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Abstract

We present dimensionality reduction methods like autoencoders and t-SNE for visualization of
high-dimensional data into a two-dimensional map. In this thesis, we initially implement basic
and deep autoencoders using breast cancer and mushroom datasets. Next, we build another
dimensionality reduction method t-SNE using the same datasets. The obtained visualization re-
sults of the datasets using the dimensionality reduction methods are documented in the experi-
ments section of the thesis. The evaluation of classification and clustering for the dimensionality
reduction techniques is also performed. The visualization and evaluation results of t-SNE are
significantly better than the other dimensionality reduction techniques.
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1 Introduction

One of the challenges in handling big data is in creating effective human-computer in-
teraction tools for rapidly customizable visual reasoning with respect to different appli-
cations. The high-dimensional data can be visually inspected by humans through an
intuitive interface to identify the structural elements of the data like clusters, homoge-
neous regions, or outliers and depending on the cognitive capabilities of humans for
speedy visual attention of structures and grouping of items [18].
The common problems in data mining deal with data with a large number of measure-
ments or dimensions. The reduction of dimensionality makes it possible to extract knowl-
edge from the data through visualization and to design and make use of effective clas-
sification schemes. The most important dimensions which hold most information for the
task are kept as it is by performing dimensionality reduction and projecting the reduced
dimensions onto others. The above steps help us significantly to visualize the data es-
pecially by mapping them in two or three dimensions which helps us in refraining from
dealing with high dimensional data, instead we scan their low dimensional “summaries”.
The challenge for visualization is to insert a set of observations into a Euclidean feature-
space, which preserves as nearly as possible their intrinsic metric structure [17].
Dimensionality reduction algorithms help in projecting high dimensional data to a low
dimension and retaining important features as likely and reducing the irrelevant or re-
peated information.
Dimensionality reduction is an important part of machine learning to resolve expensive
computational problems that involve images, videos, speech, and text. Machine learning
involves two major branches supervised learning and unsupervised learning. In super-
vised learning, the artificial intelligence agent will have access to labels that are used in
improving the performance on different tasks. In unsupervised learning, we do not have
access to labels and the task for AI agent is not properly defined and the performance
cannot be clearly measured. We work closely into unsupervised learning and get deep
into different dimensionality reduction algorithms. Basically there are two branches of
dimensionality reduction, first is known as a linear projection which deals in linearly
projecting data from high-dimensional space to a low-dimensional space. The linear
projection involves methods like principal component analysis, singular value decom-
position, and random projection. The second is known as non-linear dimensionality re-
duction which involves multidimensional scaling, locally linear embedding, t-distributed
stochastic neighbor embedding (t-SNE) and autoencoders are used with different types
of autoencoders like deep autoencoders and basic autoencoders [9].
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1.1 Overview of visualization methods

This section is based on the book from I. Goodfellow et al [20]. The performance of sim-
ple machine learning algorithms depends on how the data is represented and given to
them. Suppose a machine learning algorithm is used to recommend patient for cesarean
delivery, the artificial intelligence system cannot test the patient directly. Alternatively,
the doctor gives the relevant information, like the existence or absence of a uterine scar.
Every information collected by doctor in incorporating the representation of the patient
is known as feature. The machine learning algorithms learns how to correlate every
features of the patient with their associative outcomes.
The right features for the given task can solve the artificial intelligence systems par-
ticular task easily, subsequently these features can be given to the machine learning
algorithms. However, it is difficult to know what features to be extracted for different
task. For example, we would like to detect the car in photographs and as a feature to
identity car we might use car wheels as a feature. The difficulty is describing about the
car wheels in terms of pixel values. As the image can be affected by shadows and sun
glaring falling on the metal parts of the wheel. To solve this difficulty, we need to use
machine learning to identify not only the mapping of the representation to the output but
the representation itself. This is known as representation learning.
The learnt representation quite often results in good performance than with hand de-
signed representations. This leads to less human intervention and allows artificial intel-
ligence systems to adapt for newer tasks. The standard example of the representation
learning is autoencoders.
An autoencoder consists of an encoder function that transforms the input data into a
different representation and the decoder function converts the new representation back
into the original form. Autoencoders are trained to preserve as much information as
possible when an input is run through the encoder and then the decoder, but are also
trained to make the new representation have various nice properties. Different kinds
of autoencoders aim to achieve different kinds of properties. When an input is passed
through the encoder and then the decoder, the autoencoders are trained to retain most
of the possible information.
The main difficulty in many artificial intelligence systems application in real-world is that
there is a factor variation which affects every piece of data we observe. For example,
the individual pixel of the red car can be very similar to black at night. So it might be very
difficult to extract the abstract features from the raw data. So Deep learning solves this
problem in representation learning by initiating representations that can be expressed in
terms of other, simpler representations. The classic example of a deep learning model
is the feed-forward deep network or multilayer perceptron (MLP).
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1.1.1 Autoencoders

MLP is a mathematical function which maps some set of input values to output values.
Many simpler functions are composed to form the function. Every application of the dif-
ferent mathematical function provides a new form of the input [20].
An autoencoder is considered as a special case of MLP as shown in Figure 1, which
regresses the input data in its output layer. To do this, autoencoder does not require
labeled data. Hence making it unsupervised, and also used to learn non-linear features
from the input data [6].
It considers an encoder stage, a code layer, and a decoder stage. The input layer is
represented as visible layer because it contains the data variables that we are able to
see. The encoder stage consists of one or more hidden layers where it maps the input
data to the code layer, which usually contains fewer neurons than the input layer [6].
A series of hidden layers used extracts the abstract features from the image (input).
These layers are termed as “hidden” as their values are not given in the data; rather the
model must determine which concepts are essential for analysing the relationships in
the observed data.
The code layer captures all the important information which is needed to reconstruct
the input in the output layer, through the decoder stage. This helps in low dimensional
feature representation of the higher dimensional input data. Typically, the encoder and
decoder are symmetric.
An autoencoder combined with MLP forms a network of trainable weights. The weights
and the loss function is optimized by using stochastic gradient descent process [6].
An autoencoder with MLP, uses a backpropagation algorithm. It consists of two phases.
In the first phase, error based on the reconstructed output and target output is calculated
(forward phase) corresponding to the given input. In the second phase, the resultant er-
ror is back propagated to the network, based on this weight of the network are updated,
usually until it converges [6]. Finally, the autoencoder with hyperspectral data as an
input is shown in Figure 1, where the intensity at every wavelength corresponds to the
value of each neuron in the input layer [6].
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Figure 1.1: Autoencoders architecture [6]

1.1.2 Basic autoencoders

The basic autoencoder as shown in Figure 2, has only one hidden layer h and which
sets target values to the given input x [21].
We consider an input x ∈ Rn, the hidden representation h(x) ∈ Rm is given by

h(x) = f (W1x+b1). (1.1)

where f (z) is a non-linear activation function, which is usually a logistic sigmoid func-
tion f (z) = 1/(1+exp(−z)) applied component-wise, W1 ∈m×n is a weight matrix and
b1 ∈ Rm is a bias vector.

