protect the network from those. (Campbell, Padayachee, & Masombuka, 2015)

As honeypots are systems that are not really connected to any meaningful procedures,

the collected data is not polluted and thus valuable for investigation and analysis. As

relatively isolated systems they don’t have to stem the workload from common pro-

duction systems. Catching zero-day-exploits and unknown strategies is a huge benefit,

as they monitor any activity coming from an attacker. For that reason honeypots also

have reduced false positives and negatives. Activity on server-honeypots is an anomaly.

Also, honeypots are very flexible concepts, as various versions exist to tackle specific

tasks, reducing redundant load. However, Server-honeypots suffer from a limited field

of view, as they can only detect attacks if attackers actively send packages to them. If

no anti-fingerprinting measures are in place, honeypots can be detected by attackers /

malware rendering them useless. Lastly, a compromise of a honeypot brings a certain

risk to the environment making it important to put up the necessary security measures

to protect the rest of the network. (cf. Nawrocki, Wählisch, Schmidt, Keil, & Schönfelder,

2016)

Honeypot detection can be avoided by certain approaches. First an automatic honey-

pot redeployment of low interaction honeypots upon a certain criterion (for example a

drop of ICMP packets below a certain threshold or timers). Another important improve-

ment is the reduction of delay introduced by the honeypot systems. By differentiating

the delay of execution and communication an attacker can detect a honeypot. Either

optimization or adjusting code / settings this can be avoided. Next a lack of transpar-

ency can also lead to detection. Hybrid honeypot systems often reveal their deceptive

design due to a lack of transparency. For example, if a honeypot frontend redirects

traffic into a honeypot backend, certain measures must be taken. In the case of TCP

sessions, a TCP replaying approach can be used to transfer the session from frontend

to backend. This makes the honeypot much stealthier although slowing down perfor-

mance. In general honeypots need to hide modified sequences of events that are not

realistic in a way that makes it hard for the attacker to deduce their existence. An easy

but costly approach is using dedicated hardware. First, this reduces software delays

naturally, as an attacker is interacting with the real version of the system. Second, they

provide more security compared to other honeypot variants. Finally, dynamic intelli-

gence changing honeypots utilizing machine learning and artificial intelligence is a pos-

sibility. The main assets are a very adaptable honeypot that is hard to detect. Reconfig-

uration is not performed, rather the system dynamically changes based on reinforced

learning. (cf. Nawrocki, Wählisch, Schmidt, Keil, & Schönfelder, 2016)

An important aspect of honeypots is to increase the likelihood of deceiving an attacker

and certain modification can increase that chance. Attackers or malware often attempt

Background 29

to fingerprint systems in order to identify honeypots. Artificially crafted packages can

be sent to various ports to analyse the response which can contain operating system

data and alike information. TCP38/IP protocol are often utilized for this. Because every

Operating System replies differently, such information can be used to deduce signifi-

cant information. The first possible solution is to identify abnormalities in the TCP op-

tions field which is utilized by most fingerprinting tools. The field is used during the SYN

and SYN/ACK handshake process. The following attributes should be monitored for

abnormalities: Maximum Segment Size (MSS), Window Scaling, Selective Acknowledge-

ments, Timestamps and Nop.

Furthermore, TCP flags are often utilized for fingerprinting.

The first version of such an attack is FIN Probing. FIN indicates the end of a connection.

By probing with a FIN packet, the attacker can find out if a port is closed or not. As

opened ports will ignore a single FIN packet without prior established connections and

an RST packet will be sent back. This technique is also fairly evasive dodging most fire-

walls, IDS and packet filters.

The second version utilizes FIN/SYN packets. Those flags are mutually exclusive and

should never occur in an ordinary connection. Linux replies to such a combination with

a FIN/SYS/ACK packet.

Thirdly, URG/PSH/FIN probing can detect closed ports as those usually return an

RST/ACK packet. It should be noted that only systems conforming to RFC 793 are vul-

nerable

The fourth attack uses NULL packets, which sends packets without any flags set. If the

port is closed an RST packet will be sent back.

Reserved Bit Probing is the fifth version using the 3 reserved bits of the TCP header.

Sixth, ECN-Echo Probing utilizes the explicit congestion notification which is an exten-

sion to TCP packets.

UDP39 ports will send an ICMP40 error if they are closed such as “Destination Unreach-

able”. Setting the DF bit can also cause an ICMP error response. Packet size, checksum

and payload should be monitored for abnormalities.

ICMP Echo Requests, ICMP Router Solicitation Requests and ICMP Timestamp requests

are all used in fingerprinting attacks. Certain fields have predetermined values such as

Code 0 in ICMP Echo Requests. Deviations indicate malformed packages for scanning

purposes. Such abnormalities must be monitored for all different ICMP types. Further-

more, Packet sizes are predictable depending on the operating system, thus making it

38 TCP is short for Transmission Control Protocol and is used for highly reliable host-to-host connections be-
tween packet-switched communication networks https://tools.ietf.org/html/rfc793

39 UDP is short for User Datagram Protocol and is transaction oriented making delivery and duplicate protec-
tion not guaranteed https://tools.ietf.org/html/rfc768

40 ICMP is a protocol that is an integral part of IP typically reporting errors in the processing of datagrams
https://tools.ietf.org/html/rfc792

30 Background

possible to derive an attack from packet size abnormalities.

The paper suggests five different prediction severity levels with the following attributes:

Lower >= 1 abnormalities, Moderate >= 5 abnormalities, Higher >= 10 abnormalities,

Serious >= 15 abnormalities and Imminent >= 20 abnormalities. Depending on the

needs a different level can be chosen for a system defending against fingerprinting

attacks. (cf. Naik & Jenkins, 2018)

By modifying the responses to behave in a certain way an attack can be deceived by

the fingerprinting results. This is important so an attacker does not immediately dis-

miss a simulated honeypot as reconnaissance is usually one of the first steps involved

in an elaborate attack.

Important programs that monitor the honeypot can be coupled with rootkit capabilities

to stop attackers from not realizing that their activities are being scanned. Developing

fully functional rootkits is highly complicated, however as full control is guaranteed it

simplifies the whole process as the rootkit does not have to bypass security measures

and can instead just be whitelisted or deployed while disabling security mechanisms.

Certain rootkit techniques can be adopted in a honeypot system to evade detection

from an attacker. Processes that monitor activity can utilize process hiding to avoid

being listed by system utilities like “ps”. This technique works because the kernels task

scheduler and process accounting utilities consult different process lists. Process de-

scriptors of all running tasks are contained in the linked list “all-tasks”. It is represented

by the data structure init_tasks->next_task. Meanwhile the scheduler uses the linked

list “run-list”, which is represented in the kernel by run_queue_head->next structure.

By removing the process descriptor from all-tasks, a process won’t be shown by tools

utilizing this specific list. Because the kernel uses a different linked list the process will

just transparently continue running without any issues.

(cf. Baliga, Ganapathy, & Iftode, 2011)

By deploying vulnerable applications / operating systems or creating accounts / users

with weak credentials attackers can be attracted. However, depending on the use-case

it might be necessary to only deploy vulnerabilities that are complex to exploit. This

ensures that captured attacks are of high quality coming from experienced attackers

rather than collecting a massive amount of low-profile malware data.

2.6 Intrusion Detection Systems

Intrusion detection systems aim to defend a system by issuing alarm when certain con-

ditions are met that indicate an attack. They are generally first divided into network

based (NIDS) and host-based systems (HIDS). Modern IDS can be categorized into

anomaly based, signature based and compound detectors. Anomaly based IDS check

the traffic for any suspicious abnormalities. By comparing the traffic to what is deemed

normal and deciding how much it derivates from that, the software can decide if an

Background 31

attack is dangerous. Those can either be self-learning systems powered by techniques

such as the hidden Markov model, stochastic models, various other machine learning

algorithms, AI or programmed by a user who teaches the system to detect anomalous

events. Signature detection is based upon signatures, which must be created by a user.

They define what constitutes legal and illegal behaviour. Different approaches like

state-modelling encompassing different states that must be present during an intru-

sion, expert systems which reason about the state of a system according to given rules,

string matching and simple rule based systems are in use. Compound detectors oper-

ate by checking an intrusion against the background of normal traffic in the system.

This enables them to be more accurate and mostly capture the truly interesting events,

since they know the patterns of intrusive behaviour and can check them against the

normal behaviour of the system. (cf. Axelsson, 2000)

A popular signature-based IDS is Snort41. The usage is explained using the officially

provided Snort cheat sheet. It works by creating rules specifying certain actions upon

finding a packet that matches the rule criteria. The general syntax is:

[action] [protocol] [sourceIP] [sourceport] - > [destIP] [destport]

([Rule options])

Rule options are the key to snort’s intrusion detection engine being both flexible and

powerful. General rule options are:

Message outputs a simple text string upon a rule match.

Flow is used in conjunction with TCP stream reassembly and narrows down the direc-

tion of flow that fires up the rule.

Reference can include external sources of information .

Classtype displays what the effect of a successful attack would be.

Sid/rev is a unique identifier helping plugins to identify rules easily.

Furthermore following detection options exist:

Content sets rules searching for specific content in the packet. Within this option dis-

tance/offset specifies the relative beginning and within/depth specifies how far for-

ward it will search relative to the end of a previous content match.

PCRE allows perl compatible regular expressions for more complex content matching.

Byte_test compares a number of bytes against specific values in binary.

More information can be found on the official snort homepage37 or on the cheat sheet

that is used to describe this section. (cf. Snort, 2016)

41 Snort is a free open source signature based intrusion detection and prevention system capable of real-time
traffic analysis and packet logging https://www.snort.org/

32 Methodology

3 Methodology

In this chapter a concept is created step by step. The concept consists of three different

layers that encompass different sub systems that interact with each other. The main

idea is to have multiple honeypots that are aware of each other and possibly lead to a

multi staged compromise from an attacker. The first layer encompasses an easy entry

point for an attacker from an IoT device while the second layer consists of SCADA work-

station honeypots and the possibility to attach any further honeypots. To interfere the

network traffic an IDS is used. Due to the nature of the whole system being isolated

and thus normally not accessed it is easy to monitor incoming and outcoming traffic

(cf. Nawrocki, Wählisch, Schmidt, Keil, & Schönfelder, 2016). The last and third layer is

secured behind firewalls being the central point of the whole system. The central con-

trol server that evaluates connectivity, can restart honeypots and receives any mali-

cious detected activity is the core of the third layer. Following each layer is described

and established. Finally, the concept is visualized in a computer network diagram. Due

to the high complexity of the system and hardware constraints only the first layer of

the system is implemented afterwards.

3.1 Layer 1

The first Layer is supposed to be an easy to exploit entry point within the network. It is

important to note that the honeypot is connected to the production network and not directly

to the internet, as the goal is to monitor and capture potential advanced attacks which al-

ready managed to infiltrate the network in some capacity. This gives a good balance be-

tween being easy to infiltrate and only attracting advanced attackers. A Raspberry Pi is

used for this first layer IoT honeypot. There are multiple different potential operating sys-

tems that could be deployed, however due to the compatibility of the later used tools and

techniques Ubuntu Server42 is chosen. Ubuntu Server offers support for Raspberry Pi 2,

Raspberry Pi 3 and Raspberry Pi 4 with long term support guaranteed, which is another

important factor considering that such a system would be deployed for long periods of time.

Furthermore, as this OS image is specifically adapted to the Raspberry Pi there is no need

for concern regarding performance issues. The Raspberry Pi honeypot consists of multiple

modules that scan different aspects of the system for any malicious activity. The Raspberry

Pi are booted over USB Sticks, which are cheap and disposable in case of serious

42 Ubuntu Server is a Raspberry Pi compatible Linux distribution https://ubuntu.com/download/raspberry-pi

Methodology 33

compromise. Figure 2 visualizes the concept of the honeypot and the four different modules

that monitor the activity.

Figure 2 The four different monitoring modules of the Raspberry Pi Honeypot

Module 1 is used to derive any activity on the honeypot by observing the CPU and net-

work load. As the system is isolated and thus remains in a rather constant state any

potential activity can be deemed malicious. The CPU load can be derived in percentages

by reading in the /proc/state file from the Linux file system and calculating the differ-

ence in Jiffies43 over a certain period of time. The file consists of multiple information,

43 Jiffies are typically a hundredths of a second, the precise numbers depend on the HZ value configuration in
the kernel https://man7.org/linux/man-pages/man7/time.7.html

34 Methodology

such as the amount of time the CPU has spent performing different tasks in Jiffies /

USER_HZ. Those tasks are devided into user, nice44, system, idle, iowait, irq, softirq,

steal, guest and guest_nice. By summing up all the values at different times and cal-

culating the difference the overall amount Jiffies elapsed can be calculated. By adding

up user, nice and system the actual work over a period is calculated. With those two

values the percentage of CPU workload can be derived by dividing the work by the

amount of total jiffies times 100.

