
MASTER THESIS

Mr.
Khan, Muhammad Usman

Optimization of Project
Scheduling Problem Using

Multi-Objective Bat-inspired
Algorithm and comparison with

other Nature Inspired Algorithms

2019

Faculty of Applied Computer and Life Sciences

MASTER THESIS

Optimization of Project
Scheduling Problem Using

Multi-Objective Bat-inspired
Algorithm and comparison with

other Nature Inspired Algorithms

Author:
Khan, Muhammad Usman

Study Programme:
Applied Mathematics in Digital Media

Seminar Group:
MA15w1-M

First Referee:
Prof.Dr.Thomas Villmann

Second Referee:
Dr.Tina Geweniger

Mittweida, March 2019

3

Acknowledgements
I would like to thank my supervisors Prof.Dr.Thomas Villmann and Dr.Tina Geweniger for
there tremendous support and invaluable advice throughout my thesis. Prof.Dr.Thomas
Villmann and Dr.Tina Geweniger excellent supervision made the research easier for me
and there knowledge helped me to go through all the difficult phases of the thesis with
no trouble.
I am very thankful to Prof.Dr.Peter Tittmann, the dean of Master’s in Applied Mathe-
matics in Digital Media for his assistance and expert opinions throughout the Master’s
program and also in thesis. I am thankful to all the professors that helped me improve
my self both technically and socially, so that I could finally be able to successfully finish
my studies.
I would like to thank all my friends, colleagues and classmates for their constant sup-
port during my studies. Finally, I would dedicate my thesis to my parents and wife who
have always been a continuous support during my life and without there love, care and
prayers this was not possible.

4

Abstract

In the practice of software engineering, project managers often face the problem of
software project management. It is related to resource constrained project scheduling
problem. In software project scheduling, main resources are considered to be the em-
ployees with some skill set and required amount of salary. The main purpose of software
project scheduling is to assign tasks of a project to the available employees such that
the total cost and duration of the project are minimized, while keeping in check that
the constraints of software project scheduling are fulfilled. Software project scheduling
(SPSP) has complex combined optimization issues and its search space increases ex-
ponentially when number of tasks and employees are increased, this makes software
project scheduling problem (SPSP) a NP-Hard problem.

The goal of software project scheduling problem is to minimize total cost and duration
of project which makes it multi-objective problem. Many algorithms are proposed up till
now that claim to give near optimal results for NP-Hard problems, but only few are there
that gives feasible set of solutions for software project scheduling problem, but still we
want to get more efficient algorithm to get feasible and efficient results.

Nowadays, most of the problems are being solved by using nature inspired algorithms
because these algorithms provide the behavior of exploration and exploitation. For solv-
ing software project scheduling (SPSP) some of these nature inspired algorithms have
been used e.g. genetic algorithms, Ant Colony Optimization algorithm (ACO), Firefly etc.
Nature inspired algorithms like particle swarm optimization, genetic algorithms and Ant
Colony Optimization algorithm provides more promising result than naive and greedy
algorithms. However there is always a quest and room for more improvement.

The main purpose of this research is to use bat algorithm to get efficient results and
solutions for software project scheduling problem. In this work modified bat algorithm
is implemented where a different approach of random walk is used. The contributions
of this thesis are to: (1) To adapt and apply modified multi-objective bat algorithm for
solving software project scheduling (SPSP) efficiently, (2) to adapt and apply other na-
ture inspired algorithms like genetic algorithms for solving software project scheduling
(SPSP) and (3) to compare and analyze the results obtained by applied nature inspired
algorithms and provide the conclusion.

Keywords: Software Project Scheduling Problem, SPSP, Nature Inspired Algorithms,
GA (Genetic Algorithms), ACO (Ant colony optimization), Bat algorithm, Modified multi-
objective bat algorithm (MMOBA).

5

Contents

1 Introduction. 1

1.1Research Problem . 2

1.2Research Question . 2

1.3Contributions . 2

1.4Research Methodology . 3

1.5Research Strategy/Design . 3

2 Extended Background . 5

2.1Resource Constrained Project scheduling problem . 5

2.2Nature-inspired algorithms . 6

2.2.1Genetic algorithm . 6

2.2.2Particle swarm optimization. 9

2.2.3Ant Colony Optimization (ACO) . 10

2.2.4Firefly Algorithm . 13

2.2.5Cuckoo Search . 14

3 Literature Review . 17

3.1Genetic Algorithms. 17

3.2Ant Colony Optimization . 20

3.3Firefly Algorithm. 22

3.4Metaheuristics. 22

4 Research Methodology and Proposed Solution . 25

4.1Project scheduling problem (PSP) . 25

4.1.1Skills . 25

4.1.2Tasks. 25

4.1.3Employees . 26

4.1.4Model . 26

4.2Algorithm used other then Nature Inspired Algorithm for the problem: 31

4.3Data collection and Data Analysis . 32

4.4Local Search . 32

4.4.1Search Space:. 33

4.4.2Neighborhood Relation: . 33

4.4.3Cost Function: . 34

4.4.4Local Search Algorithm: . 34

4.5Modified Multi-objective Bat Algorithm (MMOBA) . 37

4.6Why Bat algorithm? . 41

4.7Evaluation measure. 42

4.8Proposed Method . 43

5 Experiments and Results . 45

5.1Data Set . 46

5.2Results . 47

5.3Pareto Front . 50

6 Conculsion . 51

Bibliography . 53

List of Figures

4.1 Figure 1 . 28

5.1 Reference Pareto fronts of all datasets 50

List of Tables

4.1 Elements representation for SPSP 27

4.2 Sample solution matrix . 29

5.1 Algorithms with parameters values 45

5.2 Algorithms with parameters values 46

5.3 MMOBA with parameters values . 46

5.4 Data sets with parameters . 46

5.5 Hyper-volume . 47

5.6 Hyper-volume . 47

5.7 Spread . 48

5.8 Generational distance . 49

5.9 Inverted Generational distance . 49

Chapter 1: Introduction 1

1 Introduction

In the practice of software engineering, project administrator frequently has to tackle the
problem of software project management. A manager or administrator of a project has to
initialize, schedule, begin, monitor and finish the project in project management. As it is
a very tough job that’s why there is need to optimize project scheduling. Software Project
Scheduling Problem (SPSP) is an alteration of project scheduling problem (PSP). In it
manager has to assign tasks to employees and should keep in view that total cost and
total duration of project is minimized. Here main resources are considered to be the
employees with some skill set and required amount of salary. In PSP most of the time
there is only one objective while in software project scheduling problem (SPSP) there
are mainly two objectives (1) minimize the cost of total project and (2) minimize the
duration of total project, so this makes it a multi objective optimization problem. The
main reason of software project scheduling is to assign tasks of project to the available
employees efficiently, so that the total cost of project and the total duration of project
completion are decreased while keeping in check that the constraints of software project
scheduling are fulfilled.

Software project scheduling (SPSP) has complex combined optimization issues and its
search space increases exponentially when number of tasks and employees are in-
creased, this makes software project scheduling problem (SPSP) a NP-Hard problem.
It is related to famous resource constrained project scheduling problem that is also re-
ferred as a NP-hard problem. Software project scheduling problem (SPSP)consists of a
set of employees and a set of tasks and each task must have some employees working
on it, who have the skills according to the skills required by that task to be done.

The goal of software project scheduling problem is to minimize total cost and duration
of project which makes it multi-objective problem. Many algorithms are proposed up till
now that claims to give optimal results for NP-Hard problems, but only few are there that
gives feasible set of solutions for software project scheduling problem, but still we want
to get more efficient algorithm to get feasible and efficient results.

Nowadays, most of the problems are being solved by using metaheuristics and nature
inspired algorithms because these algorithms provide the behavior of exploration and
exploitation [49]. Exploitation searches for the solution in a limited region where the
optimal solution is found in hope of getting better solutions while exploration searches
for the solution in huge space and tries to explore whole search space. For solving
software project scheduling problem (SPSP) some of these nature inspired algorithms
are used like genetic algorithms, Ant colony optimization algorithm (ACO), Firefly etc.
Algorithms like genetic algorithms and ant colony optimization (ACO) provides more
promising result than naive and greedy algorithms. However there is always a quest

2 Chapter 1: Introduction

and room for more improvement.

This thesis provides the overview of some of these nature inspired algorithms, review of
most of the work done up till now on software project scheduling problem (SPSP) and
solution of solving software project scheduling problem(SPSP) by using bat algorithm
which is also a nature inspired algorithm.

1.1 Research Problem

Software project scheduling (SPSP) is a multi-objective optimization problem where ad-
ministrator of the project has to assign set off employees to set of tasks, with some
constraints that each task must have at least one employee working on it and the em-
ployees working on that task must have the skills required by a task to be done. It is
variation of resource constrained project scheduling problem and is NP-hard.

1.2 Research Question

To find the optimal solutions for software project scheduling problem (SPSP), we will look
into how nature inspired algorithms can be optimized and applied to software project
scheduling problem (SPSP). In short, the goal of thesis is to answer the following re-
search question:

How to use nature inspired algorithms to solve software project scheduling problem
effectively?

To give answer to the above mentioned research question this thesis mainly focuses on
exploring different nature inspired algorithms and metaheuristics that have been used
to efficiently solve software project scheduling problem(SPSP). The reason for choosing
nature inspired algorithm is because they have proved to be efficient most of the times
in case of NP-Hard problems and because they possess the property of exploration and
exploitation [49].

1.3 Contributions

The contribution of this thesis is to give detailed information of some nature inspired
algorithm that how these algorithms can be used to solve software project scheduling
problem.

The contributions are as follows:

Chapter 1: Introduction 3

1. To adapt and apply modified multi-objective bat algorithm (MMOBA) for solving
software project scheduling (SPSP) efficiently.

2. To adapt and apply other already applied nature inspired algorithms like genetic
algorithms for solving software project scheduling (SPSP).

3. To compare and analyze the results obtained by applied nature inspired algo-
rithms and provide the conclusion.

1.4 Research Methodology

A systematic way to solve a problem is known as research methodology [21]. Mainly the
research is of two types (1) rate Basic research (2) Applied research. Basic research is
also known as underlying or conceptual research. In this one has to provide the deep
insight and information about the problem, logical explanation of the problem and how to
solve it and the conclusions about it. At the end basic research helps other researcher in
their applied research. While applied research means to solve a problem or some spe-
cific problems with known algorithms or with new researcher defined algorithm. Applied
research becomes helpful for others who are doing basic research.

This research thesis focuses on both basic and applied research. The answer to our
research question "Solving software project scheduling problem (SPSP) using Bat al-
gorithm" will provide basic research of software project scheduling problem (SPSP) and
the algorithms that have been used to solve this problem, and as an applied research
in this thesis bat algorithm will be applied to the software project scheduling problem
(SPSP). As bat algorithm is nature inspired algorithm we will investigate software project
scheduling problem (SPSP) with other nature inspired algorithms. Experiments will be
conducted in our research on the benchmark dataset for software project scheduling
problem (SPSP) and results will be compared and evaluated based on certain mea-
sures.

1.5 Research Strategy/Design

Both research types, basic and applied can further be of two types (1) Qualitative strat-
egy and (2) Quantitative strategy. Qualitative focuses on the quality of results it is de-
scriptive and it do not involve experimentation while on the other hand quantitative strat-
egy is non descriptive, based on experiments, provides results with graphs and charts
etc.

This thesis will conduct experimental strategy. The hypothesis concluded by doing qual-
itative research on software project scheduling problem (SPSP) in previous chapters
that nature inspired algorithms provide efficient and viable results for software project
scheduling problem (SPSP). As bat algorithm has already been proposed and is proven

4 Chapter 1: Introduction

efficient and viable in many cases so we want to apply bat algorithm on the important
software project scheduling problem, to check its validity and viability.

Chapter 2: Extended Background 5

2 Extended Background

In this chapter extended background of software project scheduling, resource con-
strained project scheduling and some famous nature inspired algorithm used for solving
scheduling problem is presented.

2.1 Resource Constrained Project scheduling problem

Project scheduling is a mechanism where tasks are matched, or issued to data center
resources. There isn’t any scheduling algorithm that is absolutely perfect enough to
solve task scheduling problem because of different scheduling objectives. A fine sched-
uler applies a suitable accommodation, or applies collaboration of different scheduling
algorithms according to applications requirements [11]. Project scheduling is one of
the problems that has received tremendous amount of attention and researchers have
carried out multiple studies on this problem.

Time of solving a problem depends upon the algorithm that is applied to solve that prob-
lem. Time complexity of an algorithm is its execution time depending on the input. If a
problem can be solved in polynomial time and it has a polynomial time algorithm than
the problem is efficient enough to be executed or computed on any machine. In com-
putational complexity theory, all problems are divided on the basis of certain resources
into different complexity classes [11, 12].

There are 4 main complexity classes which are as following:

Polynomial Time: When the execution time of a computation, m(n), is no more than
a polynomial function of the problem size, n. More formally m(n) = O(nk) where k is a
constant.

P: Those problems that can be solved in polynomial time belong to class P means it can
be executed quickly in polynomial time.

