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Abstract

A relatively new research field of neurosciences, called Connectomics, aims to achieve a full un-
derstanding and mapping of neural circuits and fine neuronal structures of the nervous system
in a variety of organisms. This detailed information will provide insight in how our brain is influ-
enced by different genetic and psychiatric diseases, how memory traces are stored and ageing
influences our brain structure. It is beyond question that new methods for data acquisition will
produce large amounts of neuronal image data. This data will exceed the zetabyte range and
is impossible to annotate manually for visualization and analysis. Nowadays, machine learn-
ing algorithms and especially deep convolutional neuronal networks are heavily used in medical
imaging and computer vision, which brings the opportunity of designing fully automated pipelines
for image analysis. This work presents a new automated workflow based on three major parts in-
cluding image processing using consecutive deep convolutional networks, a pixel-grouping step
called connected components and 3D visualization via neuroglancer to achieve a dense three
dimensional reconstruction of neurons from EM image data.
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1 Introduction

We can build a much brighter future
where humans are relieved of menial
work using AI capabilities.

Andrew Ng

1.1 Machine Learning in Biomedical Imaging

Deep Learning, a sub domain of machine learning, has surpassed several classic meth-
ods in speech recognition [Hinton et al., 2012], object detection [Szegedy et al., 2013]
and other areas like genomics [Eraslan et al., 2019] and connectomics [Turaga et al.,
2010] with ease and is currently a leading machine-learning tool in computer vision
and imaging [Greenspan et al., 2016, LeCun et al., 2015]. The central aims in the re-
search area of connectomics are dedicated to the mapping of neuronal structures and
circuitry, which in contrast requires huge amounts of high resolution electron micro-
scopic data [Lichtman et al., 2014]. Nonetheless, researchers hope that connectomics
helps to solve important neurobiological questions like the physical correlate for mem-
ory traces, effects of age and environment on the brain as well as the pathogenesis of
Alzheimer’s disease.
In order to gain fast and precise 3D reconstructions of neurons, new approaches for
automatic segmentation of objects from electron microscopy data by 2D convolutional
neuronal networks (CNN) have been proposed [Arganda-Carreras et al., 2015]. Iso-
lated structures like mitochondria are possible to trace through image stacks with a
high z-distance that emerge through data acquisition via ATUM-SEM, ssTEM or SBEM
[Urakubo et al., 2019]. However, neurons are separated through relatively thin mem-
branes, which have to be predicted correctly for image segmentation. Therefore, many
research groups designed their own custom segmentation and reconstruction pipelines
of neurons, which mostly consists of membrane detection followed by watershed trans-
formation and graph-based active learning of agglomeration (GALA) [Nunez-Iglesias
et al., 2014] or connected components [Arbeláez et al., 2011,Zlateski and Seung, 2015].
Recently, 3D CNN such as flood-filling networks (FFN) by JANUSZEWSKI ET AL. achieved
considerably higher accuracies than traditional 2D CNN methods [Januszewski et al.,
2016]. FFNs utilise recurrent 3D CNNs to produce single neuron segments from raw
image data. Unfortunately, the training of FFNs comes with high computational costs,
which results in at least one week-long training with the use of several GPUs in parallel.
Additionally, FFNs need huge subvolumes of annotated data. This annotation cannot
be reused, because it is dependent on the imaging conditions as well as tissue and
species.
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1.2 Image acquisition by electron microscopy

The mapping of densely packed neuronal structures, such as dendrites, glial cells or
synapses requires high resolution 3D imaging methods. In recent years, new image
acquisition methods (for example ATUM-SEM) emerged and classical methods (TEM)
were automated and scaled-up [Briggman and Bock, 2012]. Considering the resolu-
tion, almost all methods have one thing in common. They are able to produce high
lateral resolutions, whereas the resolution of the z-direction, the spacing between two
images, remains relatively low. Therefore, high anisotropic datasets like the SNEMI3D
dataset [Arganda-Carreras et al., 2013] with a resolution of 3x3x29 nm are relatively
difficult to annotate. Classic approaches for image segmentation include free annota-
tion software like TrakEM2 [Cardona et al., 2012] and VAST-Lite [Berger et al., 2018]
for outlining traces as well as Knossos [Helmstaedter et al., 2011] for centerline tracing.
They facilitate the annotation by, e.g. multi-user access and the ability to quickly browse
through EM data, but still require neuroanatomy experts. An overview of four current
data acquisition methods, ssTEM [Harris et al., 2006], ATUM-SEM [Hayworth et al.,
2006], SBEM [Denk and Horstmann, 2004] and FIB-SEM [Knott et al., 2008] with their
corresponding resolution in x-,y- and z-axis is visualized in Figure 1.1. Whereas SEM
uses backscattered electrons and can be used on serial sections as well as for blockface
imaging, TEM uses transmitted electrons and yields higher resolution and contrast.

1µm 1µm 1µm 1µm

1µm 1µm 1µm 1µm4x4x45nm 3x3x29nm 12x12x25nm 5x5x5nm

Figure 1.1: Overview of data acquisition methods (modified after [Briggman and Bock, 2012]).
ssTEM illustrates mouse visual cortex, whereas SBEM shows the inner plexiform
later of mouse retina. Both ATUM-SEM and FIB-SEM visualizes mouse cortex.

The SNEMI3D dataset used in this work was created with a ATUM-SEM and released
in the context of the IEEE International Symposium on Biomedical Imaging [Hayworth
et al., 2006]. The automatic tape-collecting ultramicrotome consists of a tape and con-
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veyor belt, which retrieves thin brain sections cut by a diamond knife in a water basin.
These thin brain sections were subsequently imaged by a scanning electron micro-
scope, creating sufficient resolutions for detecting individual synaptic vesicles. It is also
possible to generate a multi-scale dataset by re-imaging several sections at multiple
resolutions. This approach provides additional context of surrounding regions [Kasthuri
et al., 2015].

1.3 ISBI 2012/2013 Challenge - Image segmentation for
connectomics

The first international challenge and approach to introduce many researcher and re-
search groups to image segmentation for automatic reconstruction of neural circuits
was originated by the IEEE International Symposium on Biomedical Imaging [Arganda-
Carreras et al., 2012]. The importance of automatic segmentation is emphasized in a
study from HELMSTAEDTER ET AL. in 2011. His team reconstructed 1000 neurons from
a mouse retina spanning 20,000 h of human labor, which is barely enough to cover
the smallest types of retinal neurons. Even this work used semi-automatic methods to
reduce the required time tenfold and more [Arganda-Carreras et al., 2015]. With the
development of faster data acquisition, the need of automatic methods is inevitable.
In the ISBI challenge, from over 100 registered groups, 17 different researchers sub-
mitted their results, of which 13 are ranked and presented in the article of ARGANDA-
CARRERAS ET AL. in 2015 [Arganda-Carreras et al., 2015]. The training set included 30
consecutive images with 512x512 pixels and a resolution of 4x4x50 µm retrieved from
a ssTEM of the Drosophila first instar larva ventral nerve cord [Cardona et al., 2010].
Most of the participants used deep convolutional network architectures for boundary de-
tection [Ciresan et al., 2012]. In this case, boundary maps are in general equal to later
introduced cytoplasm images used in the developed workflow. Neuronal objects were
labeled as true, whereas all other structures received a false label, which are later used
for segmentation with connected components.
One year later, a second challenge in the context of the ISBI 2013 was released.
This challenge was specialised in 3D segmentation of neuronal structures in EM im-
ages, whereas the first introduced challenge 2012 was dedicated to 2D image seg-
mentation. The corresponding website of the SNEMI3D challenge includes a leader-
board [Arganda-Carreras et al., 2013], but unfortunately there is no detailed information
about used methods for each participant provided.



4 Chapter 1: Introduction

1.4 Flood-filling networks for single neuron
reconstruction

First introduced in 2016, JANUSZWESKI ET AL. presented a new recurrent 3D CNN ar-
chitecture for neuronal segmentation called flood-filling network, which placed first in the
segmentation challenge of FIB-25 [Takemura et al., 2015] and second in the ISBI 2013
challenge [Arganda-Carreras et al., 2013].
The groundtruth dataset used in this work relied on the manual segmentation of 0.02%
of a 96x98x114 µm subvolume of the zebra finch brain imaged with a serial block-face
scanning electron microscope. These 131 million annotated voxels were used in 33 sub-
volumes of varying size for neuronal network training. The basic architecture of this CNN
combines two input channels for training. The first one is the original 3D EM subvolume,
whereas the second is a predicted object map (POM). This POM yields a probability for
each pixel corresponding to the object or not. During training, several seed points were
set to segment different objects. After each iteration, the networks weights are adjusted
using per-voxel cross-entropy loss [Goodfellow et al., 2017,Januszewski et al., 2018].
Unfortunately, flood-filling networks bear some downsides, which are related with the
training and prediction of objects. The training takes around one to two weeks with a
custom server setup of 32 Nvidia K40 GPUs. For a single GPU computer, this training
would last over two months. Second, objects can only be reconstructed one after an-
other, which can take several minutes per object.
Nevertheless, flood-filling networks are considered as state-of-the-art algorithm for 3D
image segmentation.

1.5 Pix2Pix with conditional adversarial networks

Many problems in computer vision and image processing include the translation of one
image into a corresponding image [Isola et al., 2017]. Specialized CNNs are heavily
used in image processing. Unfortunately, it is important to choose the best loss function
for each present problem to achieve the desired results.
Therefore, in recent years, conditional generative adversarial networks (GANs) were
heavily analysed and described [Denton et al., 2015, Goodfellow et al., 2014]. In gen-
eral, GANs consists of two components: a generator and a discriminator. In this case
the generator receives an input image and creates an output image, which is com-
pared to an existing target image. After that, a loss function calculates the difference
between prediction and target with a prior defined loss function and updates the genera-
tors weights. The discriminator receives the output image of the generator and guesses,
whether this image matches target images or not. The underlying network architecture
of a generator includes a typically encoder-decoder or U-Net. Each layer consists of
convolution-BatchNorm-ReLu modules [Ronneberger et al., 2015], whereas the dis-
criminator uses a convolutional PatchGAN. Conditional GAN implies the change of a
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per-pixel classification to a structured loss, which penalizes joint configuration of the
output [Isola et al., 2017].