CPU workload = work difference / total difference * 100

This formula summarized the calculation of the current given CPU load.

(cf. Tasoulas, 2014) (Kerrisk, proc(5) - linux man-pages, 2020)

In addition, other details are also included in this file such as stats about pages, swap

pages, interrupted services, disk input / output, context switches, time passed since

boot, number of forks since boot, number of processes in runnable state, number of

processes blocked waiting for I/O to complete and softirq. Especially the number of

forks since boot is also an important value to observe, as this value should stay rather

constant in an isolated system. (cf. Kerrisk, proc(5) - linux man-pages, 2020)

Similarly, the network load can be observed by parsing the /proc/net/dev file, which

contains information about interfaces. It displays the received and transmitted bytes

and packets as well as other various information. As the honeypot only interactions

over a network whenever it detects malicious activity, the overall amount of transmit-

ted and received data should remain mostly consistent. The file can be scanned for any

anomalies such as sudden spikes and sudden increase in load. It needs to be noted

that detected malicious activity will lead to communication between the honeypot and

server and thus lead to false positives. A way to avoid this is to communicate in big

chunks and disable this monitoring functionality during the short communication pe-

riod. (cf. Kerrisk, proc(5) - linux man-pages, 2020)

The memory region can be monitored for anomalies in the /proc/meminfo file which

displays various statistics about the RAM such as totally memory, free memory, cached

memory etc. (cf. Kerrisk, proc(5) - linux man-pages, 2020)

Module 2 monitors important directories of the filesystem upon any changes. Table 6

summarizes the most important directories, although it is important to mention that

due to the constraints of the Raspberry Pi combined with the complexity of an overall

filesystem it is not possible to fully scan every single part of the system. The Linux Ker-

nel >2.6 contains an audit subsystem to monitor filesystem activity. It consists of

44 The nice value of a process determines favourability of the scheduling with smaller numbers indicating
higher priority https://linux.die.net/man/3/nice

Methodology 35

multiple components that can be used for different areas. The ability for remote / cen-

tralized logging is also provided, which is hugely beneficial as it adds no extra work like

rewriting the client. The two important areas from this software for this thesis are the

ability to log system calls as well as the file system. The userspace component to search

and view the logs is called auditd45. The following components are present within the

auditing system: Auditd handling the filtering rules and writing logs to disk, Audisp

transmitting logs to remote systems, Auditctl to add / remove rules, report status and

enable / disable the auditing system, Ausearch to search the audit logs, Aureport for

summary reports from audit records and Aulast as an audit system of the “last” com-

mand. (cf. Kennel, 2018)

The auditctl module can be used to add rules to monitor file system access. The basic

syntax to observe a file for changes is:

Auditctl -w <path> -p <permissions that trigger the event> -k <key>

This rule would fire if the file / directory at <path> is being used with the given permis-

sions. The key is just a unique identifier for this certain rule to distinguish which rules

create which logs. For a more thorough explanation of possible options visit the man

page. (cf. Grubb, audit.rules(7) - linux man-pages, 2019)

To make sure that log entries are sent to the remote server /etc/audit/auditd.conf can

be edited in the following way to omit logging on the local machine:

Log_format = NOLOG

Next the audispd-plugins package must be installed and the value active must be set

to yes in /etc/audisp/plugins.d/au-remote.conf.

Finally /etc/audisp/audisp-remote.conf needs to be edited:

remote_server = server2.hl.local

port = 60

The receiving server only needs to audit /etc/audit/auditd.conf:

tcp_listen_port = 60

As the last step port 60 should be enabled and made accessible through the firewall.

(cf. Peng, 2016)

45 User component of the linux auditing system https://linux.die.net/man/8/auditd

36 Methodology

Table 6 Important Linux directories for monitoring attacks (cf. Smith, 2017)

/etc/lilo.con

/boot/grub/grub.conf

Important files that store configuration for the

bootloaders grub / lilo

/proc/cmdline Contains kernel parameters

/etc/system.d Daemons and services

/etc/rc.*

/etc/init

Run commands

/etc/crontab

/etc/cron.*/

/var/spool/cron/

/etc/profile

~/.bash_profile

~/.bash_login

~/.profile./home/user/.bashrc

/etc/bash.bashrc, /etc/pro-

file.d/

Important directories to monitor as they can

be used to automatically start up scripts on

shell launch

/etc/hosts

/etc/resolv.conf

Network and DNS settings

/etc/passwd

/etc/group

/etc/gshadow

Important authentication and access right

 /bin

 /sbin

System binaries

 /tmp Temporary files

/etc/audit/audit.rules

/etc/audit/auditd.conf

Contains configuration and rule settings of

the auditd daemon

Methodology 37

Module 3 intercepts the SSH connection that enables access in the first place for an

attacker. As ssh server Dropbear46 is being used. The source code is slightly modified

to allow intercepting commands / packets respectively before they get encrypted prior

to being transmitted and after they get decrypted after being received. The file that

contains the final encrypting and first decrypting routine is packet.c. The decrypt routine

is called at the end of the read_packet() function call. write_packet() functions a bit differ-

ently and thus encrypt_packet() has to be intercepted instead. By modifying the source

code at the end of those functions to store the data or transmit it over a network con-

nection, the connection can be monitored. The following code is copied from the orig-

inal source code given in the footnote and displays the location in which the code must

be inserted. The buffer that contains the actual contents of the transmitted packages

is the ses variable.

void read_packet() {

 int len;

 unsigned int maxlen;

 unsigned char blocksize;

 TRACE2(("enter read_packet"))

 blocksize = ses.keys->recv.algo_crypt->blocksize;

 if (ses.readbuf == NULL || ses.readbuf->len < blocksize) {

 int ret;

 ret = read_packet_init();

 …

 maxlen = ses.readbuf->len - ses.readbuf->pos;

 …

 if ((unsigned int)len == maxlen) {

 /* The whole packet has been read */

 decrypt_packet();

 /* The main select() loop process_packet() to

 * handle the packet contents... */

 }

 <Insert code to intercept ses buffer right after decrypt packet>

 TRACE2(("leave read_packet"))

}

46 Dropbear is a lightweight SSH server and client https://github.com/mkj/dropbear

38 Methodology

Intercepting outgoing packages is slightly different, as the write_packet() function

writes out an already encrypted packet out. Thus encrypt_packet() is modified. The

code sample is not be copied in this case as the code to read out the ses buffer can be

directly placed at the beginning of the function after the variable assignments.

In the sessions.h header it can be seen that ses is a structure of type sshsession:

/* Global structs storing the state */

extern struct sshsession ses;

The struct is rather big with various different variables and further structs, the following

are the most important field relevant for the interception:

struct sshsession {

 time_t connect_time;

 int sock_in;

 int sock_out;

 buffer *writepayload; /* Unencrypted payload to write - this is used

 throughout the code, as handlers fill out this

 buffer with the packet to send. */

 struct Queue writequeue; /* A queue of encrypted packets to send */

 unsigned int writequeue_len; /* Number of bytes pending to send in

 writequeue */

 buffer *readbuf; /* From the wire, decrypted in-place */

 buffer *payload; /* Post-decompression, the actual SSH packet.

 May have extra data at the beginning, will be

 passed to packet processing functions positioned past

 that, see payload_beginning */

 unsigned int payload_beginning;

 unsigned int transseq, recvseq; /* Sequence IDs */

 /* Packet-handling flags */

 const packettype * packettypes; /* Packet handler mappings for this

 session, see process-packet.c */

 ...

}

By accessing the pointers to the buffers the whole ssh session connection packets can

be intercepted and later analysed. By identifying the packettype from the packettypes

pointer it is possible to understand the payload. It is the structure used to redirect to

the corresponding handler in the process_packet() function:

if (ses.packettypes[i].type == type) {

 ses.packettypes[i].handler();

 goto out;

 }

Methodology 39

The start of the payload is given in payload_beginning. Following are the different

packet types and their corresponding handler functions:

static const packettype svr_packettypes[] = {

 {SSH_MSG_CHANNEL_DATA, recv_msg_channel_data},

 {SSH_MSG_CHANNEL_WINDOW_ADJUST,

 recv_msg_channel_window_adjust},

 {SSH_MSG_USERAUTH_REQUEST, recv_msg_userauth_request},

 {SSH_MSG_SERVICE_REQUEST, recv_msg_service_request},

 {SSH_MSG_KEXINIT, recv_msg_kexinit},

 {SSH_MSG_KEXDH_INIT, recv_msg_kexdh_init},

 {SSH_MSG_NEWKEYS, recv_msg_newkeys},

 {SSH_MSG_GLOBAL_REQUEST, recv_msg_global_request_remotetcp},

 {SSH_MSG_CHANNEL_REQUEST, recv_msg_channel_request},

 {SSH_MSG_CHANNEL_OPEN, recv_msg_channel_open},

 {SSH_MSG_CHANNEL_EOF, recv_msg_channel_eof},

 {SSH_MSG_CHANNEL_CLOSE, recv_msg_channel_close},

 {SSH_MSG_CHANNEL_SUCCESS, ignore_recv_response},

 {SSH_MSG_CHANNEL_FAILURE, ignore_recv_response},

 {SSH_MSG_REQUEST_FAILURE, ignore_recv_response},

 {SSH_MSG_REQUEST_SUCCESS, ignore_recv_response},

 #if DROPBEAR_LISTENERS

 {SSH_MSG_CHANNEL_OPEN_CONFIRMATION,

 recv_msg_channel_open_confirmation},

 {SSH_MSG_CHANNEL_OPEN_FAILURE, recv_msg_channel_open_failure},

 #endif

 {0, NULL}

};

The most important packet types are SSH_MSG_CHANNEL_DATA, SSH_MSG_CHAN-

NEL_WINDOW_ADJUST, SSH_MSG_USERAUTH_REQUEST and SSH_MSG_SER-

VICE_REQUEST. The corresponding functions in the same order are

recv_msg_channel_data, recv_msg_channel_window_adjust,

recv_msg_userauth_request and recv_msg_service_request.

To further make interception even easier the handler functions can be the interception

points, making it clear what kind of data is being used and thus only making it neces-

sary to extract the payload. As not all data is relevant this is the preferred option, lead-

ing to more organized information and less useless network traffic and delay. The three

functions of particular interest are common_recv_msg_channel_data(),

send_msg_channel_data() and recv_msg_channel_window_adjust(). The receiving

handler copies the payload into the cbuf buffer which can be accessed to get all the

necessary information about channel data.

40 Methodology

void common_recv_msg_channel_data(struct Channel *channel, int fd,

 circbuffer * cbuf) {

 unsigned int datalen;

 unsigned int maxdata;

 unsigned int buflen;

 unsigned int len;

 unsigned int consumed;

 int res;

 ...

 datalen -= consumed;

 buf_incrpos(ses.payload, consumed);

 if (res == DROPBEAR_SUCCESS) {

 len = datalen;

 while (len > 0) {

 buflen = cbuf_writelen(cbuf);

 buflen = MIN(buflen, len);

 memcpy(cbuf_writeptr(cbuf, buflen),

 buf_getptr(ses.payload, buflen), buflen);

 cbuf_incrwrite(cbuf, buflen);

 buf_incrpos(ses.payload, buflen);

 len -= buflen;

 }

 }

 <Intercept cbuf buffer for entire payload of a received channel message>

 TRACE(("leave recv_msg_channel_data"))

}

The sending channel data can be intercepted by saving the contents read from the

shell to another buffer simultaneously.

static void send_msg_channel_data(struct Channel *channel, int isextended) {

 ...

 /* read the data */

 len = read(fd, buf_getwriteptr(ses.writepayload, maxlen), maxlen);

 <intercept the written data to ses.writepayload at the specific offset>

 ...

}

The contents of the window adjust handler are not particularly interesting, however it

would be an asset to be informed each time the handler is being called. The reason is

that calls of this function very likely indicate human activity rather than machine inter-

action (cf. Fan, et al., 2019).