NP: A problem is said to be in the NP class if it can be executed and solved in polynomial
time by a non-deterministic Turing machine [13]. Problems of this kind take too much
time to solve but can be quickly verified with some samples.

NP-Hard: A problem belongs to NP- Hard class if the algorithm for solving that NP-
Hard problem can be transformed for solving another NP class problem. If a problem
is NP-hard, no one should believe it can be solved in polynomial time. Resource con-
strained project scheduling problem is a combinatory optimization problem. It considers
resources that have limited availability [50], tasks of different duration’s and require-

6 Chapter 2: Extended Background

ments are linked by precedence relations. The goal is to get a schedule of tasks and
resources that gives minimum duration of project to get complete, keeping in view the
availability of resources and precedence relations of tasks. It is considered to be a
NP-Hard problem so it belongs to NP-Hard class.

2.2 Nature-inspired algorithms

2.2.1 Genetic algorithm

Every organism in this world has a mechanism by which they are built from small building
blocks of life. These principles are encrypted in the genes of an entity, which further
are attached together into lengthy strings type structure known as chromosomes [1].
Each gene is a certain quality of that entity, for example hair color, height etc. The
characteristics that are mostly hidden in an organism are called genotype, for example
inherited diseases, nature factor. While the physical characteristics of an organism that
can be seen are called phenotype e.g. nose shape, eye color etc. Sharing of genes
occur when two organisms mate with each other. The offspring generated may have
traits of both parents. The process of mating is called recombination. Sometimes a
gene is mutated in this process. It is called mutation. The algorithms that mimic the
above nature process are called genetic algorithms. They depict a sharp exploitation of
a random search which is used to solve optimization problems [2]. Genetic algorithms
follow the principal of Charles Darwin theory "survival of the fittest."

The set of generated solutions of a problem is called a population. Fixed numbers of
populations are specified at the start of the algorithm. The whole process is executed
until the required number of generation is achieved. There are two methods to initialize
a population. Initialize the population with random solutions i.e. random initialization,
Initialize the population with known heuristic of the problem i.e. heuristic initialization.
Coding of chromosomes is represented as binary vectors. It is written as

X =Chromosomes (2.1)

X = [x1,x2, ...,xn] (2.2)

And the number of vector elements are given by l(X) = n, where n is the length of the
vector. And set [x1,x2, ...,xn] represents the genes. Gene is a single vector element or a
connected part of chromosome. Fitness of each candidate solution in each population is
calculated by a fitness function. Fitness function is made on the basis of objective func-
tion. It calculates the feasibility of solution according to the constraints and objectives of

Chapter 2: Extended Background 7

the problem. The proportional fitness is given by

fprop(xi) =
a ·bi

∑
Nc
j=1 b j

(2.3)

Where bi is the evaluation of the genes, a is a constant and Nc is the number of individ-
uals.
Let us take an example to explain our point. Let there be two chromosomes

X1 = [01001] (2.4)

X2 = [10001] (2.5)

The corresponding profit values are given by [5 3 2 7 1], the aim is to maximize the
profit. First b1 is calculated as b1 = 0 ·5+1 ·3+0 ·2+0 ·7+1 ·1 = 4, now we calculate
the fitness for chromosome X1 using equation 2.1 as

f (X1) =
4
10

= .4 (2.6)

Similarly b2 is calculated as b2 = 1 ·5+0 ·3+0 ·2+0 ·7+1 ·1 = 6, now we calculate
the fitness for chromosome X1 using equation 2.1 as

f (X2) =
6
10

= .6 (2.7)

So clearly as we can see f (X2) is better.
The selection and marriage scheme in genetic algorithm is stated as that the probabil-
ity of selection is proportional to the evaluation or fitness function i.e. everybody get a
chance to reproduce.The most commonly used selection schemes are random selec-
tion, roulette selection scheme, linear ranking and random selection of fittest. The aim
is the continuously increasing quality of the populations. This is achieved by a scheme
called random selection. In which we generate two random numbers r1≥ 1 and r2≤Nc.
Second step is the selection of chromosomes based on the following

Xsel =

{
Xr1, if f (X1)> f (X2)

Xr2, otherwise

The advantage of this scheme is that not all f (Xi) has to be calculated in each genera-
tional step.
Crossover in Genetic algorithms (GA) plays the role of operator to combine two parents
and create a new offspring from their mixed traits. Two parents are selected according

8 Chapter 2: Extended Background

to the fitness proportionate selection and crossover is applied among them. There are
different techniques of crossover. The aim of crossover is faster search by overcoming
local minima/maxima. A simple crossover technique is single point crossover. In this
technique two parent solutions are selected both are divided into two parts and to cre-
ate an offspring solution its first half is taken from the first parent and the second half
is taken from the second parent. In mathematical terms it is represented as, we say
generate a random number r ≤ 1 , then we split the given chromosomes at position r
and finally we switch fragments to obtain children. In case of two point crossover we
generate two random numbers for two chromosomesX1 and X2 as 1 ≤ r1 ≤ l(X1) and
1≤ r2 ≤ l(X2) respectively, and then we split and switch genes at r1 and r2. In uniform
crossover we generate a random binary vector of length l(X) and then we switch the
genes/vector elements of the parent chromosomes if the random vector element is zero.
The last and fourth crossover type is cut and splice crossover, in which we generate two
random numbers for two chromosomes X1 and X2 as 1 ≤ r1 ≤ l(X1) and 12 ≤ l(X2)

respectively, and then cut chromosome X1 at r1 and chromosome and X2 at r2 and then
just splice to generate child’s.
Mutation also plays an important role in adding diversity by changing the traits of chro-
mosomes [3]. Chromosomes are mutated after some time with some defined probability
so that the fitness of the solution can be improved but in some cases mutation can also
worsen the fitness. Mutation rate should be low because it may destroy the information.
Like crossover there are different techniques of mutation. A simplest one is bit string
conversion. For example, let’s say our solution is represented in a binary vector. Here
a bit is selected by probability function and is flipped i.e. if it is 0 than it is converted
to 1 and vice versa. In mathematical terms it is called equal distribution in which we
generate a random number 1≤ l(X) and then switch the gene at position r given as

x′r = 1− xr (2.8)

Genetic algorithms basic structure is as follows:

1. Choose coding for chromosomes

2. Initialize start population

3. Evaluate individuals of parent generation based on evaluation and fitness function

4. Selection of pairs of individuals according to a marriage

5. Produce children by recombination (Crossover)

6. Mutate children

7. Replace individuals of parent population by children according to replacement
scheme.

8. Stop,otherwise continue with step 3

Chapter 2: Extended Background 9

2.2.2 Particle swarm optimization

In 1995, Eberhart and Kennedy proposed Particle swarm optimization (PSO) computa-
tion technique [51, 52]. This technique was conceived by observing the social interaction
between birds during flocking. In a flock every bird follows the path which is taken by the
leader. After some time, some other bird from the flock replaces the leader bird and the
flock starts following that new leader bird.This is valid for migrant birds flying in arrow
shape.

Particle swarm optimization algorithm firstly initializes the population. In each iteration,
position and velocity of the particles are changed according to the best local and global
positions of other particles. The particles are than evaluated by a fitness function on
its current position. The stopping criterion depends on the problem under considera-
tion but typically it is the number of maximum iteration or the maximum fitness value
achieved [51]. The principle of swarm intelligence states that it is a multi-agent system
with self organization and signs of intelligence. There are certain rules to explain it. Ev-
ery bird/object knows three rules, first one is cohesion which says to stay in the middle
of surroundings, second states move away if someone gets too close and is called sep-
aration, third is alignment which states move in the same direction as your neighbours.
Further for migrating birds the are two set of rules, first one states that to use boast or
uplift of the bird infront of you and second is to select position to look straight ahead.
The aim of the particle swarm optimization is to basically minimize the cost function
f : Rm→ R, then we find the particle or the possible candidate as

Pi : f (Xi)≤ f (X j)∀i, j ∈ [1, ..N] (2.9)

Pi : i = arg jmin f (X j) (2.10)

Where N is the size of the swarm and Xi is the position of the particle P at i.

Algorithm:
The algorithm for particle swarm optimization is given by:

For all particles Pi for i ∈ [1, ..N]

• Initialize the population Xi ∈ [Xmin,Xmax]

• Set the best known position of Pi by self experience to be bi = Xi

• Set the best known position of the swarm by social experience also known as

10 Chapter 2: Extended Background

global best to be

g =

bi, if i = 1

bi, if f (bi)< f (g)

g, otherwise

• Initialize velocity
vi ∈ [−|Xmax−Xmin|, |Xmax−Xmin|] (2.11)

While not finished, for all P

• Generate randomly rb and rg∈ [0,1]
• Update velocity

vnew
i = αvi +β rb(bi−Xi)+ γrg(g−Xi) (2.12)

• Update particle position
xnew

i = xi + vnew
i (2.13)

• Update best position. If f (Xi) < f (bi) , update bi = Xi. If f (bi) < f (g) , update
g = bi

• g is the best solution.

Where α,β and γ represents the switching directions of particles, Xmax,Xmin represent
the upper and lower limit of search space. The inertia allows the particle to move in
the same direction with same velocity. Personal influence improves the individuals and
cause the particles to return to a previous better position, whereas social influence
makes particles to follow the best neighbour position. If the velocity is low then the algo-
rithm is slow and if the velocity is high then algorithm becomes unstable, so there is no
guarantee to reach the global optimum. To resolve this issue the concept of sub swarms
is considered in which we separate gk for each group.
To interpret the algorithm there are two term used, one is exploration and the other one is
exploitation. In exploration we search the border region at search space which includes
diversification (inertia), whereas in exploitation we conduct locally oriented search to
get close to an optimum solution and it includes intensification(personal and social in-
fluence). So α,β and γ are chosen in such a way that exploration versus exploitation is
balanced.

2.2.3 Ant Colony Optimization (ACO)

The basic Ant colony optimization (ACO) algorithm was initiated by Marco Dorigoin early
1990s [6, 7]. These algorithms were motivated by the etiquette of ants. Ants are social
insects [8] and live in colonies. The inspiration of making the Ant colony optimization
(ACO) algorithm was the action of ants to get the shortest path to find food. At first,
ants explore the area or space around their nest for searching the food. They leave

Chapter 2: Extended Background 11

a chemical named pheromone while moving on the ground. When an ant locates the
food it gets the food and returns to the nest from the same way by which it has come
from, in this way pheromone on that path becomes double. Ants can smell pheromone.
When choosing their way, they tend to choose, in probability, paths marked by strong
pheromone concentrations. As soon as an ant finds a food source, it evaluates the
quantity and the quality of the food and carries some of it back to the nest. During the
return trip, the quantity of pheromone that an ant leaves on the ground may depend on
the quantity and quality of the food. The pheromone trails will guide other ants to the food
source. The indirect communication between the ants via pheromone trailsâĂŤknown
as stigmergy enables them to find shortest paths between their nest and food sources.
Ant colony optimization (ACO) algorithm copies the method of ants in which they locate
the shortest path amid food and nest. Often a graph like search space is made for a
problem and Ant colony optimization (ACO) is applied on that search space i.e. graph.

Ant moves in a graph node to node. The probability that it will move to j node from i
node is calculated by following probability function

pi j =
(T α

i j)(η
β

i j)

∑(T α
i j)(η

β

i j)
(2.14)

• Ti j is the amount of pheromone on the edge i, j
• α is a variable to control the impact of Ti j

• ηi j is the heuristic, depending on the problem

• β is a variable to control the impact of ηi j

Pheromone update can be done globally and locally. Global pheromone update is done
at the end of iteration. The best solution is picked up and pheromone is updated on the
edges where best solution was located. Local pheromone update is done during the
traversal of ants among the graph nodes. Pheromone is updated according to following
equation

Ti j = (1− p)Ti j + p∆Ti j (2.15)

• If only i, j belongs to best tour

• p is the evaporation rate of pheromone.

• ∆Ti j is the participated amount of pheromone

Algorithm:

1. Set parameters ,initialize pheromone trails

2. While not finished do,

• Construct ant solution

• Apply local search to improve solution and is optional.

12 Chapter 2: Extended Background

• Update pheromones

Construction of Ant solution:

1. Walk on construction graph Gc(V,E), which is a fully connected construction
graph

2. Construct solution based on finite set of available solution components C
3. Start with empty partial solution set s0

k = /0
4. With each construction step, sp

k is extended by adding solution components from
N(sp)

5. Choice of solution component Ci j from N(sp) , guided by stochastic mechanism
biased by the pheromone level associated with each element Ci j

Chapter 2: Extended Background 13

Update Pheromone:

1. Decrease pheromone level also known as evaporation

2. Increase pheromone level associated with paths describing good solutions.

Where C = Ci j in which Ci j is solution component associated with edge (i, j), sk is
solution associated with ant k, sp

k is the partial solution, N(sp
k) which is a subset of C is

the set of possible solution components taking restrictions into account. The aim was
basically to find solution s∗ : f (s∗) ≤ f (sk), ∀ k, k ∈ [1, ..m], where m is the number of
ants.