1.6 Goal of this thesis

The major goal of this thesis was to combine machine learning and deterministic algo-
rithms for a dense reconstruction of three dimensional objects such as neurons from a
series of EM images. In particular, my workflow combined established 2D CNNs suited
for image prediction with the classic connected components algorithm. Cytoplasm im-
ages represent cross-sections of putative three-dimensional objects in the image stack,
whereas overlap images describe the individual connectivity of these cross-sections.
Therefore an intermediate representation consisting of cross-sections and correspond-
ing features for the final object prediction was used. There are several paths to go from
EM images to mentioned features (see Figure 3.5).
Another goal was the development of several Python scripts that allow the user via
command line to pre-process the groundtruth dataset, train neuronal networks, pre-
dict images from EM data, enable dense reconstruction of three dimensional objects
with connected components and their interactive visualization with neuroglancer. These
scripts together with instructions for installation and usage are provided as a GitHub
repository at https://github.com/mweber95/neuron3d.
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2 Methods

The following chapter is an extended version of the description found at the GitHub
repository https://github.com/mweber95/neuron3d, which takes up image pre-processing
in form of dataset preparation and membrane, cytoplasm and overlap image creation as
well as used network architecture and evaluation metrics.

2.1 Dataset

The SNEMI3D dataset was released in the context of the IEEE International Sympo-
sium on Biomedical Imaging (San Francisco, CA, April 7-11th, 2013) [Arganda-Carreras
et al., 2013]. It served as the basis for an open challenge concerned with the automatic
segmentation of neurons and following 3D visualization. The data was obtained using a
ATUM-SEM, producing consecutive image slices with a spacing of 29 nm and a resolu-
tion of 3 nm in x- and y-direction, generating highly anisotropic images.
The original SNEMI3D includes three different tif files with a pixel size of 1024x1024 and
100 consecutive images (cubic volume of around 3x3x3 µm), named train-input, train-
labels and test-input illustrated in Figure 2.1. Train-input is representing original EM
images, whereas train-labels is the associated labeled dataset. The test-input contains
only the image data for the validation dataset for the challenge. In this work, only EM
images and annotated object labels of the original training set were used. The annota-
tion consist of exactly 400 manually annotated objects, spanning a variety of neuronal
structures like axons, glial cells or dendrites. A complete description of the dataset to-
gether with the main biological findings and further information of the data acquisition
was published 2015 by KASTHURI ET AL. [Kasthuri et al., 2015].

train-input train-labels test-input

Figure 2.1: SNEMI3D dataset.
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2.2 Dataset preparation

My workflow involves the training of multiple NN for predicting several specific images
structures, such as membrane, cytoplasm and overlapping cross-sections of consec-
utive images. To increase the data basis available for training and allow independent
training, prediction and validation, the train-input and train-labels image stack from the
SNEMI3D dataset was split in four parts with equal size (512x512 pixels), which are
enumerated from A to D (see Figure 2.2). The numeration of parts A-D was chosen by
objects represented in the dataset. Part A contains a variety of differing objects, such
as myelinated axons, dendrites and glial cells, which are mandatory for training and fol-
lowing prediction of these objects. In contrast, part D was only used once for prediction
because of myelinated axons spanning the complete size of images were restricted to
this sub volume and lead to false predictions when included in the training.

train-input train-labels

A

BC

D A

BC

D

Figure 2.2: SNEMI3D dataset preparation.

2.3 Generation of cytoplasm, overlap and membrane
images

The generation of cytoplasm, overlap and membrane labels are necessary for the sub-
sequent training of 2D CNN in which the neuronal network translates raw images into
target images. These three different labels were extracted from the original object index
stack train-labels of the SNEMI3D challenge.

2.3.1 Cytoplasm images

Cytoplasm images represent the interior region of each individual object in the train-
labels image stack without its boundary (membrane). The original train-labels image
stack consists of long integers indexing each individual object. These integers were
transformed to a binary image with white (true) pixels outlining cytoplasm and black
(false) pixels for the remainder. The procedure is illustrated in Figure 2.3.



Chapter 2: Methods 9

1 1

11

1 1 1

1

1 1

1

1 2

1

1 2

1

1 1

1 1 1 2

0 0

1

1

1

1 1

1

1

1 0

1

1

1

0

0

2 2 2 2

22222

2 2 2

2 2

2 2

2

22

2

0

0

00

0 0 0

0 3

3 3

3

3

2

2

2

3

3 3

3 3

0 2

2 2

2 2

0 2

330

0 3 3

20

1 1 00

1 1 1 0 0 3 3 3 3 3 3

3

3

3

2

2

2

2

2

2

2

2 2

22

2 2

2

2

3

1

1

1 0

0

0 0

0

0

min = max

min ≠ max

center = 0

F

F

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T T T T

T T

T

T

T

T

T

T

T

T

T

T

T

TT T

F F F F F

F F F

F F F

F F

F F F F

F F F F

F F F F

F F F F F

F F F F F

F F F F F

F F F F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

1 1 1

1 1 1

1 1 1

Figure 2.3: Generation of cytoplasm images.

First, the membrane was defined as one pixel wide boundary of each object. Further-
more, a 3x3 kernel traversing each image from top left to bottom right, was applied. This
kernel checks, whether the minimum and maximum value of the kernel are equal or un-
equal. In the case of minimum equals maximum, the center pixel has the same index as
all surrounding pixels and represents the interior of the object and therefore cytoplasm.
If the values are not equal, the center pixel is next to another object or the background.
This case does not represent the interior and is therefore set to not cytoplasm. If the
center pixel has the index value zero it represents the background with no object and
remains zero.

2.3.2 Membrane images

Membrane images were defined as the one pixel wide boundary of all individual labeled
objects in the train-labels image stack. In later sections, they serve as intermediate step
for the training of cytoplasm and overlap images.
The calculation of membrane images resembles the cytoplasm procedure. Neverthe-
less, there are some important differences between the cytoplasm and membrane im-
age generation. If minimum and maximum value in the 3x3 kernel are the same, the
corresponding center pixel is set to false. In contrast, if minimum and maximum are
unequal, the center pixel is at the boundary of at least two objects including the back-
ground, thus representing a membrane label and is set to true. Center pixels that equal
zero result in a false label. The membrane generation is illustrated in detail in Figure
2.4.
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Figure 2.4: Generation of membrane images.

2.3.3 Overlap images

In comparison to the calculation of cytoplasm and membrane images, the generation
of overlap images requires two consecutive images from the object index stack. All
membrane pixels, the one pixel wide boundaries of each object were changed to a
false label. This calculation resembles the procedure of generating cytoplasm images,
with the exception that all non membrane and non background pixels retained their
corresponding label. After the subtraction of membranes from the original labels, the
superimposed pixels in both images were compared. The pixel was set to true, if both
images possess the same integer value and both values are greater than zero (thus
not representing the inter cellular space). The procedure is illustrated in Figure 2.5.
This calculation reduces two subsequent images to one image describing the overlap
between two cross-sections of each individual object spanning both images, which is
the crucial information for the relabeling of neuronal objects after NN training.
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Figure 2.5: Generation of overlap images.
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2.4 Training of neuronal networks

After the generation of cytoplasm, membrane and overlap images for all parts of the
SNEMI3D dataset, the training of NN can be started. Therefore, the input images must
be paired with the target images, corresponding to the images which should be learned
to predict from the NN. For example, the training of a NN, which should predict mem-
branes from EM images needs EM images as input and membrane images of the same
section as target. EM images are available through the train-input dataset and mem-
brane images were prior preprocessed and extracted from the object index (train-labels)
image stack. A special case is dedicated to the training of overlap images. The input
needs to provide two consecutive images (stored in the red and green color channel of
a RGB image), because overlap images are representing the overlapping parts of two
cross-sections.
Throughout the whole work, a residual network with prior encoder and subsequent de-
coder was used [Isola et al., 2017, Goodfellow et al., 2014]. An overview and abstract
illustration of this structure is presented in Figure 2.6.
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Figure 2.6: Composition of the neuronal network architecture.

The encoder was used to achieve a compressed representation of the input data and
therefore a dimension reduction. Afterwards, the residual network, consisting of nine
residual blocks, was used. One residual block is made up of a 3x3 convolution followed
by a batch normalization. After this step, the normalized values and the original input
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of the residual block are added up and further passed to a rectified linear unit function.
This representation forms the output and the input of the subsequent residual block. In
the end, the last output of the ninth residual block is decoded in the same manner as
the encoder works to rebuild the output image.
Hyperparameters were set to 2000 epochs with a batch size of 100. The images in the
batch were further augmented to avoid overfitting. The augmentation includes horizontal
and vertical flipping and transposing. Additionally, 256x256 pixel random cutouts of the
image were utilised and the GAN loss was set to zero to avoid blurry predictions.

2.5 Prediction, reconstruction and 3D visualization

After the training completed, the current state of the network is saved. With this check-
point, the NN can predict outputs, if new input images are given.
The reconstruction of neuronal objects in the SNEMI3D dataset needs cytoplasm as well
as overlap images. Furthermore, the reconstruction utilizes a pixel grouping step called
connected components, that can be described as an algorithm, in which all vertices of a
sub graph of an undirected graph are connected and labeled individually [Hopcroft and
Tarjan, 1973]. The combination of cytoplasm and overlap images, that are arranged to
an interleaved stack with overlap images between corresponding cytoplasm slices al-
lows reliable reconstruction (see section 3.2).
The final 3D visualization was performed with neuroglancer. This WebGL-based viewer
of volumetric data is able to visualize cross-sectional views of volumetric data, as well
as 3-D meshes and line-segment based models, which also offers several visualization
examples with python (see https://github.com/google/neuroglancer).

2.6 Evaluation

For the evaluation of predicted images and reconstruction of neuronal objects, precision
and recall as well as adjusted RAND index, split and merge errors and the shortest
average euclidean distance (for membrane labels) were chosen and further described
in following subsections.

2.6.1 Precision and recall

Precision and recall served as two metrics to evaluate 2D predictions of the neuronal
network. Both are statistical measurements of a binary classification, which is given in
cytoplasm, membrane and overlap image due to true and false labels (see Table 2.1 for
membrane images).
The precision, also called positive predicted value, describes the ratio of correct pre-
dicted true (membrane, cytoplasm, overlap) pixels in contrast to all true pixels in the im-
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age. Furthermore, the recall, also called sensitivity or true positive rate, demonstrates
the ratio of correct predicted false (background) pixels to all false pixels in the image.
Both equations for the calculation of precision and recall are additionally illustrated in
equation 2.1 and 2.2.

Table 2.1: Contingency table for membrane images.