Methodology 41

Module 4 monitors systemcalls that could indicate memory or process injection. As this

is a Linux system particularly memfd_create() and ptrace() which are both calls that

are frequently used to inject code into memory / processes. The monitoring is done

with the same software as module2, auditd. The general form of such a system call is:

-a action,list -S syscall -F field=value -k keyname

Actions specify what happens after the event triggers, list is a rule list it is going to be

appended to, syscall specifies the call that is going to be monitored, field=value can

further specify and finetune the rule and keyname is an unique identifier for this cer-

tain rule. The resulting logs can as well be transmitted over the network to the honey-

pot main server. (cf. Grubb, audit.rules(7) - linux man-pages, 2019)

Lastly LiME47 is deployed on the Raspberry Pi to create memory dumps upon certain

events for further manual investigations. Just like anything else those dumps are also

meant to be transmitted to the honeypot server. Memory dumps should be created

whenever the modules detect any anomalies in the process lists, network / CPU /

memory load and when system call rules are triggered as those are most likely to indi-

cate changes within the RAM. The purpose is to investigate possible malicious code

injected into live processes / memory to further broaden the understanding of the

techniques utilized by the attackers. The earlier mentioned Volatility forensic software

can be used to analyse the resulting memory dumps. As memory dumps slow down

the system for an ineligible period of time the memory dumps are supposed to be

taken manually from the remote honeypot server, which can send the command over

the serial communication channel.

To attract an intruder Dropbear utilizes weak credentials that can easily be brute forced

/ guesses for an admin access. The goal is to make the first entry point an easy effort

and further honeypots in the second layer require more sophisticated exploits. This is

an attempt to improve the motivation to compromise systems with a gradual increase

in difficulty to overtake them and slowly unveil a bigger part of the repertoire of an

attacker.

An operating system that performs greatly on Raspberry Pi is OpenWRT48, as it has

specifically been designed for embedded devices and performance with low resources

in mind. Furthermore, it is a software mostly used for routers, which could open new

47 A forensic Loadable Kernel Module tool to create memory dumps from Linux and Linux-based devices
https://github.com/504ensicsLabs/LiME

48 OpenWrt is a Linux operating system targeting embedded devices and available at https://openwrt.org/

42 Methodology

possibilities like deceiving an attacker into thinking it is a routing device. However, as

Ubuntu Server properly supports auditd and has specific images for Raspberry Pi this

operating system is used.

The earlier mentioned rootkit technologies can be used to an extent to hide potential

processes from showing up to an attacker. As popular hooking frameworks and tech-

niques are not necessarily supported by most embedded operating systems and it

would require tremendous efforts to repurpose the kernel / system calls into accepting

those, the effort to implement this is omitted. This is further discussed in the limitations

section of the thesis.

As the Honeypot is naturally based on real embedded hardware there is no need to

specifically change any simulations or software to behave more like a real system. This

was one of the main concerns and priorities when creating the concept, as it is not only

easier to deceive attackers, but it also prevents unnecessary effort. Usually even after

sophisticated changes small artifacts still disclose the real nature to an attacker if they

decide to dig deep enough, in this case it is only necessary to hide the few software

modules and possibly encrypt any network connection.

3.2 Layer 2

Before talking about Layer 2 it should be mentioned that the IDS scanning the network

is connected to the switch that connects the devices from the different layers and thus

can be considered between Layer 1 and 2. The purpose is to catch any network frag-

ments that haven’t been monitored by the system. With resource constraints on an

embedded system and security software in general it is nearly impossible to capture

every kind of activity on a system, especially when undisclosed vulnerabilities are in

use. However, IDS can still detect potential network traffic that has lead to a compro-

mise and in the best case the captured event may even showcase the payload or any

information that can give hints towards the motivation or intent. As mentioned before

multiple times, the whole honeypot network is supposed to be rather isolated. This

means that aside from communication between the server and honeypot there should

almost be no other traffic. This makes it much easier to monitor for any potential ma-

licious network activity, as all that is required is to whitelist certain activity between the

honeypots and the server and deem everything else malicious. This can simply be done

in SNORT by creating rules that target the honeypots as destination and source IP ex-

empting activity coming from and to the server if it fits the actively used ports. The IDS

should also monitor any potential attacks and in emergency situations notify the main

server with an alert appealing to shut down the whole system. Such a situation could

arise when an attacker loses interest in the honeypot systems and starts trying to fur-

ther exploit / infiltrate the production network or uses denial of service attacks. It can

be summed up that on one hand SNORT is being used as an alert system for the honey-

pot server and secondly logging network traffic for further analysis.

Methodology 43

The actual second layer is supposed to consist of further honeypots. In this elementary

concept those honeypots are SCADA workstations running on various operating sys-

tems such as Linux and Windows. The purpose is to provide a second stage for an at-

tacker. As those are not mere IoT devices but workstations that seemingly control ICS,

there is more of a motivation to compromise such a system. However, it is not a real

SCADA system but rather a simulated one. Depending on the needs an ICS simulation

or real ICS system can be connected to the workstation. The SCADA software can be an

emulation to intercept the communication and analyse the attack patterns. Together

with Layer 1 the real resemblance of an IIoT network is created. These workstation

honeypots mostly scan for potential attacks that could affect a SCADA system, hooking

techniques for potential persistence, Registry / WMI objects and powershell / bash

commands. SCADASim49 is a potential project that can be used to setup a minimalistic

working SCADA environment in virtual machines. It encompasses the modbus proto-

col, Human-Machine-Interfaces and PLC50 devices.

Important directories that should be monitored under windows are provided by

FireEye after their analysation of the TRITON malware:

C:\Windows\system32\inetsrv\

C:\Windows\temp\

C:\Windows\SysWOW64\wbem

C:\Windows\SysWOW64\drivers

C:\Windows\SysWOW64

C:\Windows\system32\wbem\

C:\Windows\system32\drivers\

C:\Windows\system32\

C:\Windows\

C:\Users\Public\Libraries\

C:\Users\administrator\appdata\local\temp\

C:\ssh\

C:\perflogs\admin\servermanager\ssh\

C:\perflogs\admin\servermanager\

C:\perflogs\admin\

C:\perflogs\

C:\cpqsystem\

C:\hp\hpdiags\

C:\hp\bin\log\

Figure 3 Windows paths that should be monitored (cf Johnson, et al., 2017)

The directories can be monitored by creating a service utilizing the File SystemWatcher

class. Further SCADA specific directories used to communicate within the system can

49 SCADASim is a configurable SCADA exercise environment https://github.com/cmu-sei/SCADASim

50 PLCs are Programmable Logic Controllers controling manufacturing processes

44 Methodology

also be observed using this class object. (cf. Microsoft, n.d.)

Specific protocols used to communicate with Programmable Logic Controllers and

other devices such as Modbus should also be strictly monitored. To monitor the out-

going traffic from the workstations within the ICS an open source HIDS can be used.

OSSEC51, an open source and free HIDS that is available on windows and can perform

a multitude of scanning such as monitoring ports, the registry and file integrity is a

possible choice. The earlier mentioned hooking techniques need to be monitored as

well to possibly detect any injections. A potential tool to trace system calls is drstrace52,

which can monitor certain applications for the system calls that result out of them.

Child processes are traced as well. As it is counterproductive to disable the security

measures that prevent modifications of trusted binaries hooking techniques are not as

useful as on Linux. A trusted security kernel device driver could be created to monitor

system call activity, however this is a very difficult and complex task. The WMI objects

can be monitored with Sysmon as mentioned earlier. Network activity, system process

chains and file modification can also be monitored with this tool.

In an official Microsoft dev blogpost methods to enable protected event logging are

described. It works by public key cryptography storing the private key at a central event

log collector. The Group Policy has to be edited to enable event logging in Windows

Components -> Administrative Templates -> Event Logging. An encryption certifi-

cate is necessary for example in the form of a base-64 encoded x.509 certificate53. This

way logs stay encrypted and secure from a potential attacker. It also is possible to log

PowerShell script blocks that it processes. To enable this feature the Script Block Log-

ging feature in the Group Policy has to be enabled at Windows Components -> Ad-

ministrative Templates -> Windows PowerShell.

(cf. Microsoft PowerShell Team, 2015)

Furthermore, it is possible to edit / replace standard system binaries, so they omit any re-

turns involving the modules. As the honeypot is in full control of the defender, any changes

can be made to the system before deployment. A more advanced approach could be cop-

ying the stealth capabilities of a rootkit cryptocurrency miner analysed by Trend Micro. Files

and network traffic can be hidden by hooking various functions such as readdir, fopen,

fopen64, Istat, Ixstat, open, rmdir, stat, stat64, __xstat, __xstat64, unlink,

unlinkat, opendir, readdir, readdir6. By hooking the function and returning a “no

such file or directory error” upon receiving a string that is equal to the module name

stealth can be achieved. (cf. Remillano II & Malagad, 2019)

51 OSSEC is a multi-platform, open source Host-based Intrusion Detection System https://www.os-
sec.net/about/

52 Drstrace is a system call tracing tool for Windows https://dynamorio.org/drmemory_docs/page_drstrace.html

53 X.509 is a public key infrastructure standard https://docs.microsoft.com/en-us/windows/win32/seccerten-
roll/about-x-509-public-key-certificates

Methodology 45

It is very unlikely that an attacker will use advanced forensic methods to search a sys-

tem for possible rootkits, thus improving the possibility of deception.

On x64 Linux systems system call hooking techniques can be utilized to improve the

detection and stealth of the honeypot systems. As altering a kernel brings security risks,

possible stability issues and is very hard to maintain a good alternative is the usage of

ftrace54 kernel hooking. This technique is described in a blogpost by Lozovsky and Ste-

panchuk. The following structure summarizes each hooked function:

struct ftrace_hook {

 const char *name;

 // The name of the hooked function

 void *function;

 // Address of wrapper function that is called instead

 void *original;

 // pointer to the place where the address of the hooked function will be

 stored

 unsigned long address;

 // address of the hooked function

 struct ftrace_ops ops;

 // ftrace service information, initialized by zeros

 // Only name, function and original needs to be used

}

By using kallsyms the address of the needed function is found. An error message

checks if there are any unresolved symbols and finally the address of the hooked func-

tion is stored in the pointer original.

static int resolve_hook_address(struct ftrace_hook *hook)

{

 hook->address = kallsyms_lookup_name(hook->name);

 if (!hook->address) {

 pr_debug("unresolved symbol: %s\n", hook->name);

 return -ENOENT;

 }

 ((unsigned long) hook->original) = hook->address;

 return 0;

}

Following the ftrace_ops structure is initialized within the fh_install_hook() function

call.

54 Ftrace is a kernel tracing framework

46 Methodology

int fh_install_hook(struct ftrace_hook *hook)

{

 int err;

 err = resolve_hook_address(hook);

 if (err)

 return err;

 hook->ops.func = fh_ftrace_thunk;

 hook->ops.flags = FTRACE_OPS_FL_SAVE_REGS |

 FTRACE_OPS_FL_IPMODIFY;

 err = ftrace_set_filter_ip(&hook->ops, hook->address, 0, 0);

 if (err) {

 pr_debug("ftrace_set_filter_ip() failed: %d\n", err);

 return err;

 }

 err = register_ftrace_function(&hook->ops);

 if (err) {

 pr_debug("register_ftrace_function() failed: %d\n", err);

 /* Don’t forget to turn off ftrace in case of an error. */

 ftrace_set_filter_ip(&hook->ops, hook->address, 1, 0);

 return err;

 }

 return 0;

}

fh_ftrace_thunk is the callback that ftrace will call. The flags ensure a consistent save

and restore of the processor’s registers. Next, ftrace_set_filter_ip() turns on the

ftrace utility for the specific function and register_ftrace_function() gives ftrace the

necessary permissions to call the callback.

Now by changing the register %rip an unconditional jump can be forced from the cur-

rent function to take over control.

static void notrace fh_ftrace_thunk(unsigned long ip, unsigned long parent_ip,

 struct ftrace_ops *ops, struct pt_regs *regs)

{

 struct ftrace_hook *hook = container_of(ops, struct ftrace_hook, ops);

 /* Skip the function calls from the current module. */

 if (!within_module(parent_ip, THIS_MODULE))

 regs->ip = (unsigned long) hook->function;

}

The address of ftrace_hook is obtained by the usage of the macro container_of()55

and ftrace_ops is embedded within ftrace_hook with the pointer *ops.

55 This macro makes it possible to find the container of a given field of a structure. The second line of the
macro finds the real location in memory of the struct https://www.linuxjournal.com/files/linuxjour-
nal.com/linuxjournal/articles/067/6717/6717s2.html

Methodology 47

The %rip register is then accordingly set to point to the handler’s address. By specifi-

cally checking if the call originates from the same module recursion is avoided. For

repeated calls, the parent_ip argument will not point to some place in the kernel any-

more and instead point to inside the wrapper thus failing the check. This technique can

eventually also be used in the Layer 1 honeypots, nonetheless adjustments must be

made as registers are different on ARM architecture. Also, there is no guarantee that

this technique can even properly function on an embedded ARM operating system.