The output from the network as shown in Figure 2, maps the hidden representation
h back to a reconstruction x̂ ∈ Rn

x̂ = f (W2h(x)+b2) (1.2)

where W2 ∈ n×m is a weight matrix and b2 ∈ Rn is a bias vector.
We consider a set of input examples X , training autoencoder contains in finding param-
eters θ = {W1,W2,b1,b2} which minimizes the reconstruction error with respect to the
objective function:

J (θ) = ∑
x∈X
||x− x̂||2 (1.3)
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Figure 1.2: Basic autoencoder

The minimization can be realized by stochastic gradient descent that is used in training
deep neural networks or MLP [21].

1.1.3 Deep autoencoders

A deep autoencoder is a variant of basic autoencoders but a feed-forward multilayer
neural network where the desired output is input [5].
An autoencoder with more than one hidden layer is called a deep autoencoder and
each additional hidden layer requires a pair of encoder and decoder as shown in Figure
3. The additional hidden layers can help in extracting more abstract features and better
reconstruction of the input with minimum loss [5].
The code layer helps in capturing important features needed to reconstruct the input
and also helps in low-dimensional representation of the input data.

Input layer Hidden layers

code

Hidden layersOutput Layer

Figure 1.3: Deep autoencoder



6 Chapter 1: Introduction

1.1.4 Parameters used in autoencoders

During the construction of autoencoders each layer of the autoencoder is specified with
a variety of parameters based on its activation function. Relu and sigmoid activation
functions can be used for the encoder and decoder layers of the autoencoders [10].
The cost functions like mean squared error (MSE) and binary cross entropy are used
to compile the autoencoder [10]. The most important hyperparameter of autoencoder
is code size that is used for low-dimensional visualization of the high dimensional input
data.

1.2 t-Distributed Stochastic Neighbor
Embedding(t-SNE)

This section is based on the journal from L. Maaten and G Hilton [8]. We initially outline
about stochastic neighbor embedding (SNE) published by Hilton and Roweis (2002),
that forms the basis for t-Distributed Stochastic Neighbor Embedding (t-SNE).
SNE begins with the conversion of high-dimensional Euclidean distances between dat-
apoints into conditional probabilities that represent similarities.
Alternatively, SNE can be applied to data sets that contains pairwise similarities be-
tween objects instead of high-dimensional vector representations of every object, given
these similarities can be interpreted as conditional probabilities. The similarity between
datapoint x j and datapoint xi is given by conditional probability p j|i, that xi would pick x j

as its neighbor provided neighbors were picked in proportion to their probability density
under Gaussian centered (normally distributed) at xi.
The probability p j|i for nearby datapoints drawn under this Gaussian will be relatively
high, whereas for far away datapoints, p j|i will be extremely small or approaching zero.
The conditional probablity p j|i can be expressed mathematically as:

p j|i =
exp(−||xi− x j||2/2σ2

i )

∑k 6=i exp(−||xi− xk||2/2σ2
i )

, (1.4)

where σi is known as variance of the Gaussian centered on datapoint xi. The method of
finding the value of σi is determined later in this section. The main focus is in modeling
pairwise similarities, so the probability pi|i to zero. It is possible to calculate the similar
conditional probability denoted as q j|i for low-dimensional datapoints yi and y j. The
variance of the Gaussian that is employed to calculate the conditional probabilities are
q j|i to 1√

2
.

Thus we model the similarity of map data points y j and yi by

q j|i =
exp(−||yi− y j||2/2σ2

i )

∑k 6=i exp(−||yi− yk||2/2σ2
i )

(1.5)
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As we are interested in modeling pairwise similarities, qi|i is set to zero.
If the similarities are correctly modeled between map points yi and y j and high dimen-
sional points xi and x j, the conditional probabilities p j|i, q j|i will be equal. With this
observation, SNE finds the low-dimensional data representation that minimizes the mis-
match between p j|i and q j|i.
The measure of trueness with which q j|i models p j|i is the Kullback-Leibler divergence.
Gradient descent method is used by SNE to minimize the sum of Kullback-Leibler diver-
gences over all datapoints.
The cost function is given by

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

p j|ilog
p j|i
q j|i

, (1.6)

where Pi stands for the conditional probability distribution over all other datapoints given
datapoints xi, and Qi stands for the conditional probability distribution over all other
maps given map point yi. In particular, there is a high cost for using far away map points
to represent nearby datapoints (that is for using a small q j|i to model a large p j|i). But
there is a low cost for using nearby map points to represent far away datapoints. In
simple words, the SNE cost function tries to preserve the local structure of the data
(high-dimension) in the map (low-dimension).
The important parameter to be chosen is variance σi of the Gaussian that is centered
over each high-dimensional datapoint, xi. There is no single value of σi that is optimal
for all datapoints because density of data is likely to vary in different datasets. The prob-
ability distribution Pi is induced by any particular value of σi, over all other datapoints.
This distribution is associated with entropy which increases as σi increases.
SNE operates binary search for the value of σi that produces Pi with a fixed perplexity
given by the user. The perplexity is defined as

Perp(Pi) = 2H(Pi), (1.7)

where H(Pi) is the Shannon entropy of Pi measured in bits

H(Pi) =−∑
j

p j|i log2 p j|i. (1.8)

The perplexity can be interpreted as a smooth measure of effective number of neigh-
bors. The performance of SNE is fairly powerful to the changes in the values of the
perplexities. Typical values of perplexities are between 5 and 50.
The cost function as mentioned in Equation 1.6, can be minimized using a gradient
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descent method. The gradient has a simple form as shown below :

δC
δyi

= 2∑
j
(p j|i−q j|i + pi| j−qi| j)(yi− y j). (1.9)

The gradient may be explained as the resultant force induced by a set of springs be-
tween the map point yi and all other map points y j. The total force exerted by the spring
is along the direction of (yi− y j). There is a repulsion or attraction from the spring
based on the distance between yi and y j in the map is too small or too big to represent
the similarities between the two high-dimensional datapoints. The spring exerts a force
between yi and y j which is proportional to its length and also its stiffness, which is mis-
match (p j|i− q j|i + pi| j− qi| j) between the pairwise similarities of the map points and
data points.
In order to initialize the gradient descent, the map points are sampled randomly from
an isotropic Gaussian with small variance that is centered around the origin. To speed
up the optimization and to avoid poor local minima, a large momentum term is added to
the gradient. In other words, to find the changes in the coordinates of the map points at
every iteration of the gradient search, the present gradient is added to an exponentially
decaying sum of preceding gradients. Mathematically, the update of the gradient with
respect to momentum term is given by

Y (t) = Y (t−1)+η
δC
δY

+α(t)(Y (t−1)−Y (t−2)), (1.10)

where Y (t) denotes the solution at iteration t, η represents the learning rate, and α(t)
represents the momentum at iteration t.

