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This article aims to explain mathematically, why the so called double descent observed by Belkin et al., Recon-
ciling modern machine-learning practice and the classical bias-variance trade-off, PNAS 116(32) (2019), p. 
15849-15854, occurs on the way from the classical approximation regime of machine learning to the modern 
interpolation regime. We argue that this phenomenon may be explained by a decomposition of mean squared 
error plus complexity into bias, variance and an unavoidable irreducible error inherent to the problem. Further, 
in case of normally distributed output errors, we apply this decomposition to explain, why LASSO provides 
reliable predictors avoiding overfitting.

1. Introduction 

While standard statistical machine learning theory [1] 
predicts that bigger models should be more prone to 
overfitting, modern machine learning practitioners claim 
that bigger models are always better. Within the appro-
ximation regime of machine learning, the first point of 
view is supported by the classical property of bias-vari-
ance trade-off well-known in literature since the pionee-
ring work [2]. However, in the modern interpolation re-
gime of deep learning, where there are so many para-
meters that data points do not have to be approximated 
but may be interpolated, a decay of the bias towards an 
asymptote was observed by [3] in neural networks as the 
network width increases. Belkin et al. [4] provided strong 
evidence for the existence and ubiquity of such a double 
descent (see Figure 1) for a wide spectrum of data mo-
dels including decision trees and simple neural net-
works. 

A concise explanation of this double descent pheno-
menon still seems to be missing in literature, although 
there are recent attempts [5] using a fine-grained bias-
variance decomposition of the mean-squared error 
(MSE). In this article, we follow a similar strategy and aim 
to provide an explanation for the occurence of double 
descent in machine learning using complexity [6]. This 
correponds to the fact that 

 an underfitted model has a high MSE on trai-
ning data, high bias, low variance, low comple-
xity, 

 an overfitted model has a low MSE on training 
data, low bias, high variance, high complexity, 

 a complexity reduced interpolation model has 
zero MSE on training data, low bias, reduced va-
riance, reduced complexity. 

Further, we will offer an explanation why LASSO [7], i.e. 
L1-regularized approximation, occurs naturally in statis-
tical learning and provides reliable predictors avoiding 
overfitting. 

 
Figure 1: MSE on unseen data is a double descent curve [4] 

2. Standard Bias-Variance Decomposition 

Machine learning methods estimate an unknown deter-
ministic input-output map from given inputs 𝑢  ∈ 𝒰 and 
corresponding outputs 𝑦  ∈ 𝒴, 𝑖 1, … ,𝑁, as training 
data. In the mathematical framework of statistical learn-
ing theory, it is assumed that 

 the inputs 𝑢 , 𝑖 1, … ,𝑁, are drawn from a mea-
surable space 𝒰 independently according to a 
fixed but unknown distribution of a random va-
riable 𝑈, 

 for every input 𝑢  an output 𝑦  is drawn from a 
measurable space 𝒴 according to a fixed but 
unknown conditional distribution of a random 
variable 𝑌 given 𝑈 𝑢 . 

For simplicity, let us further assume that 𝒰 and 𝒴 are fi-
nite-dimensional real Hilbert spaces, and that the distri-
bution of the input resp. the conditional distribution of 
the output to an input are continuous, i.e. have densities 
𝑓 𝑢  resp. 𝑓 | 𝑦|𝑢  w.r.t. Lebesgue measure. Then, the 
density of the joint distribution of 𝑈,𝑌  is given by 
𝑓 , 𝑢,𝑦 𝑓 | 𝑦|𝑢 𝑓 𝑢 , and the unknown determi-
nistic input-output map 𝐹:𝒰 ⟶ 𝒴 is the expected output 
given an input, i.e. 

𝐹𝑢  𝐸 𝑌|𝑈 𝑢  𝑦 𝑓 | 𝑦|𝑢  𝑑𝑦
 

𝒴
 . 