(cf. Lozovsky & Stepanchuk, 2018)

The Second layer can be extended by any number of honeypots to further improve the

honeypot system. For example, virtualized honeypots and architectures such as MIPS

can be employed to broaden the potential to detect attacks against specific architec-

tures.

3.3 Layer 3

Layer 3 only encompasses the central server of the whole system secured behind a

firewall. The purpose of the server is to collect log data from all honeypot devices de-

ployed across the system, provide a heartbeat to assess if honeypots are still accessible

and able to forcefully shutdown systems. This central entity can be accessed remotely

by a security expert to further analyse collected log data and captured activity for ex-

ample to investigate memory dumps for novel malicious code. Communication is en-

sured over the usual network connection, but the heartbeat utilizes serial communica-

tion to be stealthier and avoid a single point of failure, providing a potential emergency

way to shutdown systems and test connectivity continuously with less detectable net-

work footprint. In addition, the serial communication can be used to issue commands

such as ordering memory dumps. The firewall needs to be set accordingly to only allow

necessary communication between the honeypot and the server. The Server also

needs to be properly hardened and secured to avoid infiltration. Unnecessary ports

and services must be disabled. Encrypted communication between the honeypot and

server can veil the log and activity transmission to a certain degree.

Figure 4 summarizes the whole concept in a visual computer network diagram with

special emphasize on the particular layers and their contents. The switch inbetween

Layer 1 and Layer 2 is capable of hosting multiple additional honeypots that can further

improve the broadness of covered operating systems and architectures. The overall

goal of the system is to detect and monitor fileless attack activity of specialized attack-

ers, be expandable and hide the true honeypot nature from any attacker. The deployed

honeypots are a mixture between deception and reconnaissance high interaction

honeypots for both research and production detection. On one hand they gather intel

on novel attack patterns and techniques on the other hand they also notify any poten-

tial breaches in the ongoing production network. Relatively seen the honeypot is mostly

fit to monitor APT activity during the fifth stage as it is deployed within a production

network and thus a perfect target for further reconnaissance and exploitation.

48 Methodology

Figure 4 Fileless malware honeypot detection concept. Made with Visual Paradigm

https://online.visual-paradigm.com/diagrams/solutions/free-network-diagram-software

Layer 1 Implementation 49

4 Layer 1 Implementation

4.1 Implementation

In this chapter Layer 1 is implemented for test purposes to partially see the effectivity of the

concept. Due to limitations in hardware and configuration the implementation is a bit differ-

ent from the original concept, however it still demonstrates the main purpose well enough.

It features a computer with a Raspberry pi on the same local network. The internet connec-

tion is monitored with Wireshark56. The goal is to implement the earlier described modules

of the Layer 1 honeypot and evaluate the effectivity. As an operating system for the honey-

pot Ubuntu Server is used as the audit kernel subsystem still has stability issues on the

current OpenWRT release. Furthermore, Ubuntu Server opens the ability to compile directly

on the Raspberry Pi making the setup easier. Wireshark demonstrates a similar concept to

Snort as the main purpose of the IDS was to sniff packets. The following graphic shows the

setup:

Figure 5 The layout of the Layer 1 implementation test

56 Wireshark is a free and open-source packet analyzer https://www.wireshark.org/

50 Layer 1 Implementation

In the first step the official Ubuntu Server image is downloaded from the official Ubuntu

homepage57. To flash the image onto the USB Stick Etcher58 is used. Win32Diskimager59

is used to create any necessary backups. Etcher has a lot faster performance but it

lacks a backup feature, thus making it necessary to use both software. After success-

fully booting and setting up the Raspberry Pi Ubuntu Server operating system,

/etc/netplan/50-cloud-init.yaml must be edited to utilize Wi-Fi to update and install

necessary software. The syntax is the following:

Network:

 wlan0:

 optional: true

 access-points:

 “Wifi”:

 password: <Passw>

 dhcp4: true

It is important to not use tabs but intend with 4 spaces each level, else the syntax does

not function properly. After rebooting the machine, it should automatically connect to

the Wifi. (cf. Lubos, 2020)

GCC60 can be simply used to compile any necessary sources on the Raspberry Pi itself.

The first step is modifying dropbear and installing it from source. Like discussed in the

previous chapter, certain files are edited to intercept traffic. Dropbear functions by as-

sociating packets of a certain type to handler functions that are called upon receiving

such packets. The ones of interest are any that carry actual payload that is send to a

shell channel or connection information such connection attempts. Both cli.session.c

and svr-session.c define the packettypes and their handler functions. The important

ones are recv_msg_channel_data, recv_msg_channel_window_adjust,

recv_msg_userauth_request. The first one carries the actual payload and upon inves-

tigation ends up calling a function called common_recv_msg_channel_data within

common-channel.c. This function uses the current channel (shell) to write the payload

from the ses structure. The final function called is writechannel which results in a call

to writev61. By doing a second custom writev to a log file it is possible to log any com-

mands that are issued to the shell. This simplifies the matter so that it is not necessary

to parse the earlier mentioned ses structure.

57 Ubuntu Server Raspberry Pi Image available on https://ubuntu.com/download/raspberry-pi

58 Etcher is a software to flash OS images to SD cards & USB drives https://www.balena.io/etcher/

59 Win32Diskimager is a software that can write and read bootable ISO images https://win32diskimager.down-
load/

60 The GNU Compiler Collection http://gcc.gnu.org/

61 The system call writev() writes iovcnt buffers of data described by iov to the file descriptor

Layer 1 Implementation 51

In recv_msg_channel_window_adjust not much has to be changed, a simple write to

a log file notifying of the call is enough, as the purpose of hooking this function is to

deduce human activity. Finally, recv_msg_userauth_request is located in svr-auth.c.

This function has a variable username which contains the sent login name. Respectively

before send_msg_userauth_sucess and send_msg_userauth_failure the username

variable can be intercepted to see (un)successful login attempts and the corresponding

name. Furthermore, svr_auth_password from svr-authpasswd.c is called. In this func-

tion the used password can be intercepted from password. All the intercepted results

are simply written to a log file. As changes have been made to dropbear the code has

to be compiled from source. First ./configure needs to be run, then make while speci-

fying the wanted modules like make PROGRAMS=”dropbear dbclient dropbearkey

dropbearconvert scp” and finally an install command. Apparently there seem to be

issues with the current installation files. Either the configure, make or install files are

missing certain specifications for Ubuntu Server on an ARM architecture. The instilla-

tion finishes successfully but it does not install successfully as a service and all config

files are missing. This is not the case when dropbear is installed from the APT package

manager. As there is no real indication what causes the issue and it is a highly complex

task to analyse the misbehaviour further implementation of this module is omitted.

Instead the module that monitors usage of cpu, memory and network also monitors

the bash history. After exiting a bash shell all commands are saved to a history file

located in either /root/.bash_history or /home/usr/.bash_history (cf. GNU, 29). As

the goal is intercepting all incoming commands, /root/.bashrc and

/home/usr/.bashrc have to be edited to persist all changes immediately. By adding

the following line this can be achieved:

export PROMPT_COMMAND="history -a; $PROMPT_COMMAND"

history -a appends the current lines from the current session to the history file of the

given user. PROMPT_COMMAND62 leads to the persisting after each command is is-

sued. In addition, the size of the history file can be edited in this file.

(cf. LinuxSecurityFreak; Pablo R., 2010)

Lastly, the profile file in the same directory was missing upon installation, which is nec-

essary to use .bashrc. By simply creating this file and pasting the following line the

problem is fixed:

if ["$BASH"]; then
 if [-f ~/.bashrc]; then

 . ~/.bashrc

 fi
fi

62 The value in PROMPT_COMMAND is executed as a command before the printing of any primary prompt
http://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html

52 Layer 1 Implementation

Now any history from any session of a single user should be saved within the respective

history file. It is important to do this step for every user if there are multiple ones. The

next step is creating a small c program that runs in the background and periodically

checks all the parameters. The program reads certain system files to monitor potential

attackers which are:

/proc/meminfo

/proc/net/dev

/proc/stat

/root/.bash_history

/home/<user>/.bash_history

The first, second, third, fourth, twentieth and twenty-second line in proc/meminfo are

read to respectively get the total memory, free memory, available memory, buffered

memory, nmap shared memory and anonymous nmap shared memory. Next,

proc/net/dev contains network usage. Even in an isolated machine memory constantly

changes, however bigger than usual changes can indicate potential malicious activity.

The incoming and outgoing packages from the wlan0 interface are read. Any changes

in here indicate incoming or outgoing packages, which should stay rather low without

any incoming connections. The CPU load is calculated as mentioned earlier by taking

the difference between two reads and comparing the idle time to processing time. In

addition the /proc/stat file lists all currently running and number of started processes

since boot. Those numbers fluctuate slightly, big changes in small timeframes also in-

dicate activity. (cf. proc(5) - linux man-pages, 2020)

Finally, the size of .bash_history is constantly checked and if it changes the new added

commands are written into the log file. The code periodically checks all those files for

changes and if there are any changes the program writes them into a log with a

timestamp. The implementation of the code is found in Appendix 1.

Next auditd is installed throught the apt package manager. To create persistent rules

rather than temporary ones the /etc/audit/audit.rules file has to bedited. The same

syntax as mentioned before is applied here except of omitting auditctl. Directories and

files are observed by adding a rule with the -w <path> -p wa -k <tag> syntax. The -

w simply specifies a watch on a file or directory, -p specifies the operations that are

operated (in this case write and attribute changes) and the tag which is an identifier for

a rule. Read monitoring is omitted as it leads to too much noise without a sophisticated

ruling. System calls are monitored with the -a <action> -S <systemcall> -k <tag>

syntax. Actions are used to determine what actions to take when the event is triggered.

In this specific case always,exit is used to signify an event should always be created on

exit of the system call. The reason for exit is that on entrance not all information is

available for proper logging. (cf. Grubb, auditctl(8) - linux man-pages, 2018)

The following rules are all added to the file to monitor important directories which can

be of interest for an attacker and system calls used for direct memory injection. All of

them were mentioned earlier in the Background chapter:

Layer 1 Implementation 53

-w /etc/passwd -p wa -k passwd

-w /etc/lilo.con -p wa -k lilo

-w /proc/cmdline -p wa -k cmdline

-w /etc/system.d -p wa -k system.d

-w /etc/rc0.d -p wa -k rc

-w /etc/rc1.d -p wa -k rc

-w /etc/rc2.d -p wa -k rc

-w /etc/rc3.d -p wa -k rc

-w /etc/rc4.d -p wa -k rc

-w /etc/rc5.d -p wa -k rc

-w /etc/rc6.d -p wa -k rc

-w /etc/rcS.d -p wa -k rc

-w /etc/init -p wa -k init

-w /etc/crontab -p wa -k cron

-w /etc/cron.d -p wa -k cron

-w /etc/cron.daily -p wa -k cron

-w /etc/cron.hourly -p wa -k cron

-w /etc/cron.monthly -p wa -k cron

-w /etc/cron.weekly -p wa -k cron

-w /var/spool/cron -p wa -k cron

-w /etc/profile -p wa -k profile

-w /home/ubuntu/.bashrc -p wa -k bash

-w /home/ubuntu/.profile -p wa -k bash

-w /root/.bashrc -p wa -k bash

-w /root/.profile -p wa -k bash

-w /etc/bash.bashrc -p wa -k bash

-w /etc/profile.d -p wa -k bash

-w /etc/hosts -p wa -k network

-w /etc/resolv.conf -p wa -k network

-w /etc/audit/audit.rules -p wa -k audit

-w /etc/audit/auditd.conf -p wa -k audit

-a always,exit -S memfd_create, ptrace -k mem_inject

Figure 6 /etc/audit/autit.rules ruleset

Upon persisting the changes, the auditd daemon must be restarted by issuing

sudo service restart auditd and afterwards the success can be tested with the command

sudo auditctl -l which lists all currently loaded rules.

(cf. Grubb, audit.rules(7) - linux man-pages, 2019)

Both system calls should be rarely used in an isolated environment and thus the exist-

ence of log entrances can be deemed highly suspicious. It is possible to configure au-

ditd in a way that the logs are sent to a remote server, which is not goal of the test

implementation, but still part of the actual concept proposed in the methodology.

54 Layer 1 Implementation

In the last step lime is setup on the target device so memory dumps can be created.

Lime is simply copied from the official GitHub repository63 which also states that it is

possible to create memory dumps to remote machines. The source code simply has to

be created with the make command and then a new LKM is created. This module can

be loaded to create a dump using the insmod command in the following way:

insmod <lime.ko LKM> “path=<outfile | tcp:<port>>

format=<raw|padded|lime> [digest=<digest>] [dio=<0|1>]”

Afterwards the memory dump can be analysed with the Volatility framework.