At the starting point of the optimization, after every iteration the Gaussian noise is added
to the map points. In order to reduce the variance of this noise gradually, a type of sim-
ulated annealing is performed that helps the optimization to escape from poor local
minima in the cost function. In case the variance of the noise changes gradually at the
critical point at which the global structure of the map is formed, SNE is likely to find
maps with a good global organization. But this requires very sensible choices of initial
Gaussian noise and the rate at which it decays. Therefore, it is common to run the opti-
mization many times on a data set to find the appropriate values for the parameters.
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Inspite of SNE constructing reasonably better visualizations, it is hindered by a cost
function that is difficult to optimize and this problem is referred to as the "crowding prob-
lem". A new technique called "t-Distributed Stochastic Neighbor Embedding" or "t-SNE"
that aims to eradicate these problems.
The cost function used by t-SNE varies from SNE in two ways. Firstly, it utilizes the
symmetrized version of the SNE cost function with uncomplicated gradients. Secondly,
it utilizes the Student - t distribution in place of Gaussian to calculate the similarity be-
tween two points in the low-dimensional space. In order to reduce the crowding problem
and the optimization problems of SNE, t-SNE makes use of a heavy-tailed distribution
in the low-dimensional space.
Further, we discuss symmetric SNE, crowding problem, and the use of heavy-tailed dis-
tributions.

1.2.1 Symmetric SNE

Rather than reducing the sum of Kullback-Leibler divergences between the conditional
probabilities Pj|i and q j|i, it is also possible to reduce the individual Kullback-Leibler
divergence between a joint probability distribution, P, in the high-dimensional space and
a joint probability distribution, Q, in the low-dimensional space [8]: C = KL(P||Q)

C = ∑
i

∑
j

pi jlog
pi j

qi j
(1.11)

where we again set pii and qii to zero. We mention this type of SNE as symmetric SNE,
due to the property that pi j = p ji and qi j = q ji ∀i, j [8].
The pairwise similarities of symmetric SNE in the low-dimensional map qi j are given by
[8]

qi j =
exp(−||yi− y j||2)

∑k 6=l exp(−||yk− yl||2)
(1.12)

The apparent way to define the pairwise similarities in the high-dimensional space pi j is
[8]

pi j =
exp(−||xi− x j||2/2σ2)

∑k 6=l exp(−||xk− xl||2/2σ2)
, (1.13)

still this causes issues when a high-dimensional data point xi is an outlier (i.e we get
larger pairwise distances ||xi− x j||2 for xi).
For the corresponding outlier, the values of pi j are very small for all j, hence the location
of yi in the low-dimension has a very small effect on the cost function [8].
To resolve this mapping problem we define the joint probabilities pi j in the high-dimensional
space to be the symmetrized conditional probabilities, that is given by [8]

pi j =
p j|i + pi| j

2n
(1.14)
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This makes sure that ∑ j pi j >
1

2n for all data points xi, due to this every data point xi

makes a important contribution to the cost function.
The gradient of symmetric SNE are simpler, faster to compute and is reasonably alike
to asymmetric SNE, that is given by [8]

δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j) (1.15)

1.2.2 Crowding problem of SNE

It is the problem raised when the area of the two dimensional map that is available to
take in moderately distant datapoints will not be big enough compared with the area
available to take in nearby datapoints [8]. This problem arises when the datapoints that
are distributed in the area of the high-dimensional manifold around i, and we try to model
the pairwise distances from i to the datapoints in a two-dimensional map [8].
Suppose in case it is feasible to have 11 datapoints that are mutually equidistant in a
ten-dimensional manifold but it is not feasible to model this truly in a two-dimensional
map [8]. Hence, if we can model correctly small distances data points in a map, then
most of the moderately distance datapoints will be very far away in the two-dimensional
map. In SNE, this will develop a small attractive force from datapoint i to these very far
distant map points [8]. The large number of such forces together breaks down the points
in the center of the map and avoids gaps between the natural clusters. An attempt has
been made by Cook et al.(2007) to resolve the crowding problem, by adding a slight
repulsion to all springs [8]. The slight repulsion is built by using a uniform background
model with a small mixing proportion ρ , that helps qi j to never go below 2ρ

(n)(n−1) [8].

1.2.3 Use of Heavy-tailed distribution by t-SNE

The symmetric SNE matches the joint probabilities between the pair of datapoints in
high-dimensional and low-dimensional datapoints rather than its distances. There is a
natural way to resolve this crowding problem. We start converting distances into proba-
bilities in the high-dimension space using a Gaussian distribution [8]. Later we use the
probability distribution with heavy-tails in comparison to Gaussian to convert distances
into probabilities in low-dimensional space [8]. This makes it possible to allow moderate
distant datapoints in the high-dimensional space to be truly modeled by a much larger
distance in the map. As a result of this we can avoid the undesirable attractive forces
between the datapoints in the map that represents moderately dissimilar datapoints [8].

In t-SNE, in case of low-dimensional map we use student t-distribution with one degree
of freedom as the heavy-tailed distribution [8]. Making use of this distribution, the joint
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probabilities qi j are defined as [8]

qi j =
(1+ ||yi− y j||2)−1

∑k 6=l(1+ ||yk− yl||2)−1 (1.16)

The student t-distribution with a single degree of freedom is used because it holds a
good property that (1+ ||yi− y j||2)−1 reaches an inverse square law for large pairwise
distances ||yi− y j|| in the low-dimensional map [8]. The inverse square law can be
interpreted as the value of the inverse of the square of the map points yi and y j does
not affect the value of the joint probabilities [8].
This creates the map’s representation of joint probabilities qi j relatively unchanged in
the scale of low-dimensional space for datapoints that are far apart [8].
The theoretical justification for using Student t-distribution is that it nearly resembles
to the Gaussian distribution, as it is an infinite mixtures of Gaussians [8]. The density
of a point under student t-distribution can be evaluated much faster in comparison to
Gaussian as it does not involve an exponential [8]. The gradient of the Kullback-Leibler
divergence linking P and the Student-t based joint probability distribution Q and is given
by [8]

δC
δy j

= 4∑
j
(pi j−qi j)(yi− y j)(1+(||yi− y j||)2)−1 (1.17)

There are two main merits of the t-SNE gradient in comparison to the gradients of SNE
[8]. First, the t-SNE gradient firmly repels dissimilar data points which are modeled in
the low-dimensional representation by a small pairwise distance [8]. Second, although
t-SNE introduces repulsions vigorously between dissimilar data points which are mod-
eled by small pairwise distances and the repulsions do not go to infinity [8].
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1.2.4 Parameters used in t-SNE

The important hyperparameter used in t-SNE is perplexity [8]. The perplexity is linked to
the nearest neighbors used in manifold learning algorithms [10]. The value of perplexity
would be more for larger datasets [10]. Different perplexity values will give significantly
different results [10]. Generally, the values of perplexity used is between 5 and 50. Un-
der different settings of the perplexity, the performance of the t-SNE is quite robust [8].
The optimization parameters are number of iterations, learning rate [8]. Suppose the
learning rate is high, the data will look like a ’ball’ with any point approximately equidis-
tant from its nearest neighbors [10]. If learning rate is low, then most points may look
compressed in a dense cloud with fewer outliers [10].
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2 Evaluation of the visualization methods

The evaluation is based on supervised learning algorithm and k-means clustering.