Because a machine learning method selects on the basis 
of training data 𝑢 ,, 𝑦 , 𝑖 1, … ,𝑁, a map 𝐹

,, ,…, ,,  
from a 𝐷-dimensional space ℱ of functions mapping 𝒰 
to 𝒴 as estimation of the unknown deterministic input-
output map 𝐹  𝐸 𝑌|𝑈 , in statistical learning theory 
the predictor itself has to be considered as random vari-



able 𝐹 𝐹
,, ,…, ,,   induced by the machine learn-

ing method and by the random variables 𝑈 ,,𝑌 , 𝑖
1, … ,𝑁, which are i.i.d. as 𝑈,𝑌 . 

Within this theory, the failure of overfitted models –  low 
MSE on training data, but high variation w.r.t. training 
data and therefore bad generalization to unseen data – 
can be mathematically explained by the decomposition 

𝐸 , , |𝐹 𝑈 𝑌|𝒴 𝐸 , |𝐹 𝑈 𝐸 𝐹 𝑈|𝒴
𝐸 |𝐸 𝐹 𝑈 𝐸 𝑌|𝑈 |𝒴 𝐸 , |𝑌 𝐸 𝑌|𝑈 |𝒴    (1) 

of the expected squared error of 𝐹  w.r.t. training data 𝑇 
into three parts: The variance of 𝐹  w.r.t. training data, 
the squared bias of the predictor 𝐸 𝐹  expected from 
training data, and the variance of 𝑌 as an unavoidable 
irreducible error inherent to the problem. Now, if you 
enhance the capacity of the function space ℱ by increa-
sing the dimension 𝐷 beyond an optimal threshold, then 
the squared bias of the predictor 𝐸 𝐹   often de-
creases, because 𝐸 𝐹 𝑈 can better resemble the out-
put 𝐹𝑈 𝐸 𝑌|𝑈  expected at 𝑈. However, variance 
𝐸 , |𝐹 𝑈 𝐸 𝐹 𝑈|𝒴  w.r.t. training data 𝑇 often in-
creases more strongly, leading in total to a larger expec-
ted squared error of 𝐹 than at the optimal threshold. 
This bias-variance trade-off explains the failure of over-
fitted models in the classical approximation regime of 
machine learning. Yet, there is no necessity that a ma-
chine learning method shows this behaviour, and in fact, 
a simultaneous decrease of variance and bias can be ob-
served in the modern interpolation regime of machine 
learning [3,4]. 

3. Bias-Variance-Complexity Decomposition 

In this section, we aim to explain double descent and si-
multaneous decrease of variance and bias in the mo-
dern interpolation regime of machine learning by a bias-
variance decomposition of mean squared error plus 
complexity. Let us consider the mean squared error with 
random training data, i.e. the random variable 

1
𝑁

|𝐹 𝑈 𝑌 |𝒴 

If we try to calculate the expected value of this random 
variable w.r.t. training data and to obtain a similar de-
composition as (1), it makes sense to notationally sepa-
rate the 𝑖-th variable from the other variables by setting 
𝐹 , ≔ 𝐸 𝐹 , , , where 𝑇  does not contain 𝑈 ,𝑌 . 
As a first partial result, we then obtain the decomposi-
tion 

𝐸 |𝐹 𝑈 𝑌 |𝒴 𝐸 |𝐹 𝑈 𝐹 , 𝑈 |𝒴
𝐸 , |𝐹 , 𝑈 𝑌 |𝒴  (2) 

of the expected squared error at the 𝑖-th input into vari-
ance of 𝐹  w.r.t. training data 𝑇 and expected squared 
error of the predictor 𝐹 , 𝑈  with variable 𝑖-th input for 
training, because 𝐸 𝐸 , 𝐸  and the expectation of 
the middle term in 

|𝐹 𝑈 𝑌 |𝒴  |𝐹 𝑈 𝐹 , 𝑈 |𝒴  

 2 𝐹 𝑈 𝐹 , 𝑈 𝐹 , 𝑈 𝑌  |𝐹 , 𝑈 𝑌 |𝒴  
 
vanishes due to 𝐸 𝐹 𝑈 𝐹 , 𝑈 0. However, in the 
further decomposition of 𝐸 , |𝐹 , 𝑈 𝑌 |𝒴  the mi-
ddle term does not vanish: The middle term on the right 
of  