(cf. Sylve, 2020)

In the future concept it is intended that the honeypot server can send a request over

the serial communication to run this command and then receive the dump over the

network. However, as this implementation only evaluates the first layer the memory

dump is taken manually if investigation of logs shows malicious activity that could have

led to memory injection.

Wireshark is used as a packet sniffer tool instead of Snort due to the more dynamic

nature which is more suitable for testing purposes. By running Wireshark and specify-

ing tcp.port == 22 in the filter only SSH packets are being displayed.

OpenSSH64 is used as an entry gate as the software is already installed by default and

due to the issue that dropbear cannot be properly deployed currently.

Furthermore, the deployment of exploitable software is not possible as the same is-

sues arise as with dropbear. Configuration and instillation processes must be adjusted

to make source code instalments more feasible. The same holds true for the rootkit

capabilities which are supposed to hide the monitoring processes and functionalities

from an attacker. A good potential starting point would be Diamorphine65 but it would

first need to be adjusted to function with ARM processors. Due to the complexity this

step is omitted and later proposed in the future work section.

4.2 Attack simulation

In this subchapter an attack against the implementation is simulated to evaluate the

effectivity of the proposed solutions, although it needs to be mentioned that the goal

63 A forensic Loadable Kernel Module tool to create memory dumps from Linux and Linux-based devices
https://github.com/504ensicsLabs/LiME

64 OpenSSH provides a large suite of secure tunnelling capabilities https://www.openssh.com/

65 Diamorphine is a LKM rootkit that can hide processes, directories and files https://github.com/m0nad/Di-
amorphine

Layer 1 Implementation 55

is simply to evaluate the implementation rather than explaining a sophisticated attack.

Thus, screenshots are omitted as the honeypot should intercept the activity in the form

of logs which are later presented. It is assumed that the attacker is already aware of

the existence of the system and that the username has been found out through recon-

naissance. First the system is infiltrated by cracking the credentials using Ncrack66. The

tool can be used by using the following command in the directory in which Ncrack is

installed:

ncrack -v -u ubuntu -P default.pwd 192.168.178.49 -p ssh

This command tries to gain ssh access on the 192.168.178.49 system trying to access

the user ubuntu. Default.pwd is a password list containing various in common use

password. Any password list can be used as long as the formatting is compatible.

The attack is visible in Wireshark as dozens of TCP / SSH protocols show up continu-

ously which should not be the case especially right after the handshake that establishes

the connection. The following screenshot shows what a brute force looks like in

Wireshark.

Figure 7 Wireshark capture of SSH bruteforce

In the time column it is visible that many packets appear continuously. Especially on an

isolated system this is very suspicious, as an ordinary ssh connection starts of rather

slow. This becomes apparent later when another graphic is shown capturing an ordi-

nary login attempt. Generally, as SSH establishes an encrypted connection after the

handshake the capturing of such packets is only useful for seeing any incoming con-

nection attempts. This is however useful, as currently there is no module that monitors

incoming connections on the Raspberry Pi itself.

66 Ncrack is a high-speed network authentication cracking tool compatible with Windows
https://nmap.org/ncrack/

56 Layer 1 Implementation

In the next step after gaining access the reconnaissance starts to gather information

about the device, operating system, configuration, etc. First a command like ps -aux is

used to list all currently running processes and gain more information about the cur-

rent running tasks. Next the /etc/passwd file is printed with cat and afterwards ed-

ited with nano to add a new user. The /etc/shadow file is also edited with nano to fi-

nalize the new user. By issuing uname -a extended information about the processor

architecture, system hostname and the version of the kernel is printed. Next, lsb_re-

lease -d prints a description of the linux distribution, cat /etc/os-release and cat

/etc/issue prints information about the operating system in use. As Ubuntu is based

on Debian the command cat /etc/debian_version gives further details on the cur-

rent running major release version. Next sudo -l checks if sudoers is readable. For

networking information hostname -f and ifconfig are issued. Other paths and com-

mands to gather information about the networks are /proc/net*, /etc/network/in-

terfaces and netstat -r. Finally, kill -9 $$ and touch ~/.bash_history are used to kill

the history in the shell and invasively delete the history. This closes the reconnais-

sance section as the attacker has gathered enough information to cross compile a bi-

nary for memory injection for further post exploitation. (cf. Adrian, 2019)

In this attack the memfd_create injection is demonstrated now to assess the system

call monitoring capabilities. The technique described in chapter 2.3.4 is used, however

this time like in the live demo example a perl script pertaining the necessary code is

created rather than issuing the commands step by step. The script is taken from the

same blog post of Stuart and adjusted to function on the targeted system and slightly

shortened. The script contains the following code:

use warnings;

use strict;

$|=1;

my $name = "";

my $fd = syscall(279, $name, 1);

if (-1 == $fd) {

 die "memfd_create: $!";

}

print "fd $fd\n";

open(my $FH, '>&='.$fd) or die "open: $!";

select((select($FH), $|=1)[0]);

/*

perl print statements to write binary code into the memory...

*/

exec {"/proc/$$/fd/$fd"} "hello";

The necessary syscall number can be found in /usr/include by running the command

egrep -r ‘__NR_memfd_create|MFD_CLOEXE’ which returns the following infor-

mation.

Layer 1 Implementation 57

Figure 8 Syscall number memfd_create

On the Ubuntu Server Raspberry Pi image memfd_create has a syscall number of 279

and MFDCLOEXEC is defined as 1. Now just like in the code example memfd_create can

be called over a syscall in perl and the result saved in a file descriptor. The open line

simply redirects the open file descriptor into a file handle by using >&=. The double

call to select creates an autoflush on the new handle. This works by first setting auto-

flush to true with $|=1 on the memfd file and then accessing the original file descriptor

with [0] as select returns the previous default filehandle, which is then again fed into

another select to reinstate the original state. Now the binary file to be injected must

be compiled for the target architecture. Afterwards the binary is converted into perl

print statements by calling:

perl -e '$/=\32;print"print \$FH pack q/H*/, q/".(unpack"H*")."/\ or die

qq/write: \$!/;\n"while(<>)' ./elfbinary

This creates many lines in the form of print $FH pack q/H*/, q/…hexcode…/ or die

qq/write: $!/; which sequentially writes the binary data into the anonymous mem_fd

file. Finally, after the binary data has been injected the program just has to be started

with an exec {“/proc/$$/fd/$fd”} “test”; call. Now the injected binary is running in

the memory and no data has been written to the disk during the process making it an

entirely fileless injection. In the case of a serious attack this could be a backdoor, root-

kit, keylogger or anything similar. In this test a harmless loop performing addition was

injected. The injection can be simply performed by piping the script output to a ssh

section like:

cat perlscript.pl | ssh ubuntu@192.168.178.49 perl

Afterwards the injected program is directly running within an anonymous memfd file.

(cf. Stuart, 2020)

4.3 Results

The results in form of log entries are shown and discussed in this chapter as well as the

general workflow of further forensic analysation of any potential memory injections.

Some date/time stamps are not correct due to issues of the time resetting wrongly

upon boot. However, this does not matter too much as the correct sequence is still

given. First of all, the logs created by the C program that monitors the history and

58 Layer 1 Implementation

various usages is inspected. As the log entry is quite verbose and long it is added in

Appendix 2 with important single sections shown in this chapter. The system did not

see enough changes within the system usages to display anything upon the first con-

nection, the traffic was intercepted by Wireshark though.

Figure 9 Wireshark intercepting OpenSSH handshake

Figure 9 shows the start of a TCP handshake to establish the connection and after-

wards an OpenSSH handshake to start the encrypted connection. The encrypted

packets are useless without the encryption key, nonetheless the Source, Destination

and Info fields are of interest as they show the IP and port that has connected to the

system. In this case the device with the IP 192.168.178.37 connected to the

OpenSSH service on port 22 at 192.168.178.49 which is the Ubuntu Server honey-

pot. It can not be deduced if the handshake was successful as the connection is fully

encrypted.

The first command issued in the honeypot has been instantly logged:

--

Date: Sat Aug 29 00:41:49 2020

New commands detected:

o ps -aux

--

This shows that the intercepting of incoming commands works successfully, as it can

be seen in the appendix every single command except kill -9 $$ has been logged. The

reason this one is missing is the nature of the command killing the history and ses-

sion, thus it cannot be logged by the used technique. Pretty much any logged com-

ment in this system can be deemed to be a fileless attack as no activity should ever

occur on the shell. Furthermore, whenever multiple commands were issued in suc-

cession the system detected changes above a threshold in memory and network us-

age.

Layer 1 Implementation 59

--

Date: Sat Aug 29 00:42:29 2020

mem_total:929996 mem_free:409540 mem_avail:707300 mem_drive:29836

mem_mapped:63200 mem_shmem:4044

packet_out:98 packet_in:98

--

Here it can be seen that the packet traffic and memory difference were significant

enough to appear suspicious and be logged. The goal of those message is to indicate

that something might be going on in the system even if nothing of substance was

logged or monitored. To find better thresholds that avoid false positives and fire on

mostly any activity the system must be monitored for longer periods of time to observe

the natural changes in an isolated environment. Due to time constraints only rough

estimates have been taken in this experiment that avoided false positives observed

over a span of half an hour.

As the log indicates that the etc/passwd file has been edited those changes should be

recorded by the auditd daemon. The command ausearch -f /etc/passwd displays any

logs created for any events that are associated with the given path.

Figure 10 ausearch -f /etc/passwd log results

As it can be seen in figure 10 auditd successfully logged the write changes to the direc-

tory. The exe=”/usr/bin/nano” path specifies which program has been used to edit

the file. In cdw=”/home/ubuntu” the current working directory at that given point is

displayed. Various other details are also given like the pid, ppid, if the call was success-

ful, the syscall used in the event, etc.

Similarly, the memfd injection can be specifically searched for by writing ausearch -k

mem_injection with -k specifying the tag associated with the rule. Figure 11 reveals that

a memory injection indeed happen using /usr/bin/perl. The syscall 279 is memfd_cre-

ate as earlier stated and success=yes indicates the attacker successfully used the call.

The call to the perl script has not been logged by the other modules because it was

directly piped into perl upon starting the session.

60 Layer 1 Implementation

Figure 11 auditd systemcall log for memfd_create

As stated in chapter 2.4 memfd injection can potentially be seen by listing the directory

ls -alR /proc/*/exe 2> /dev/null | grep memfd:.*\(deleted\) which goes through

all directories listed under /proc and then prints the respective exe directory. If any

result contains the string that is typical for memfd files the result is printed.

(cf. Sandfly Security, 2020)

Figure 12 shows the use of the command on the honeypot after the attack.

Figure 12 console forensics to show memfd files

Just as described in chapter 2.4 there is also other potential ways to investigate for

this kind of injection, in very sophisticated cases it is necessary to analyse the

memory dump from the get-go. After finding indications of a successful indication a

memory dump of the machine should be created with LiME. This memory dump can

later be analysed in volatility after creating a fitting profile. This can either be done on

the machine itself or a similar machine which uses the same operating system and ar-

chitecture.

First dwarfdump67 has to be installed, which in turn installs a file called module.dwarf.

This file needs to be zipped together with the system.map file that can be found in

/boot. The following command sums this up:

sudo zip ./<zip name>.tip <module.dwarf path> <system.map path>

This profile can now be loaded with volatility to analyse a memory dump created on a

similar system. The dump could sadly not be analysed as there seems to be an issue

with the current module.dwarf program being used for Ubuntu Server Raspberry Pi.

The following error message appears upon loading the profile and there does not seem

to be a fix at the given time. (cf. Huebotter, 2019)

67 dwarfdump dumps DWARF ELF object debug information http://manpages.ubuntu.com/manpages/xe-
nial/man1/dwarfdump.1.html

Layer 1 Implementation 61

Figure 13 module.dwarf error upon loading the profile

62 Discussion / Conclusion

5 Discussion / Conclusion

5.1 Result Interpretation

In this chapter the results of the thesis are discussed and interpreted. First a concept

was proposed how a system needs to be designed to detect fileless attacks of advanced

persistent actors. The concept is based upon the theoretical research posed in chapter

2 and is mostly based on the factor that fileless malware is very difficult to detect but

using an isolated environment as a honeypot simplifies the process as almost any ac-

tivity is suspicious. Due to the broad nature of fileless attacks it is not possible to pre-

sent all possible attack patterns and vectors, rather the common occurrences were dis-

cussed as well as advanced techniques such as memory injection which are a key factor

to inject malicious binaries without any drive contact. While memory injection has been

widespread in windows operating systems for longer times, linux memory injection is

a rather novel trend. The main question when it comes to the concept is how the single

honeypot points can be implemented and if the modules they encompass are effective.