2.1 Supervised learning algorithm

This section is based on the book from A. Patel [9]. Supervised methods consist of two
major problems: classification and regression. Classification problems are also called
as discrete prediction problems as each class is a discrete group. They are also referred
to as qualitative or categorical problems. Regression must predict a continuous variable
and also refer to as quantitative problems.
Supervised machine learning algorithms from simple to complex, are aimed at minimiz-
ing cost function or error rate which is associated with the labels we have for the dataset.
The choice of a supervised learning algorithm is important for minimizing generalization
error. The lowest possible generalization error can be achieved if the complexity of the
algorithmic model matches the complexity of the true function underlying the data.
We have no idea about the true function, so we make use of machine learning to create
a model and solve the function to find the correct solution. In case the algorithm models
are less complex than the true function, then we have underfit the data. So in such
cases, we would improve the generalization error by choosing an algorithm that can
model a more complex function. But if the algorithm creates an overly complex model, it
will overfit the training data and give a poor performance on unseen cases, which in turn
increases the generalization error. Hence, it is not necessary to choose more complex
algorithms over simpler ones, sometimes simpler algorithms are a good choice.
Some of the methods for supervised learning would be linear methods, neighborhood-
based methods, tree-based methods, support vector machines. For our experiments,
we use a tree-based method that is Random forests. Random forests are used to im-
prove overfitting by sampling the instances and predictors. By using random forests,
we consider multiple random samples of instances from the training data. Also in case
of predictors, we do not split all of them instead we choose a random sample of the
predictors. The square root of the total number of predictors is used in choosing each
split of the number of predictors. By this way of sampling of the predictors, the random
forests algorithm makes trees which are less correlated and reduces the overfitting and
improves the generalization error.
The hyperparameters used for random forests are a number of estimators which basi-
cally is used to build the trees and average the results across the trees. Now in each
tree, the model considers the square root of the total number of features. We set max
depth parameter to none, for the tree to grow as deep as possible with the given subset
of features.
But using random forest, one of the tree-based methods, we make classification reports
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Figure 2.1: Confusion matrix

and confusion matrix. Here we also use Principal Component Anlaysis (PCA) as a tool
for dimensionality reduction. The evaluation is done after we train the model with non-
linear models autoencoders, PCA, and t-SNE. With non-linear methods, labels are not
used for training data instead they are used for evaluation purpose with random forest
classifiers. The dimension of the dataset is reduced by the non-linear methods and the
reduced dimension (encoded data) that is code size from the autoencoders is given to
the classifier. The reduced dimension from PCA and t-SNE is also further used and
visualized in two and three dimensions and evaluated.
We use confusion matrix, F1-measure, precision, recall for finding the accuracy with
micro, macro, and the weighted average for evaluating the results from the non-linear
visualization methods. We consider the evaluation metrics to help us more intuitively
understand the results. Confusion matrix used for evaluating the results is a table that
summarizes the number of true positives, true negatives, false positives, and false neg-
atives as shown in Figure 2.1.

For balanced classes, the number of true positives roughly similar to the number of true
negatives, the confusion matrix is good and straightforward metric.
To evaluate in a better manner, we use metric precision, recall, F1-measure.
Precision = TP/ TP + FP
Recall = TP/ TP + FN
F1 = 2TP/ 2TP + FP + FN

where TP, FP, TN, FN represent the counts for true positive, false positive, true neg-
ative and false negative, respectively.
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2.2 K-means clustering

For clustering, we identify distinct groups in such a way that instances within a group
are similar to each other and dissimilar in other groups [13]. K-means clustering is one
such algorithm which helps in clustering data and to separate samples in n groups of
equal variance, reducing a criterion called the inertia or within-cluster sum-of-squares
[13]. In this algorithm, we need to specify the number of clusters [13]. It scales the large
samples and can be used for large range of applications in different fields [13].
The k-means algorithm splits a set of N Samples X to K disjoint clusters C, which is
described by the mean µ j of the samples in the clusters [13]. The mean of the clusters
is often called the centroids, in general, they are not the points from X , even though they
live in same space [13].
The k-means chooses centroids to reduce inertia or minimize the within-cluster sum-
squares criteria [13]

n

∑
i=0

min
µ j∈C

(||xi−µ j||2) (2.1)

The algorithm has three basic steps, the first step involves choosing the initial centroids
and choosing samples from the dataset which are called the training data [13]. After this
basic initialization step, K-means consists of looping between the remaining two steps
[13]. The first step involves the assignment of each sample to its nearest centroid [13].
The second step deals with creating new centroids by taking the mean value of all the
samples assigned to every earlier centroid [13]. The difference between the previous
and the newly created centroids are calculated and the algorithm repeats the last two
steps until this value is less than a threshold [13]. Alternatively, it repeats until the cen-
troids do not change anymore [13]. The algorithm can be understood better by Voronoi
diagrams with clusters and centroid marked as shown in Figure 2.2 [13]. Initially using
current centroids, the Voronoi diagram of the points is computed. A separate cluster
is formed in every segment of the Voronoi diagram [13]. Next, for the mean of every
segment, the centroids are updated [13]. The algorithm repeats this until the stopping
criterion is satisfied [13].

Figure 2.2: Voronoi diagram with clusters (centroids are marked with white cross)
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K-means will converge if given sufficient time, perhaps this may be to a local minimum.
Again this highly depends on the initialization of the centroids. One way to solve this
issue is the k-means++ initialization scheme, which we have implemented using scikit-
learn [10]. Generally, this initializes the centroids to be away from each other, which
leads to better results in comparison to random initialization [10].
The algorithm also supports a parameter called sample weight. This helps to assign
more weight to a few samples when calculating cluster centers as well as values of in-
ertia [10].
The performance evaluation for clustering is not as insignificant as by counting the num-
ber of errors or the precision and recall of a supervised classification algorithm [10].
Specifically, any evaluation metric should not consider the absolute values of the clus-
ter labels into account [10]. Clustering defines separations of the data related to some
ground truth set of classes or fulfilling some expectation that members of the same class
are more similar than in different classes as per some similarity metric as discussed be-
low [10].