2.2.4 Firefly Algorithm

Fireflies are distinguished by their blazing light produced by biochemical process biolu-
minescence [14, 15]. This blazing light acts as the main function for catching the prey
and mating between the fireflies. The lanterns are the organs in fireflies that produce
bioluminescence. Male firefly’s unique flashing pattern attracts female firefly. The light
becomes dense by the increase of distance. Firefly algorithm mimics the process of
mating and hunting of fireflies. It was developed by Xin-She Yang at Cambridge Univer-
sity in 2007. Some rules in firefly algorithm are as follows

• All fireflies should be unisex [16]

• When the brightness is decreased attractiveness is also decreased so the both
should be proportional to each other

• Dazzle of firefly is calculated by the objective function [16]

Algorithm:

• Objective function f (x),x = (x1, ...,xd)

• Generate initial population of fireflies xi(i = 1,2, ...,n)
• Light intensity Ii at xi is determined by f (xi)

• Define light absorption coefficient

• while (t < MaxGeneration)

– for i = 1 : n all n fireflies

∗ for j = 1 : i all n fireflies

∗ if (I j > Ii), Move firefly i towards j in d-dimension; end if Attractiveness
varies with distance r via exp[r] .Evaluate new solutions and update light
intensity.

∗ end for j

14 Chapter 2: Extended Background

• end for i

• Rank the fireflies and find the current best

• End while

• Post process results and visualization

The light intensity is given by the following equation if we take into account the absorp-
tion coefficient and it varies with the square of distance r

I = I0e−γr2
(2.16)

The population of fireflies is initialized by the following equation

xt+1 = xt +β0e−γr2
+αε (2.17)

where β0 is the attractiveness at r = 0.The third term is randomization with α being the
randomization parameter, and ε is a vector of random numbers drawn from a Gaussian
distribution or uniform distribution at some time.If β0 = 0, it becomes a simple random
walk. On the other hand, if γ = 0, it reduces to a variant of particle swarm optimization.
The attraction is represented by the second term. The attractiveness of fireflies is given
by the following relation

β = β0e−γr2
(2.18)

If we now say that firefly j is the brightest firefly and firefly i is attracted towards it, then
this movement from i to j is given by

xi = xi +β0e−γri, j(x j− xi)+αε (2.19)

2.2.5 Cuckoo Search

Cuckoos are the birds that lay their eggs into nests of other birds, they remove other
bird’s eggs from the nest to increase the hatching probability of their own eggs [18].
When the owner birds see that the eggs in the nests are not theirs, they either remove
the eggs of cuckoo from the nest or flew away to make another nest somewhere else.
So some cuckoo’s has the ability that they can mimic their eggs in color and pattern
according to the host specie. This reduces the probability of their eggs being abandoned
and thus increases their productivity [17]. When the cuckoo’s egg is hatched the first
thing the chick do is that it kicks out other eggs from the nest so its chance of getting
food is increased.

Cuckoo search algorithm is motivated by the above mentioned actions of cuckoos. It
uses following rules.

• One egg is laid in randomly chosen nest by one cuckoo at a time

Chapter 2: Extended Background 15

• Those nests which have high quality of eggs (solutions) will be forwarded into next
generation
• Total number of accessible nests is predefined and the probability that a cuckoo

picks a nest is calculated by pa ∈ [0,1]

16

Chapter 3: Literature Review 17

3 Literature Review

3.1 Genetic Algorithms

Genetic algorithm is a replica of biological evolution used in artificial systems. Genetic
algorithm can be used to solve software project scheduling problem. This iterative ap-
proach searches for the best solution in a huge search space. It first take the population
of randomly selected chromosomes, each chromosome is evaluated by a fitness func-
tion. Each chromosome is represented by a vector and each cell is its genes. The ge-
netic operators that play an important role in making the new generation are crossover,
reproduction and mutation. The chromosomes are encoded according to the choice of
person as it is flexible. Crossover takes two chromosomes from previous generation and
swaps some bits from each other to create a new child. Mutation modifies genes by the
probability given by a user. Genetic algorithms (GA) use large search space in which
the whole population moves to find the best solutions. Some of the work done on ge-
netic algorithms (GA) to solve software project scheduling problem (SPSP) is presented
below.

T. Hanne, S. Nickel [25] uses MOAEA/D(Multiobjective Evolutionary Algorithm with De-
composition) algorithm to solve software project scheduling problem (SPSP) in 2003.
MOAEA/D is a decomposition algorithm that decomposes the solution into sub prob-
lems and solves each sub problem and each problem is assigned some weights. In
this paper author develop a discrete event simulation model, some of the variables are
fixed for task assignment and scheduling in this model. This software project scheduling
problem (SPSP) is a multi-objective optimization problem solved using the mentioned
model. The population which is developed by MOEAD is distributed as a Pareto front
giving the best solutions for software project scheduling problem.

Enrique Alba and J. Francisco Chicano[26] uses genetic algorithms’s on software project
scheduling problem (SPSP) in 2007. The software project scheduling problem (SPSP) is
encoded into binary chromosome. The solution to software project scheduling problem
(SPSP) is first changed into a employees task size matrix, in which each value of a cell
is dedication of an ith employee to that jth task. This X matrix is non negative matrix.
It is expected that no employee should work overtime so the maximum dedication of
employee is considered to being in range of [0,1]. Here 8 values of dedication are
considered to be encoded by three bits string.

They take cosecutive three bits string check there dedication degree and fill in the matrix.
Each bit string is a solution here and are called chromosomes. Its fitness and fesibility

18 Chapter 3: Literature Review

is calculated by following function.

f (x) =

{
1
q , if the solution is feasible

1
(q+p) , otherwise

Where,
q = wcost .pcost +wdur.pdur (3.1)

And,
p = wpenal +wundt .undt +wreqsk.reqsk+wover.pover (3.2)

Where p is the penalty for infeasible solutions, that is, for those solutions that violate
some of the problem constraints. Whereas, wcost and wdur and are weights associ-
ated with the cost and the duration, respectively. Where wpenal is a penalty that is
imposed when the assignments between tasks and employees are incomplete, pover

is the amount of overtime work performed by the employees in a project, undt is the
monetary cost of a project, reqsk is the time required to finish a project, and wover,wundt ,
and wreqsk are weights that are associated with the overload, cost, and time objectives,
respectively.
D.Sundar and colleagues presented MOGA(Multi-Objective Genetic Algorithm) algo-
rithm to solve software project scheduling problem (SPSP) in 2010[27]. First initial pop-
ulation is generated, initial population is the divided into m subpopulations according
to number of objectives, in software project scheduling problem (SPSP) there are two
objectives. Now for each subpopulation fitness of these objectives is calculated. Best
chromosome is selected and two parent chromosome are selected from population.
Crossover is applied between parents. Get the best offspring O from the off springs
populations. After that apply crossover between the best chromosome X and best off-
spring O, If new generated offspring is better than replace Xwith O2. Iterate for all
chromosomes and until best pareto is obtained. The results shown by this algorithms
are considered to be good. The prioritization of constraints involved in this problem is
also done by the MOGA, and this shows effective results over manual allocation tech-
niques.

J. Francisco Chicano again presented GA’s for software project scheduling problem
(SPSP) in 2011 [28]. Many multi-objective metaheuristics are used to solve the problem
here. They have been compared with 39 publicly available instances that cover all type
of scenarios large, medium and small. The algorithm used in this paper and all the re-
sults will assist project managers in the difficult tasks of project scheduling problem. To
measure the performance of the algorithm used in this paper the quality of the Pareto
set is maintained. Two things are used here hyper volume(HV)indicator and the attain-
ment surfaces. They have chosen a set of parameters for a good comparison among
each algorithm used in this paper NSGAII(Non-dominated Sorting Genetic Algorithm II),
SPEA2(Strength-based Evolutionary Algorithm) and MOCell(Multiobjective Cellular Ge-
netic Algorithm) also GDE3(Generalized Differential Evolution). Population size of 100

Chapter 3: Literature Review 19

is maintained archive size is also 100 for algorithms like PAES, MOCell and GDE3. The
algorithm stops at 100000th iteration. The results are analyzed in this paper in two ways.
HV hyper volume indicator and attainment surfaces to find the quality of multi objective
algorithm for software project scheduling problem. This tells that PEAS has the best
value of Pareto front, MOCell performed good on hyper volume. Main algorithms used
in this paper NSGAII and SPEA2 have the worst HV values. The attainment surface
allows differentiating between the regions of whole objective space which is explored in
multi objective algorithms. PAES has outperformed all the algorithms with low cost and
log duration. Whereas, NSGAII and SPEA2 have given the results with high project cost
and less duration.

Constantinos Stylianou and colleagues in 2011 [29] presented approach of solving
SPSP and team staffing using Genetic algorithms (GA) to construct project optimal
schedule and assign tasks to most expertized employees. Genetic algorithms (GA)
used in this paper uses different objective functions to handle the constraints and re-
sults gathered proved to be optimal when objective functions were stand alone however
when they were combined, Genetic algorithms (GA) did not give optimal solutions.

Milena Karova in 2012 presented [30] in this paper that Genetic Algorithm technique
can be used to search for near-optimum solution, minimum duration and cost of project.
"The given model is named as IGAPM (Implementation Genetic Algorithm for Project
Management).The solutions of algorithm are chromosome matrix where the rows are
employees and columns are set of activities or tasks. The chromosome is represented
in binary format. (1) A value of 0 when the employee is unable to perform the task
because of its skills. (2) Row normalization of the chromosome. The performance of
IGAPM is represented as steady-state. For given number initiate with a constant con-
figuration of genetic operators and variables, fitness function’s different values are rela-
tively constant, IGAPM implementation provides a way to solve this problem by efficient
use of genetic algorithms."

Leandro L. Minku and colleagues in 2012 presented [31] a theoretical analysis of perfor-
mance of genetic algorithms for software project scheduling problem (SPSP) with some
improvements in the design of genetic algorithms like normalization of employee’s dedi-
cations, enhanced mutation operator and fitness functions that are focused in providing
feasible solutions. They compared genetic algorithms with normalized and without nor-
malized dedications and stated that normalization helps in getting high hit rate and good
quality solutions

Abel Garcia-Najera and colleagues in 2014 proposed [32] software project scheduling
problem (SPSP) model that represents operations of software companies better. It con-
siders skills of employees into 4 levels, beginner, junior, senior, expert for assigning
employees to tasks. Same objectives of software project scheduling problem (SPSP)
are followed in addition with reducing overtime also as an objective. They used simple

20 Chapter 3: Literature Review

Genetic algorithms (GA), however it slightly differs in mating selection technique as the
first parent is chosen by fitness proportion method while the second is chosen by the
average similarity of population. This paper claims to have better results by using their
proposed approach than NSGA-II.

Leandro L. Minku in 2014 gave [33] - analysis of different variations of genetic algo-
rithms. As many of the variations of evolutionary algorithm have been applied to soft-
ware project scheduling problem, yet there are many whose performance is dependent
on the design choices for evolutionary algorithms. In this paper author presented the run
time complexity for project scheduling problem by looking into the performance of evolu-
tionary algorithm and project scheduling problem in general. Authors made an improved
evolutionary algorithm (EA) design that merges normalization for the dedication of em-
ployees for all tasks to make sure that no employee works overtime, the fitness function
is generated that requires few parameters and provide a good path guiding towards op-
timal solutions, and more improved design for crossover and mutation. Normalization
removes the extra amount of time for calculating the overworks of employees and allows
evolutionary algorithm to just focus on the solution quality. It gives opportunity in finding
balance between the dedications of employees for all tasks and allows employees to use
the workload in better whenever a task is started or finished. They derived a general
upper bound and lower bound for the expected overtime for big classes of evolution-
ary algorithm. The glitch in this paper is that despite using the normalization technique
some solutions still find a way to escape from the local optima. While in general it gives
the best results and normalization is a key component for the efficiency of this algorithm
presented in this paper.

Mayowa Ayodele in 2015 presented [34] the work in which software project schedul-
ing problem (SPSP) is split into two sub problems and different algorithms are applied
to each sub problem. In this paper Genetic algorithms (GA) and EDA (Estimation of
Distribution Algorithm) are two methods that are used separately in each sub problem.
Genetic algorithms (GA) are used to improve the quality of tasks and employees order-
ing while EDA focuses on how to generate mode assignment.

Constantinos Stylianou and colleague also presented the analysis of different genetic
algorithms in 2016 [35].

3.2 Ant Colony Optimization

Jing Xiao and her colleagues proposed to solve software project scheduling problem
(SPSP) using ant colony optimization algorithm in 2012 [36]. In this paper they made a
construction graph for each task which consists of dedications as rows and employees
as columns, ants traverse through each task graph, returning back is not allowed. This
paper presents six heuristics for selecting a node; they have different aspects of trade-

Chapter 3: Literature Review 21

offs for software project scheduling problem (SPSP). They compared the results with
Genetic algorithms (GA) and proved that their proposed work gives better solutions with
better hit rate.

