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Abstract

In bioinformatics one important task is to distinguish between native and mirror protein models

based on the structural information. This information can be obtained from the atomic coordi-

nates of the protein backbone. This thesis tackles the problem of distinction of these conforma-

tions, looking at the statistics of the dihedral angles’ distribution regarding the protein backbone.

This distribution is visualized in Ramachandran plots. By means of an interpretable machine

learning classification method – Generalized Matrix Learning Vector Quantization – we are able

to distinguish between native and mirror protein models with high accuracy. Further, the classifier

model supplies supplementary information on the important distributional regions for distinction,

like α-helices and β -strands.

German Abstract

Eine wichtige Aufgabenstellung der Bioinformatik ist es, zwischen nativen und gespiegelten Pro-

teinmodellen (Konformationen) aufgrund von struktureller Information zu unterscheiden. Diese

Information kann von den Atomkoordinaten des Proteinrückgrates erhalten werden. Diese Ar-

beit befasst sich mit der Problematik der Konformationsunterscheidung, indem die Verteilung

der dihedralen Winkel des Proteinrückgrates statistisch betrachtet wird. Diese Verteilung wird

in Ramachandran-Plots dargestellt. Mithilfe einer interpretierbaren Klassifizierungsmethode des

maschinellen Lernens – Generalized Matrix Learning Vector Quantization – kann zwischen na-

tiven und gespiegelten Proteinmodellen mit hoher Genauigkeit unterschieden werden. Des Weit-

eren liefert das Klassifikationsmodell zusätzliche Informationen zu den für die Unterscheidung

relevanten Winkelverteilungen, wie α-Helices und β -Faltblättern.
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1 Introduction

The topic of this thesis is in the field of structural bioinformatics. Particularly, the task is

to distinguish between mirror and native protein structures based on predicted protein

structure data samples by means of machine learning. In detail, interpretable machine

learning models will be applied on a theoretical question of the bioinformatic subsection

of protein structure prediction. The fundamental question in the process is whether or

not native and mirror conformations of proteins can be distinguished by means of the

so-called Ramachandran Plot (Ramachandran et al., 1963). This chapter on the one

hand serves as an eye-opener for why such a distinction is from crucial importance and

on the other to inform the reader on the topic itself.

1.1 Motivation

Since proteins constitute some of the most widespread macromolecules in life organ-

isms (Deng et al., 2018), it is only plausible they propose a wide range of possible

research areas such as protein design and structure prediction (Floudas et al., 2006).

In the latter field a major role is awarded to the prediction from only the amino acid se-

quence. This kind of structure prediction holds a few difficulties, for it is hard to find a

sufficiently accurate force field for the calculation of the potential energy of molecules

needed in in silico protein folding. And also the computational expenditure can exceed

computational capacities (Deng et al., 2018; Margara et al., 2008; Vassura et al., 2008).

Furthermore, the computed protein model, especially when predicted using a protein

contact map, has an uncertainty whether it displays the native or mirror conformation of

the protein (Noel et al., 2012; Kurczynska and Kotulska, 2018). However, in the fields

of drug discovery/development (Wang et al., 2016; Zhao and Lu, 2014), chemical (de

novo) synthesis of proteins (Kent, 2019), synthetic biology (Weinstock et al., 2014) and

orthogonal systems/creation of mirror life (Ling et al., 2019) it is crucial to differentiate

exactly between these two conformations.
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1.2 Biological Background

The following chapters provide the reader of a non-biological background with the nec-

essary basic preliminaries of proteins in a biological and chemical context.

1.2.1 Proteins

Proteins are molecules, which are essential for many things inside and outside of the

cells of living organisms. As structural proteins they regulate a cell’s shape and act as

rails for movement of intracellular organelles and molecules by motor proteins. Proteins

can also function as an assembler of other proteins for specific functions and then are

called scaffold proteins. Some proteins can also serve a regulatory function (regulatory

proteins), authorize the flow of molecules and ions through cell membranes (membrane

transport proteins) and catalyze chemical reactions as enzymes (Lodish et al., 2013).

But what exactly are proteins in detail? To answer this question a short insight into the

chemical structure of a protein has to be given.

1.2.1.1 Chemical Structure of a Protein

Proteins are made up of a linear chain of amino acids (Floudas et al., 2006), which are

connected via a peptide bond between the carboxyl group (−COOH) of one amino acid

and the amino group (−NH2) of another (Dixon, 1984), see the yellow lines in Figure 1.1

for clarification. This chain of amino acids is called a polypeptide chain or the protein’s

backbone and is defined by the peptide bonds.

Due to hydrogen-bonding properties in the backbone (Schaeffer and Daggett, 2011),

this polypeptide chain or primary structure of the protein then is able to form patterns of

local bonding (Floudas et al., 2006) or in other words the secondary structure. There

are two secondary structures that are most common: α-helices and β -sheets, which

are connected with another secondary structure called loops (Floudas et al., 2006).

When the protein folding is done, a particular three-dimensional tertiary structure with

a certain biological function is the result (Margara et al., 2008; Li et al., 2018). This

specific function is determined by the distinctive chemical properties of the side chains

of the amino acids and the protein’s structure and folding (Lodish et al., 2013; Kent,

2019).

A closer look at the chemical composition of the protein’s backbone gives further insight.