2.2.1 Adjusted Rand index

Considering the ground truth class assignments (true labels) and clustering algorithm
assignments of the same samples (predicted labels), the function Adjusted Rand index
measures the similarity between the two assignments and ignores the permutations with
chance normalization [10].
For example, the labels are 0, 1, and 2, with the permutations of labels 0 and 1 and
renaming of labels from 2 to 3 will not change the Adjusted Rand index score [10]. We
consider C as a ground truth class assignment and K as clustering, further we define a
and b as:
a as the number of pair of elements which are in same set in C and as well in same set
in K and b as the number of pair of elements which are in different sets in C and as well
in different sets in K.
The raw (unadjusted) Rand index is then given by [10]:

RI =
a+b

C
nsamples
2

(2.2)

Where C
nsamples
2 is referred as total number of possible pairs in the dataset (without or-

dering).
Although the RI score does not assure that random assignments will receive a value
close to zero (particularly if the number of clusters are in the same order as that of mag-
nitude of the samples) [10].
To tackle this effect we can take the expected RI (E[RI]) of random labelings by defining
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the Adjusted Rand index as follows [10]:

ARI =
RI−E[RI]

max(RI)−E[RI]
(2.3)

The advantages of ARI score is: the score will be close to 0.0 for random label as-
signments for any values of the number of clusters and number of samples [10]. The
bounded range is [-1,1]: usually, the negative values are bad, positive ARI have similar
clusterings, the perfect match score for ARI will be 1.0 [10].

2.2.2 Mutual Information based scores

Considering again the knowledge of the ground truth class assignments and with cluster
algorithm assignments of the same samples, the Mutual Information is a function that
measures the consensus of the two assignments, ignoring permutations [10]. There are
two different normalized versions of this measure, Normalized Mutual Information (NMI)
and Adjusted Mutual Information (AMI) [10].
Let us assume two label assignments (suppose of same N objects), U and V . We can
define their entropy which is the amount of uncertainty for a partition set, defined by [10] :

H(U) =−
|U |

∑
i=1

P(i) log(P(i)) (2.4)

where P(i) = |Ui|/N is the probability of picking an object at random from U which falls
into class Ui.
Likewise for V :

H(V ) =−
|V |

∑
j=1

P′( j) log(P′( j)) (2.5)

With P′( j) = |Vj|/N. The mutual information (MI) between U and V is calculated by [10]:

MI(U,V ) =
|U |

∑
i=1

|V |

∑
j=1

P(i, j) log
(

P(i, j)
P(i)P′( j)

)
(2.6)

where P(i, j) = |Ui∩Vj|/N is the probability of picking an object at random which falls
into both classes Ui and Vj.
It can also be expressed in set cardinality formulation: [10]

MI(U,V ) =
|U |

∑
i=1

|V |

∑
j=1

|Ui∩Vj|
N

log
(

N|Ui∩Vj|
|Ui||Vj|

)
(2.7)
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The normalized mutual information is defined as [10] :

NMI(U,V ) =
MI(U,V )

mean(H(U),H(V ))
(2.8)

The value of mutual information obtained and also the normalized variant is not adjusted
for chance and tends to increase as the clusters increase, in spite of the actual amount
of "mutual information" between the label assignments [10].
The below equation can be used to compute the expected value for the mutual informa-
tion [14].
In this equation, ai = |Ui| and b j = |Vj|.

E[MI(U,V )] =
|U |

∑
i=1

|V |

∑
j=1

min(ai,b j)

∑
ni j=(ai+b j−N)

ni j

N
log

(
Nni j

aib j

)
ai!b j!(N−ai)!(N−b j)!

N!ni j!(ai−ni j)!(b j−ni j)!(N−ai−b j +ni j)!

(2.9)

Using the expected value, the adjusted mutual information can then be computed using
a similar form to that of the adjusted Rand Index [10]:

AMI =
MI−E[MI]

mean(H(U),H(V ))−E[MI]
(2.10)

The Adjusted Mutual Information (AMI) score will be close to 0.0 for random label as-
signments for any values of the number of clusters and number of samples (generally
not in case of raw Rand Index) [10].
The values of AMI score that are close to zero indicates two label assignments which
are largely independent [10]. The values that are close to one indicates significant
consensus. Additionally, an AMI with a precise value of 1 indicates that the two label
assignments are equal (with or without permutation) [10].

2.2.3 Homogeneity, completeness and V-measure

Considering the knowledge of the ground truth class assignments of the samples, we
can define some instinctive metric using conditional entropy analysis [10].
Specifically, Rosenberg and Hirschberg (2007) define the following two useful objectives
for any cluster assignment, Homogeneity as every cluster contains only members of
individual class and Completeness as every member of the given class is assigned to
the same cluster [10].
These concepts are termed as scores: homogeneity score and completeness score
[10]. Both scores are bounded below by 0.0 and above by 1.0 (higher is better).
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Their harmonic mean is called V-measure that is calculated by v measure score [15]:
This function’s formula is as follows:

v =
(1+β )×homogeneity× completeness
(β ×homogeneity+ completeness)

(2.11)

beta defaults to a value of 1.0.
Homogeneity and completeness scores are precisely given by [10]:

h = 1− H(C|K)

H(C)
(2.12)

c = 1− H(K|C)

H(K)
(2.13)

where H(C|K) is the conditional entropy of the classes given the cluster assignments
which is defined as:

H(C|K) =−
|C|

∑
c=1

|K|

∑
k=1

nc,k

n
· log

(
nc,k

nk

)
(2.14)

and H(C) is the entropy of the classes and is defined as:

H(C) =−
|C|

∑
c=1

nc

n
· log

(nc

n

)
(2.15)

with n the total number of samples, nc and nk the number of samples individually be-
longing to class c and cluster k, and finally nc,k the number of samples from class c
assigned to cluster k. The conditional entropy of clusters given class H(K|C) and the
entropy of clusters H(K) are defined in a symmetric manner.
Rosenberg and Hirschberg defined V-measure as the harmonic mean of homogeneity
and completeness [10]:

v = 2 · h · c
h+ c

(2.16)

The advantages of V-measure are bounded scores: 0.0 is a very bad score possible,
whereas 1.0 is a perfect score [10]. The clustering with bad V-measure is analzed in
phase of homogeneity and completeness to get an overview of the different mistakes
done by the assignment [10].
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2.2.4 Silhouette Coefficient

Suppose the ground truth labels are not known, evaluation is performed from the model
itself [16]. For example, the Silhouette Coefficient is such an evaluation, where a higher
Silhouette Coefficient score relates to a model with well-defined clusters [16]. The Sil-
houette Coefficient is defined for each sample and is consists of two scores: Firstly, the
mean distance between a sample and the remaining other points in the same class.
Secondly, the mean distance between a sample and remaining other points in the next
nearest cluster [10].

The Silhouette Coefficient s for a single sample is given as [10]:

s =
b−a

max(a,b)
(2.17)

The advantages of Silhouette Coefficient score are, the score is bounded between -1
and +1, -1 is for incorrect clustering and +1 for highly dense clustering [10]. Overlapping
clusters are indicated with score zero. The score is higher when clusters are dense and
well separated, which relates to a standard notion of a cluster [10].
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3 Experiments

The datasets used for nonlinear visualization for the experiments are breast cancer
dataset and mushroom dataset.