Wei-Neng Chen and her colleagues in 2013 proposed [37] method with an event-based
scheduler (EBS) and an ACO algorithm. "The proposed method shows a scheme by
a task list and a schemed employee allocation matrix. According to this method both
difficulties of scheduling a task and scheduling employee to that task can be managed.
In the event-based scheduler (EBS), starting time, release time of resources from com-
pleted tasks and joining and leaving of an employee in project are used as events. Main
idea of this approach is to adjust employee’s allocation to changed and unchanged
events. It tackles the conflict issue of tasks preemption and provides flexible approach in
resources allocation. For solving planning issue, an ACO algorithm is further designed.
Experimental results on 83 instances prove that the given method is very efficient. The
main things of this algorithm are divided into two parts: event-based scheduler (EBS)
and ACO for tackling planning problems. Experimentation shows that this scheme is
good and the given algorithm provides better plan that gives minimum cost and dura-
tion."

Broderick Crawford and colleagues in 2013 presented [38] ACO hypercube approach
to solve software project scheduling problem (SPSP). Just an overview of ant colony
optimization (ACO) is given and no experimentations and results are provided.

Bharti suri in 2013 also [39] provided brief information, experimentation and results of
solving software project scheduling problem (SPSP) using ACO algorithm.

Olfa Dridi in 2013 proposed [40] a hybrid ant colony optimization (HACO) approach to
solve software project scheduling problem (SPSP). They presented a bi-directional ant
colony optimization (ACO) methodology in which 2 variation of ants is used to find better
solution. The first type of ant is from ACS-Cost colony. It optimizes the costs of the
tasks and the whole project. Second type of ant is from ACS-time colony it optimizes
the time of total project. Authors claim in this work that their hybrid bi-directional ant
colony optimization (ACO) works better and provide better results than simple ant colony
optimization (ACO) algorithm.

Broderick Crawford in 2014 proposed a min-max ant system to solve software project
scheduling problem (SPSP) [41].Min-max ant miner approach proposed by (StÃijtzle
and Hoos, 2000) is applied on software project scheduling problem (SPSP). They claim
that their proposed solution provide better results. And in 2015 author combined its
work of solving software project scheduling problem (SPSP) with ant colony optimization
(ACO) hyper cube [38] and min- max ant colony optimization [41], they proposed a
hybrid algorithm by combining these two [42] and claimed to get viable solutions.

22 Chapter 3: Literature Review

Jing Xiao, in 2015 presented [43] combination of ant colony optimization and MOEAD
evolutionary algorithm to solve software scheduling problem. Two heuristics are exam-
ined in this model to search better in software project scheduling problem (SPSP). Ex-
periments are conducted on publicly available 39 instances that cover all type of things
large medium and small. The results are then compared with other algorithm NSGAII.
This model did not outperformed on NSGAII for complex instances. The procedure of
the model is as follows: Input is taken = number of ants, instances of software project
scheduling problem, no of groups, neighbors size and other basic parameters, Output
= pareto front, Initialization, Generate the initial values of ants evaluate each ant as the
process of MOEAD, generate new population, update according to the fitness, output
the solution.

3.3 Firefly Algorithm

Broderick Crawford, Ricardo Soto, Franklin Johnson in 2016 [48] solved software project
scheduling problem (SPSP) using nature inspired firefly algorithm. Here each firefly is
displayed to be a unique solution and by using main features of this algorithm, the prob-
lem is solved as follows. First each task is sorted according to the task precedence
graph (TPG), than parameters are initialized like size of population, light intensity etc.
Than fireflies are created and are represented in the form of a matrix than all constraints
are validated and at the end fitness or light intensity of a firefly or a solution are calcu-
lated and the location of firefly is updated. This paper claims that this algorithm on
software project scheduling problem (SPSP) gives good solutions on smaller instances
only.

3.4 Metaheuristics

A. C. Biju in 2015 [44] proposed a Differential evolution strategy or method to solve soft-
ware project scheduling problem (SPSP). Differential evolution method has proved out
to be very reliable algorithm to solve NP hard problems. As it has solved RCPSP suc-
cessfully so it is also applied to software project scheduling problem (SPSP) problem in
this paper. They proposed a differential evolution (DE) algorithm with different mutation
operators for software project scheduling problem (SPSP) and proposed IDE-SPSP. It
can be showed as a graph based search problem for which differential evolution (DE)
is used. The new operators give good base to use the domain based heuristics for im-
proving the performance of IDE-SPSP algorithm. All the information for software project
scheduling problem (SPSP) is stored in an output file including task precedence graph
(TPG) etc. Model is build according to instances and the division operation is applied on
different tasks and then at the end proposed IDE method is applied to get best solutions.
The population has to go through following operations. Mutation: For each vector a mu-
tant vector is generated. Crossover: it is introduced to increase diversity. This paper

Chapter 3: Literature Review 23

claims that IDE-SPSP produces most reasonable solutions.

Broderick Crawford, Ricardo Soto in 2014 presented [45, 47]software project scheduling
problem (SPSP) as a combinatory optimization problem and provides the metaheuris-
tics to solve software project scheduling problem (SPSP) as they have proven to be
capable of solving difficult problems. The metaheuristics that they discussed in this pa-
per are genetic algorithm (GA), Ant colony, Simulated Annealing, Variable Neighborhood
Search, and Memetic Algorithms. In this paper they provide the overview of metaheuris-
tics to solve software project scheduling problem (SPSP) and provide the reason that
why metaheuristics provides better results than other methods. They did not provide the
comparative results for these provided algorithms.

Xiaoxia Huang in 2015 [46] proposed a mean variance model for project scheduling.
For solving complex problems they use lower and higher semi variance as a hybrid al-
gorithm that integrates with genetic algorithms. The flow of the whole algorithm is as
follows: first LSV and HSV are calculated with inverse uncertainty distribution method to
solve the problem for the general cases. Then the solutions vectors are represented ac-
cording to Genetic algorithms (GA) vectors. Then comes the initialization phase in which
some constraints etc. are defined, the selection is done by roulette wheel spinning after
that crossover and mutation operators are applied and then the solution is implemented
in cellular automata and this hybrid algorithm procedure continues until the required
numbers of generations are processed. The paper claims that the proposed algorithm
provides efficient results and it can help the managers in software project scheduling
problem (SPSP) in profitable way. Sometimes the parameters are to be provided via ex-
perts due to lack of history so their approach provides a better way to schedule projects
in an optimal way.

24

Chapter 4: Research Methodology and Proposed Solution 25

4 Research Methodology and Proposed
Solution

4.1 Project scheduling problem (PSP)

Project scheduling problem (PSP) is one of the most well-known problem in software
industry that manager face for managing software projects. It is related to resource
constrained project scheduling problem. Alba and Chicano in 2007 first focused on this
problem and provide its solution using genetic algorithms [26]. The main resources that
are involved in software project scheduling problem (SPSP) are tasks, employees and
skills. Set of tasks are the project requirement that need to be done, set of employees
are those who will work on different tasks and set of the skills are those skills that are
needed to complete the whole project. Each task needs a set of skills to be done and
each employee has its own set of skills. Therefore it should be handled carefully that
the set of employees that are doing a task should have the skills needed by that task.
Overall goal of software project scheduling problem (SPSP) is to assign employees to
tasks in a way that the cost and duration of whole project is minimized.

For understanding of software project scheduling problem (SPSP) we will first describe
the resources in detail and then the mathematical formulation to represent the soft-
ware project scheduling problem (SPSP) model. Resources required by software project
scheduling problem and the model of software project scheduling problem are defined
below:

4.1.1 Skills

Skills are the set of abilities that an employee possesses. Every task requires some
skills in order to be done. An employee can have all the skills or some of required skills
for example, Graphics expert, UML expert, Automation expert, testing and programming
expertise etc. The set of skill of whole project is union of the skills of all tasks required
to complete that project. It is defined as SK ={sk1,sk2,sk3, ...,sk|n|} where|n| is the total
number of skills required to complete a project.

4.1.2 Tasks

Tasks are the important and necessary work or activities that are required by software
project in order to get accomplished. These activities can be like analyzing, design-
ing, testing, coding etc. The set of tasks that are necessary to complete a project is

26 Chapter 4: Research Methodology and Proposed Solution

defined as T = {tsk1, tsk2, tsk3, ..., tsk|t|}, where |t| is the total number of tasks in a
project. There is different precedence among the tasks, in order to complete a project
each task must be done in a sequence keeping in view its precedence. Commonly the
precedence among tasks is represented in a graph structure known as task precedence
graph (TPG). It is a directed non-cyclic graph that contains a set of vertices and edges
and is represented as G(V,E). Each vertex in a graph represents a task, so the set
of vertices is equal to the set of tasks. An edge between two vertices represents the
precedence among corresponding tasks in vertices. And all the edges in TPG make a
set of edges E. We can say that when an edge (ti, t j) ∈ E than task i(ti) must be done
before task j(t j).

Each task contains two features (1) a set of skills and (2) effort.

• Set of skills required by a task j can be represented as ts
j = {t

s1
j , t

s2
j , ..., t

s|k|
j } where

|k| is the required number of skills for task j.
• Effort is the real number and shows the workload amount of task j. It can be

represented as e i.e. te
j = 10.

4.1.3 Employees

Employees are the most important resource in software project scheduling problem.
Each employee possesses various skills. Employees are allocated to the tasks and it is
the work of project manager to assign employees to right tasks. The main problem is to
create a schedule of employees and tasks. The set of employees can be represented
by Emp = {e1,e2, ...,e|E|} where |E| is the total number of employees that are there
to complete the project. Each employee contains three features (1) a set of skills, (2)
salary and (3) maximum dedication.

• Set of skills of employee i can be represented as es
i = {e

s1
i ,e

s2
i , ..,e

s|g|
i } where |g|

is the number of skill possessed by employee i.
• Salary is the real number and defines the monthly amount to be paid to an em-

ployee i. It can be represented as sal i.e. esal
i = 56,030.

• Maximum dedication of an employee is the maximum amount of work that an em-
ployee gives to a project. It can be represented as maxd i.e. emaxd

i . emaxd
i ∈ [0,1],

if employee i maximum dedication emaxd
i = 1 than employee works completely on

that project if emaxd
i < 1 than it may be possible that employee is doing part time

job.

4.1.4 Model

The necessary elements representation and description of software project scheduling
problem model is represented in the following Table 4.1.

Chapter 4: Research Methodology and Proposed Solution 27

Following in this section is an example of the software project scheduling problem

Element Description

SK ={sk1,sk2,sk3, ...,sk|n|} Set of skills required by a project
T = {tsk1, tsk2, tsk3, ..., tsk|t|} Set of tasks required by a project

G(V,E) Task precedence graph (TPG)
V = {t1, t2, t3, ..., t|T |} Set of vertices containing all tasks

E = {(ti, t j), ...,(tn, t|T |)} Set of edges i.e. task i must be done before task i
ts

j Set of skills required by a task to be done
te

j Effort of a task
Emp = {e1,e2, ,e|E|}) Set of employees working on a project

es
i Set of skills possessed by an employee

esal
j Employee monthly salary

emaxd
i Employee maximum dedication toward project

M = (mi j) Employee i′s dedication towards task j
tstart Starting time of a task
t f inish Finishing time of a task
tcost Total cost of a task
tdur Total duration of a task
pcost Overall projects cost
pdur Overall projects duration

eoverw Employee overwork if total dedication exceeds maxd
poverw Overwork of a project, sum of all employees overwork

Table 4.1: Elements representation for SPSP

model.

Example:

Number of employees = 3
E ={e1,e2,e3}

Number of tasks = 5
T ={t1, t2, t3, t4, t5}

Number of skills = 4
SK ={sk1,sk2,sk3,sk4}

Information of employees is as follows

es
1 ={e1

s ,e
3
s ,e

4
s},

esal
1 = 51240, emaxd

1 = 1

28 Chapter 4: Research Methodology and Proposed Solution

es
2 ={e1

s ,e
2
s ,e

4
s},

esal
2 = 65121,emaxd

1 = 1

es
3 ={e2

s ,e
3
s ,e

4
s},

esal
3 = 54522,emaxd

1 = 1, The following Figure.1 represents task precedence graph (TPG)

te = 10,ts ={ts4,ts3}

t2

te = 5,ts ={ts1,ts2}

t1

te = 25,ts ={ts1,ts2}

t3

te = 10,ts ={ts4,ts2}

t4

te = 20,ts ={ts1,ts4}

t5

Figure 4.1: Figure 1

Each task has number of skills that is a subset of Sk and an effort.