True membrane True background

Predicted membrane True positive (TP) False positive (FP)

Predicted background False negative (FN) True negative (TN)

Precision =
TP

FP + TP
(2.1)

Recall =
TP

FN + TP
(2.2)

2.6.2 Adjusted RAND index

The RAND index is often used for the comparison of cluster or segmentation results
[Rand, 1971]. In this work, the adjusted RAND index (corrected-for-chance version of
the RAND index) was directly used from the scikit-learn library [Pedregosa et al., 2011],
which is represented in equation 2.3 [Hubert and Arabie, 1985].

adjusted RAND index =
index - expected_index

max_index - expected_index
(2.3)

2.6.3 Split and merge errors

Split and merge errors are suitable evaluation metrics, which give an overview of the
performance of a conducted segmentation. Unfortunately, there are multiple definitions
of how split and merge errors are calculated. In my implementation, split errors rep-
resent the number of how often a original label is split into different predicted labels.
In contrast, merge errors describe the amount of how often original labels are merged
together into a single predicted label. For this, the overlap between true and predicted
labels was represented as a matrix. Each element contains the number of pairs be-
tween a true and predicted label. An example is presented in Figure 2.7. The matrix
representation gives the opportunity to simply count all rows or columns with more than
one entry and add the resulting number of merge and split errors over all rows and
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columns together. Because most elements of this matrix are zero (no overlap between
most objects in the true and predicted labels), the implementation used a sparse matrix
from the Scipy package [Jones et al., 2001].
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Figure 2.7: Sparse matrix for calculating split and merge errors.

2.6.4 Shortest average distance

For the comparison of self annotated and SNEMI3D derived membranes (see section
3.6), the shortest average euclidean distance for each image was measured. The com-
putation is based on the function cdist of the Scipy package [Jones et al., 2001], which
is able to calculate different distance metrics between two arrays. Therefore, the short-
est euclidean distance from each self annotated membrane pixel to SNEMI3D derived
membrane pixel was calculated, which is illustrated in Figure 2.8.



16 Chapter 2: Methods

1

1

SNEMI3D 
derived 

membrane

self  annotated 
membrane

overlapping 
membrane

background

Figure 2.8: Computation of the shortest average euclidean distance of two membrane labels.

2.7 Technical Information

The training of the DCNN was carried out on a single Nvidia Tesla V100-SXM2-32Gb
GPU. The whole server contains 32x Intel(R) Xeon(R) Gold 6132 CPU @ 2.60 GHz and
4x Nvidia Tesla V100-SXM2-32Gb and 126GB RAM. All other used scripts and compu-
tational operations, such as image pre-processing, training preparations and prediction
of images were performed on a Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz with 16GB
RAM.
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3 Results

In this chapter, the results from initial testing with the relabeling algorithm "connected
components" and 3D visualization via neuroglancer up to deep neuronal network al-
gorithms are presented with the purpose of a fast and precise workflow for automatic
segmentation and visualization of neurons from electron microscopic images.

3.1 Relabeling cytoplasm images with connected
components

The first step was to find out which 2D Labels are necessary for reconstruction of 3D ob-
jects from a series of electron microscopic images. 2D labels provide spatial information
about the cytoplasm of neurons, membranes or overlapping regions of two consecutive
images. These labels served as input for the reconstruction of 3D objects with con-
nected components and are predicted by machine learning algorithms.
A naive approach was to use cytoplasm label only. Therefore, an already existing and
labeled image stack (SNEMI3D dataset) of mouse neocortex (see Figure 3.1 A left im-
age) published by KASTHURI ET AL. [Kasthuri et al., 2015] consisting of one hundred
consecutive images served as groundtruth. The cytoplasm images (see Figure 3.1 A
middle image) derived from the object labels were then used to relabel the stack in or-
der to test whether this information is sufficient to recreate the original segmentation
by KASTHURI. The 3D visualization was realized with an open-source WebGL-based
viewer of volumetric data called neuroglancer. Both image stacks (annotated and re-
labeled stack) were visualized and only separable objects were selected. The 3D vi-
sualization (see Figure 3.1 B-D) shows three nearly identical structures in both image
stacks. Current state-of-the-art data acquisition methods generate highly anisotropic
images with a high resolution in x- and y-direction (3 nm/pixel) and a low resolution
in z-direction (29 nm/pixel). The green and red objects representing myelinated axons
are only distinguishable through the relatively thick myelin that separates these neurons
from surrounding objects. As shown in the right image of Figure 3.1 A, the cytoplasm of
the remaining neurons are only separated by thin membranes. Therefore, the cytoplasm
in consecutive image sections frequently overlaps with other neurons, which leads to a
big connected structure illustrated in Figure 3.1 A-right image shown in blue.
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labeled image stack
 (SNEMI3D dataset) cytoplasm image stack relabeled image stack

process3D.py
connected
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A

Figure 3.1: Reconstruction of 3D objects from cytoplasm label only. Labeled image stack of the
SNEMI3D dataset (A-left) was processed with a custom script to extract only cyto-
plasm as true label and membranes, myelin and intercellular spaces as false label
(A-middle). 3D objects were reconstructed from consecutive cytoplasm images with
connected components (A-right). (B) Visualization of three distinguishable objects
derived from cytoplasm relabeling. (C) Visualization of the ground-truth labeled im-
age stack. (D) Reconstructed overlap with the original objects.

3.2 Relabeling interleaved cytoplasm and overlap with
connected components

A much more sophisticated approach for the 3D reconstruction would include both cyto-
plasm label as well as the information about the overlap of cross-sections of objects in
consecutive images (see Figure 3.2 A-middle-left). If the composition of the cytoplasm
stack and overlap stack is changed to an interleaved image stack, in which cytoplasm
and overlap images are alternately adjusted (overlap image between corresponding cy-
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toplasm images), the segmentation of neurons resemble the already labeled SNEMI3D
dataset (see Figure 3.2 A-middle-right and A-right).

labeled image stack
 (SNEMI3D dataset)

cytoplasm image stack

relabeled image stack

process3D.py

connected
components

overlap image stack
process3D.py

interleaved cytoplasm and
overlap image stack

B C

D

A

Figure 3.2: Reconstruction of 3D objects from true cytoplasm and overlap labels. Labeled image
stack of the SNEMI3D dataset (A-left) was processed with a custom script to extract
cytoplasm and overlap features. 3D objects resulting from interleaved cytoplasm
and overlap images were then relabeled with connected components through the
image stack (A-right). (B) Visualization of several neurons derived from interleaved
cytoplasm with overlap images relabeling. (C) Visualization of the ground-truth la-
beled image stack by KASTHURI [Kasthuri et al., 2015]. (D) Reconstructed overlap
with the original objects.

The dense reconstruction and segmentation of neurons from the interleaved cytoplasm
with overlap image stack is superior in contrast to the relabeling of the cytoplasm stack.
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The segmentation in Figure 3.2 (A-right) matches the original annotated data on the left
nearly perfect. The 3D visualization of the originally annotated and interleaved image
stack as well as the comparison of both stacks one above the other is illustrated in Fig-
ure 3.2 (D). Small differences are recognizable, which arise due to different annotation
and processing, respectively. The original data consist of neuron labels for cytoplasm
and membrane, whereas the processing and extracting of features only considered the
cytoplasm without membrane. Therefore, the membranes of the SNEMI3D dataset were
subtracted in order to receive better comparable evaluation values in further used meth-
ods.

To show the difference between the comparison of SNEMI3D data with and without
subtracted membrane labels and relabeled data, precision, recall and adjusted RAND
index (ARI) as well as split and merge errors were calculated as listed in Table 3.2.
Furthermore, the original SNEMI3D dataset consisting of one hundred 1024x1024 pixel
electron microscopic and labeled images had to be split in four 512x512 pixel parts
each, enumerated as A, B, C and D (see section 2.2 and Table 3.2 Part: A-D) to have
independent datasets for neuronal network training, testing and validation.

Table 3.1: Evaluation metrics for both relabeled image stacks consisting of only cytoplasm and
interleaved cytoplasm with overlap images generated from the groundtruth with and
without subtracted membranes as well as the results for all four split parts.

adj. RAND Index Precision Recall Merges Splits

Relabeled cytoplasm im-
ages

0.0379 1.0 0.925 396 0

Relabeled cytoplasm
and overlap images

0.717 1.0 0.925 0 8

Relabeled cytoplasm
and overlap images with
subtracted membranes
from object labels in the
groundtruth data

0.999 1.0 1.0 0 8

Part A 0.998 1.0 1.0 0 13

Part B 0.995 1.0 1.0 0 17

Part C 0.998 1.0 1.0 0 21

Part D 0.999 1.0 1.0 0 22

Table 3.2 represents the different evaluation metrics for three different approaches plus
the split parts of the original data. For the relabeling of only cytoplasm images and
of the interleaved cytoplasm and overlap image stack, ARI and recall are expected to
be lower than 1.0 due to the subtraction of the membrane in cytoplasm labels. There-
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fore a considerable high number of black pixels (false) exists that are originally white
(true) in the groundtruth. In contrast to the relabel process of only cytoplasm images,
the interleaved image stack consisting of cytoplasm and overlap images reaches zero
merge errors. This indicates, that no objects are joined together and the addition of cor-
responding overlap images between two cytoplasm images offer a sufficient method to
remove merge errors. However, this method still produces eight split errors. These er-
rors show, that single objects in the groundtruth are separated in two or multiple objects
in the relabeled image stack. For better comparison of the evaluation metrics in later
sections of this thesis, membranes from the groundtruth data were subtracted and the
metrics shown in Table 3.2 (third row) are chosen for the best possible outcome if the
whole 1024x1024 pixel image stack is used. Part A, B, C and D serve as groundtruth for
the in later sections described machine learning approach. A closer view reveals that
split errors arise due to two different cases. The first case is illustrated in Figure 3.3.
Through membrane subtraction from the groundtruth data, thin labels with at most three
pixels in width are split into multiple single pixels, each with a different label (see Figure
3.3 B and C). Seven out of eight split errors listed in Table 3.2 (third row) belong to this
category.

A

C

B

D

Figure 3.3: Split error induced by subtraction of membranes from thin objects. (A) shows the
original electron microscopy image of the split error. (B) is the same part of the
image with original published labels for this dataset. C and D are both zoomed in
illustrations of the red rectangle shown in A and B. (C) illustrates the zoomed in part
of B, whereas (D) shows the labeled data with subtraction of the membranes and
induced split errors in pink, turquoise and purple.