3.1 Breast cancer dataset

The breast cancer dataset contains features that are computed from a digitized image
of a fine needle aspiration (FNA) of a breast mass. The characteristics of cell nuclei
present in breast mass are described in the dataset. The characteristic of the dataset is
multivariate or bivariate as their data values are ordered pairs of data [12].
The characteristics of attributes are real or metric and in total there are 32 number of
attributes with 569 number of instances. The attributes contain ID number, diagnosis
(M = malignant, B = Benign) and the remaining ten real-valued features radius, texture,
perimeter, area, smoothness, compactness, concavity, concave points, symmetry, frac-
tal dimensions are used to compute each cell nucleus [12].
The dataset contains real or metric values useful for numeric calculations but the di-
agnosis variable contains categorical values. The id column of the dataset is dropped
and we convert the diagnosis column to numeric format using factorize function on the
dataframe. There is some unnamed variable found in the dataset that contains null val-
ues which are filled with a value zero using the function fillna from pandas.
The diagnosis column now contains numeric values and they describe the malignant
and benign condition of the cells. These describe the class labels but we drop this col-
umn and store it in variable Y and we use label encoder, fit and transform with new
encoded data ranging between 0 and (number of classes) - 1.
Then we use the standard scalar function from sklearn library on variable X which
contains all feature values for training and for standardizing features by removing the
mean and scaling unit variance. Finally the data variable X with 31 attributes (high-
dimensional input data) is reduced to 2 dimensional data for visualization using autoen-
coders and t-SNE.

3.2 Mushroom dataset

Mushroom records are drawn from the Audubon society field guide to North American
mushrooms(1981), G.H Lincoff, NewYork: Alfred A. Knopf. The records describe mush-
room’s physical characteristics and classification of whether it is poisonous or edible
[11]. The characteristics of the dataset are multivariate or bivariate as their data values
are ordered pairs of data. The attribute characteristics are categorical and there is a
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total 23 number of attributes with 8124 number of instances. The dataset includes hy-
pothetical samples corresponding to 23 species of gilled mushrooms [11].
Each species can be identified as definitely edible, definitely poisonous, or of unknown
edibility and not recommended. We basically count the values of edible and poisonous
mushrooms from the dataframe attribute class. All the categorical attributes are stored
in data variable X and we drop the column class from X and store it in variable Y
which is later used for evaluation purposes. Later we introduce get dummies function to
convert categorical variable of ’X ’ into model-understandable dummy/indicator variables
(numeric data with 117 dimensions).
Then we use label encoder class from sklearn library, fit and transform the class labels
stored in variable Y and we convert this target labels with new encoded data ranging
between 0 and (number of classes) - 1. Then we use Standard Scalar function on vari-
able X before the training begins for standardizing features by removing the mean and
scaling to unit variance. Centering and scaling occurs independently on each feature by
computing various statistics on the samples in the training set. The standard deviation
and mean are then stored to use it later on data using transform.
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3.3 Evaluating basic autoencoders based on
supervised learning algorithms

We start our experiment by considering breast cancer dataset and obtain visualizations
using basic autoencoders in two dimension. We also experiment with loss function like
binary crossentropy and optimizers like adam, and adadelta. The adadelta optimizer
uses stochastic gradient descent with adaptive learning rate [10].
We start building basic autoencoders with input layer assigned with 31 dimensions of
input X which is high dimension. Next, we use two hidden layers with layer size equal
to 10 to extract the abstract features. The hidden representations in low dimension are
viewed in two dimension used to visualize the high dimensional data. The output layer
from the network maps the hidden layer representation back to a reconstruction input.
The basic autoencoder is modeled with input and output and then compiled further with
adadelta optimizer and binary cross entropy loss function. The training and testing split
of the data is done for the input data and training the model begins by assigning the
epochs, batch size and verbose levels. Finally, the low dimensional data that is two
dimensional data with input layer is modeled and we start predicting and classify the
input data. The prediction is done by using the Confusion matrix as shown in Table 3.1.
As observed from confusion matrix, the number of true negative patients are 96 and 56
true positive. We find the classification report for the class labels of the dataset using
the random forest with the metric Precision, Recall, and F1-score for accuracy as shown
in Table 3.2.
The Visualization of basic autoencoder with adadelta optimizer and binary crossentropy
loss function as shown in Figure 3.1.

Actual Values
Positive Negative

Predicted Positive 56 10
Values Negative 09 96

Table 3.1: Confusion matrix for the prediction of basic autoencoder

Precision Recall F1-score
0 0.86 0.85 0.85
1 0.91 0.91 0.91

micro avg 0.89 0.89 0.79
macro avg 0.88 0.88 0.78

weighted avg 0.89 0.89 0.79

Table 3.2: Evaluation results of basic autoencoder with adadelta optimizer
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Next, the basic autoencoder with adam optimizer and Kullback Leibler divergence loss
function is built in similar manner as described above. The confusion matrix for the
prediction of basic autoencoder is as shown in Table 3.3. Further, the evaluation of clas-
sification reports as shown in Table 3.4 and visualization of breast cancer dataset using
basic autoencoders can be seen in Figure 3.2. The use of adam optimizer gives slightly
better results than adadelta optmizer as observed in visualization and classification re-
ports due to its optimization algorithm for stochastic gradient descent for training deep
learning models.

Actual Values
Positive Negative

Predicted Positive 57 9
Values Negative 9 95

Table 3.3: Confusion matrix for the prediction of basic autoencoder

Precision Recall F1-score
0 0.86 0.86 0.86
1 0.91 0.91 0.91

micro avg 0.89 0.89 0.79
macro avg 0.89 0.89 0.79

weighted avg 0.89 0.89 0.79

Table 3.4: Evaluation results of basic autoencoder with adam optimizer

Figure 3.1: Visualization of breast cancer dataset by basic autoencoder (adadelta optimizer)
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Figure 3.2: Visualization of breast cancer dataset by basic autoencoder (adam optimizer)

3.4 Evaluating Deep autoencoders based on
supervised learning algorithms

We build deep autoencoders in similar manner with input layer assigned with 31 dimen-
sions of input X but with additional hidden layers, code layer, encoder, and decoder. The
additional two hidden layers with layer size equal to 20 and 14 are used in deep autoen-
coders helps in extracting more abstract features in comparison to basic autoencoders.
The extra hidden layers also help in better reconstruction of the input with minimum loss.
The code layer in between the hidden layers is the main hyperparameter that we fixed
as two for visualization of the breast cancer dataset. The deep autoencoder is modeled
with input and output and then compiled further with adam optimizer and mean square
error loss function. The training and test data splitting is same as basic autoencoders.
Finally, the two-dimensional data with the input layer is modeled and we start predicting
and classify the input data using a random forest classifier. The prediction is done by
using the Confusion matrix as shown in Table 3.5. As observed from confusion matrix,
the number of true negative patients are 91 and 58 true positive. We find the classifi-
cation report for the class labels of the dataset using the random forest with the metric
Precision, Recall, and F1-score for accuracy as shown in Table 3.6 and visualization in
Figure 3.3. The results of deep autoencoders in comparison to basic autoencoders are
better with additional hidden layers.