A solution of software project scheduling problem can be represented by the matrix M
of size E ∗T . The cell in a matrix is represented as mi j and shows the dedication of the
employee i for the task j. It can be in between [0,maxd]. If employee i dedication to
task j is 1 than it means it is completely dedicated to that task. If its dedication is 0.5
than it means it spends half of its time on that task. If it is 0 than it means that he is not
doing that task.
The solutions of software project scheduling problem may not be feasible sometimes.
There are some constraints to check its feasibility. First we have to make sure that at
least one employee is assigned to each task i.e. there shouldn’t be any task in which no

Chapter 4: Research Methodology and Proposed Solution 29

employee is assigned. It can be described as following

E

∑
i=1

mi j > 0,∀ j ∈ 1,2,3, ...T (4.1)

Second constraint is that the union of skills of those employees that are assigned to
task j should be equal or super set of the set of skills of task j. It can be described as
follows.

tskills
j ⊆

⋃
i|mi j

> 0,∀ j ∈ 1,2,3, ...T (4.2)

The solution matrix should looks like following table, when all dedications are assigned
Two constraints described above are easy to find in the solution matrix as shown in

Mi j T1 T2 T3 T4 T5 T6

E1 1.00 0.50 0.00 0.25 0.00 0.00
E2 0.25 0.50 1.00 0.50 0.00 0.25
E3 0.50 1.00 0.00 0.50 1.00 0.25

Table 4.2: Sample solution matrix

table 4.2. In software project scheduling problem the quality of solution is dependent on
three factors

1. Feasibility of solution
2. Total duration of project
3. Total cost of project according to the matrix solution

Feasibility can be calculated by checking the constraint’s requirements. Now we have
to calculate the total cost and total duration of whole project. These can be done as
follows.
First we have to calculate the starting time, finish time and duration for each task of
project.
Duration of task j can be calculated by following equation.

tduration
j =

te f f ort
j

∑
E
i=1 mi j

(4.3)

For example according to table 2, the duration of task 4 can be calculated as following

tduration
4 =

10
0.25+0.50+0.50

= 8 (4.4)

Now we will calculate the start time and finish time of task j. It is calculated with respect
to task duration and its precedence relation described in task precedence graph (TPG).
Those task’s starting time that are not dependent on any other tasks can simply be 0

30 Chapter 4: Research Methodology and Proposed Solution

because there is no dependency of any other task, while those task’s starting time which
are dependent on other tasks is the maximum ending time of those tasks on which a
task is dependent. Each task starting and finish time can be calculated easily from
task precedence graph (TPG) because it is acyclic. It can be calculated by following
equations.

tstart
j =

{
0, if ∀k 6= j(tk, t j) ∈ A

max[tend
k |(tk, t j) ∈ A, otherwise

tend
j = tstart

j + tdur
j (4.5)

As we have calculated starting time, finish time and duration of each task. Now we can
calculate total duration pdur of whole project very easily. The ending time of the last
task in task precedence graph (TPG) will be the total duration of the project and it is
formulated as follows

pdur = max[tend
j |∀k 6= j(t j, tk) /∈ A (4.6)

After that we have to calculate total cost pcost of the project. For this first we have to
calculate the cost of each task and it can be done by following equation.

tcost
j =

E

∑
i=1

esalary
i .mi j.tdur

j (4.7)

Now we can calculate the total cost of the project by the following equation

pcost =
T

∑
j=1

tcost
j (4.8)

In addition to all of this we can have another constraint or another objective that is over
time work of the project, it means the sum of overtime of all employee’s over work. The
overtime can increase mistake chances in employee’s work and in turn it may cause the
delay in project duration as it will require more time to clear those mistakes or errors.
So it is useful that it should be kept in focus what is the total overtime of a project in
order to keep the track of project quality. To calculate the overtime work of an employee,
its dedication on every task and those tasks starting and finishing time is required. The
following equation calculates workload of an employee on instance t.

ework
i (t) = ∑

j|tstart
j ≤t≤tend

j

mi j (4.9)

An employee is doing overwork if its workload is exceeding his/her maximum dedica-
tion.Overwork of an employee can be calculated by following equations.

Chapter 4: Research Methodology and Proposed Solution 31

ramp(x) =

{
x, if x > 0

0, if x≤ 0

eover
i =

∫ pdur

t=0
ramp(ework

i (t)− emaxded
i)dt (4.10)

Now the sum of all employees overwork is the total overwork of the project poverw. And
can be calculated as follows.

poverw =
E

∑
i=1

eover
i (4.11)

A feasible project is the one which have no overwork duration i.e. poverw = 0.

4.2 Algorithm used other then Nature Inspired
Algorithm for the problem:

Algorithms exist that can find an optimal solution (one which produces the minimum/maximum
value of the objective function) in a reasonable time (relative to the size of the prob-
lem) for the very simplest schedule-related problems in particular, for simple versions of
workforce scheduling and basic project scheduling. One of the approaches that is used
commonly is called

Construction Algorithms (including Greedy Algorithms), which start with an empty
or incomplete solution (e.g. where no tasks are scheduled and/or no resources are as-
signed), and incrementally make it more complete (e.g. by scheduling one additional
task and/or assigning one additional resource at a time).

Advantages:

• The simplicity.Greedy algorithms are generally easier to write as well as explain.
All you need to do is check your neighbors and move to the larger one until you
have found the end.

• It is efficient. Here we should not confuse efficiency with accuracy. Greedy algo-
rithms may not always be the most accurate, but they are generally very efficient,
as you only observe local possible moves.

Disadvantages:

• Cons are obvious. It does not not always find the most optimal path. Because you
always give the priority to what has more weightage without knowing the bigger
picture.

• Greedy algorithm doesn’t typically refine its solution based on new information.

32 Chapter 4: Research Methodology and Proposed Solution

4.3 Data collection and Data Analysis

Data sets are collected through research, experimentation and through questionnaire in
quantitative research. In our research the dataset used for the software project schedul-
ing problem will be collected from "Problem/Instance generator" [22]. Dataset gener-
ated from this problem/Instance generator has been used in many other related works
on SPSP.

Problem/Instance generator is a java program that takes simple parameters for SPSP
and automatically generates the dataset for SPSP. The parameters to be set are the no
of tasks, no of employees, etc.

Main components of a data set of SPSP are employees, skills, tasks, employee’s salary,
task’s effort, and task precedence graph (TPG). The parameters have to be set in a
configuration file. Sample configuration files are provided here [22]. For example:

• Int-gen-20-15-t6-7.conf: it generates data file with 15 employees that are uni-
formly distributed among 20 tasks with 6 or 7 skills per task

4.4 Local Search

Local Search is an iterative procedure that moves from one solution in S to the next
(until some stopping criterion is satisfied).Let us consider a simplest example to start
with, imagine a climber who is ascending a mountain on a foggy day 1. She can view
the slope of the terrain close to her, but she cannot see where the top of the mountain
is. Hence, her decisions about the way to go must rely only upon the slope information.
The climber has to choose a strategy to cope with this situation, and a reasonable idea
is, for example, choosing to go uphill at every step until she reaches a peak. However,
because of the fog, she will never be sure whether the peak she has reached is the real
summit of the mountain, or just a mid-level crest.
We need to define three concepts namely search space, the neighborhood relation, and
the cost function in order to apply local search algorithms to a specific search or opti-
mization problem.A computational problem upon which these three entities are defined
is called a local search problem.A given computational problem P can give rise to differ-
ent local search problems for different definitions of these entities.

Chapter 4: Research Methodology and Proposed Solution 33

4.4.1 Search Space:

Given a computational problem P , we associate to each instance of y ∈ IP a search
space SP(y), with the following properties

• Each element s ∈ SP(y) represents an element y ∈ S.

• For optimization problems: at least one optimal element of skp(y) is represented
in SP(y). Together with an objective function f : S(y)R that evaluates each fea-
sible solution. We then seek given an instance ya feasible solution x ∈ S(y) with
minimum objective function value.

we have a valid representation or valid formulation of the problem if the previous require-
ments have been achieved. We write SP(x) as S for simplicity and refer to the elements
of S as solutions.

4.4.2 Neighborhood Relation:

Def: Given a problem P , an instance y ∈ IP and a search space S for it, we assign to
each element s∈ S a set N(s) ⊆ S of neighboring solutions of s. The set N(s) is called
the neighborhood of s and each member s′ ∈ N(s) is called a neighbor of s.
For each s the set N(s) needs not to be listed explicitly. In general it is implicitly de-
fined by referring to a set of possible moves, which define transitions between solutions.
Moves are usually defined in an intentional fashion, as local modifications of some part
of s. The "locality" of moves (under a correspondingly appropriate definition of distance
between solutions) is one of the key ingredients of local search, and actually it has also
given the name to the whole search paradigm. Nevertheless, from the definition above
there is no implication for the existence of "closeness" among neighbors, and actually
complex neighborhood definitions can be used as well.
A neighborhood structure N may be represented by a directed graph G=(V,A) where

• V = S
• (u,v) ∈ A ⇐⇒ v ∈ N(u)

This graph is called the neighborhood graph. In general, it is not possible to store this
graph completely. S usually has exponential size with respect to the instance.In order to
avoid problems with size of the neighborhood graph, a neighorhood is usually described
by operators:

• Let F : S→ S be a function,

• For each feasible s ∈ S,F(s) is a subset consisting only of feasible solutions, we

34 Chapter 4: Research Methodology and Proposed Solution

call F thus an allowed modification For every s∈ S, we can define a neighborhood
structure for a set AM of allowed modifications as follows

N(s) := F(s)|F ∈ AM (4.12)

Suppose the neighborhood graph G = (V,A) is connected, then for every (starting) so-
lution s ∈ S, there exists a directed path to every other solution in S .In particular, we
can provide a sequence of operations to s that result in an optimal solution s ∈ S.But we
only need the later condition. A neighborhood N is called OPT-connected if, from each
solution s ∈ S, an optimal solution can be reached by a finite sequence s,s1, ...,sk,sk+1

of solutions si ∈ S s.t. si+1 ∈ N(si) for i = 1, ...,k,andsk+1 optimal.

4.4.3 Cost Function:

The selection of the move to perform at each step of the search is based on the cost
function. The cost function F associates to each element s ∈ S a value F(s) that as-
sesses the quality of the solution. For the sake of simplicity, we assume that the value
of F is always a positive and integer, or in other words, that the co domain of F is the
set of natural numbers.
For optimization problems, the cost function F must also take into account the objective
function of the problem. Therefore the cost function is typically defined as a weighted
sum of the value of the objective function and the distance to feasibility (which accounts
for the constraints). Normally, the highest weight is assigned to the constraints, so as to
give preference to feasibility over optimality.

4.4.4 Local Search Algorithm:

A local search algorithm, use the moved related to the definition of neighborhood we
defined earlier to iterate by starting from an initial solution sinit ∈ S„ such that it navi-
gates the search space. At each step it makes a transition between one solution s to
one of its neighbors s′. When the algorithm makes the transition from s to s′, we say
that the corresponding move tm has been accepted, and we also write that s′ is equal to
s⊕ tm. The selection of moves is based on the cost function, which as explained above
accounts for the number of violated constraints, and, for optimization problems, also on
the objective function of the problem.

Algorithm and Pseudo Code:

Chapter 4: Research Methodology and Proposed Solution 35

• procedure Local Search(Search Space S, Neighborhood N, Cost Function F);
• begin
• s0 := InitialSolution(S);
• Ii := 0;
• while(StopCriterion(si, i))do
• begin
• m:= SelectMove(si,F,N);
• i f (AcceptableMove(m,si,F))

• then si+1 := si ·m;
• else si+1 := si;
• i := i+1

∗ end

– end

Local Search Techniques:
There are three basic Local search techniques

• Hill Climbing
• Simulated Annealing
• Tabu Search

Hill Climbing relies on the basic idea chosen by the climber in the metaphor proposed
above: at each step of the search a move that "leads uphill" is performed. Hill Climb-
ing is then improved by Simulated Annealing and Tabu Search. Simulated Annealing
is based on probabilistic, memoryless decisions, whereas Tabu Search is based on the
use of memory of previously visited solutions.

Hill Climbing:
Hill Climbing is a technique to solve certain optimization problems. In this technique,
we start with a sub-optimal solution and the solution is improved repeatedly until some
condition is maximized.The term comes from the goal of maximizing a certain function
via an iterative improvement scheme of selecting at each step a move that improves the
value of the objective function or reduce the distance to feasibility.We now list a set of
common hill climbing techniques:

• The most well-known form of hill climbing is the so-called steepest hill climbing
(SHC) technique. At each iteration SHC selects, from the whole neighborhood
N(s) of the current solution s, the element s′ = s⊕ tm which has the minimum
value of the cost function F . The procedure accepts the move tm only is it is an
improving move. Consequently, it stops as soon as it reaches a local minimum.
• Another popular hill climbing technique is random hill climbing (RHC). This tech-

nique selects at random (with or without a uniform probability distribution) one

36 Chapter 4: Research Methodology and Proposed Solution

element s′ = s⊕ tm of the set N(s) of neighbors of the current solution s. The
move tm is accepted, and thus s′ becomes the current solution for the next itera-
tion if tm improves or let equal the cost function, otherwise s remains the current
one for the next iteration.

Their stop criterion is based on the number of iterations without improving the value of
the best solution.

Simulated Annealing:
The idea of this technique is to avoid cycling by randomization, i.e. simulate the anneal-
ing process from physics.The method got that name after an analogy with a simulated
controlled cooling of a collection of hot vibrating atoms.We choose a solutions′ ∈ S ran-
domly and then we accept solution only with a certain probability.
In the i− th iteration, s′ is accepted with probability,

min[1,e
f (s′) f (s)

ti] (4.13)

where (ti) is a sequence of positive control values with limi→∞ ti. Often, (ti) is defined
in analogy to physics as

ti+1 := αti,0 < α < 1 (4.14)

Other variant of Simulated Annealing is given by Threshold Acceptance, where accep-
tance rule for s′ ∈ N is accepted if difference f (s) f (s′) is within some limit li. li also
decreases with number of iterations, where best := f (s).