Because of the complexity of the system the implementation focuses on the first layer

which deploys easy to exploit ARM Raspberry Pi honeypot devices as well as capabilities

to sniff the network. A small-scale attack was performed to evaluate the implementa-

tion of the honeypot which encompasses multiple modules to monitor various charac-

teristics. The honeypot produced various logs during the attack and showed to effec-

tively log all entered bash commands as well as indicate suspicious activity by compar-

ing the memory, network and CPU usage periodically. The usage monitoring is some-

what inconsistent though as even the isolated system runs background programs and

is attached to a network. The log entries remained empty without activity. However,

they also did not always trigger during the attack. This shows that the thresholds are

most likely too high in the current configuration and need to be adjusted during further

analysis of running the system while monitoring the usages. Some commands and ac-

tivity triggered those modules and the program logged the usage with a time stamp.

Changes on directories and files monitored by the autitd daemon were also success-

fully and reliably logged. The implication is that this setup can be successfully used to

intercept potential malicious activity coming from a SSH connection to monitor attack-

ers. Furthermore, the autitd daemon also monitored system call activity. An attempt to

use system calls to perform memory injection was logged as well, meaning it is possible

to detect advanced injection techniques using this service. It is questionable though if

the proposed implementation is advanced enough to capture truly sophisticated and

advanced attackers. The system first needs to be finalized by fixing the omitted steps

that showed to be problematic and then be tested in a harsher environment.

Discussion / Conclusion 63

Compared to the honeycloud paper which also focused on detecting fileless malware

on IoT devices, the approach was fundamentally different here. In the paper it is spe-

cifically stated that the setup is not suitable to detect any APT threats as the system is

designed around restarting itself after infections and monitoring shell and SSH param-

eters. In this thesis the concept is created with the idea in mind of running the honey-

pot platform for long period of times to evaluate the movement and techniques of

advanced persistent threats and their usage of fileless malware. The difference mostly

consists of the honeypots being deployed within a production network rather than be-

ing directly connected to the internet, which only makes them accessible after an al-

ready occurring infiltration. This way uninteresting ordinary occurring malware is very

unlikely to infect the system. Furthermore, the honeypots of the systems are designed

to monitor memory injection techniques which are one of the key techniques to suc-

cess in executing malicious binary code completely fileless. In this sense the approach

is an extension of the honeycloud system to monitor more intrusive and different ap-

proaches. In addition, the simulation of the attack shows that the proposed taxonomy

of the cited paper is lacking a category for more advanced fileless malware that utilizes

memory injection. (cf. Fan, et al., 2019)

Memory injection is especially important when it comes to monitoring APT as they do

not only utilize complex techniques but usually have goals in mind and try to persist on

a system after infiltration if possible (cf. Alshamrani, Myneni, Chowdhary, & Huang,

2019). After such an injection attack is detected the honeypot system is memory

dumped and then investigated with forensic memory tools.

Compared to other works that try to find solutions to detect fileless attacks on systems

by understanding their nature (e.g Sanjay, Rakshith, & Akash, 2018) this work rather

abuses the isolated environment characteristics to easily distinguish the malicious traf-

fic. Because of that it is not necessary to deploy complex algorithms that first must

identify if activity is malicious or not. It should be mentioned though that this approach

is only suitable to monitor and detect attackers rather than securing existing systems.

The intel gathered from the logging and investigations of the memory dumps can be

used to improve the security of existing systems by understanding the common attack

vectors and patterns of APT. For example, the generated logs show the chronological

order of issued bash commands which can suggest certain attack execution flows, how

much data is gathered during reconnaissance or how long it takes for attackers to start

post exploitation.

Overall during the implementation it also became clear that ARM itself does not really

affect fileless attacks much, the main difference is the compilation of binary code. At-

tackers have to cross-compile or get access to similar hardware and operating systems

to create functional binaries for the target. For the honeypots it arises various issues

as the compilation and instillation process can be riddled with different problems, as

well as existing techniques not properly working on ARM architectures based operating

systems yet. This can be seen especially on the ftrace hooking technique mentioned in

the Methodology of Layer 2, as it utilizes registers only present on x86 architecture.

Overall, the Architecture mostly complicates the process but does not change the

64 Discussion / Conclusion

overall content of either attacks utilizing fileless attacks or defences against fileless at-

tacks.

The first layer proves to be an effective way to provide an entry gate for attackers to

further infiltrate the rest of the honeypot system. Auditd logs are extremely helpful if

evaluated to potentially uncover any memory injections. This implementation lays the

first stepping stone to showing that the proposed honeypots system to monitor fileless

attacks from advanced persistent actors on IIoT networks has potential, although it first

needs to be fully implemented to make any meaningful conclusions that fully answer

the research question of this thesis. Layer 1 alone still lacks sophistication such as PLC

controllers and SCADA systems to appear as a worthwhile target for malicious actors

targeting IIoT networks rather than a random IoT device. Thus it is necessary to create

the implementation of the remaining concept to assess the effectivity in detail. Certain

limitations and new questions have appeared during the process which are discussed

in the following sub chapters.

5.2 Restrictions and Limitations

Following are the restrictions that clarify the scope of the thesis. Naming all possible

attack vectors and techniques is not part of this thesis, as the scope is way too broad

and it is almost impossible to narrow down fileless attacks entirely due to the nature

of the various tools, commands and injection techniques in existence. Creating a so-

phisticated attack is also not part of this work due to the complexity and early stages

of the actual implementation.

Due to the complexity, time constraints and broad range of the topic itself certain lim-

itations exist for this work. First, only the first Layer was implemented and only for

testing purposes, not in a real production environment. Some of the limitations of the

current layer 1 are the lack of stealth and single point of errors. Due to the incompati-

bility of most rootkit techniques the running monitoring programs, log files and auditd

daemon are visible to an attacker who can simply shut them down to avoid being

logged. This issue is not easy to tackle as the honeypot system exposes root function-

alities. Also, the issues during compilation / cross compilation hinder the deployment

of altered software like a modified dropbear server for interception. Due to this im-

portant information about the SSH connection itself rather than just the transmitted

commands are lacking in the current state. As most hooking techniques to monitor or

modify system calls are usually only documented under x86 and x86_64 architectures

it is not yet possible to implement those in addition to the audit daemon. This leads to

a single point of failure, even with rootkit capabilities the failure of the auditd compo-

nent means a lack of awareness when system calls are being issued for injection tech-

niques. Missing those injection techniques would be critical as they are part of the so-

phisticated nature of advanced fileless attacks. It also cannot yet be accurately said

how effective the whole concept is till the whole implementation is fully done and

tested. Furthermore, the current implementation only intercepts the BASH history, but

Discussion / Conclusion 65

most systems have multiple different shells in use. An attacker can bypass the shell

history logging by switching to a different shell after gaining access. Lastly, dwarfdump

seems to have an issue with the current build of Ubuntu Server for Raspberry Pi and

does not work properly to create Volatility profiles, which makes the investigation of

the LiME dumps not possible. This is a major problem as complex techniques that inject

malicious code into RAM are one of the key factors of this thesis and fileless attacks in

general. Not being able to investigate the injected code properly leads to a lack of un-

derstanding the monitored behaviour properly. This problem leads to the next sub

chapter which discusses future possibilities and newly opened questions about the

thematic.

5.3 Future Work

The encountered problems lead to new questions that need to be answered before the

actual research question of this thesis can be fully answered rather than just partially.

First there seems to be various issues for compiling software from source on IoT Linux

architectures even though they are or at least should be supported. The configuration,

compilation and installation process must be analysed and a proper solution and work-

flow established to fix such issues for further deployments of exploitable or modified

software. Furthermore, the lack of working hooking techniques on ARM processor ar-

chitecture opens the question about how feasible rootkit techniques are. Existing

methods must be either adjusted to support the architecture or if not possible, new

ones researched to make it possible to hide monitoring modules and log files from any

potential attacker. Most importantly, the other two layers must be fully implemented

so the whole system can be assessed. As stated earlier, the concept is designed to sup-

port any kind of honeypots, so there are many different possibilities to extend the base

concept to suit any specific needs. However, operating systems and architectures differ

quite a bit, thus it is necessary to create each new additional honeypot system from

ground up. For those similar modules must be developed that can monitor usage and

system calls on different operating systems. The proposed software solutions and pos-

sible implementations from the Methodology chapter for Windows also need to be

evaluated and fully implemented, as windows process and memory injection and Pow-

erShell usage make fileless attacks differ quite a bit. In addition, Windows has addi-

tional attack vectors such as WMI and the registry, making it necessary to create a

broader range of modules utilizing concepts discussed in the methodology. Especially

the honeypot server which acts as a central entity within the system to control all

honeypot stations needs to be implemented. After the server is implemented the

honeypots should be adjusted to communicate monitored activity. SCADA systems

need to be deployed and proper modules developed on the workstation honeypot to

ensure a good range of monitoring specifically catered to protocols such as Modbus.

The SCADA systems are important to properly attract attackers that aim to infiltrate

industrial networks and gather intel about their used techniques to achieve this. Layer

66 Discussion / Conclusion

1 can also be further developed to monitor more sophisticated parameters such as all

currently running services as well as their memory characteristics.

5.4 Conclusion

To summarize, first the necessary background knowledge about honeypots, fileless mal-

ware and specifically injection techniques for post exploitation was researched and stated.

This knowledge was used to build up a Methodology leading to a multi layered honeypot

system concept. The concept is deployed as an isolated system in which most activity can

be deemed malicious and thus easily analysed. The goal is to monitor and analyse fileless

attacks from advanced threats targeting IIoT networks. To assess the concept partially the

first layer was implemented and then evaluated by simulating a small-scale attack. The

implemented methods proved to be effective, although the implementation is still lacking

sophistication to be considered fully effective. Finally, the results were discussed and con-

nections to current research was drawn.

Bibliography 67

Bibliography

Adrian, H. (2019). Fileless Malware and Process Injection in Linux: (Linux post-

exploitation from a blue-teamer's point of view) [Conference session]. hack.lu

2019, Luxembourg. Retrieved July 24, 2020, from

http://archive.hack.lu/2019/Fileless-Malware-Infection-and-Linux-Process-Injection-

in-Linux-OS.pdf

Alshamrani, A., Myneni, S., Chowdhary, A., & Huang, D. (2019). A Survey on Advanced

Peristent Threats: Techniques Solutions, Challenges, and Research Opportunities.

IEEE Communications Surveys & Tutorials vol. 21, no. 2, 1851-1877.

doi:10.1109/COMST.2019.2891891

Axelsson, S. (2000). Intrusion Detection Systems: A Survey and Taxonomy. Unpublished

manuscript, Department of Computer Engineering, Chalmers University of

Technology, Göteborg, Sweden. Retrieved July 25, 2020, from

http://www1.cs.columbia.edu/~locasto/projects/candidacy/papers/axelsson00intrusi

on.pdf

Baliga, A., Ganapathy, V., & Iftode, L. (2011). Detecting Kernel-Level Rootkits Using Data

Structure Invariants. IEEE Transactions on Dependable and Secure Computing,

vol. 8, no. 5, 670-684. doi:10.1109/TDSC.2010.38

Buddy, T. (2019, 26 April). Hunting for Ghosts in Fileless Attacks. Retrieved July 24, 2020,

from SANS Institute Information Security Reading Room:

https://www.sans.org/reading-room/whitepapers/malicious/hunting-ghosts-fileless-

attacks-38960

Campbell, R. M., Padayachee, K., & Masombuka, T. (2015). A Survey of Honeypot

Research: Trends and Opportunities. The 10th International Conference for

Internet Technology and Secured Transactions. 2015 10th International

Conference for Internet Technology and Secured Transactions (ICITST) (pp. 208-

212). London: IEEE. doi:10.1109/ICITST.2015.7412090

Chester, A. (2017, April 19). Linux ptrace introduction AKA injecting into sshd for fun [Blog

post]. Retrieved July 2020, 24, from https://blog.xpnsec.com/linux-process-

injection-aka-injecting-into-sshd-for-fun/

Desimone, J. (2019, June 13). Hunting In Memory [Blog post]. Retrieved July 2020, 24,

from https://www.elastic.co/blog/hunting-memory

68 Bibliography

Doffman, Z. (2019, September 14). The IIoT Threat Landscape: Securing Connected

Industries. Forbes. Retrieved July 20, 2020, from

https://www.forbes.com/sites/zakdoffman/2019/09/14/dangerous-cyberattacks-on-

iot-devices-up-300-in-2019-now-rampant-report-claims/

Fan, D., Zhenhua, L., Yunhao, L., Ennan, Z., Qi, A. C., Tianyin, X., . . . Jingyu, Y. (2019).

