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Marker-based systems can digitally record human movements in detail. Using the digital biomechanical hu-
man model Dynamicus, which was developed by the Institut für Mechatronik, it is possible to model joint 
angles and their velocities such accurately that it can be used to improve motion analysis in competitive 
sports or for ergonomic evaluation of motion sequences. In this paper, we use interpretable machine learning 
techniques to analyze the gait. Here, the focus is on the classification between foot touchdown and drop-off 
during normal walking. The motion data for training the model is labeled using force plates. We analyze how 
we could apply our machine learning models directly on new motion data recorded in a different scenario 
compared to the initial training, more precise on a treadmill. We use the properties of the interpretable mo-
del to detect drift and to transfer our model if necessary. 
 
1. Introduction  

In the Institut für Mechatronik (IfM) a digital bio-
mechanical human model names Alaska/Dynamicus was 
developed [1,2]. It uses the data of a marker-based sys-
tem, which record the human movements. By means of 
the digital model it is possible to obtain the joint angels 
and their velocities very precise. Marker-based systems 
have a broad application not only on competition 
sports, also in ergonomic evaluation and movie indus-
try. Even marker-less systems get better and better in 
the recent years, especially under the use of machine 
learning techniques, it cannot achieve such precise re-
sults in predicting the joint angles, yet [3]. The model 
Dynamicus is successfully applied in several areas like 
detection/simulation of the movement of the subject 
and the environment when entering a passenger car or 
truck, automated evaluation of work processes with the 
EAWS method or the acquisition/simulation of a jump 
on the force plate.  

In our current gait study, the goal is to precisely detect 
the time when a foot touchdown and drop-off during 
normal walking using only the data of the motion cap-
turing system. In a first step we divide the normal walk-
ing into two phases: the swinging and the standing 
phase of each foot. Using artificial intelligence, more 
precise machine learning (ML) we could train a model 
to predict these phases for the left and right food very 
precise. The training of the model is taken place with 
labeled data, i.e., beside the different joint angels of the 
body provided by Dynamicus the time of the phases is 
given. These labels were obtained by using additionally 
force plates. This measuring system provides the exact 
timing for the phases. As we can see later, the model 
show good practical performance.  

Yet, the force plates cannot easily apply in every scenar-
io to train a scenario specific model, e. g. during walking 
on a treadmill. The idea is to train a ML model on the 

data, where the labels are given, i.e., in the scenario, 
where the force plates can be used, and then apply this 
model to other scenarios. But as we can imaging, 
standard walking on the floor and walking on the 
treadmill have different influences on the movement. 
The questions are: Can we apply our model to other 
scenario or is a transformation necessary? If the model 
should be transferred, how we could adapt our model? 
For easier communication we will name the data rec-
orded on the floor with available labels train data and 
the data of the treadmill without knowledge of the 
ground truth label test data. 

Detection of data-drift is still an ongoing research topic 
[5]. We want to use prototype-based machine learning 
models to tackle the problem. These models have sev-
eral advantages: Due to their competitive strategy they 
are quite intuitive and interpretable [7]. During mini-
mizing the corresponding cost function the margin is 
maximized, which results in a robust decision making 
\cite{margin}. Further the complexity of the model can 
be directly chosen by the applicant, i.e., the complexity 
of the model is not given, but can be adapted to 
boundary conditions. Another advantage is that we can 
use our model to detect drift. 

2. Prototype Based Models 

We do not want to overload the reader with formulas; 
thus, we describe the ideas only in rough illustrating 
manner. In the Generalized Learning Vector Quantiza-
tion model (GLVQ, [11]) we have, beside the data with 
respective class assignments called labels, prototypes 
also equipped with labels. During learning the proto-
types are adapted following geometrically an attraction 
and repulsing scheme, i.e., if the label of a training data 
sample and the corresponding nearest prototype 
agrees the prototype is attracted by the data point and 
it is pushed away otherwise. This very intuitive learning 
scheme is the result of applying stochastic gradient 



descent on the GLVQ-cost function. This cost function 
approximates the classification error to be optimized 
during training and, additionally, describes the (hy-
pothesis) margin \cite{margin}. In the recall phase, a 
new data point gets the label of the nearest prototype, 
also known as Winner-Takes-All rule.  

The dissimilarity measure used in the competition is in 
general the squared Euclidean distance, but any other 
measure can be applied like kernel distances or diver-
gences [9,10] under mild mathematical conditions. A 
powerful extension is the Generalized Matrix LVQ 
(GMLVQ, [12]). Here, the distance is replaced by a pa-
rameterized version: 

 

where  is a given data sample and  repre-
sents a prototype and  is called the mapping 
matrix, which maps the data from an  dimensional 
to a dimensional vector space. This means that the 
above matrix  has the goal to map the data in such a 
way that they become better separable. For  we ob-
tain a mapping into the two-dimensional visualization 
space while maximizing the classification performance.  