The second case is correlated with the thickness of spine necks or neuronal struc-
tures and cutting angle in two consecutive images. This case occurred only once in
the groundtruth dataset. The basic principle how this split error arises is illustrated in
Figure 3.4 (D). The top and bottom of the cuboid represents two consecutive cytoplasm



22 Chapter 3: Results

images with a spacing of 29 nm. If a thin object is cut at a very small angle along its
major axis, cytoplasm areas do not overlap in consecutive cutting frames resulting in no
overlapping regions. Without this information the two cross-sections (Figure 3.4 brown
circles) can not be associated with each other which leads to a split error seen in Figure
3.4 (B). However, human annotators can reattach isolated spine heads to their spine
neck using the spatial relationship in the 3D visualization.

z = 29nm

cytoplasm  
slice 1

cytoplasm 
 slice 2

A

C

B

D

Figure 3.4: Split error already present in original dataset due to thin spine necks. (A) shows
a single object visualized in neuroglancer. (B) shows the same object that is split
into two different objects in the relabeled interleaved cytoplasm and overlap image
stack. (C) illustrates both objects on top of each other. (D) represents two cytoplasm
slices in the dataset with an object that is laying to collateral to the cytoplasm slices.
This results in no overlapping information and therefore incorrectly tracing through
the image stack.
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3.3 Neuronal network training approaches

This section presents an overview of different training approaches to generate cyto-
plasm and overlap images, that are chosen to evaluate deep neuronal network algo-
rithms for automatic segmentation and 3D reconstruction of neurons from electron mi-
croscopic images. As mentioned in section 3.2, cytoplasm and overlap images that are
arranged to an interleaved image stack consisting of overlap images between corre-
sponding cytoplasm images are capable of precise segmentation and 3D visualization.
With this starting point, the following Figure 3.5 shows multiple paths to train deep con-
volutional neuronal networks (DCNN) for automatic generation of cytoplasm and overlap
image stacks. In the next subsections, NN1-NN6 from Figure 3.5 are explained in de-
tail.

cytoplasm image stack

overlap image stack

image stack
 (SNEMI3D dataset) membrane image stack

NN-3

NN-4

NN-5

NN-1

NN-2

NN-6

Figure 3.5: Overview of different paths to train DCNN for automatic cytoplasm and overlap im-
age generation. One possibility is to calculate cytoplasm and overlap images di-
rectly from EM images (NN-1 and NN-2) . The second approach includes a training
of membranes first (NN-3), that sets up the additional training to predict cytoplasm
and overlap images out of membrane images (NN-4 and NN-5). A third path de-
scribes a training of cytoplasm images from EM images with subsequently training
of predicted cytoplasm images to train a NN for overlap prediction (NN-6).

3.3.1 Training of cytoplasm, overlap and membrane from EM
images

The first neuronal network training attempt was carried out for the generation of cyto-
plasm, overlap and membrane images from EM groundtruth (NN-1, NN-2, NN-3). In the
following Figure 3.6, input, output and target images for the cytoplasm training are pre-
sented. Respectively, Figure 3.7 shows input, output and target images for the overlap
training and Figure 3.8 input, output and target images for the membrane training. The
network architecture behind this and following training section is an autoencoder con-
sisting of an encoder and decoder with a ResNet (Residual Network) in between (for in
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depth explanation of the NN architecture see section 2.4). All three neuronal networks
are supervised learning approaches with different input and target images. For the cy-
toplasm and membrane training single EM images serve as input and cytoplasm and
membrane images as target. In contrast, the overlap training requires two consecutive
EM images stored in the red and green channel of an RGB image and overlap images
as target image.

Input Output Target

additional
object

split
error

merge
error

Figure 3.6: Presentation of one input, output and target image of the cytoplasm training.

Input Output Target

Figure 3.7: Presentation of one input, output and target image of the overlap training.

Input Output Target

Figure 3.8: Presentation of one input, output and target) image of the membrane training.
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3.3.2 Training of cytoplasm and overlap from predicted membrane

The second training approach includes cytoplasm and overlap training (target) with pre-
dicted membrane images from NN-3 as input (NN-4, NN-5). Cytoplasm training only
requires a single membrane picture, whereas the overlap training needs information
about two consecutive membrane images stored in the red and green color channel. An
overview of input, output and target is illustrated in Figure 3.9 and 3.10.

Input Output Target

Figure 3.9: Presentation of one input, output and target image of the cytoplasm training with
membrane input.

Input Output Target

Figure 3.10: Presentation of one input, output and target image of the overlap training with mem-
brane input.

3.3.3 Training of overlap from predicted cytoplasm

A third approach describes a training to detect overlap images from predicted cytoplasm
images (NN-6). The input for this training are images with two consecutive cytoplasm
images stored in the red and green color channel (see Figure 3.11).
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Input Output Target

Figure 3.11: Presentation of one input, output and target image of the overlap training with cy-
toplasm input.

3.4 Different combinations to generate an interleaved
cytoplasm/overlap image stack

The generation of a cytoplasm image stack with interleaved overlap images facilitates
many different combinations. These images can be generated by label or through train-
ing of NN (see section 3.3 NN-1 - NN-6). In total, 10 different combinations to test recon-
struction with the use of membrane, cytoplasm and overlap images were chosen. These
combinations are all presented in Table 3.2. All listed experiments are endowed with an
experiment number and are further used for validation and comparison with the original
labels (Part B-D) from the dataset. The idea behind different combinations of predicted
images and images generated from the labels is to gain insights which neuronal net-
work introduces the largest errors when the reconstructed objects are compared with
the original data.

Table 3.2: Overview of all used combinations to create a cytoplasm image stack with interleaved
overlap images.

Exp. Membrane images Cytoplasm images Overlap images

I — Groundtruth Predicted from EM

II — Predicted from EM Groundtruth

III — Predicted from EM Predicted from EM

IV — Groundtruth Predicted from cytoplasm

V — Predicted from EM Predicted from cytoplasm

VI Groundtruth Groundtruth Predicted from membrane
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Exp. Membrane images Cytoplasm images Overlap images

VII Groundtruth Predicted from membrane Groundtruth

VIII Groundtruth Predicted from membrane Predicted from membrane

IX Predicted from EM Predicted from membrane Predicted from membrane

X Predicted from EM Predicted from membrane Predicted from cytoplasm

3.5 Evaluation of neuronal network predictions

The evaluation metrics used for the comparison between reconstructed objects and the
original objects consist of ARI, precision, recall as well as split and merge errors (see
section 3.2). In the following subsections, all combinations listed in Table 3.2 marked
with an Experiment number are analysed and compared with the associated part of the
original data, respectively. Which part of the original label is associated with which rela-
beled label depends on how many NNs were used and how many parts are necessary
for the testing of NN. All following subsections have their own workflows describing the
procedure and use of training and testing images as well as images used for evalua-
tion.

3.5.1 Reconstruction based on cytoplasm and overlap predicted
from EM images

The first and most simple approach was to predict cytoplasm and/or overlap images
directly from EM images. The different combinations tested include experiment I-III
listed in Table 3.2. For example, the cytoplasm image stack with interleaved overlap
images in experiment I consists of cytoplasm images generated from the original labels
paired with predicted overlap images. The following formulas show the data acquisition
of predicted overlap images.

EM(A)
Training−−−−−−−−−→ Overlap(A) (3.1)

EM(B)
Prediction−−−−−−−−−−→ Overlap∗(B) (3.2)

Equation 3.1 describes the training of the NN-1. EM images from Part A serve as input,
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whereas the overlap images of Part A generated from original labels provide the tar-
get. Equation 3.2 shows the prediction of overlap images with the trained parameters in
equation 3.1. The prediction was performed on the EM images from Part B to generate
predicted overlap images (predicted images marked with *). The penultimate step is
to combine the predicted overlap images (part B) with the cytoplasm images from part
B and change the arrangement to an interleaved image stack with overlap images be-
tween cytoplasm images for the relabeling with connected components. In the end, the
overlap images need to be removed and the relabeled image stack of cytoplasm images
is prepared for evaluation. The same procedure was used to generate an image stack
consisting of predicted cytoplasm images and overlap images generated from original
labels (experiment II). Equation 3.3 and 3.4 are similar to the explanation of equation
3.1 and 3.2 except that cytoplasm images are trained and predicted. Experiment III is
the combination of both operations experiment I and experiment II. In this case, cyto-
plasm images and overlap images were trained and predicted and therefore used for
relabeling. The results of experiment I - III are listed in Table 3.3.

EM(A)
Training−−−−−−−−−→ Cytoplasm(A) (3.3)

EM(B)
Prediction−−−−−−−−−−→ Cytoplasm∗(B) (3.4)

The comparison between Part B (original label with subtracted membranes) and experi-
ment I shows noticeable differences in their evaluation metrics. Precision and Recall are
both 1.0, because the cytoplasm image stack from the original label was used. Thus,
this result was predictable. However, ARI is extremely low and split and merge errors
are comparatively high. In comparison, experiment II has clearly less split errors and
about the same merge errors. The ARI is lower than experiment I probably due more
merge errors and thus more objects labeled as the same object, which should be sepa-
rated. Since only cytoplasm images are trained and predicted, it is possible to evaluate
precision and recall. Both values are around 0.95, which means that every 20th white
pixel is predicted black and every 20th black pixel is predicted white. Therefore, objects
are in average one twentieth smaller than the groundtruth label.
To get a better concept about these evaluation metrics, Figure 3.12 shows the result of
experiment I and II visualized with neuroglancer.
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Table 3.3: Evaluation results for experiment I - III.

adj. RAND Index Precision Recall Merges Splits

Part B 0.995 1.0 1.0 0 17

Experiment I 0.04 1.0 1.0 149 117

Experiment II 0.005 0.95 0.942 154 23

Experiment III 0.0066 0.95 0.942 164 154

A

Exp. I

B

Exp. II

C

Exp. I

D

Exp. II

Figure 3.12: Experiment I and II visualized with neuroglancer. (A) and (B) shows all predicted
objects from experiment I and II, whereas (C) and (D) presents single objects, that
are not merged together.
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Figure 3.12 (A) and (B) illustrates all predicted objects. The purple object seen in both
images represents the merge error, that connects almost all bigger structures to one
object. In contrast, (C) and (D) visualizes all objects except the connected purple struc-
ture. These objects are more or less pixel cluster that do not represent objects in the
original label (see comparison of Figure 3.12 (C) and Figure 3.13 (A)). One exception is
the orange object resembling an axon in Figure 3.12 (D).

Another illustration of the reconstructed merged object paired with a selection of sin-
gle objects from the original data is shown in Figure 3.13 (B). This picture indicates,
that original structures from the groundtruth label data are identifiable in experiment I
as merged single structure. Therefore, post-processing of neuronal network predictions
were taken into consideration to improve the evaluation results. The modification of
predicted cytoplasm images is insufficient, since recall and precision are meant for eval-
uating the NN predictions. For this reason, overlap images are more suitable to use for
modification, because they serve only to connect objects from cytoplasm slices for re-
labling. The slightest alteration of predicted objects from NN are capable of connecting
single objects in cytoplasm images to massive connective structures. For this reason,
overlapping regions were eroded in different magnitude. With the reduction of overlap-
ping regions, it is possible to avoid merged objects. In contrast, split errors are more
likely to arise due to missing overlap information of two consecutive cytoplasm images.
To test this assumption, overlap images predicted by experiment I are binarized and
eroded before relabeling. The evaluation results are visualized in Figure 3.14.