Understanding Fileless Attacks on Linux-based IoT Devices with HoneyCloud.

Conference on Mobile Systems, Applications and Services (MobiSys19), (pp. 482-

493). Seoul. Retrieved August 30, 2020, from

https://www.ics.uci.edu/~alfchen/fan_mobisys19.pdf

GNU. (29, August 2020). Bash Reference Manual. Retrieved from

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Bash-

History-Facilities

Graeber, M. (2015). Abusing Windows Management Instrumentation (WMI) to Build a

Persistent, Asyncronous, and Fileless Backdoor. Retrieved July 23, 2020, from

https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-

Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-

Fileless-Backdoor-wp.pdf

Grimes, R. A. (2019, May 1). 9 types of malware and how to recognize them. Retrieved

July 21, 2020, from https://www.csoonline.com/article/2615925/security-your-

quick-guide-to-malware-types.html

Grubb, S. (2018, Aug). auditctl(8) - linux man-pages. Retrieved August 16, 2020, from

https://www.man7.org/linux/man-pages/man8/auditctl.8.html

Grubb, S. (2019, Jan). audit.rules(7) - linux man-pages. Retrieved August 2020, 29, from

https://www.man7.org/linux/man-pages/man7/audit.rules.7.html

Hosseini, A. (2018, July 18). Ten process injection techniques : A technical survey of com-

mon and trending process injection techniques [Blog post]. Retrieved July 24,

2020, from https://www.elastic.co/blog/ten-process-injection-techniques-technical-

survey-common-and-trending-process

Huebotter, G. (2019, November 2). Creating A Volatility Profile For Linux [Blog post].

Retrieved August 2020, 29, from https://www.introverted-analyst.com/creating-a-

volatility-profile-for-linux/>,

Johnson, B., Caban, D., Krotofil, M., Scali, D., Brubaker, N., & Christopher, G. (2017,

December 14). Attackers Deploy New ICS Attack Framework “TRITON” and

Cause Operational Disruption to Critical Infrastructure. Retrieved July 20, 2020,

from https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-

ics-attack-framework-triton.html

Bibliography 69

Kaspersky GREAT Global Research & Analysis Team. (2017). Fileless attacks against

enterprise networks. Retrieved July 20, 2020, from

https://media.kaspersky.com/en/business-security/fileless-attacks-against-

enterprise-networks.pdf

Kennel, D. (2018, September 15). All-Seeing Eye or Blind Man? Understanding the Linux

Kernel Auditing System. Retrieved August 15, 2020, from SANS Institute

Information Security Reading Room: https://www.sans.org/reading-

room/whitepapers/linux/all-seeing-eye-blind-man-understanding-linux-kernel-

auditing-system-38605

Kerrisk, M. (2020, June 09). memfd_create(2) - linux man-pages. Retrieved July 24, 2020,

from https://man7.org/linux/man-pages/man2/memfd_create.2.html

Kerrisk, M. (2020, August 13). proc(5) - linux man-pages. Retrieved August 15, 2020, from

https://man7.org/linux/man-pages/man5/proc.5.html

Liberman, T., & Kogan, E. (2017). Lost in Transaction: Process Doppelgänging. Black Hat

Europe, London. Retrieved July 7, 2020, from https://www.blackhat.com/docs/eu-

17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf

LinuxSecurityFreak; Pablo R. (2010, August 26). Reply to question "Preserve bash history

in multiple terminal windows. Retrieved August 29, 2020, from Stackexchange:

https://unix.stackexchange.com/a/1292

Lozovsky, A., & Stepanchuk, S. (2018, July 05). Hooking Linux Kernel Functions, Part 2:

How to Hook Functions with Ftrace [Blog post]. Retrieved August 15, 2020, from

https://www.apriorit.com/dev-blog/546-hooking-linux-functions-2

Lubos, R. (2020, May 13). Ubuntu 20.04: Connect to WiFi from command line [Blog post].

Retrieved August 29, 2020, from https://linuxconfig.org/ubuntu-20-04-connect-to-

wifi-from-command-line

Microsoft. (n.d.). FileSystemWatcher Class. Retrieved August 29, 2020, from

https://docs.microsoft.com/en-

us/dotnet/api/system.io.filesystemwatcher?view=netcore-3.1

Microsoft PowerShell Team. (2015, June 9). PowerShell ♥ the Blue Team [Blog post].

Retrieved August 16, 2020, from

https://devblogs.microsoft.com/powershell/powershell-the-blue-team/

Naik, N., & Jenkins, P. (2018). Discovering Hackers by Stealth: Predicting Fingerprinting

Attacks on Honeypot Systems. 2018 IEEE International Systems Engineering

Symposium (ISSE) (pp. 1-8). Rome: IEEE. doi:10.1109/SysEng.2018.8544408

70 Bibliography

Nawrocki, M., Wählisch, M., Schmidt, T., Keil, C., & Schönfelder, J. (2016). A Survey on

Honeypot Software and Data Analysis. arXiv e-prints, arXiv:1608.06249. Retrieved

July 25, 2020, from

https://ui.adsabs.harvard.edu/abs/2016arXiv160806249N/abstract

Peng, L. (2016, August 6). Setting up centralized logging with auditd [Blog post].

Retrieved August 16, 2020, from

https://luppeng.wordpress.com/2016/08/06/setting-up-centralized-logging-with-

auditd/

Perez, C. (2017, October 18). Sysinternals Sysmon 6.10 Tracking of Permanent WMI

Events [Blog post]. Retrieved July 25, 2020, from

https://www.darkoperator.com/blog/2017/10/15/sysinternals-sysmon-610-tracking-

of-permanent-wmi-events

Remillano II, A., & Malagad, R. (2019, May 07). CVE-2019-3396: Exploiting the

Confluence Vulnerability [Blog post]. Retrieved August 11, 2020, from

https://blog.trendmicro.com/trendlabs-security-intelligence/cve-2019-3396-redux-

confluence-vulnerability-exploited-to-deliver-cryptocurrency-miner-with-rootkit

Sandfly Security. (2020, July 9). Retrieved July 24, 2020, from Detecting Linux

memfd_create() Fileless Malware with Command Line Forensics:

https://www.sandflysecurity.com/blog/detecting-linux-memfd_create-fileless-

malware-with-command-line-forensics/

Sanjay, B. N., Rakshith, D. C., & Akash, R. B. (2018). An Approach to Detect Fileless

Malware and Defend its Evasive mechanisms. 2018 3rd International Conference

on Computational Systems and Information Technology for Sustainable Solutions

(CSITSS) (pp. 234-239). Bengaluru: IEEE. doi:10.1109/CSITSS.2018.8768769

Sikorski, M., & Honig, A. (2012). Practical Malware Analysis: The Hands-On Guide to

Dissecting Malicious Software. San Francisco: No Starch Press.

Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial Internet of

Things: Challenges, Opportunities, and Directions. IEEE Transactions on Industrial

Informatics, no. 11. 14(11), pp. 4724-4734. IEEE. doi:10.1109/TII.2018.2852491

Smith, R. F. (2017, September 25). The Most Important Linux Files to Protect (and How)

[Blog post]. Retrieved August 15, 2020, from

https://www.beyondtrust.com/blog/entry/important-linux-files-protect

Snort. (2016). SNORTOLOGY 101: THE ANATOMY OF A SNORT RULE. Retrieved

August 3, 2020, from https://snort-org-

site.s3.amazonaws.com/production/document_files/files/000/000/116/original/Snor

t_rule_infographic.pdf

Bibliography 71

SOPHOS. (2018, March). Retrieved August 1, 2020, from Exploits Explained:

Comprehensive Exploit Prevention: https://www.sophos.com/en-

us/medialibrary/Gated-Assets/white-papers/Sophos-Comprehensive-Exploit-

Prevention-wpna.pdf

Stuart. (2020, March 31). In-Memory-Only ELF Execution (Without tmpfs) [Blog post].

Retrieved July 24, 2020, from https://magisterquis.github.io/2018/03/31/in-

memory-only-elf-execution.html

Sudhakar, & Kumar, S. (2020). An emerging threat Fileless malware: a survey and

research challenges. Cybersecurity 3, Article 1. doi:https://doi.org/10.1186/s42400-

019-0043-x

Sylve, J. (2020, Jul 7). 504ENSICS Labs LiME Documentation. Retrieved August 29,

2020, from https://github.com/504ensicsLabs/LiME/tree/master/doc

Tasoulas, V. (2014, April 29). Reply to question "Accurate calculation of CPU usage given

in percentage in Linux?". Retrieved August 29, 2020, from

https://stackoverflow.com/a/23376195

Trend Micro. (2020, March 18). The IIoT Threat Landscape: Securing Connected

Industries. Retrieved July 20, 2020, from

https://www.trendmicro.com/vinfo/de/security/news/internet-of-things/the-iiot-

threat-landscape-securing-connected-industries

United States General Accounting Office. (2002, July). CRITICAL INFRASTRUCTURE

PROTECTIONFederal Efforts Require a More Coordinated and Comprehensive

Approach for Protecting Information Systems. Retrieved July 20, 2020, from

https://www.gao.gov/new.items/d02474.pdf

Wueest Candid, A. H. (2017). Internet Security Threat Report: Living off the land and

fileless attack techniques. Mountain View, California: Symantec. Retrieved July 24,

2020, from https://www.infopoint-security.de/media/symantec-istr-living-off-the-

land-and-fileless-attack-techniques-en.pdf

Appendices 73

Appendices

Appendix 1 …………………………………………………………………………………… A-I

Appendix 2 …………………………………………………………………………………… A-III

Appendix 1 A-I

Appendix 1

The following is the C code implementation of the modules that monitor the usage of

network, memory, cpu, number of processes and bash history.

#include <stdio.h>

#include <stdbool.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <time.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

int main(int argC, char *argV[])

{

 struct stat buffer;

 time_t rawtime;

 const char delim[2] = " ";

 char *seperate;

 char ignore[100];

 int status;

 bool tag_print1 = false, tag_print2 = false, tag_print3 = false, tag_print4 =

false, tag_print5 = false, tag_print6 = false;

 bool first = true;

 //Memory Usage

 char mem_str[100];

 int mem_total = 0, mem_free = 0, mem_avail = 0, mem_drive = 0,

mem_mapped = 0, mem_shmem = 0;

 int old_mem_free = 0, old_mem_avail = 0, old_mem_drive = 0,

old_mem_mapped = 0, old_mem_shmem = 0;

 //Network Usage

 char net_str[100];

 int packet_out = 0, packet_in = 0;

 int old_packet_out = 0, old_packet_in = 0;

 //CPU Usage

 bool old = false;

 char cpu_str[100];

 float cpu_perc = 0;

 float old_cpu_perc = 0;

 float total_period = 0, usage_period = 0;

 int i, j = 0;

 int usage = 0, old_usage = 0;

A-II Appendix 1

 int total = 0, old_total = 0;

 int proc_numtotal = 0, proc_running = 0;

 int old_proc_running = 0, old_proc_numtotal = 0;

 //BASH History

 char bash_str[100];

 int size_history = 0, size_root_history = 0;

 int old_size_history = 0, old_size_root_history = 0;

 int rem_line = 0, rem_root_line = 0;

 int line = 0;

 while (1)

 {

 //Memory Usage

 FILE *mem_info = fopen("/proc/meminfo", "r");

 if (mem_info == NULL)

 {

 exit(0);

 }

 for (j = 0; j < 21; j++)

 {

 fgets(mem_str, 100, mem_info);

 seperate = strtok(mem_str, delim);

 seperate = strtok(NULL, delim);

 switch (j + 1)

 {

 case 1:

 mem_total = atoi(seperate);

 break;

 case 2:

 mem_free = atoi(seperate);

 break;

 case 3:

 mem_avail = atoi(seperate);

 break;

 case 4:

 mem_drive = atoi(seperate);

 break;

 case 20:

 mem_mapped = atoi(seperate);

 break;

 case 21:

 mem_shmem = atoi(seperate);

 break;

 }

 }

 fclose(mem_info);

 tag_print1 = false;

 if (mem_free - old_mem_free > 150 || mem_avail - old_mem_avail > 150

|| mem_drive - old_mem_drive > 25 || mem_mapped - old_mem_mapped > 25

|| mem_shmem - old_mem_shmem > 0)

Appendix 1 A-III

 {

 tag_print1 = true;