In the specific gait analysis task to be investigated here, 
pure classification accuracy tells nothing about the ap-
plicability of the model. Yet, IfM provides a tool, which 
shows the single phases of the left and right foot. An 
illustration of the output of the learned GLVQ model is 
depicted in Figure 4. By means of this tool it is possible 
to evaluate the classification result visually. The ob-
tained results are promising and show that it is possible 
to obtain a model to detect these phases only using the 
joint angles provided by Dynamicus.  

Another possibility to evaluate the performance is the 
use of the time-difference between ground truth and 
the prediction for detecting the starting point of each 
phase and the detection of ending a phase. The mean 
time-difference for starting is 0.2 seconds with a stand-
ardization of 0.23 and for ending 0.31 0.42 seconds. 
Thus, our ML-model works in praxis.  

3. Drift Detection 

Another challenge in our scenario is that we only have 
labeled data for the normal working mode on the floor. 
We do not have any label information for the data ob-
tained from the treadmill due to technical difficulties. 
One possibility to overcome the lack of information is 
to visualize the high dimensional data using a maybe 
non-linear visualization method like t-distributed Sto-
chastic Neighbor Embedding (t-SNE) [6]. In Figure 1 we 
illustrate the result of t-SNE on a subset of the data. On 
a first glance the data of the treadmill seems to be simi-
larly distributed like the normal labeled data. But if we 
take a closer look, we recognize a slightly different 
shape of the manifold. However, we cannot decide with 

certainty out of this visualization whether the treadmill 
data are drifted compared to normal mode.  

Figure 1: t-SNE visualization of the data ( red - data with the 
label swing left, cyan- data with the label stance left and blue - 
data recorded on the treadmill) 

Therefore, we use the GMLVQ with the interpretable 
recall phase to detect drift. In particular, we analyze the 
distribution of the distances of the data points to their 
nearest prototypes. The assumption for this is that if 
the new data are similar distributed in the vector space 
like the training data, the distance distributions should 
be similar, too. In contrast, if drift has taken place, the 
distribution of distance values should differ. The big 
advantage on looking on the distribution of the dis-
tances is that these distributions are only one-
dimensional and thus easier to handle than comparing 
distributions in a high-dimensional data space. In Fig-
ure 2 the distance distributions are illustrated by re-
spective histogram plots. We can detect a slightly dif-
ferent distribution of the distances referring to a drift. 
Especially for distances in the range of [10,40], i.e., data 
samples with larger distances to the winning prototype, 
the distribution is changed.  

Figure 2: Histogram plots of the distances between data and 
closest prototype (top: data recorded by normal walking, bot-
tom: data recorded on the treadmill) 



In the 2D data visualization by means of the t-SNE the 
label information is not considered. Hence, if a drift in 
the data would be detected inspecting the visualization, 
the consequences of this drift for class discrimination is 
neither clear nor obvious. Here, the GMLVQ provides a 
possibility for visualization by taking the perspective of 
the later discrimination model. Setting the mapping 
dimension  in GMLVQ, we can visualize the data and 
optimize the model to be as best class discriminating as 
possible. In Figure 3 we depict the training and test da-
ta mapped using the trained  matrix of the GMLVQ 
classifier. It can be observed that the test data seems to 
be slightly drifted orthogonal to the decision hyperpla-
ne. The difference is not huge, but directly influences 
the decision. So, it might result in a higher misclassifica-
tion rate for the stance class. 

 
Figure 3: Visualization of the mapped data (training data - grey, 
test data - green) 

In consequence of this observation, a direct application 
of the learned model on the data recorded during 
working on the floor to data captured in another sce-
nario (treadmill) is not recommended. Thereby, it 
should be pointed out again that we do not have any 
labels for the second data set, such a direct evaluation 
of the classification results is not possible 

4. Conclusion and Future Work 

We apply matrix variant of the Generalized Learning 
Vector Quantization for a classification task in the field 
of motion detection using a digital bio-mechanical hu-
man model. Moreover, we figured out possibilities for 
drift detection in the data using the interpretability of 
this GMLVQ approach. To apply a model on novel data, 
we must check in advance whether the data have drift-
ed, especially if the data are measured using new or 
slightly different positioned sensors, or the environ-
ment of the measurement process has been changed. 
The application of GMLVQ enables to detect those drift 
types, which have a high impact to the class separation. 
This detection is based on the utilization of the learned 
GMLVQ mapping matrix for class discriminating data 
visualization.   

So far, the analyze of the GMLVQ-based visualization is 
done manually to detect class drift. A future work is to 
automatize these detections. Moreover, the mapping 
matrix could be also learned in a way that the model 

decision is not influenced by the drift, which is related 
to robust adversarial learning [13, 14]. Yet, for this task 
data labels are required also for the new (drifted) data. 
Hence, we must modify these ideas accordingly, to ap-
ply it successfully for this task.   
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Figure 4: Classification result integrated in a tool provided by IfM 