A

original label

B

Exp. I

Figure 3.13: Original objects and experiment I visualized with neuroglancer. (A) shows a se-
lection of different objects of Part B from the original label and (B) presents recon-
structed objects from experiment I with original objects from (A).
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Effect of  reduced overlap on adj. RAND index, split and merge errors 

Number of erosion steps 
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Figure 3.14: Evaluation results of experiment I after eroding overlapping regions in overlap im-
ages. Overlapping objects in overlap images were eroded up to twenty times (see
appendix A.1 for exact values).

Already after two erosion steps merge errors start to decrease, whereas ARI remains
the same and split errors are rising slowly. Additional erosion steps have impact on
all three evaluation metrics. With sinking merge errors, ARI starts to rise because large
objects are now correctly assigned to the objects in the original data. However, relatively
small overlapping regions from the groundtruth data are going to vanish, thus objects
that are connected in the original data are labeled in each cytoplasm slice individually.
The reason for this phenomena are missing overlap information to assign objects in
consecutive cytoplasm images to the same object. I decided to use tenfold erosion for
further predicted overlap images to drastically increase correctly predicted objects.
In addition to the erosion of objects, it is also possible to skeletonize given overlapping
objects in overlap images. The skeletonization of overlap images means to reduce the
border of overlapping regions under the condition that connectivity of objects remain.
The reason to use skeletonization after several erosion steps is to remove artefacts, that
may occur after binarizing predicted images. Figure 3.15 illustrates overlap images after
erosion and erosion paired with skeletonization. With this additionally step, merge errors
were reduced and ARI was increased. Split errors remained almost the same. Table 3.4
shows the evaluation metrics of selected erosion steps compared to the skeletonized
images with same amount of prior erosion.
With these findings, all experiments with predicted overlap images received post-pro-
cessing steps in the form of tenfold erosion followed by skeletonization to improve object
prediction (in later sections referred as post-processing).



32 Chapter 3: Results

predicted overlap image
predicted overlap image

+ 5 erosion steps

predicted overlap image
+ 5 erosion steps

 + skeletonize  

A B C

Figure 3.15: Comparison of overlap images with erosion and skeletonization. (A) shows an
exemplary overlap image. (B) illustrates an overlap image with five erosion steps
and (C) with additional skeletonizing.

Table 3.4: Comparison of eroded objects and eroded objects with additionally skeletonization
for selected erosion steps.

adj. RAND Index Merges Splits

Part B 0.995 0 17

Experiment I 0.04 149 117

1 erosion step 0.043 141 232

1 erosion step + skeletonize 0.088 112 200

5 erosion steps 0.24 73 831

5 erosion steps + skeletonize 0.42 55 851

10 erosion steps 0.80 29 2867

10 erosion steps + skeletonize 0.87 19 2872

15 erosion steps 0.92 11 4568

15 erosion steps + skeletonize 0.95 5 4570

20 erosion steps 0.93 2 5463

20 erosion steps + skeletonize 0.93 2 5464
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Figure 3.16 and 3.17 illustrate experiment I and III, with and without post-processing
in x-y-, x-z- and y-z-axis. The 3D reconstruction based on the prediction of NN-1 in
experiment I can be improved by post-processing. This indicates the usefulness of the
alteration of overlap images. Furthermore, the comparison between experiment I and III
with post-processed overlap images shows the importance of exact cytoplasm images.
Therefore, even small errors or displaced objects in predicted cytoplasm images are
capable of merging objects back together due to overlapping regions reaching over mul-
tiple deviant cytoplasm objects. Table 3.5 presents the evaluation results of experiment
I and III with post-processed overlap images.

Table 3.5: Evaluation results for experiment I - III with and without erosion and skeletonization.

adj. RAND Index Precision Recall Merges Splits

Part B 0.995 1.0 1.0 0 17

Experiment I with-
out post-processing

0.04 1.0 1.0 149 117

Experiment I with
post-processing

0.87 1.0 1.0 19 2872

Experiment III with-
out post-processing

0.0066 0.95 0.942 164 154

Experiment III with
post-processing

0.036 0.95 0.942 314 2957

Experiment I 
with 

post-processing 

 x-y view  x-z view  y-z view 

Experiment I
without 

post-processing 

Figure 3.16: Visual comparison between unchanged and eroded/skeletonized reconstruction of
experiment I. The black circle indicates the increased split errors arising from alter-
ing overlap images (each image receives individual label for the same object).
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Experiment III 
with

post-processing 

Experiment III 
without 

post-processing 

 x-y view  x-z view  y-z view 

Figure 3.17: Visual comparison between unchanged and eroded/skeletonized reconstruction of
experiment III.

3.5.2 Reconstruction based on overlaps predicted from cytoplasm

As shown in Figure 3.5, overlap images can also be predicted from cytoplasm images
(NN-6). Therefore, experiment IV and V were carried out to test the reconstruction
based on overlap images predicted from groundtruth and predicted cytoplasm images.
The following equations 3.5 and 3.6 provide information on which image stack was used
for training and prediction. Experiment IV consists of cytoplasm images generated from
the groundtruth labels with predicted overlap images from cytoplasm images.

Cytoplasm(A)
Training−−−−−−−−−→ Overlap(A) (3.5)

Cytoplasm(C)
Prediction−−−−−−−−−−→ Overlap∗(C) (3.6)

In contrast, experiment V used cytoplasm images predicted from EM images by NN-1
symbolized in equation 3.7 and 3.8. For 3D reconstruction, predicted cytoplasm images
were then combined with overlap images predicted by NN-6 (see equation 3.9 and 3.10).
The obtained evaluation results of experiment IV and V are both presented in Table
3.6.

EM(A)
Training−−−−−−−−−→ Cytoplasm(A) (3.7)
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EM(B)+(C)
Prediction−−−−−−−−−−→ Cytoplasm∗(B)+(C) (3.8)

Cytoplasm∗(B)
Training−−−−−−−−−→ Overlap(B) (3.9)

Cytoplasm∗(C)
Prediction−−−−−−−−−−→ Overlap∗(C) (3.10)

Table 3.6: Evaluation results for experiment IV - V

adj. RAND Index Precision Recall Merges Splits

Part C 0.998 1.0 1.0 0 21

Experiment IV
without post-
processing

0.14 1.0 1.0 94 27

Experiment IV 0.97 1.0 1.0 9 3154

Experiment V 0.023 0.937 0.937 313 2946

Experiment IV was carried out with and without post-processing. The results in Table
3.6 represent prior presumption of decreasing merge and rising split errors and ARI in-
troduced due to post-processing. In comparison, the 3D reconstruction of experiment
V consists of two subsequent NN training steps. Even after post processing, the ARI
remains low and merge errors increase, which indicates that the NN training of already
predicted cytoplasm images is unsuitable for overlap prediction and following 3D recon-
struction.

3.5.3 Reconstruction based on cytoplasm and overlap predicted
from membrane groundtruth

Previous studies often used membrane prediction as a first step in reconstructions and
several very good membrane predictors have been described [Arbeláez et al., 2011,
Hwang and Liu, 2015]. Watershedding and learned agglomeration were then used to
reconstruct neurons. Therefore, this sections explores whether 3D reconstruction can
be obtained using the framework from membranes only. With the assumption of correct
membranes, membranes from the groundtruth were used in experiment VI - VIII. In
experiment IX and X (see next subsection) an additional NN (NN-3) is used to predict
the membranes from EM images.
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The training and prediction processes of experiment VI are presented in equation 3.11
and 3.12 and experiment VII in equation 3.13 and 3.14. Experiment VIII consists of the
training and prediction steps from Experiment VI + VII.

Membrane(A)
Training−−−−−−−−−→ Overlap(A) (3.11)

Membrane(B)
Prediction−−−−−−−−−−→ Overlap∗(B) (3.12)

Membrane(A)
Training−−−−−−−−−→ Cytoplasm(A) (3.13)

Membrane(B)
Prediction−−−−−−−−−−→ Cytoplasm∗(B) (3.14)

The evaluation results of experiment VI - VIII are presented in Table 3.7. Since ex-
periment VI and VIII include an overlap prediction, post-processing was applied after
prediction. In comparison to previous experiments, experiment VI - VIII are performing
considerably better. Even with the prediction of overlap and cytoplasm images, merge
errors, ARI, precision and recall are showing exceptional results.

Table 3.7: Evaluation results for experiment VI - VIII

adj. RAND Index Precision Recall Merges Splits

Part B 0.995 1.0 1.0 0 17

Experiment VI 0.96 1.0 1.0 5 2824

Experiment VII 0.99 0.99 0.99 0 21

Experiment VIII 0.96 0.99 0.99 5 2836

3.5.4 Reconstruction based on cytoplasm and overlap from
predicted membrane

The final results of experiment IX and X are based on a training to predict membrane
images first. This step of membrane training and prediction is shown in equation 3.15
and 3.16. Predicted membrane images serve as input for the following training steps to
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train cytoplasm and overlap images visualized in following equations: 3.17, 3.18, 3.19,
3.20.

EM(A)
Training−−−−−−−−−→Membrane(A) (3.15)

EM(B)+(C)+(D)
Prediction−−−−−−−−−−→Membrane∗(B)+(C)+(D) (3.16)

Membrane∗(B)
Training−−−−−−−−−→ Cytoplasm(B) (3.17)

Membrane∗(C)+(D)
Prediction−−−−−−−−−−→ Cytoplasm∗(C)+(D) (3.18)

Membrane∗(B)
Training−−−−−−−−−→ Overlap(B) (3.19)

Membrane∗(C)
Prediction−−−−−−−−−−→ Overlap∗(C) (3.20)

The prediction of cytoplasm images for the image stacks Part C and D (see equation
3.18) were essential for a further used training and prediction implemented in experi-
ment X. In addition to experiment IX, experiment X involves a training overlap images
from predicted cytoplasm images generated from predicted membrane images. There-
fore, equations 3.21 and 3.22 are appended in experiment X.

Cytoplasm∗(C)

Training−−−−−−−−−→ Overlap(C) (3.21)

Cytoplasm∗(D)
Prediction−−−−−−−−−−→ Overlap∗(D) (3.22)

Table 3.8 shows the last evaluation results for experiment IX and experiment X with
post-processing of predicted overlap images. Due to many training and prediction steps,
experiment IX and X are expected to yield the worst results in regards to ARI, precision
and recall. Unexpectedly, splits and merge errors seem to be decreasing, which should
raise the ARI. However, the ARI is extremely low, which also indicates huge merged
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objects. The explanation for this phenomena are probably predicted cytoplasm images
from Part D. Most neurons are already connected (due to prior training and prediction),
which indicates that larger connected objects in cytoplasm images can not produce
more merge errors as available individual cytoplasm objects. Furthermore, overlap im-
ages are trained from these predicted cytoplasm images. Thus, the remaining neurons
are connected through overlap images resulting in less split errors.