 }

 old_mem_free = mem_free;

 old_mem_avail = mem_avail;

 old_mem_drive = mem_drive;

 old_mem_mapped = mem_mapped;

 old_mem_shmem = mem_shmem;

 //Network Usage

 FILE *net_info = fopen("/proc/net/dev", "r");

 if (net_info == NULL)

 {

 exit(0);

 }

 for (j = 0; j < 5; j++)

 fgets(net_str, 100, net_info);

 fgets(net_str, 100, net_info);

 fclose(net_info);

 seperate = strtok(net_str, delim);

 for (j = 0; j < 10; j++)

 {

 seperate = strtok(NULL, delim);

 //At position 2 are all outgoing packets recorded

 if (j == 1)

 packet_out = atoi(seperate);

 }

 //At position 10 are all ingoing packets recorded

 packet_in = atoi(seperate);

 tag_print2 = false;

 if (packet_in - old_packet_in > 1 || packet_out - old_packet_out > 1)

 {

 tag_print2 = true;

 }

 old_packet_in = packet_in;

 old_packet_out = packet_out;

 //CPU Usage and processes

 FILE *cpu_info = fopen("/proc/stat", "r");

 if (cpu_info == NULL)

 {

 exit(0);

 }

 fgets(cpu_str, 100, cpu_info);

 seperate = strtok(cpu_str, delim);

A-IV Appendix 1

 i = 0;

 while (seperate != NULL)

 {

 seperate = strtok(NULL, delim);

 if (i >= 8 || i < 0) break;

 if (i < 3)

 {

 usage = usage + atoi(seperate);

 }

 total = total + atoi(seperate);

 i++;

 }

 if (old_total > 0 && old_usage > 0)

 {

 usage_period = usage - old_usage;

 total_period = total - old_total;

 cpu_perc = (usage_period / total_period) *100;

 if (total_period > 0)

 {

 if (cpu_perc - old_cpu_perc > 0.25 || old_cpu_perc - cpu_perc < -

0.25)

 {

 tag_print3 = true;

 }

 old_cpu_perc = cpu_perc;

 }

 }

 //Get actively running and total processes

 for (j = 0; j < 11; j++)

 fgets(cpu_str, 100, cpu_info);

 strtok(cpu_str, delim);

 seperate = strtok(NULL, delim);

 proc_numtotal = atoi(seperate);

 fgets(cpu_str, 100, cpu_info);

 strtok(cpu_str, delim);

 seperate = strtok(NULL, delim);

 proc_running = atoi(seperate);

 fclose(cpu_info);

 tag_print4 = false;

 if (proc_numtotal - old_proc_numtotal > 2 || proc_running - old_proc_run-

ning > 1)

 {

 tag_print4 = true;

 }

 old_proc_numtotal = proc_numtotal;

 old_proc_running = proc_running;

 old_usage = usage;

 old_total = total;

Appendix 1 A-V

 //BASH History

 status = stat("/home/ubuntu/.bash_history", &buffer);

 if (status == 0)

 {

 size_history = buffer.st_size;

 }

 status = stat("/root/.bash_history", &buffer);

 if (status == 0)

 {

 size_root_history = buffer.st_size;

 }

 line = 0;

 if (old_size_history != size_history)

 {

 tag_print5 = true;

 }

 line = 0;

 if (old_size_root_history != size_root_history)

 {

 tag_print6 = true;

 }

 //If any changes detected print them

 if ((tag_print1 || tag_print2 || tag_print3 || tag_print4 || tag_print5 ||

tag_print6) && first == false)

 {

 time(&rawtime);

 FILE *log_file = fopen("/home/log.txt", "a+");

 fprintf(log_file, "Date: %s", ctime(&rawtime));

 if (tag_print1)

 fprintf(log_file, "mem_total:%i mem_free:%i mem_avail:%i

mem_drive:%i mem_mapped:%i mem_shmem:%i\n", mem_total, mem_free,

mem_avail, mem_drive, mem_mapped, mem_shmem);

 if (tag_print2)

 fprintf(log_file, "packet_out:%i packet_in:%i\n", packet_out, pa-

cket_in);

 if (tag_print3)

 fprintf(log_file, "Usage of cpu = %.2f%%\n", cpu_perc);

 if (tag_print4)

 fprintf(log_file, "proc_numtotal:%i proc_running:%i\n", proc_numto-

tal, proc_running);

 if (tag_print5)

 {

 line = 0;

 FILE *history_info = fopen("/home/ubuntu/.bash_history", "r");

 fprintf(log_file, "\nNew commands detected:\n");

 while (fgets(bash_str, 100, history_info) != NULL)

 {

 if (line >= rem_line)

 fprintf(log_file, "o %s", bash_str);

A-VI Appendix 1

 line++;

 }

 fflush(log_file);

 fclose(history_info);

 old_size_history = size_history;

 rem_line = line;

 }

 if (tag_print6)

 {

 line = 0;

 FILE *history_info = fopen("/root/.bash_history", "r");

 fprintf(log_file, "\nNew root commands detected:\n");

 while (fgets(bash_str, 100, history_info) != NULL)

 {

 if (line >= rem_root_line)

 fprintf(log_file, "o %s", bash_str);

 line++;

 }

 fflush(log_file);

 fclose(history_info);

 old_size_root_history = size_root_history;

 rem_root_line = line;

 }

 fprintf(log_file, "\n--\n\n");

 fclose(log_file);

 }

 tag_print1 = false;

 tag_print2 = false;

 tag_print3 = false;

 tag_print4 = false;

 tag_print5 = false;

 tag_print6 = false;

 sleep(5);

 if (first == true)

 first = false;

 }

}

Appendix 2 A-VII

Appendix 2

This are the logs that were generated by the c monitoring program during the attack simula-

tion. They all have a timestamp and the whole duration was recorded.

--

Date: Sat Aug 29 00:41:49 2020

New commands detected:

o ps -aux

--

Date: Sat Aug 29 00:42:09 2020

New commands detected:

o cat /etc/passwd

--

Date: Sat Aug 29 00:42:14 2020

mem_total:929996 mem_free:411116 mem_avail:708144 mem_drive:29804

mem_mapped:62092 mem_shmem:4044

New commands detected:

o nano /etc/passwd

--

Date: Sat Aug 29 00:42:29 2020

mem_total:929996 mem_free:409540 mem_avail:707300 mem_drive:29836

mem_mapped:63200 mem_shmem:4044

packet_out:98 packet_in:98

--

Date: Sat Aug 29 00:42:49 2020

mem_total:929996 mem_free:409792 mem_avail:707584 mem_drive:29860

mem_mapped:62116 mem_shmem:4044

A-VIII Appendix 2

New commands detected:

o sudo nano /etc/passwd

--

Date: Sat Aug 29 00:45:04 2020

proc_numtotal:1658 proc_running:1

--

Date: Sat Aug 29 00:45:49 2020

mem_total:929996 mem_free:412816 mem_avail:710656 mem_drive:29900

mem_mapped:62124 mem_shmem:4044

--

Date: Sat Aug 29 00:47:14 2020

mem_total:929996 mem_free:413068 mem_avail:710912 mem_drive:29916

mem_mapped:62124 mem_shmem:4044

proc_numtotal:1661 proc_running:3

New commands detected:

o cat /etc/shadow

--

Date: Sat Aug 29 00:47:19 2020

packet_out:102 packet_in:102

proc_numtotal:1664 proc_running:2

New commands detected:

o sudo cat /etc/shadow

--

Date: Sat Aug 29 00:47:39 2020

mem_total:929996 mem_free:414076 mem_avail:711948 mem_drive:29932

mem_mapped:62132 mem_shmem:4044

New commands detected:

o nano cat /etc/shadow

--

Appendix 2 A-IX

Date: Sat Aug 29 00:47:44 2020

mem_total:929996 mem_free:413068 mem_avail:710948 mem_drive:29940

mem_mapped:63256 mem_shmem:4044

packet_out:106 packet_in:106

--

Date: Sat Aug 29 00:48:54 2020

mem_total:929996 mem_free:413320 mem_avail:711240 mem_drive:29972

mem_mapped:62144 mem_shmem:4044

New commands detected:

o sudo nano /etc/shadow

--

Date: Sat Aug 29 00:49:04 2020

mem_total:929996 mem_free:413572 mem_avail:711500 mem_drive:29980

mem_mapped:62144 mem_shmem:4044

New commands detected:

o uname -a

--

Date: Sat Aug 29 00:49:09 2020

New commands detected:

o lsb_release -d

--

Date: Sat Aug 29 00:49:14 2020

New commands detected:

o cat /etc/os-release

o cat /etc/issue

--

Date: Sat Aug 29 00:49:24 2020

New commands detected:

o cat /etc/debian_release

A-X Appendix 2

--

Date: Sat Aug 29 00:49:29 2020

mem_total:929996 mem_free:413572 mem_avail:711532 mem_drive:30012

mem_mapped:62144 mem_shmem:4044

New commands detected:

ob

--

Date: Sat Aug 29 00:50:24 2020

New commands detected:

o cat /etc/crontab

--

Date: Sat Aug 29 00:50:34 2020

packet_out:110 packet_in:110

New commands detected:

o sudo -l

--

Date: Sat Aug 29 00:50:59 2020

packet_out:114 packet_in:114

New commands detected:

o hostname -f

--

Date: Sat Aug 29 00:51:09 2020

New commands detected:

o ifconfig -a

--

Date: Sat Aug 29 00:51:24 2020

Appendix 2 A-XI

New commands detected:

o cat /etc/network/interfaces

--

Date: Sat Aug 29 00:51:34 2020

New commands detected:

o netstat -r

--

Date: Sat Aug 29 00:51:49 2020

New commands detected:

o cat /proc/net/*

--

Date: Sat Aug 29 00:52:09 2020

mem_total:929996 mem_free:416156 mem_avail:714492 mem_drive:30112

mem_mapped:61000 mem_shmem:4036

--

Date: Sat Aug 29 00:52:19 2020

mem_total:929996 mem_free:415328 mem_avail:713688 mem_drive:30120

mem_mapped:61192 mem_shmem:4036

--

Date: Sat Aug 29 00:52:24 2020

mem_total:929996 mem_free:413580 mem_avail:711964 mem_drive:30120

mem_mapped:62192 mem_shmem:4044

proc_numtotal:1768 proc_running:3

--

Date: Sat Aug 29 00:52:44 2020

mem_total:929996 mem_free:412220 mem_avail:711008 mem_drive:30692

mem_mapped:62292 mem_shmem:4044

--

Date: Sat Aug 29 00:52:49 2020

A-XII Appendix 2

mem_total:929996 mem_free:412192 mem_avail:711324 mem_drive:30700

mem_mapped:62196 mem_shmem:4044

--

Date: Sat Aug 29 00:53:04 2020

mem_total:929996 mem_free:412444 mem_avail:711600 mem_drive:30716

mem_mapped:62196 mem_shmem:4044

New commands detected:

--

Date: Sat Aug 29 00:53:09 2020

New commands detected:

o touch ~/.bash_history

--

Date: Sat Aug 29 00:53:39 2020

mem_total:929996 mem_free:415280 mem_avail:714468 mem_drive:30732

mem_mapped:61036 mem_shmem:4036

--

Date: Sat Aug 29 00:53:49 2020

mem_total:929996 mem_free:414664 mem_avail:713868 mem_drive:30748

mem_mapped:61292 mem_shmem:4036

--

Date: Sat Aug 29 00:53:54 2020

mem_total:929996 mem_free:410888 mem_avail:710080 mem_drive:30748

mem_mapped:61312 mem_shmem:4048

proc_numtotal:1806 proc_running:2

--

Date: Sat Aug 29 00:53:59 2020

mem_total:929996 mem_free:414420 mem_avail:713636 mem_drive:30756

mem_mapped:61168 mem_shmem:4056

proc_numtotal:1849 proc_running:2

--

Appendix 2 A-XIII

Date: Sat Aug 29 00:54:09 2020

mem_total:929996 mem_free:411648 mem_avail:710824 mem_drive:30772

mem_mapped:61188 mem_shmem:4064

proc_numtotal:1925 proc_running:1

--

Date: Sat Aug 29 00:54:14 2020

mem_total:929996 mem_free:411380 mem_avail:711076 mem_drive:30780

mem_mapped:61188 mem_shmem:4064

--

Appendix 2 A-XV

Selbstständigkeitserklärung

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter Ver-

wendung der angegebenen Literatur und Hilfsmittel angefertigt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche

kenntlich gemacht.

Diese Arbeit wurde in gleicher oder ähnlicher Form noch keiner anderen Prüfungs-

behörde vorgelegt.

Kulmbach, den 31.08.2020

Christian, Roth