Actual Values
Positive Negative

Predicted Positive 58 8
Values Negative 14 91

Table 3.5: Confusion matrix for the prediction of Deep autoencoder
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Precision Recall F1-score
0 0.91 0.91 0.89
1 0.92 0.92 0.92

micro avg 0.91 0.91 0.92
macro avg 0.92 0.91 0.92

weighted avg 0.92 0.91 0.92

Table 3.6: Evaluation results of Deep autoencoder

Figure 3.3: Visualization of breast cancer dataset by deep autoencoder

3.5 Evaluating PCA, and t-SNE based on supervised
learning algorithms

We build PCA by considering our input data which is high-dimensional data and further
through fit and transform function it is converted into numeric format. Then for visualiza-
tion we use the parameter of PCA , the number of components (PC1 and PC2) that we
fix to two. The two components are the two dimensions and with the output labels the
complete test with random forest classifier is used for evaluation of PCA. The confusion
matrix for the prediction of PCA is as show in Table 3.7 and evaluation of PCA through
the metric Precision, Recall and F1-score is as shown in Table 3.8. The visualization
of the breast cancer dataset with malignant and benign classes is shown in Figure 3.4.
Though PCA is just used to see the variance in the data captured by the PCA com-
ponents, we get 0.6324 variance for first 10 components and 0.9955 variance for 20
components.

Actual Values
Positive Negative

Predicted Positive 60 6
Values Negative 8 97

Table 3.7: Confusion matrix for the prediction of PCA



Chapter 3: Experiments 27

Precision Recall F1-score
0 0.88 0.91 0.90
1 0.94 0.92 0.93

micro avg 0.92 0.92 0.92
macro avg 0.91 0.92 0.91

weighted avg 0.92 0.92 0.92

Table 3.8: Evaluation results of PCA

Figure 3.4: Visualization of breast cancer dataset by PCA

Finally, we evaluate t-SNE to visualize the breast cancer dataset. We use the param-
eters of t-SNE that is number of component which is fixed to two for low-dimensional
visualization. The next important parameter for visualization is perplexity which is the
measure of effective number of neighbors of the samples. We set this parameter initially
with 30, 40 and finally 50. The two dimensional visualization with the various values of
perplexities can be seen from the Figures 3.5, 3.6, and 3.7. The visualizations changes
with the change in the perplexity as the effective number of neighbors also gets affected.
Then the t-SNE algorithm computes the conditional probabilities for the neighbors of the
data and at the end it provides a mean standard deviation (variance) value with KL di-
vergence with 300 iteration used for the experiment. In the similar manner we can see
the confusion matrix in the Table 3.9 for the prediction of t-SNE and the evaluation of
t-SNE with the random forest classifier in the Table 3.10.

Actual Values
Positive Negative

Predicted Positive 61 5
Values Negative 2 103

Table 3.9: Confusion matrix for the prediction of t-SNE
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Precision Recall F1-score
0 0.97 0.92 0.95
1 0.95 0.87 0.97

micro avg 0.96 0.96 0.96
macro avg 0.96 0.95 0.96

weighted avg 0.96 0.96 0.96

Table 3.10: Evaluation results of t-SNE

Figure 3.5: Visualization of breast cancer dataset by t-SNE with Perplexity=30

Figure 3.6: Visualization of breast cancer dataset by t-SNE with Perplexity=40
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Figure 3.7: Visualization of breast cancer dataset by t-SNE with Perplexity=50

3.6 Choosing and implementing various cost
functions for autoencoders

Deep learning neural networks use stochastic gradient descent optimization algorithm
for training [19]. With the optimization algorithm, the error for the present state of the
model is estimated repeatedly. For this we need to choose an error function, called as
loss function, which is used to estimate the loss of the model such that the weights can
be updated in order to reduce the loss on the next evaluation [19].
Neural network models learn to map from input to output and the choice of loss function
must match the specific predictive modeling problem, such as classification or regres-
sion [19]. Further, it must be an appropriate loss function for the output layer configura-
tion.
We are using mushrooms dataset for our experiment based on different cost function
like Mean Squared Error Loss, Binary Cross-Entropy, Hinge Loss on various autoen-
coders like basic autoencoder with and without hidden layers and deep autoencoders.
The default loss to use for regression problems is the mean squared error or MSE. Math-
ematically, MSE is preferred loss function under the framework of maximum likelihood if
the target variable distribution is Gaussian [19]. Mean squared error can be calculated
as the average of the squared differences between the actual and the predicted values
[19]. The result is positive nevertheless of the sign of the predicted and the actual val-
ues, and a perfect value is 0.0. The squaring indicates that larger mistakes give more
error than smaller mistakes, that is model is punished for making bigger mistakes.
We have created a line plot in showing the mean squared error loss over the training
epochs with training (blue) and testing (orange) sets in Figure 3.8 and 3.9. We tested
with basic and deep autoencoders and we got slightly better classification accuracy
with deep autoencoders. We can observe that the model converged reasonably quickly
and both train and test performance remained the same. The performance and con-
vergence of the model suggest us that mean squared error is a better match for deep
autoencoders.
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Another way to cross-entropy for binary classification problems is the hinge loss func-
tion, which is developed mainly for Support Vector Machine(SVM) models [19]. It is
mainly used with binary classification where we set the target values to -1,1 [19]. The
hinge loss function helps the example dataset to have the correct sign, giving more error
when there is a larger difference between the actual and predicted class values. Finally,
the output layer of the network is configured with a hyperbolic tangent activation function
which is capable of giving a single value output in the range [-1, 1].
The performance reports with the hinge loss are mixed, resulting in better performance
sometimes than cross-entropy for binary classification problems. The two-line plots are
created as shown in Figure 3.10 and 3.11 , the top being the hinge loss over epochs
for the train (blue) and test (orange) dataset, and the bottom plot shows classification
accuracy over epochs. The plot of hinge loss for the basic and deep autoencoders has
converged with a reasonable loss. But the plot of classification accuracy over training
epochs does not show sign of convergence.
Next we use default loss function Cross-entropy to solve binary classification problems
[19]. It is mainly used where the target values are in the set {0,1}. Cross-entropy cal-
culates and summarizes the average difference between the actual and the predicted
probability distributions for predicting class 1 [19]. Further, the score is minimized with
a perfect cross-entropy value 0.
The function requires the output layer to be configured with sigmoid activation to predict
the probability for class 1. The two-line plots are created, the top with the cross-entropy
loss over epochs for the training (blue) and testing (orange) dataset, and the bottom plot
with classification accuracy over epochs.
The plot in Figure 3.12 indicates that the training process has converged and the plot for
loss is smooth for deep autoencoders. The line plot for accuracy shows better accuracy
in comparison to other loss functions.