𝐸 , |𝐹 , 𝑈 𝑌 |𝒴  
𝐸 , 𝐹 , 𝑈 𝐸 𝑌 |𝑈 |𝒴  

    2 𝐸 , 𝐹 , 𝑈 𝐸 𝑌 |𝑈 𝑌

𝐸 𝑌 |𝑈  

   𝐸 , |𝑌 𝐸 𝑌 |𝑈 |𝒴  

(3) 

is given by 

𝐸 , 𝐹 , 𝑈 𝐸 𝑌 |𝑈 𝑌 𝐸 𝑌 |𝑈  

𝐹 , 𝑢 𝐹𝑢 𝑦 𝐹𝑢  𝑓 | 𝑦|𝑢 𝑑𝑦
 

𝒴

 

𝒰
𝑓 𝑢 𝑑𝑢 , 

and this term could be named expected complexity of 
𝐹 . Note that the scalar product inside the integral is po-
sitive, if the deviation of the predicted output 𝐹 , 𝑢 
from the deterministic output 𝐹𝑢 𝐸 𝑌|𝑈 𝑢  at 𝑢 
points in the same direction as the deviation of the 
stochastic output 𝑦, i.e. the complexity is positive if 
𝐹 , 𝑈  captures the behaviour of the noise in the out-
put 𝑌 . Of course, this is an undesired property, thus a 
machine learning method should be so that complexity 
of the predictor is low. While complexity has some simi-
larities with covariance and correlation, see e.g. [8], the 
term is not a covariance or correlation, as 𝐸 𝑌 |𝑈  is not 
the expectation value of 𝐹 , 𝑈 . 

If moreover – like for most machine learning methods – 
the order of the training data is not important for the 
estimation of the input-output map, then from (2) and 
(3) we obtain the following Bias-Variance-Complexity de-
composition. 

3.1 Main Theorem 

Under the assumptions of statistical learning theory 
(and assuming existence of  the expectation values), with 
the above definitions the decomposition  

𝐸
1
𝑁

|𝐹 𝑈 𝑌 |𝒴  

 2 𝐸 , 𝐹 , 𝑈 𝐸 𝑌|𝑈 𝑌 𝐸 𝑌|𝑈  

𝐸
1
𝑁

|𝐹 𝑈 𝐹 , 𝑈 |𝒴  

     𝐸 , 𝐹 , 𝑈 𝐸 𝑌|𝑈 |𝒴  
     𝐸 , |𝑌 𝐸 𝑌|𝑈 |𝒴  

(4) 

of the expected mean squared error w.r.t. training data 
𝑇 plus twice the complexity into variance of 𝐹  w.r.t. trai-
ning data 𝑇, squared bias of the predictor 𝐹 , 𝑈 with 
one input variable for training, and the variance of 𝑌 as 
an unavoidable irreducible error inherent to the prob-
lem holds.  



Hence, if the machine learning method is such that on 
an enhancement of the capacity of the function space ℱ 
the mean squared error plus complexity decreases, then 
variance plus bias decreases simultaneously, too. This 
seems to be the case for many machine learning me-
thods in the modern interpolation regime and may ex-
plain that after the interpolation threshold there occurs 
a second descent of the error on unseen data, which is 

related to a decrease of complexity  𝐸 , 𝐹 , 𝑈

𝐸 𝑌|𝑈 𝑌 𝐸 𝑌|𝑈 . 

4. Complexity and LASSO 

Complexity is tightly related to LASSO, i.e.  L1-regularized 
approximation. In fact, if 𝒴 ℝ  and 𝑌
𝐸 𝑌|𝑈 𝑢 ~𝑁 0,𝜎  𝐼𝑑  is normally distributed, then the 
inner integral in the definition of complexity allows a 
partial integration 

1
𝜎 2𝜋 / 𝐹 , 𝑢 𝐹𝑢 𝑦 𝐹𝑢  e  𝑑𝑦

 

ℝ
 

𝜎
2𝜋 / 𝐹 , 𝑢 𝐹𝑢 ∇ e 𝑑𝑦

 

ℝ
 

𝜎
2𝜋 / div 𝐹 , 𝑢 e  𝑑𝑦

 

ℝ
 . 