Tabu Search:
Another deterministic strategy to avoid cycling is to store all visited solutions in a so-
called tabu-list T . Tabu Search (TS) is a method in which keeping memory of features
of previously visited solutions has a fundamental role. The basic mechanism of TS is
quite simple and is given by

• a neighbor is only accepted if it is not contained in T

• At each iteration a subset B ⊆ N(s) of the neighborhood of the current solution s
is explored.

• The member of B that gives the minimum value of the cost function becomes the
new current solution independently of the fact that its value is better or worse than
the value in s.

To prevent cycling, there is a so-called tabu list, which is the list of moves which it is
forbidden to execute. The tabu list comprises the last m moves, where m is a parameter
of the method, and it is run as a queue; that is, whenever a new move is accepted as
the new current solution, the oldest one is discarded. Notice that moves, not solutions,
are asserted to be tabu. Therefore, a move tm can be tabu even if when applied to the

Chapter 4: Research Methodology and Proposed Solution 37

current solution s it leads to an non visited solution. In other words, the basic TS scheme
avoids visiting not only previous solutions, but also solutions having features presented
in solutions already visited.For this reason, there is also a mechanism that overrides
the tabu status of a move: If in a solution s a move tm gives a large improvement of
the cost function, then its tabu status is dropped, and the solution s⊕ tm is accepted
as the new current one. The disadvantage is that also new solutions may be declared
tabu, so the aspiration criteria is accept solution even if they are tabu, for exmaple based
on objective function value.More precisely, this mechanism makes use of an aspiration
function A. For each value t of the cost function, A computes the cost value that the
algorithm aspires to reach starting from t. Given a current solution s, the cost function
F , and the best neighbor solution s′ ∈ B, i f F(s′) ≤ A(F(s)),then s′ becomes the new
current solution, even if the move m that leads to s′ has a tabu status.

4.5 Modified Multi-objective Bat Algorithm (MMOBA)

Bat algorithm is a nature inspired algorithm first proposed by Xin-She Yang in 2010 [23].
Bats are the only mammals that have wings and have this amazing capability of catching
prey even in complete darkness due to echolocation. There are different species of
bat and different size ranges. The capability of echolocation varies in different species.
Micro bats uses echolocation extensively than other species of bats. The bats generates
a loud impulse of sound and waits for the carefully observe and listens to the echo that
bounces back from its surrounding objects. Bats have the ability that they can vary their
pulse depending on the strategy of hunt. A bat algorithm was inspired by these amazing
properties of bats.
Each bat in the algorithm represents a solution and has a velocity and position. It is
updated in iterations according to following equations

fi = fmin +(fmax− fmin)β (4.15)

vt
i = vt−1

i +(xt
i− x) fi (4.16)

xt
i = xt−1

i + vt
i (4.17)

Where,

• fmax represents maximum frequency.

• β is a random variable whose value ranges between [0,1].
• vi is velocity of ith bat.

• xi is the ith position of bat.

• x represents solution of bat which has best fitness value obtained after compari-
son among all the n bats so far.

New solutions are generated through a random search in search space. Once solutions

38 Chapter 4: Research Methodology and Proposed Solution

are generated the best solution is selected. Now the new solutions or bats are generated
from the current best solution by following equation.

xnew = xold + εAt (4.18)

• At is the average loudness of bats in a particular step
• ε is random value between [−1,1] and represents direction and intensity of ran-

dom walk.

As bats approaches near there prey usually the pulse emission rates increases and
loudness usually decreases, so both these factors must be updated at each iteration
step. They are updated by the following equations

At+1
i = αAt

i (4.19)

rt+1
i = r0

i [1− e(−γt)] (4.20)

Here γ and α are constants, whose values are γ > 0 and 0 < α < 1.

Algorithm and Pseudo Code:

• Objective function f (x),x = (x1, ...,xd)
T

• Initialize the bat population xi(i = 1,2, ...,n) and vi

• Define the pulse frequency fi at xi

• Initialize pulse rates ri and loudness Ai

• While (t < Max number of iterations)

1. Generate new solutions by adjusting frequency
2. Update velocities and position or location using equation 4.13 and 4.14

– if (rand > ri)

a) Selection a solution among the best solutions
b) Generate a local solution around the selected best solution

∗ end if

1. Generate a new solution by flying randomly

∗ if (rand < Aiand f (xi)< f (x))

1. Accept the new solutions
2. Increase ri and reduce Ai

∗ end if

Chapter 4: Research Methodology and Proposed Solution 39

1. Rank the bats and find the current best x

• end while

1. Post process results and visualizations

Modifications:

Bat algorithm was proposed in 2010 and up till now it is used in many application in-
cluding Combinatorial Optimization and Scheduling, Inverse Problems and Parameter
Estimation, data mining, image segmentation etc. [24] Like many other nature inspired
meta heuristics algorithms, bat algorithm is simple, flexible and easy to implement.
According to the algorithm there is a problem balance between exploration and ex-
ploitation. In algorithm the possibility that rand > ri is very low to be ensured by the bat.
Exploitation capability is dominating at the start of iterations whereas exploration domi-
nates as iterations increase.So, optimization algorithm has to drive forward exploration
capability at the first iterations then exploitation capability at the later iterations so as to
reach optimum point.
The process of updating velocity and position increases exploration capability of bat
algorithm whereas the generation process of candidate solution around the best solu-
tion increases exploitation capability. So this means algorithm will be good at explo-
ration but bad at exploitation if the new candidates solutions are generated by equations
4.15− 4.17, algorithm will be bad at exploration but good at exploitation,if new candi-
date solutions are generated around best solution is according to equation 4.18, hence
the balance is not preserved and algorithm can easily get trapped local minimum. So
the solution to this issue is actually the pulse rate which provides the balance between
exploration and exploitation. As the number of iterations increase the pulse rate also
increases with it. The possibility of rand > ri decreases as the iteration proceeds, so
this would mean that exploitation occurs at the first steps of iteration and exploration
occurs at the preceding steps.
Loudness A decreases during the iterations. Accordingly the possibility of Ai > rand
is higher at the beginning of iterations but lower at the following iterations. So this
would mean that the inclusion possibility of new candidate solutions into the bat popula-
tion,which generated by exploration at the end of the iterations is weak. If the algorithm
gets trapped into local minimum at the beginning of iterations, newly generated solutions
also accumulate around such local minimum. Due to this reason, the elusion possibility
of algorithm from local region decreases.
The bat algorithm has poor exploration ability but it can be improved by equalizing the
loudness A and pulse emission rate r to the problem dimension. Because these are
the two factors that effect all the dimensions of the solutions. So we basically assign
these factors to each dimension in the solution separately so that both exploration and
exploitation capabilities can be performed collectively. In modified bat algorithm each
dimension j of solution i, which provides the rand j > ri j, approaches around the di-

40 Chapter 4: Research Methodology and Proposed Solution

mension j of the best solution and the rest dimensions of solution i keep on seeking
the search space as compared to BA in which all the solutions satisfying rand > ri
converges to the best solution with entire dimension . It is given by following equation

xt+1
i j =

{
xt

u j + εAt
j, if rand j > ri j

xt
i j, otherwise

• At
j represents the average loudness of dimension j of all the solutions at time t.

• u is the solution selected among best solutions.

Similarly for the dimension j of solution i where rand j > ri j , the loudness and pulse
rate emission are updated as

At+1
i j =

{
αAt

i j, if rand j > ri j

At
i j, otherwise

rt+1
i j =

{
r0

i (1− e−γt), if rand j > ri j

rt
i j, otherwise

Now according to these equations the dimensions j of solution i where rand j > ri j are
expected to search the space through exploration capability as iteration proceeds which
previously exploit.Therefore the possibility of rand j > ri j is reduced by increasing of
pulse emission rate. Similarly apart from the dimensions above the other dimensions
are expected to upgrade current solutions by exploitation capability at the following it-
erations which previously explore. So that rand j > ri j possibility is retained for other
dimensions at preceding iterations.Search range of best solution is narrowed for dimen-
sions j of solution i by reducing loudness A that belongs to these dimensions.

In this work bat algorithm is modified to get better results, for random walk we defined
a parameter Ω , which decides how many new solutions will be generated. These new
solutions will be generated in way of random local search. The pseudo code for the
modified bat algorithm is as follows

Algorithm and Pseudo Code:

Input: fmax, fmin,β ,amin,amax,α,γ,Ω,n,noO f Iterations.
Output: Non-Dominated solutions.

• Initialize the bat population xi,(i = 1,2...n)

• Initialize initial pulse, frequency and loudness for each bat.

Chapter 4: Research Methodology and Proposed Solution 41

• While (t < noOfIterations)

– For each bat x

1. Generate new solution by adjusting velocity and frequency according to
respective equations mentioned above

– if (rand > pulse rate of x)

1. Generate Ω number of solutions using random local search.

2. Select a solution among the best solutions.

– end if

1. Generate a new solution by flying randomly

– if (rand< loudness of x f (x)< f (x∗))

1. Accept the new solutions

2. Increase pulse and reduce loudness using equation mentioned above

– end if

1. Rank the bats and find the current best x∗

• end while

1. Apply non-dominated sort and return non-dominated solutions.

4.6 Why Bat algorithm?

BAT uses frequency tuning and echolocation to solve the problems. Frequency varia-
tions help to mimic the true functionality of the problem. This feature is also available
in other algorithms as well like particle swarm optimization (PSO) so bat algorithm (BA)
has the advantage of particle swarm optimization (PSO). It uses automatic zooming and
it is a prominent advantage on other metaheuristics algorithms. It has the ability that it
can zoom into the area of search space where feasible and best solutions are found. It
uses dynamic parameter control and in this way it can switch from exploration to exploita-
tion in search space. Also theoretical analysis of BA by Huang et al. (2013) suggested
that "bat algorithm (BA) has guaranteed global convergence properties under the right
condition, and bat algorithm (BA) can also solve large-scale problems effectively" [24].

42 Chapter 4: Research Methodology and Proposed Solution

4.7 Evaluation measure

Optimal Pareto front is generated by taking 10 runs of each algorithm on software project
scheduling problem (SPSP). To analyze and evaluate bat algorithm viability from other
algorithms we will have following benchmark parameters for quality estimation of multi-
objective algorithms.

• Hyper-volume: The hyper-volume calculates the volume in the objective space,
which is covered by the solutions of the obtained Pareto front approximation.The
hypervolume measure has been dominantly used for performance evaluation of
nature inspired algorithms.The hypervolume gives the multidimensional volume
of the portion of the objective space that is weakly dominated by an approxima-
tion set.Using the hypervolume of the dominated portion of the objective space
as a measure for the quality of Pareto set approximations has received more and
more attention in recent years. The reason is that this measure has two important
advantages over other set measures. 1) It is sensitive to any type of improve-
ments, i.e., whenever an approximation set A dominates another approximation
set B, then the measure yields a strictly better quality value for the former than
for the latter set algorithms for many years.2)As a result from the first property,
the hypervolume measure guarantees that any approximation set A that achieves
the maximally possible quality value for a particular problem contains all Pareto-
optimal objective vectors.

HV (A) =
∫ zmax

zmin
αA(z)dz (4.21)

αA(z) =

{
1, if ∃a ∈ A such that z� a

0, otherwise

In practice, only the upper-bound vector zmax ∈ Rd is required to compute the hy-
pervolume; this parameter is called reference point.

• Spread: This indicator measures the extent of spread by the set of computed
solutions.
In order to compare the different algorithm we used the spreading metric in Equa-
tion

∆ =
∑
|F | de +∑

|Q|
i |di−µ|

∑
|F | de + |Q|µ

(4.22)

|F | is the number of objective functions, de is the distance between every extreme
in the Pareto set we are measuring and the corresponding extreme in a Refer-
ence Pareto set, |Q| is the population size, di is the sum of normalized Euclidean
distance from point ith to their neighbors in every objective function (point (i+1)th

sorting every objective function), and µ is the mean of the distances of the Pareto

Chapter 4: Research Methodology and Proposed Solution 43

set we are measuring.

• Generational Distance: It measures how far are the elements in the computed
approximation from those in the optimal Pareto front. The general distance (GD)
indicates how close the obtained Pareto Fronts are to the true pareto front in
multiobjective optimization problems.Given a candidate set A = {a1, ...,aN} (in
image space) and a Pareto front F(PQ)={y1, ...,yM}, the Generational Distance
(GD)) are defined as follows:

GD(A) =
1
N
(

N

∑
i=1

dp
i)

1
p (4.23)

where di denotes the minimal Euclidean Distance from ai to F(PQ).

• Inverted Generational Distance: It measures the distances between each solu-
tion composing the optimal Pareto front and the computed approximation.Given a
candidate set A= {a1, ...,aM} (in image space) and a Pareto front F(PQ)={y1, ...,yM},
the Generational Distance (GD)) are defined as follows:

IGD(A) =
1
M
(

M

∑
i=1

d̄p
i)

1
p (4.24)

where di denotes the minimal Euclidean Distance from ai to F(PQ).The main ad-
vantages of the IGD measure are twofold. One is its computational efficiency:
The IGD measure can be easily calculated even for many-objective problems.
The other is its generality: The IGD measure usually shows the overall quality of
an obtained solution set A (i.e., its convergence to the Pareto front and its diversity
over the Pareto front). Thanks to these nice properties, recently the IGD measure
has been frequently used to evaluate the performance of optimization algorithms
on many objective problems in the literature.