Figure 3.8: Basic autoencoders Line plot of Mean squared error Loss and classification accu-
racy over training Epochs
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Figure 3.9: Deep autoencoders line plot of Mean squared error loss and classification accuracy
over training epochs

Figure 3.10: Basic autoencoders, Line plot of hinge loss and classification accuracy over training
epochs

Figure 3.11: Deep autoencoders line plot of Hinge Loss and classification accuracy over training
epochs
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Figure 3.12: Deep autoencoders Line plot of Binary cross entropy loss and classification accu-
racy over training epochs

3.7 Evaluating autoencoders, t-SNE based on K-means
clustering

The quality of the clustering is calculated using the metrics Homogeneity score (homo),
Completeness score (compl), V measure (v-meas), Adjusted rand index (ARI), Adjusted
mutual information (AMI) and Silhouette coefficient (silhouette). The scores of the met-
rics obtained by PCA, autoencoders, t-SNE are all within the range [0,1] and the large
score indicates to the point that well belongs to the cluster. The mushroom dataset is
used and classified using the k-means clustering algorithm and visualized using the di-
mensionality reduction technique PCA, autoencoders, t-SNE, and the accuracy is eval-
uated using the metrics discussed above.
We can observe the results in Table 3.11 obtained by k means and PCA dimensionality
reduction technique. The k-means algorithm converges if given sufficient time, but it
highly depends on the initialization of centroids. So to resolve this we use k-means++
initialization scheme from scikit-learn. K-means++ initializes the centroids to be far away
from each other, leading to good results than random initialization [10]. PCA-based
method is used to reduce the dimensionality of the data and it helps in two-dimensional
visualization with k-means clustering method. The k-means++ and its random initializa-
tion with PCA based method is evaluation results shows that the accuracy metrics for
the data points belonging to same clusters is more. As the first five metrics which de-
pends on the ground truth assignments (true labels) are all above 0.5 . The last metric
silhouette coefficient where the ground truth labels are not considered and the model
itself evaluated and the value is within 0 to 0.5, hence proving that the points belongs to
the same clusters. The PCA reduced data visualization of the mushroom dataset is as
shown in Figure 3.13.

Next, we implement another dimensionality reduction technique basic autoencoders
which has a input layer with 117 dimensions, one hidden layer, encoder and decoder
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same as discussed earlier. The input data X is splitted into training and testing data. The
reduced input data X (low-dimensional) from autoencoders is given to k means cluster-
ing algorithm. The evaluation of autoencoders and k-means clustering performance can
be seen in Table 3.12. As the ground truth is known for the first five metrics, we check
the goodness of fit of the cluster labels to the ground truth. The first five metrics for
the clustering performance are all above 0.5 proving that the data points well belongs
to same clusters. The last metric Silhouette coefficient which is evaluated by the model
itself without the labels gives values between 0 to 0.5, showing that the clusters are not
highly dense. The visualization of mushroom dataset by basic autoencoders can be
seen in Figure 3.14.

Finally, we compare the above two methods with the implementation of t-SNE using
k means clustering on the mushroom dataset. The evaluation of the clustering is found
for k means clustering method with t-SNE based algorithm as shown in Table 3.13.
The clustering evaluation for k-means with random initialization, k-means++ and t-SNE
shows good results as the value of all the metrics are well between 0 and 1. The vi-
sualization of the mushroom dataset using t-SNE can be seen in Figure 3.15, it shows
well separated clusters illustrating that the data points well belongs to the same cluster.
Hence t-SNE with k-means clustering method performs better in comparison to autoen-
coders.
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n_classes:2, n_samples:8124, n_features:117
init ARI AMI Homo Compl V-meas Silhouette
k-means++ 0.125 0.192 0.192 0.303 0.235 0.089
random 0.621 0.563 0.563 0.584 0.574 0.099
PCA-based 0.603 0.547 0.547 0.570 0.558 0.104

Table 3.11: Evaluation results of PCA and k-means clustering

Figure 3.13: Visualization of mushroom dataset by PCA-reduced data and k-means clustering
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n_classes:2, n_samples:8124, n_features:117
init ARI AMI Homo Compl V-meas Silhouette
k-means++ 0.229 0.284 0.284 0.371 0.322 0.100
random 0.606 0.537 0.537 0.556 0.547 0.107
autoencoder 0.603 0.547 0.547 0.570 0.558 0.087

Table 3.12: Evaluation results of autoencoders and k-means clustering

Figure 3.14: Visualization of mushroom dataset by autoencoders and k-means clustering
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n_classes:2, n_samples:8124, n_features:117
init ARI AMI Homo Compl V-meas Silhouette
k-means++ 0.611 0.546 0.546 0.565 0.555 0.089
random 0.619 0.563 0.563 0.585 0.574 0.123
t-SNE 0.603 0.547 0.547 0.570 0.558 0.094

Table 3.13: Evaluation results of t-SNE and k-means clustering

Figure 3.15: Visualization of mushroom dataset by t-SNE and k-means clustering
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4 Conclusion

The experiments were conducted using the dimensionality reduction methods like au-
toencoders and t-SNE for visualization of breast cancer and mushroom datasets. The
breast cancer dataset with 31 dimensions and the mushroom dataset with 117 dimen-
sions is reduced to 2 dimensions for visualization using autoencoders and t-SNE.
Initially, We visualized the breast cancer dataset using basic and deep autoencoders.
For classification, we used random forests a supervised learning algorithm. We also
compared the basic autoencoders with adadelta and adam optimizers. The evaluation
results of basic autoencoders with adam optimizers shows better performance in terms
of metric precision, recall, and F1-measure.
Next, we built deep autoencoders with additional two hidden layers which helped in ex-
tracting more abstract features in comparison to basic autoencoders with 92 percent
accuracy. We also visualized breast cancer dataset with PCA which gave us good ac-
curacy, however, we just use PCA as a tool for visualization.
Further, we used another dimensionality reduction method t-SNE for visualizing the
breast cancer dataset. The evaluation results of t-SNE is better than autoencoders
with an accuracy of 96 percent. The perplexity being the main hyperparameter which
gives different visualizations for its values ranging between 30 to 50.
We also implemented various cost functions for autoencoders to enhance the error
method using mushrooms dataset. The performance and convergence line plots of
deep autoencoders was smoother and better with binary cross-entropy in comparison
to hinge loss and mean squared error.
Similarly, we visualized mushroom dataset using autoencoders and t-SNE with unsu-
pervised k-means clustering method. The evaluation of clustering is based on metrics
Homogeneity score (homo), Completeness score (compl), V measure (v-meas), Ad-
justed rand index (ARI), Adjusted mutual information (AMI) and Silhouette coefficient
(silhouette). The t-SNE showed better visualization with well-separated clusters and
evaluation accuracy which are well between 0 and 1. The cost function parameter per-
plexity helping in a smooth measure of the number of neighbors in the dataset. Also, the
heavy-tailed distribution used in t-SNE helped to resolve the crowding problem in SNE.
Thus, t-SNE outperforms the autoencoders in terms of evaluation results for classifica-
tion and clustering along with better visualization.
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