Table 3.8: Evaluation results for experiment IX - X

adj. RAND Index Precision Recall Merges Splits

Part C 0.998 1.0 1.0 0 21

Part D 0.999 1.0 1.0 0 22

Experiment IX 0.01 0.926 0.935 462 3053

Experiment X 0.000018 0.87 0.93 144 125

3.6 Proofreading the SNEMI3D dataset

A closer observation of the SNEMI3D dataset reveals some inaccuracies, that might
have affected cytoplasm, overlap and membrane image prediction by NN. Figure 3.18
shows electron microscopic images from the dataset with overlayed original annotated
membranes (extracted from the labeled data).
There are substantial portions examples of the annotated membrane labels that are
not overlapping with the membranes visible in electron microscopic images (red arrows
pointing on regions with differences). Additionally, intracellular structures are labeled
as "membrane" (see red circle), which is surprising because these structures belong
to 3D objects in the SNEMI3D dataset. All of these mentioned inaccuracies may affect
NN training and lead to a poor prediction of cytoplasm, overlap and membrane images.
Therefore, a representative part of the original EM images was manually annotated for
membrane training and prediction. Two different approaches for the comparison of the
difference between self annotated and original annotated membranes were used.
The first was to calculate the precision and recall of the membranes created from the ob-
ject boundaries in the SNEMI3D dataset. The manual re-annotated membranes were
used as the groundtruth. However, precision and recall are pixel-wise measures that
depend on the thickness of the membrane label. Thicker membranes would result in
a larger overlap than thinner membranes. The pixel-based assessment (see Figure
3.19) shows that almost half of the membranes in the SNEMI3D do not belong to ac-
tual membranes (precision=0.55, mean+/- SD for n=10 images) and almost two-third of
membranes are not labeled at all (recall=0.43, mean+/- SD for n=10 images).
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A B

C D

Figure 3.18: Differences between EM and SNEMI3D derived membranes. (A) - (D) shows ex-
emplary differences in membranes marked with red arrows of EM images. Addi-
tional, the red circle in (A) indicates unannotated pixels appearing midst objects.
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Figure 3.19: Pixel-based assessment of membrane labels. Bar graph showing the mean and
standard deviation for n=10 manually annotated images.
FB = False background, FM = False membrane,
TB = True background, TM = True membrane.
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Therefore, the second approach was to calculate the directed distance from the ob-
ject boundaries in the SNEMI3D dataset and the midline of the manual annotated
membranes. I calculated the shortest euclidean distance of the manually annotated
membrane labels to each pixels in the SNEMI3D derived labels. By skeletonizing the
membrane label first, a measurement independent from the membrane thickness was
obtained. Note, that this measurement is related to the Hausdorff distance, which spec-
ifies the maximal distance of two subsets and is often used in image analysis [Taha and
Hanbury, 2015]. However, this maximum gives a single value for all pixels and is also
prone to outliers. Figure 3.20 shows the distance-based assessment of the SNEMI3D
derived membrane labels. Almost 50 % of the SNEMI3D derived membranes are more
than one pixel away from the manually annotated, true membranes (1 +/- 1.51, median
+/- MAD, 10 images), which can be decisive for correct membrane prediction.
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Figure 3.20: Distance-based assessment of membrane labels.

Although NN training can be based on data with noisy labels, I expect that a specific
bias on membrane labels could have a great impact on the membrane training and pre-
diction. Therefore, a comparison of the predicted membranes with the accuracy of the
membranes derived from the SNEMI3D dataset (see Figure 3.21) was performed. It
appears that small tunnels of extracellular space between neighbouring neurons were
not accurately represented in the SNEMI3D dataset. This results in membrane labels
that are somewhere in between the true membranes of the two neurons. Furthermore,
Figure 3.21 (C) and (D) enables the elaboration of potential prediction fails correlated
to not corresponding labels in (A). The presumption of failing membrane prediction and
false negatives (referring to occurring gaps in membranes, see (D) may be associated
with discrepancies of SNEMI3D derived and manual annotations. Unfortunately, there
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is no real pattern visible that is able to describe missing membranes in the prediction.
From a mere visual point of view, the training of NN-3 with manually annotated mem-
branes resulted in a slightly better prediction compared with training on SNEMI3D de-
rived membranes. Therefore, the following subsection is dedicated for hyperparameter
tuning using only the manually annotated membrane labels.

A B

C D

Figure 3.21: Comparison of SNEMI3D derived membranes and self annotated membranes of
one section from the dataset. (A) shows SNEMI3D derived membranes (green)
and self annotated membranes (red). (B) displays the associated EM image. (C)
illustrates only the overlapping parts (yellow) of (A). (D) shows the prediction of
the NN of the same region. The red circles illustrate the dependence of correct
annotated membranes for prediction.

3.7 Hyperparameter testing for membrane prediction

Previous experiments (experiment VI - VII) have shown excellent evaluation results for
trained cytoplasm and overlap images from membrane groundtruth. Therefore, if it is
possible to improve the membrane prediction from EM groundtruth data, neurons could
be reconstructed from EM data. To test the influence of the NN architecture, different
hyperparameter were varied for the training of membrane from EM images. Changed
hyperparameter include the number of epochs, three different loss functions, the amount
of residual blocks in the ResNet and the initial filters in the first convolutional layer. The
number of epochs was tested for 20,000 and 100,000 epochs. The three different loss
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functions are the mean squared error, logistic loss and dice coefficient, whereas the
combination of residual blocks and filters in the first convolutional layer was set to 160
and 64 or 320 and 32 respectively. After the training, precision and recall of predicted
and self annotated membrane images were calculated and illustrated in Figure 3.22 and
3.23. As shown in Figure 3.22, residual blocks, filter in the first convolutional layer and
the number of epochs used for training have little impact on the precision. In contrast,
the loss function (see Figure 3.25) seems to have a larger effect on the precision, which
indicates, that many false positives (black pixel which are predicted white) are predicted.
A closer look reveals, that predicted membrane images with the dice loss functions
are mostly random white and black pixels with round white artifacts (see Figure 3.24).
However, logistic and square loss function are able to recreate membrane images with
gaps (as visualized in Figure 3.8).
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Figure 3.22: Presentation of precision values calculated from predicted membrane images with
different ResNet hyperparameter.
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Figure 3.23: Presentation of recall values calculated from predicted membrane images with dif-
ferent ResNet hyperparameter.

dice square logistic

Figure 3.24: Predicted membrane images of NNs with different loss functions. Dice, square
and logistic output images used for evaluating precision and recall against self
annotated membrane images.
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Figure 3.25: Comparison of generator loss during NN training for all three tested loss functions.
Hyperparameter: 20.000 epochs, 160 residual blocks, 64 filter in the first convolu-
tional layer
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4 Discussion

I developed a new workflow for dense reconstruction of three dimensional objects from
electron microscopic (EM) image stacks.
Recently, high throughput electron microscopic imaging has been used to capture the
nano-scale structure of neuronal connections [Briggman and Bock, 2012]. However, the
large number of high resolution images precludes manual and semi-automatic recon-
struction [Lichtman et al., 2014]. Therefore, full automated segmentation and classifica-
tion gained much interest [Arganda-Carreras et al., 2015,Januszewski et al., 2017].
My approach combines deep learning with deterministic algorithms in order to obtain
dense, three dimensional reconstructions from serial section EM images stacks. I was
able to solve the so called contour correspondence problem in serial sectioning [Herbert
and Jones, 2001] by using deep learning to predict the overlap between consecutive ob-
jects. By restoring all objects in parallel, a faster reconstruction than the best 3D CNN
algorithm reconstructing isolated objects with flood-filling networks [Januszewski et al.,
2016] was achieved. However, detailed analysis shows, that the accuracy of the pro-
posed workflow critically depends on the correct prediction of membranes, which in turn
depends on the correct annotation in the training set.

4.1 Evaluation of dense reconstruction

First, I showed that the combination of cytoplasm and overlap information extracted from
the annotated data with subsequent use of connected components is able to solve the
contour correspondence problem in serial sectioning [Herbert and Jones, 2001]. Thus,
I fully reconstructed objects of the high anisotropic SNEMI3D dataset (see Table 3.2).
Proceeding with this knowledge, multiple ways of predicting cytoplasm and overlap im-
ages with NN were tested (see Figure 3.5). For example, it is possible to traverse the
workflow through NN-1 and NN-2 or predict membrane images first with NN-3 followed
by NN-4 and NN-5. Therefore, several experiments were performed successively in
order to find the best prediction of cytoplasm and overlap images.

4.1.1 Metrics

For the evaluation of my experiments, precision and recall for cytoplasm images, ad-
justed RAND index (ARI) plus merge and split errors were calculated. Precision and
recall served as metrics to examine how accurate the NN predicts cytoplasm images.
Furthermore, ARI is the most used evaluation metric for segmentation purposes [Hubert
and Arabie, 1985], whereas merge and split errors give more intuitive insight of recon-
structed objects.
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However, it is important to note how merge and split errors are calculated. The defi-
nition of these metrics specifies whether two objects in the relabeled data are merged
together to one object despite being two single objects in the groundtruth data (merge
error) or one object in the groundtruth data is assigned to two different objects in the
predicted image stack (split error). If more than two objects are involved, I counted with
how many objects the predicted label is merged or to how many objects the groundtruth
label is split, respectively. Additionally, objects with a size of less than 10 voxels were
discarded because they frequently arise due to thresholding grayscale images. All in
all, these metrics emphasizes the correct prediction of object boundaries. In compari-
son, JANUSZEWSKI ET AL. are utilizing a different approach for evaluating FFN predic-
tions, in which they defined a skeleton edge accuracy metric, which is based on skele-
tonized objects. This metric depends especially on correct, merged, split and ommited
edges [Januszewski et al., 2016].