4.8 Proposed Method

The proposed method for solving software project scheduling problem (SPSP) is the
modified version of multi-objective bat algorithm. According to theoretical research bat
algorithm provides viable results in different problems so we assume that in software
project scheduling problem (SPSP), it will also provide better results than the rest of
the proposed algorithms for software project scheduling problem (SPSP). 6 datasets
of different sizes will be generated and results of these datasets will be gathered on
different algorithms. These results will then be compared by the results of modified
multi-objective bat algorithm (MMOBA).

44

Chapter 5: Experiments and Results 45

5 Experiments and Results

In thesis, software project scheduling problem using genetic algorithms results are
reproduced.[28]The data sets used in this paper are generated using instance gen-
erator whose details are presented in the next section. Each data set is executed
on different evolutionary algorithms 10 times. For comparison we have used MOEA
framework that consists of multiple evolutionary algorithms. From these following algo-
rithms are selected to execute software project scheduling problem and gathered re-
sults: DBEA(Improved Decomposition-Based Evolutionary Algorithm), MOEA- D (Multi-
objective Evolutionary Algorithm with Decomposition), NSGAII(Non-dominated Sorting
Genetic Algorithm II), OMOPSO(Multiobjective Particle Swarm Optimization), PESA2
(Pareto Envelope-based Selection Algorithm), Random Search, RVEA(Reference Vec-
tor Guided Evolutionary Algorithm), SPEA2(Strength-based Evolutionary Algorithm),
VEGA(Vector Evaluated Genetic Algorithm), ε−MOEA(ε-Dominance-based Evolution-
ary Algorithm), GDE3 (Generalized Differential Evolution), PAES(Pareto Archived Evolu-
tion Strategy) and SMPSO(Speed-Constrained Multiobjective Particle Swarm Optimiza-
tion) [53]. GDE3, MOEA-D, OMOPSO and SMPSO use real valued operators so for this
we converted binary vector of chromosome into real number vector of dedications. Rest
of the algorithms can be of any operator i.e. binary, real etc. Graph with calculated real
Pareto fronts on each datasets is shown in which cost is on x-axis and duration is on
y-axis and indicators like hyper-volume, spread, generational and inverted generational
distance are calculated. Table 5.1 represents algorithms parameters and their values
used in these experimentation.

Algorithm Iterations PopulationSize pm.rate bisections pm.distributionIndex

DBEA 100000 100
MOEAD 100000 100 1/L
NSGAII 100000 100 1/L

OMOPSO 100000 100
PESA2 100000 100 4
Random 100000 100
RVEA 100000 100 1/L
SPEA2 100000 100 1/L
VEGA 100000 100 1/L

e-MOEA 100000 100
GDE3 100000 100

SMPSO 100000 100 1/L 8
PAES 100000 100 1/L 8 20

Table 5.1: Algorithms with parameters values

46 Chapter 5: Experiments and Results

Algorithm archiveSize sbx.rate mutationProbability

DBEA
MOEAD 0.9
NSGAII 0.9

OMOPSO 100 1/L
PESA2
Random
RVEA 0.9
SPEA2 0.9
VEGA 0.9

e-MOEA
GDE3

SMPSO 100
PAES

Table 5.2: Algorithms with parameters values

Specifications MMOBA-Values

noOfIterations 1000
noOfBats (population size) 100

fmin 0
fmax 1
β 0.1
ω 20

Amin 0
Amax 1

α 0.99
γ 0.9

Table 5.3: MMOBA with parameters values

5.1 Data Set

The paper uses 6 data sets with following parameters

DataSets No of employees No of tasks No of skills

Data Set1: i30-15g5 15 30 5
Data Set1: i10-5g5 5 10 5
Data Set1: i10-5p7 5 10 6-7

Data Set1: i20-15g10 15 20 10
Data Set1: i30-5g5 5 30 5

Data Set1: i40-20g10 20 40 10

Table 5.4: Data sets with parameters

Chapter 5: Experiments and Results 47

5.2 Results

Hyper-Volume(Mean)

I10-5g5 I10-5p7 I20-15g10 I30-5g5 I30-15g5 I40-20g10

MMOBA 0.693938614 0.594480526 0.667253201 0.465046955 0.611817457 0.446209688
DBEA 0.706986049 0.674420572 0.4309389 0.19673789 0.426136805 NAN

MOEAD 0.243045019 0.204871916 0.311281035 1.08802E-15 0.129959366 0.142025684
NSGAII 0.130819567 0.077025762 0.151992537 0.170840062 0.082746746 0.06715621

OMOPSO 0.350558368 0.150850724 0.09369913 0.009131608 0.046166235 0.177894681
PESA2 0.172728381 0.16866737 0.075664801 0.183137562 0.048111157 2.58682E-15
Random 3.07532E-15 1.07692E-15 0.074641313 0.052740584 0.034560515 0
RVEA 0.356324809 0.094190035 0.121461589 0.047565473 0.177958441 0.050745783
SPEA2 0.297187686 0.190125122 0.16530752 0.10228894 0.123985751 2.10942E-16
VEGA 0.060130483 0.008331356 0.000483986 0.261880427 0.036613345 0.034252346

e-MOEA 0.678800543 0.63950606 0.267855872 0.128380458 0.129680624 NAN
GDE3 0.236470691 0.125907017 0.353945713 NAN 4.44089E-17 1.03251E-15

SMPSO 0.00177317 0.202266268 0.231906673 0.098797507 0.144116666 0.006302263
PAES 0.604658346 0.554848878 0.343459556 0.156123736 0.160591451 0.084886574

Table 5.5: Hyper-volume

Hyper-Volume(SD)

I10-5g5 I10-5p I20-15g10 I30-5g5 I30-15g5 I40-20g10

MMOBA 0.058786138 0.031745826 0.032141193 0.144163518 0.07415734 0.090940579
DBEA 0.026343469 0.021529587 0.117248495 0.129655806 0.190550324 Nan

MOEAD 0.142657155 0.170431685 0.201025656 3.44062E-15 0.20128042 0.140783647
NSGAII 0.083238988 0.028936093 0.095137706 0.155451169 0.059633769 0.18785326

OMOPSO 0.18742501 0.06633796 0.139930066 0.028876681 0.110940426 0.268546412
PESA2 0.101759263 0.125746567 0.091735591 0.253698366 0.135250059 8.18024E-15
Random 8.72278E-15 3.25247E-15 0.131979778 0.08807860 0.109289946 0
RVEA 0.208758193 0.19431956 0.259284035 0.133439756 0.268074848 0.107056744
SPEA2 0.06018822 0.035578262 0.101456236 0.07208568 0.141537403 6.67058E-16
VEGA 0.104173169 0.02634606 0.001530498 0.239665359 0.070645633 0.066036915

e-MOEA 0.039070589 0.042832523 0.196479095 0.098369618 0.185839253 NAN
GDE3 0.281860182 0.129785792 0.204248806 NAN 1.40433E-16 2.96616E-15

SMPSO 0.005607256 0.120383314 0.315755167 0.282843323 0.189358578 0.00869051
PAES 0.059097369 0.078300588 0.097406697 0.134351381 0.234646171 0.126080192

Table 5.6: Hyper-volume

48 Chapter 5: Experiments and Results

On calculating hyper-volume of each algorithm on all 6 datasets, the tables 5.5,5.6
clearly shows that our proposed modified multi-objective bat algorithm (MMOBA) per-
formed better in case of large datasets i.e. i20-15g5, i30-5g5, i30-15g5 and i40-20g10,
while DBEA which is which is simple decomposition based evolutionary algorithm on
small datasets i.e. i105g5 and i105p7. However results of proposed algorithm on small
datasets are almost near to the results of DBEA on small datasets.

Spread

I10-5g5 I10-5p7 I20-15g10 I30-5g5 I30-15g5 I40-20g10

MMOBA 0.70420331 0.703925755 0.656440881 0.743523064 0.615985304 0.627866516
DBEA 0.68041387 0.659575133 0.676362468 0.819449519 0.659975466 NAN

MOEAD 0.220653054 0.422467783 1.097801132 1.00636496 0.993005838 1.009314301
NSGAII 1.124432401 0.903098958 1.010462781 0.753519053 0.85166715 1

OMOPSO 1.006118333 0.97256788 0.93150407 0.989795967 1 1
PESA2 0.989873818 1.073357029 1.017264468 0.953332753 1 1
Random 1 1 1 1 1 1
RVEA 0.734196749 0.917081137 1 1 1 1
SPEA2 0.919840128 0.938549277 0.980877033 1.014359983 0.889103007 1
VEGA 1 1 1 1 1 1

e-MOEA 0.806048053 0.871285558 0.710611363 0.98473582 0.721073042 NAN
GDE3 0.933850963 0.918154013 0.926159182 NAN 1 1

SMPSO 0.906137383 0.980399465 0.96906604 1.008349223 1 1
PAES 0.76638296 0.797171309 1.050428005 0.974579897 0.931393281 1

Table 5.7: Spread

Spread is another parameter for optimization problems that specifies the rate in which
solutions are dispersed in front. According to the results presented in table 5.7 shows
that our proposed modified multi-objective bat algorithm (MMOBA) performed better
here also in case of large datasets i.e. i20-15g5, i30-5g5, i30-15g5 and i40-20g10,
while MOEAD which is also a decomposition based evolutionary algorithm on small
datasets i.e. i105g5 and i105p7.

Chapter 5: Experiments and Results 49

GD

I10-5g5 I10-5p7 I20-15g10 I30-5g5 I30-15g5 I40-20g10

MMOBA 0.044302538 0.025020041 0.050803325 0.127688001 0.073605108 0.096399854
DBEA 0.003352854 0.005242017 0.097564746 0.11783803 0.138309034 NAN

MOEAD 0.036192937 0.073544207 0.048071368 6.506527962 1.204537192 0.182451911
NSGAII 0.067220275 0.159536341 0.143388325 0.166374633 0.136923916 0.373708666

OMOPSO 0.019160655 0.015826623 1.028429655 0.33616486 0.902741519 0.461976173
PESA2 0.072032886 0.171946474 0.34018374 0.305206434 1.588701646 0.795187153
Random 1.592888926 0.897403288 0.785394077 0.228350562 0.930765382 NAN
RVEA 0.044716774 0.532163252 0.442633728 0.515690665 0.517195908 0.64118836
SPEA2 0.043837898 0.052467676 0.04837557 0.069041055 0.088460055 1.329569132
VEGA 0.212510421 1.375278151 1.565226435 0.279682567 0.47539022 0.350282009

e-MOEA 0.003380314 0.002743898 0.088823607 0.077247485 0.17574166 NAN
GDE3 0.268206159 0.240574774 0.051115774 NAN 1.255004619 1.041190974

SMPSO 7.738994175 0.04711882 0.201425044 3.019125959 0.627074074 0.137729377
PAES 0.005446067 0.007113635 0.04671419 0.082226864 0.172949844 0.693142082

Table 5.8: Generational distance

IGD

I10-5g5 I10-5p7 I20-15g10 I30-5g5 I30-15g5 I40-20g10

MMOBA 0.064946235 0.029630163 0.057224173 0.098783269 0.079187524 0.094937838
DBEA 0.006267917 0.004851514 0.104153759 0.101320495 0.118851448 NAN

MOEAD 0.065451948 0.110796879 0.10592118 2.165306191 0.583772229 0.140873236
NSGAII 0.125895019 0.061182844 0.05667836 0.164741527 0.124658262 0.603596822

OMOPSO 0.02365667 0.013082904 0.5367735 0.248422294 0.832263498 0.643310781
PESA2 0.054316026 0.049499329 0.263425513 0.188643028 1.226000817 0.912602637
Random 1.478102022 1.138845791 0.677011529 0.33527847 0.839465171 NAN
RVEA 0.058890206 0.511423534 0.587612229 0.574835282 0.664715939 0.6398338
SPEA2 0.063346955 0.03196065 0.044882713 0.097353088 0.121609297 1.397116422
VEGA 0.063346955 0.03196065 0.044882713 0.097353088 0.121609297 1.397116422

e-MOEA 0.004779952 0.004106833 0.09475331 0.099680515 0.145601432 NAN
GDE3 0.133424938 0.084877169 0.067589153 NAN 1.328444904 1.118818202

SMPSO 17.86128095 0.037878979 0.234278684 1.890655616 0.576516465 0.286859179
PAES 0.006841269 0.012575354 0.071146869 0.080177671 0.19806489 0.531814873

Table 5.9: Inverted Generational distance

On calculating generational and inverted generational distance of software project schedul-
ing problem on set of algorithms, results in table 5.8 and 5.9 shows that proposed al-
gorithm performed better on extreme large datasets i.e. i30-15g5 and i40-20g10, while
DBEA, e-MOEA, PAES, NSGAII and SPEA2 gives better generational and inverted gen-
erational distance on other datasets.