  

 

Thus, complexity is given in this case by 

𝐸 , 𝐹 , 𝑈 𝐸 𝑌|𝑈 𝑌 𝐸 𝑌|𝑈  

𝐸 , 𝜎  div 𝐹 , 𝑈  

and the decomposition (4) reads as 

𝐸
1
𝑁

|𝐹 𝑈 𝑌 |𝒴

 2 𝐸 , 𝜎  div 𝐹 , 𝑈  

𝐸
1
𝑁

|𝐹 𝑈 𝐹 , 𝑈 |𝒴  

    𝐸 , 𝐹 , 𝑈 𝐸 𝑌|𝑈 |𝒴  
    𝐸 , |𝑌 𝐸 𝑌|𝑈 |𝒴  

(5) 

Hence, under the assumption that the true input-output 
map 𝐹  𝐸 𝑌|𝑈  has a derivative 𝐹𝑢 : 𝛾  w.r.t. 𝑢 and 
the estimated input-output map 𝐹 , 𝑢 has approxi-
mately the same derivative w.r.t. 𝑢 at 𝑢 𝑢, 𝑦 𝐹𝑢, i.e. if 
there are 𝜎 𝜎 𝛾  such that 

𝜎  div 𝐹 , 𝑢  𝜎 ∇𝐹 , 𝑢 | ,  , 

a machine learning method could estimate for training 
data 𝑡  𝑢 ,, 𝑦 , … , 𝑢 ,, 𝑦  the input-output map by 
solving 

1
𝑁

|𝐹𝑢 𝑦 |𝒴
1
𝑁

𝜎 :∇𝐹𝑢 min
∈ ℱ 

!  (6) 

to simultaneously decrease variance and bias when en-
hancing the capacity of the function space ℱ. Now as-
sume that 𝜎  is bounded by a constant C, then the se-
cond term is dominated by 

𝐶
𝑁

|∇𝐹𝑢 |  . 

This is exactly the L1-regularizer in LASSO regression,  
and if this regularizer is used instead of the second term 
in (6), then the minimal value dominates the left and 
right hand side of (5). Hence, under the above assumpti-
ons LASSO regression provides reliable predictors in ma-
chine learning and leads to a simultaneously decrease of 
variance and bias when enhancing the capacity of the 
function space ℱ. 

Further, even if no LASSO regression problem is solved, 
often machine learning methods – like e.g. stochastic 
gradient descent – generate complexity reduced inter-
polation models, and thus automatically lead to a 
descent of the MSE on unseen data after the interpola-
tion threshold. Let us mention in 4.1 one such case, and 
in 4.2 a case where LASSO is explicitly used. 

4.1 Autoencoder neural networks 

In the example of an autoencoder neural network in [9] 
trained by data 𝑦 𝑢 , where gradient descent is used 
to minimize mean squared error for a deep neural net-
work in the modern interpolation regime of machine 
learning, the weights do not converge to the identity but 
to the matrix 𝑊 of lowest rank satisfying 𝑊𝑢 𝑢 . 
Hence, MSE is minimal and complexity is reduced, so 
that variance and bias are simultaneously low and the 
predictor is nearly the identity on training data. 

4.2 Sparse Support Vector Machines 

To generate a sparse soft margin support vector ma-
chine [10], the constrained optimization problem 

1
2

|𝜉 | 𝐶 𝜔 min
,, ,

! 

s. t. 𝜔 ∙ 𝑢 𝛽 𝑦  1 𝜉    

may  be solved for data points  𝑢  with given classification 
𝑦 1 . The predictor then is the linear classifier  𝐹𝑢
𝜔 ∙ 𝑢 𝛽,  and ∇𝐹 𝜔 holds so that above really LASSO 
is used, i.e. ∑ 𝜔  is the L1-regularization term. There-
fore, variance plus bias decreases simultaneously when 
enhancing the capacity of the function space ℱ by increa-
sing the dimension 𝐷. 
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