4.1.2 Pre- and post-processing

Pre- and post-processing allows a wide variety of operations to improve original EM im-
ages from the SNEMI3D dataset or obtained results after NN training. Many biomedical
imaging methods require pre-processing image filtering methods due to poorer noise-to-
signal ratios, low spatial resolutions, artefacts and low contrast between distinct anatom-
ical structures [Behrenbruch et al., 2004]. The groundtruth dataset (SNEMI3D) used in
this work also possesses varying brightness in consecutive images and artefacts in form
of missing annotated pixel midst objects. For this reason, further trained NN used EM
data with an applied local contrast enhancement filter CLAHE [Arici et al., 2006].
Furthermore, post-processing describes the improvement and optimization of images
retrieved after prediction. Commonly used morphological operations include erosion,
dilation, skeletonization, opening, closing, etc. [Busch and Eberle, 1995]. The applica-
tion of tenfold erosion and following skeletonization to received overlap images of NN-2
and NN-4 (see Figure 3.5) led to an extreme improvement of the ARI illustrated in Figure
3.14 and reconstructible objects resembling the groundtruth objects. Unfortunately, the
number of erosion steps used for all conducted experiments also led to extreme split
error rates, because small overlapping regions in the dataset were shrank to extinction.
Therefore, it could be better to establish an exception for the erosion, that overlapping
regions can not be smaller than one pixel in total.
Another important issue includes the preparation of predicted cytoplasm and overlap
images for connected components. For each predicted image, the NN returns a proba-
bility between 0 and 1 for each pixel, whether it is part of the background or cytoplasm
and overlap respectively. Since the output is a grayscale image, ranging from 0 (black
= background) to 255 (white = cytoplasm/overlap), and connected components, pre-
cision and recall require binary images for relabeling and evaluation, all pixels were
thresholded and set to zero for pixel values below 127 (P(Label) < 0.5) and one for
pixel values higher or equal 127 (P(Label)>= 0.5), in which label refers to cytoplasm,
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overlap or membrane images. Thresholding images with different probabilities for true
and false label can affect all evaluation metrics, thus requiring more investigation for all
implemented experiments.

4.1.3 Experiments

The first conducted experiments (I, II, III) on the training and prediction of cytoplasm
and overlap from EM images were performed without any post-processing. Experiment
III, which included NN-1 and NN-2 for predicting both cytoplasm and overlap images
turned out as the simplest and on the same time worst reconstruction of neuronal ob-
jects, resulting in one big merged object. Experiment I and II were either using NN-1
or NN-2 for cytoplasm or overlap prediction. Therefore, non NN predicted image stacks
were generated through the groundtruth data. Despite producing less merge and split
errors than experiment III, both experiments were unsuitable for dense reconstruction
(see Table 3.3).
The next methodology included additional post-processing to predicted overlap images
in experiments I and III, which improved the ARI of experiment I significantly, resulting
in distinguishable objects. However, post -processing induced massive split errors and
was not beneficial, if cytoplasm and overlap are trained and used for reconstruction
(see Table 3.5). Experiments IV and V examined whether the training of overlap images
from cytoplasm images is applicable. Evaluation results indicated extremely good re-
construction for trained overlap images from true cytoplasm labels (see experiment IV),
illustrated in Table 3.6. If predicted cytoplasm serves as input for the training of overlap
images, objects can not be separately reconstructed and are merged to one massive
structure again (see experiment V).
Due to the very good prediction of overlap images from groundtruth cytoplasm in ex-
periment IV, the prediction of cytoplasm and overlap from membrane images derived
from the groundtruth dataset (see experiment VIII) was tested. Membrane images are
object edges with one pixel width, representing the boundary of each object. The train-
ing and subsequent prediction of cytoplasm (NN-4) and overlap (NN-5) showed almost
perfect segmentation, resulting in nearly perfect 3D reconstructed objects (see Table
3.7). A wide variety of approaches that include boundary detection have been already
proposed [Arganda-Carreras et al., 2015] and presented in Table 4.1. My approach
ranks right under the "human 1 versus consensus" and above all other competitors as
well as "human 2 versus consensus". Therefore, I extended this approach and trained
an additional NN (NN-3) to predict membrane images from EM and use the predicted
membrane images for further training of cytoplasm and overlap (see experiment IX).
However, the quality of membrane predictions did not allow for correct prediction of cy-
toplasm and overlap, even if the consecutive networks were trained on predicted mem-
branes (see experiment X). Therefore, membrane prediction is the crucial step in the
proposed workflow for a complete 3D reconstruction of neurons from EM images.
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Table 4.1: RAND scores of all competitors at ISBI with additional listing of experiment VIII calcu-
lated with the evaluation metric used by ARGANDA-CARRERAS ET AL. (table modified
after [Arganda-Carreras et al., 2015])

Method RAND score

human 1 vs. consensus 0.997

Experiment VIII (see section 3.5.3) 0.996

human 2 vs. consensus 0.971

IDSIA 0.944

BlackEagles 0.929

MLL-ETH 0.927

SCI 0.915

CellProfiler 0.904

Harvard 0.892

CoMPLEX 0.877

UCL 0.86

TSC+PP 0.843

IMMI 0.826

CLP 0.809

Freiburg 0.8

NIST 0.73

4.1.4 SNEMI3D annotations

As mentioned in the previous subsection, the cytoplasm and overlap prediction from
SNEMI3D derived membrane groundtruth revealed almost perfect 3D visualization re-
sults. However, predicted membranes from EM images show conspicuous gaps midst
membrane and are insufficient for further training. Furthermore, the original dataset was
examined in more detail, which revealed inaccuracies in the annotated objects leading
to deviations in derived membranes of the groundtruth labels (see Figure 3.21).
Therefore, I annotated a small portion of the dataset myself, trained NN-3 and received
better visual predictions of membranes. Nevertheless, predicted membranes are still
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unsatisfactory and contain a lot of unpredicted regions, which may distort cytoplasm
and overlap prediction (see section 3.6 for in-depth information).

4.1.5 NN architectures and hyperparameter tuning

An additional step towards better membrane prediction includes the test of different NN
architectures and loss functions for training, which might be able to overcome the used
ResNet architecture with mean squared loss. URAKUBO ET AL. tested different loss
functions for neuron, synapses and mitochondria prediction in EM images [Urakubo
et al., 2019]. The three best working included mean squared error, logistic loss and dice
coefficient. Therefore, logistic loss and dice coefficient were added to the testing regime
with additional changes of hyperparameter including epochs, network depth and filter in
the first convolutional layer (see Figure 3.25). The best training curves achieved mean
squared loss and logistic loss, whereas the dice coefficient led to distorted predictions.
Further testing should be dedicated to different network architectures such as U-Net
[Ronneberger et al., 2015], Highway-Net [Srivastava et al., 2015] and DenseNet [Huang
et al., 2016], which are heavily applied in bioimaging.

4.2 Computational costs

Another important aspect of this work was to minimize the computational cost needed
for 3D reconstruction of neurons from EM images, including NN training and predic-
tion, pre- and post-processing as well as reconstruction and relabeling. NN training
yields the major percentage of computational costs by far. The NN training of FFN by
JANUSZEWSKI ET AL. proceeded about seven days with a distributed setup of 32 NVIDIA
Tesla K40 GPUs with 4290 GFLOPS per GPU [Januszewski et al., 2017]. My setup con-
sists of one NVIDIA Tesla V100 with 15000 GFLOPS and an Intel Core i7-6700 3,4GHz
CPU. The training of one of my NN with only one GPU takes around 1h (for 2000 epochs
and 100 batch size) with subsequent prediction on CPU of less than 1 min. However,
the FFN training on the best computational GPU currently available (NVIDIA Tesla V100
as of August 2019) would last at least two to three months. In addition, the NN train-
ing of FFN can last even longer, depending on how many objects belong to the current
field of view (FOV) ranging from one up to several objects (two months corresponding to
estimated 2 objects per FOV) [Januszewski et al., 2017]. Although FFN ranked first on
the FIB-SEM (Drosophila ventral cord) challenge and currently second on the SNEMI3D
challenge (mouse cortex), it does not imply overwhelming predictions on other test sets
including neuronal structures, which may need additional training.
The prediction and relabeling of my workflow (<1min) and the prediction of FFN (7 min)
are barely different in relation to the NN training. Another point, that could be of inter-
est is the annotation of groundtruth necessary for training. The labeling of objects in
the SNEMI3D dataset was described as "many hours" by KNOWLES-BARLEY ET AL.,
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whereas the annotation of groundtruth data for FFN networks takes around two week
labor [Urakubo et al., 2019]. Due to significantly lower computational cost of my NN
training, it is also possible to train deeper ResNets. In this case, the depth of the neu-
ronal network with more than eight residual blocks has no substantial effect on the train-
ing as well as the increase of epochs. A complete overview of computational costs is
presented in Table 4.2.

Table 4.2: Comparison of computational costs with FFN

Annotation Training Prediction Reconstruction

FFN ∼two weeks 1-2 weeks with 32x
Tesla K40 (∼2 months

with 1x Tesla V100)

∼7 min on
GPU

—

my approach ∼many hours ∼3h with 1x Tesla
V100

<1 min on
CPU

∼1 min
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5 Conclusion

The main objective of this work, the investigation of 3D reconstruction of neurons from
EM images with a Python-based command line software tool, was successful. This
software package includes multiple scripts, each representing a different step in the
software pipeline, such as pre-processing, NN training, reconstruction and relabeling
and 3D visualization.
Initial testing with the SNEMI3D dataset showed that an interleaved image stack con-
sisting of cytoplasm images in combination with overlap images is able to solve the so
called contour correspondence problem in serial sectioning [Herbert and Jones, 2001]
and is sufficient for the relabeling of original objects with connected components. Fur-
thermore, many ways were introduced and used for the generation of ideal cytoplasm
and overlap images from EM images using CNNs.
The first approach included the direct training to predict cytoplasm and overlap from
original EM images. Precision and recall for the predicted labels reached values of
around 0.95, indicating excellent predictions. Nevertheless, small errors in the segmen-
tation resulted in completely merged objects. The best results indicated by few merge
and split errors and a high ARI, was achieved with tenfold erosion plus skeletonization
as post-processing step.
Since the prediction of objects was still not satisfactory, training to predict cytoplasm and
overlap from SNEMI3D derived membrane images was performed. The results showed
that the training with clear boundaries (membranes) is sufficient enough for the predic-
tion of cytoplasm and overlap, reaching an ARI of 0.96. Therefore, an additional training
was initialised to predict membrane images from EM first, with consecutive training of
cytoplasm and overlap images to achieve a full automated processing pipeline. The re-
sults showed a better prediction of objects, than the direct prediction of cytoplasm and
overlap from EM images. Thus, the next step included the optimization of membranes
predicted by EM images.
Some of the SNEMI3D derived membranes may not be ideal for membrane prediction.
Due to that assumption, membranes of ten EM images were manually labeled and used
for membrane prediction, which showed visual improvement, but not perfectly predicted
membranes.
Furthermore, some hyperparameters including number of epochs, filter in the first con-
volutional layer and number of residual blocks with three different loss functions, e.g
mean square loss, logistic loss and dice coefficient, were tested to improve predicted
membrane images even further. Mean square loss resulted in the best prediction, which
was already used for previous predictions. More than 2,000 epochs, different filter in the
first convolutional layer and an increasing number of residual blocks of more than eight
have not led to any improvements of membrane prediction.
Nevertheless, a major advantage over the state-of-the-art algorithm FFNs is the com-
putational cost needed for training. The training of FFNs takes around one to two weeks
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with a custom server setup of 32 paralleled Tesla K40 GPUs. In comparison, the train-
ing of one NN in my pipeline takes only one hour with a Tesla V100 GPU. Moreover, the
prediction of cytoplasm and overlap images from already trained NNs up until recon-
struction and 3D visualization of reconstructed neurons takes only around ten minutes.
In consideration of the large number of high resolution images generating image data in
zetabyte range, fast and precise predictions are mandatory for future methods.
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6 Future directions