50 Chapter 5: Experiments and Results

5.3 Pareto Front

Figure below represents reference Pareto fronts of all algorithms gathered on all 6
datasets.

Figure 5.1: Reference Pareto fronts of all datasets

Chapter 6: Conculsion 51

6 Conculsion

In this thesis algorithms from MOEA frameworks are used for comparison with our
proposed algorithm modified multi-objective bat algorithm (MMOBA) with 6 different
sized datasets and it is concluded that proposed modified multi-objective bat algorithm
(MMOBA) performed better than most of the other evolutionary algorithms on large
datasets of software project scheduling problem. Hyper-volume and spread results
showed that proposed algorithm worked better for large data sets, generational and
inverted generational distance showed that for extreme large datasets proposed algo-
rithm worked better while DBEA and MOEA-D performed better for small datasets. For
future research proposed bat algorithm can be merged with DBEA and MOEA-D and
hybrid algorithm can be made for getting better results for all large and small datasets.

52

Chapter 6: Bibliography 53

Bibliography

[1] Ai-Junkie. ["Genetic Algorithms in Plain English"] .
http://www.ai-junkie.com/ga/intro/gat1.html

[2] Chun ["Genetic Algorithms"].
https://www.doc.ic.ac.uk/ nd/surprise96/ journal/vol1/hmw/article1.html

[3] Mitchell, Melanie (1996). ["An Introduction to Genetic Algorithms"]. Cambridge,
MA: MIT Press. ISBN 9780585030944.

[4] Tutorialspoint. ["Genetic Algorithms Fundamentals"]
https://www.tutorialspoint.com/geneticalgorithms/

[5] Manish Dixit, Nikita Upadhyay and Sanjay Silakari.["An Exhaustive Survey on Na-
ture Inspired Optimization Algorithms International Journal of Software Engineer-
ing and Its Applications"]. Vol. 9, No. 4 (2015), pp. 91-104

[6] Dorigo M, Maniezzo V, Colorni A, [" feedback as a search strategy"]. Technical
Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.

[7] Dorigo M, Maniezzo V, Colorni A. ["Ant System: Optimization by a colony of coop-
erating agents"]. IEEE Trans Syst Man Cybernet Part B 1996; 26 :29-41

[8] Christian Blum. ["Ant colony optimization: Introduction and recent trends"]. Physics
of Life Reviews 2 (2005) 353-373.

[9] AnirudhShekhawat, Pratik Poddar, Dinesh Boswal. ["Ant colony Optimization Algo-
rithms : Introduction and Beyond"]. Artificial Intelligence Seminar 2009.

[10] Wikipedia. ["Ant colony optimization algorithms"]. 26 May 2017.
https://en.wikipedia.org/wiki/Ant-colony-optimization-algorithms

[11] Anonymous.["MODELING OF MULTI-OBJECTIVE TASK SCHEDULING PROB-
LEM IN CLOUD ENVIRONMENT"]. http://shodhganga.inflibnet.ac.in/
bitstream/10603/8273/23/12_chapter%202.pdf

[12] Wikipedia.["Complexity class"].24 May 2017.
https://en.wikipedia.org/wiki/Complexity-class

[13] Weisstein, Eric W. MathWorld–A Wolfram Web Resource. ["NP-Problem"].
http://mathworld.wolfram.com/NP-Problem.html

http://shodhganga.inflibnet.ac.in/bitstream/10603/8273/23/12_chapter%202.pdf
http://shodhganga.inflibnet.ac.in/bitstream/10603/8273/23/12_chapter%202.pdf

54 Chapter 6: Bibliography

[14] Xin-She Yang. ["Firefly Algorithms for Multimodal Optimization"]. Springer-Verlag
Berlin Heidelberg 2009 pp. 169-178, 2009.

[15] IztokFister, Xin-She Yang, IztokFister Jr. and Janez Brest. ["A comprehensive re-
view of firefly algorithms"]. Swarm and Evolutionary Computation.

[16] SupriyaShilwant.Slideshare. ["Firefly Algorithm"].
https://www.slideshare.net/supriyashilwant/firefly-algorithm-49723859

[17] Xin-She Yang and Suash Deb. ["Cuckoo Search via Levy Flights"]. IEEE 2009
World Congress on Nature Biologically Inspired Computing.

[18] Payne R. B, Sorenson M. D., and Klitz K., ["The Cuckoos"]. Oxford University
Press,(2005)

[19] Wikipedia.["Cuckoo Search"]. 25 May 2017.
https://en.wikipedia.org/wiki/Cuckoo-search

[20] James Kennedy and Russell Eberhart. ["Particle Swarm Optimization"]. 1995 IEEE
pg1942-1948

[21] S. Rajasekar, P. Philominathan and V. Chinnathambi. ["RESEARCH METHODOL-
OGY"]. Corenell University arXiv.org, physics.

[22] Anonymous. ["An Instance Generator for the Project Scheduling Problem"]. April
1st of 2005.
http://tracer.lcc.uma.es/problems/psp/generator.html

[23] Xin-She Yang. ["A New Metaheuristic Bat-Inspired Algorithm"]. Department of En-
gineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.

[24] Xin-She Yang.["Bat Algorithm: Literature Review and Applications"]. Int. J. Bio-
Inspired Computation, Vol. 5, No. 3, pp. 141-149 (2013).

[25] T. Hanne and S. Nickel.["A Multi-Objective Evolutionary Algorithm for Scheduling
and Inspection Planning in Software Development Projects"]. Berichte des Fraun-
hofer ITWM,Nr. 42 (2003).

[26] Enrique Alba and J. Francisco Chicano. ["Software project management with
GAs"].Information Sciences 177 (2007) 2380-2401

[27] D.Sundar, B.Umadevi and Dr.K.Alagarsamy. ["Multi Objective Genetic Algorithm
for the Optimized Resource Usage and the Prioritization of the Constraints in the

Chapter 6: Bibliography 55

Software Project Planning"]. International Journal of Computer Applications (0975
- 8887) Volume 3 - No.3, June 2010.

[28] Francisco Chicano, Francisco Luna, Antonio J. Nebro and Enrique Alba.["Using
Multi-Objective Metaheuristics to Solve the Software Project Scheduling Problem"].
GECCO’11,July 12-16, 2011, Dublin, Ireland.

[29] ConstantinosStylianou and Andreas S. Andreou. ["Intelligent Software Project
Scheduling and Team Staffing with Genetic Algorithms"].Part II, IFIP AICT 364,
pp. 169-178, 2011.

[30] Milena KarovaNevenaAvramova. ["A Genetic Algorithm Basic Approach for Soft-
ware Management Project"]. International Conference on Computer Systems and
Technologies - CompSysTech’12.

[31] Leandro L. Minku, Dirk Sudholt and Xin Yao. ["Evolutionary Algorithms for
the Project Scheduling Problem: Runtime Analysis and Improved Design"].
GECCO’12, July 7-11, 2012, Philadelphia, Pennsylvania, USA.

[32] Abel Garcia-Najera and Mariadel Carmen Gomez-Fuentes. ["A Multi-Objective
Genetic Algorithm for the Software Project Scheduling Problem"]. Av. Vasco de
Quiroga 4871,Col. Santa Fe Cuajimalpa, Mexico, D.F., 05300, Mexico 2014

[33] Leandro L. Minku, Dirk Sudholt and Xin Yao. ["Evolutionary Algorithms for
the Project Scheduling Problem: Runtime Analysis and Improved Design"].
GECCO’12, July 7-11, 2012, Philadelphia, Pennsylvania, USA.

[34] MayowaAyodele, MayowaAyodele and Olivier Regnier-Coudert, ["Probabilistic
Model Enhanced Genetic Algorithm for Multi-Mode Resource Constrained Project
Scheduling Problem"]. GECCO ’15 July 11-15, 2015, Madrid, Spain.

[35] ConstantinosStylianou and Andreas S. Andreou. ["Investigating the impact of de-
veloper productivity, task interdependence type and communication overhead in a
multi-objective optimization approach for software project planning"]. Advances in
Engineering Software 98 (2016) 79-96.

[36] Jing Xiao, Xian-Ting Ao and Yong Tang. ["Solving software project scheduling prob-
lems with ant colony optimization"]. Computers Operations Research 40 (2013)
33-46

[37] Wei-Neng Chen and Jun Zhang ["Ant Colony Optimization for Software Project
Scheduling and Staffing with an Event-Based Scheduler"]. IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, VOL. 39, NO. 1, JANUARY 2013.

56 Chapter 6: Bibliography

[38] Broderick Crawford , Ricardo Soto, Franklin Johnson and Eric Monfroy. ["Ants Can
Schedule Software Projects"]. C. Stephanidis (Ed.): Posters, Part I, HCII 2013,
CCIS 373, pp. 635-639, 2013

[39] Bharti Suri, PoojaJajoria. ["Using Ant Colony Optimization in Software Develop-
ment Project Scheduling"]. 2013 International Conference on Advances in Com-
puting,Communications and Informatics (ICACCI).

[40] OlfaDridi, SaoussenKrichen and Adel Guitouni. ["A multiobjective hybrid ant colony
optimization approach applied to the assignment and scheduling problem"]. Intl.
Trans. in Op. Res. 00 (2014) 1-19.

[41] Broderick Crawford, Ricardo Soto, Franklin Johnson , Fernando Paredes and
Miguel Olivares Suarez. ["Max-Min Ant System to solve the Software Project
Scheduling Problem"]. Expert Systems with Applications.

[42] Broderick Crawford, Ricardo Soto, Franklin Johnson , Fernando, Sanjay Misra and
Eduardo Olguin. ["SOFTWARE PROJECT SCHEDULING USING THE HYPER-
CUBE ANT COLONY OPTIMIZATION ALGORITHM"]. Tehnickivjesnik 22, 5(2015),
1171-1178.

[43] Jing Xiao, Mei-Ling Gao and Min-Mei Huang. ["Empirical Study of Multi-Objective
Ant Colony Optimization to Software Project Scheduling Problems"]. GECCO ’15,
July 11 - 15, 2015, Madrid, Spain.

[44] A. C. Biju, T. Aruldoss Albert Victoire, and KumaresanMohanasundaram. ["An Im-
proved Differential Evolution Solution for Software Project Scheduling Problem"].
The Scientific World Journal Volume 2015, Article ID 232193, 9 pages.

[45] Broderick Crawford, Ricardo Soto, Franklin Johnson , Fernando and Sanjay. ["The
Use of Metaheuristics to Software Project Scheduling Problem"]. ICCSA 2014, Part
V, LNCS 8583, pp. 215-226, 2014.

[46] Xiaoxia Huang, Tianyi Zhao and ShamsiyaKudratova. ["Uncertain mean-variance
and semi-variance models for optimal project selection and scheduling"].
Knowledge-Based Systems 93 (2016) 1-11

[47] XiuliWu , Pietro Consoli , Leandro Minku , Gabriela Ochoa and Xin Yao. ["An Evo-
lutionary Hyper-heuristic for the Software Project Scheduling Problem"]. Springer-
Verlag Berlin Heidelberg 2016.

[48] Broderick Crawford, Ricardo Soto, Franklin Johnson, Carlos Valencia and Fer-
nando Paredes. ["Firefly Algorithm to Solve a Project Scheduling Problem"].
Springer International Publishing Switzerland 2016.

Chapter 6: Bibliography 57

[49] Anil K. Gupta, Ken G. Smith and Christina E. Shalley.["The Interplay Between Ex-
ploration and Exploitation"]. Academy of Management Journal 2006, Vol. 49, No.
4, 693-706.

[50] Christian ARTIGUES.["The Resource-Constrained Project Scheduling Problem"].
http://www.iste.co.uk/data/doc-dtalmanhopmh.pdf

[51] Kennedy, J. and R. Eberhart, 1995. ["Particle swarm optimization"]. Proceedings
of the IEEE International Conference on Neural Networks, Piscataway, pp: 1942-
1948

[52] RoohollahKalatehjari. ["The Contribution of Particle Swarm Optimization in Three-
Dimensional Slope Stability Analysis"]. The Scientific World Journal In Press(10)
June 2014.

58

Erklärung 59

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, 4. March 2019

HSMW-Thesis

	Introduction
	Research Problem
	Research Question
	Contributions
	Research Methodology
	Research Strategy/Design

	Extended Background
	Resource Constrained Project scheduling problem
	Nature-inspired algorithms
	Genetic algorithm
	Particle swarm optimization
	Ant Colony Optimization (ACO)
	Firefly Algorithm
	Cuckoo Search

	Literature Review
	Genetic Algorithms
	Ant Colony Optimization
	Firefly Algorithm
	Metaheuristics

	Research Methodology and Proposed Solution
	Project scheduling problem (PSP)
	Skills
	Tasks
	Employees
	Model

	Algorithm used other then Nature Inspired Algorithm for the problem:
	Data collection and Data Analysis
	Local Search
	Search Space:
	Neighborhood Relation:
	Cost Function:
	Local Search Algorithm:

	Modified Multi-objective Bat Algorithm (MMOBA)
	Why Bat algorithm?
	Evaluation measure
	Proposed Method

	Experiments and Results
	Data Set
	Results
	Pareto Front

	Conculsion
	Bibliography