The image pre- and post-processing pipeline, NN training and 3D reconstruction of neu-
rons from EM images offers several ways for further improvement, that should be imple-
mented, improved and investigated.
The next experiments should focus on the improvement and testing of different NN
architectures. Already reviewed and suitable architectures for bioimaging include U-
Nets [Ronneberger et al., 2015], Highway-Nets [Srivastava et al., 2015] and DenseNets
[Huang et al., 2016]. Additionally, hyperparameter tuning of the currently used ResNet
[He et al., 2015] could enhance the evaluation results of cytoplasm and overlap images
predicted from SNEMI3D derived membranes even further, enabling an improved pre-
diction of finer neuronal structures like dendrite spine necks.
Nevertheless, the main priority of NN training should be dedicated to membrane pre-
diction from EM images to allow for an accurate, dense 3D reconstruction of neurons.
In reference to SNEMI3D derived membranes, which are not optimized solely for mem-
brane prediction, the NN training with self annotated membranes generated a better pre-
diction of membranes. Therefore, it would be useful to annotate even more membranes
of SNEMI3D EM images to increase the number of individual pictures for training.
In addition, membranes represent only one-seventh of the whole image, indicating a
class imbalance, which can lead to poor predictions of the membranes. This could be
prevented by higher cost sensitivities for the membrane class or adjusted threshold in
favor of the minority class. The method Large Margin Local Embedding described by
HUANG ET AL. could also yield improvements for the membrane prediction [Huang et al.,
2018,Dong et al., 2018].
Furthermore, the Python-based pipeline offers scripts for image pre-processing, NN
training, segmentation and 3D visualization, which are executed in a specific order in
the command line including different parameters. Although this pipeline was designed
for biologists, and contains scripts with precisely documented functions, it can be quite
difficult to use for someone who has limited programming knowledge. Therefore, fur-
ther software development should be oriented on a graphical user interface, including
all steps from reading and pre-processing the groundtruth data to final 3D visualization
of neurons, which ultimately can be integrated in the UNI-EM software presented by
URAKUBO ET AL. [Urakubo et al., 2019]. In addition, the extension of developed scripts
reading different data formats could come in handy for future work.
Moreover, it would be interesting to apply this pipeline to other datasets, e.g. from dif-
ferent species and imaging modalities.



54



Appendix A: Supplementary information 55

Appendix A: Supplementary information

Table A.1: Evaluation results for experiment I with altered overlap objects after training

adj. RAND Index Precision Recall Merges Splits

Part B 0.995 1.0 1.0 0 17

Experiment I 0.04 1.0 1.0 149 117

edges decreased
by 1 pixel

0.043 1.0 1.0 141 232

edges decreased
by 2 pixel

0.054 1.0 1.0 125 340

edges decreased
by 3 pixel

0.088 1.0 1.0 103 447

edges decreased
by 4 pixel

0.18 1.0 1.0 81 600

edges decreased
by 5 pixel

0.24 1.0 1.0 73 831

edges decreased
by 6 pixel

0.27 1.0 1.0 58 1144

edges decreased
by 7 pixel

0.34 1.0 1.0 48 1516

edges decreased
by 8 pixel

0.41 1.0 1.0 44 1934

edges decreased
by 9 pixel

0.54 1.0 1.0 32 2394

edges decreased
by 10 pixel

0.80 1.0 1.0 29 2867

edges decreased
by 11 pixel

0.82 1.0 1.0 24 3282

edges decreased
by 12 pixel

0.86 1.0 1.0 18 3662

edges decreased
by 13 pixel

0.86 1.0 1.0 15 4010

edges decreased
by 14 pixel

0.87 1.0 1.0 13 4302
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adj. RAND Index Precision Recall Merges Splits

edges decreased
by 15 pixel

0.92 1.0 1.0 11 4568

edges decreased
by 16 pixel

0.94 1.0 1.0 6 4800

edges decreased
by 17 pixel

0.93 1.0 1.0 5 4998

edges decreased
by 18 pixel

0.93 1.0 1.0 5 5166

edges decreased
by 19 pixel

0.94 1.0 1.0 4 5319

edges decreased
by 20 pixel

0.93 1.0 1.0 2 5463
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Appendix B: Poster

A poster (see Figure B.1) has been designed and presented during the Mittelerde Meet-
ing 2019 (4th Central German Meeting on Bioinformatics) in Dresden at BIOTEC on
June 13, 2019.

Deep Learning for dense reconstruction of 

neurons from electron microscopic images

University of Applied Sciences Mittweida - Faculty of Applied Computer and Biosciences
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BACKGROUND AND DATASET

NETWORK ARCHITECTURE

In recent years, the study of neuronal connectivity gained interest. It is assumed that neuronal connectivity will grant knowledge how ageing or 

neurological diseases affects the brain structure and how memory traces are physically stored. New methods1 will produce large amounts of neuronal 

electron microscopic (EM) image data, which will exceed the zetabyte range and is beyond manual annotation. Our work presents a deep learning 

approach for feature detection followed by a pixel-grouping step and subsequent 3D visualization.

The dataset used in our studies was first presented in the ISBI 2013 challenge of 3D segmentation of neurites in EM images (SNEMI3D2) and consists of 

one hundred 1024x1024pixel full annotated consecutive images with a resolution of 3nm/pixel in x- and y-direction and 29nm spacing between two 

following images. The total volume is approximately 3x3x3 µm and contains dendrites, myelinated and unmyelinated axons.

WORKFLOW - FEATURE EXTRACTION + LABELING + 3D VISUALIZATION

Figure 3: ResNet between encoder and decoder3 

Figure 1: Workflow from initial EM image stack to 3D visualization: The first neuronal network (NN1) was trained to predict membranes. With these predicted 

membranes two following neuronal networks were trained to predict cytoplasm images (NN2) and overlap images (NN3). The interleaved images stack with overlap images 

between cytoplasm images are further used for labeling the 3D objects with connected components and visualization via neuroglancer.

METHODS

The groundtruth for the training of NN for detection of membrane, 
cytoplasm and overlap images (see Figure 2) was obtained from 
the full annotated SNEMI3D dataset.

membrane images: all neuron membranes of the image 

stack are labeled as True (White) 

cytoplasm images: each individual neuron without 

membrane are labeled as True (White)

overlap images: overlapping regions of two consecutive 

cytoplasm cross sections are labeled as True (White)

NEURONAL NETWORK TRAINING ORDER AND RESULTS 

References:
[1] N. Kasthuri, et al. (2015): Saturated reconstruction of a Volume of Neocortex. Cell 162(3):648-61 

[2] http://brainiac2.mit.edu/SNEMI3D

[3] P. Isola, et al. (2017): Image-to-Image Translation with Adversarial Networks. In CVPR 
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Figure 2: Overview of neuronal network inputs, outputs and targets for training: A 

total of three neuronal networks were trained with the aim to automatically create 
cytoplasm and overlap images from EM images.

Encoder ResNet Decoder

Residual Blocks

Figure B.1: Poster - 4th Central German Meeting on Bioinformatics
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Appendix C: CD content

The enclosed CD contains the following content:

• thesis in pdf format
• poster in pdf format
• tensorflow graph of the used neuronal network as png
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Glossary

adjusted RAND index Corrected-for-chance version of the RAND index.
ATUM-SEM Automatic tape-collecting ultramicrotome scanning electron microscope

producing image resolutions of 3x3x29 nm.

connected components A sub graph of an undirected graph, in which all vertices are
connected and labeled individually.

Connectomics A research area of neurosciences, which is dedicated to the mapping
and visualization of all neuronal structures within an organism.

convolutional neuronal network By YANN LECUN established form of a NN consist-
ing of convolutional and pooling layer especially suited for processing image- and
audio data.

cytoplasm images Binary images representing all objects without the outmost pixel
border of each object as true and the remainder as false.

deep convolutional neuronal network CNNs with a high number of convolutional and
pooling layers.

DenseNet DenseNets use the same architecture as ResNets with adding skip connec-
tions from every previous layer to the actual layer.

FIB-SEM Focused ion beam scanning electron microscope producing maximal image
resolutions of 5x5x5 nm.

Flood-filling networks State-of-the-art neuron segmentation algorithm with the use of
3D CNNs.

FLOPS Measurement for computational performance of a computer. Often used for
GPU comparison.

Git A free version control system for non-linear software development.

HighwayNet The HighwayNet is based upon a ResNet with a additional learning pa-
rameter, which decides whether skip connections should be used or not.

Hyperparameter Hyperparameters in NN are parameters, which need to be defined
before training (such as epochs, batch size, loss function, etc.).

membrane images Binary images representing the outmost pixel border of each indi-
vidual object as true and the remainder as false.

merge errors Two or more individual labels in the groundtruth dataset, that are com-
bined to one label in the predicted dataset.

Neuroglancer A WebGL-based viewer for volumetric data.
neuronal network A NN consists of a variety of calculations to learn relationships in a

given set of data inspired by the composition of the human brain.
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overlap images Binary images representing the cross-sections of all objects in two
consecutive images as true and the remainder with false.

precision A performance measurement of binary classification. The precision de-
scribes the fraction of relevant instances among retrieved instances.

RAND index Measurement often used in data clustering to measure the similarity of
two cluster.

recall A performance measurement of binary classification. The recall describes the
fraction of relevant instances that have been retrieved over the total amount of
relevant instances.

ResNet Residual networks are NNs containing skip connections between convolutional
layer with rectified linear units activation functions allowing to train deep NN with
less computational cost.

sBEM Serial block-face scanning electron microscope producing image resolutions of
4x4x45 nm.

split errors One label in the groundtruth dataset, which is divided into two or more
individual labels in the predicted dataset.

ssTEM Serial section transmission electron microscope producing image resolutions
of 12x12x25 nm.

U-Net U-Net is a CNN especially for bioimage segmentation. It consist of an encoder
and decoder, whereas the encoder consists of a typical CNN and the decoder
combines spatial information and features through up-convolutions.
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