In Figure 1.1 a schematic depiction of a few amino acids and the aforementioned side

chains (here as a simple R for residue), bound to the α carbon atom (first carbon atom

attached to a functional group), are shown. These residues can be manifold, ranging

from a single hydrogen atom to more complex groups like hydroxyl or amino groups

(Lodish et al., 2013).
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The so-called planar peptide bonds of different atoms in a protein’s backbone further

limit the final folded protein. These planes correspond to the three dihedral or torsion

angles of the protein backbone: Φ, Ψ and Ω (Lodish et al., 2013; Hollingsworth and

Karplus, 2010). The latter is quite restricted to either 0 ◦ or 180 ◦ (Neal et al., 2006)

and, because of this restriction, will not be further investigated in this thesis. The other

two planes can only rotate up to a certain degree, for some combinations of them would

produce a steric hindrance in the folded protein (Lodish et al., 2013). The folding of

a secondary structure like a helix is also dependent on this planes and their angles

(Schaeffer and Daggett, 2011). Figure 1.1 depicts this subject by a schematic section

of a protein backbone with the planes matching the angles Φ (blue) and Ψ (red).

C
NC

C
C C

R H

N

OHn

n+1

n+1

N

H O H R H

R HR H n+2

n n+2

primary structure secondary structure

peptide bond plane
peptide bond

-angle
-angle

Figure 1.1: Schematic depiction of a protein backbone section with peptide bond planes, their

respective dihedral angles and the resulting secondary structure

1.2.1.2 Protein Domains, Families and Classes

If information on a protein regarding its structural and evolutionary relationships is

needed and the 3D structure of the protein is known, using the Structural Classifica-

tion of Proteins (SCOP) database (Murzin et al., 1995) is a good start. Since 2014 only

an extended version of SCOP is accessible – SCOPe (Fox et al., 2014) and this thesis

will solely refer to SCOPe.

Entries on SCOPe are ordered in a hierarchical fashion with the protein domain, derived

from the experimentally determined protein structure as the base (Fox et al., 2014) (see

Figure 1.2). A domain is a structural subunit composed of small repeating patterns of

secondary structures like α-helices and β -sheets. These patterns are also known as

protein motifs (Schaeffer and Daggett, 2011).

The next level in the hierarchy is species in which a specific protein sequence and the

existing natural as well as their artificially created variations are put into. Above that is

the level protein that groups together sequences that are alike and basically have the
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same function (Fox et al., 2014; Murzin et al., 1995).

A protein family collects proteins which are closely related and evidently have the same

evolutionary origin. In contrast to that a superfamily groups proteins with domains that

are more distantly related, but most likely have a common evolutionary ancestor. The

respective similarity usually is limited to mutual structural features (Murzin et al., 1995;

Hubbard et al., 1998; Fox et al., 2014).

If the majority of a superfamily shares the same global structural features it is merged

into a fold. These folds are then finally grouped into one of twelve different protein

classes (Fox et al., 2014; Murzin et al., 1995).

Only seven of these protein classes of A – G will be in the scope of this work, based on

the data available for this consideration (see Section 3.3).

SCOPe

Globin-like Long alpha-hairpin

alpha-helical ferredoxin

Truncated hemoglobin Globins

Protozoan/bacterial hemoglobin automated matches

Bacillus subtilis Ciliate

...

...

Globin-like

...

...

d1ux8a

Root

Class

Fold

Superfamily

Family

Proteins

Species

Domain

Figure 1.2: Schematic depiction of SCOPe hierarchy, exemplary for the domain of Bacillus sub-

tilis

All-alpha proteins (class A) are proteins consisting predominantly of α-helices. One ex-

ample (Protein Data Bank (PDB)-ID: 1qsa) of this class A can be seen in Figure 1.3(A).

Only loops are to be found in addition to the many α-helices. The class all-beta (class

B) however mainly consists of β -strands, see Figure 1.3(B).
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Alpha and beta proteins (a/b) (class C) show alternations of α-helices and β -strands.

The latter are mainly found in the parallel orientation, as can be seen in Figure 1.3(C).

This class is not to be confused with alpha and beta (a+b) (class D), which contains

proteins that show segregated sections of α-helices and β -strands, whereby the strands

are mainly present in the antiparallel orientation as can be seen in Figure 1.3(D).

Figure 1.3: Examples for protein classes A – G with their respective PDB-IDs: A - 1qsa, B -

1b2p, C - 1kqp, D - 1cc8, E - 2aze, F - 1ppj, G - 1oc0
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The so-called multi-domain proteins are grouped into class E and consist of at least two

different domains, see Figure 1.3(E). Proteins and peptides located on surfaces or in

membranes are grouped into class F. One transmembrane protein is shown in Figure

1.3(F) as an example of this class. Protein class G groups small proteins, that have little

secondary structure, see Figure 1.3(G) (Schaeffer and Daggett, 2011; Naveenkumar

et al., 2019; Murzin et al., 1995; Hubbard et al., 1998).

In Figure 1.3 the light blue spirals show α-helices, the magenta arrows depict β -strands,

whereas the salmon colored areas are loops in the protein. To visualize the two domains

of class E not the prior coloring but blue and red were used, because domains represent

patterns of secondary structures rather than single helices or sheets.

1.2.2 Native and Mirror Structure of a Protein

A further concept necessary for understanding this thesis is the difference between the

native and mirror conformation of proteins. So far we have already heard about the

protein structure and the base for that: the amino acids.

Amino acids as chiral molecules (except for the achiral amino acid Glycin) are able to

occur in one of two forms: in a L-configuration (L for levorotatory or left-handed) or D-

configuration (D for dextrorotatory or right-handed). The amino acids in a natural or

native protein are all of the L-configuration. In contrast to that stand the mirror images

or mirror proteins, for they are made of D-amino acids and, therefore, form a mirror

structure of the natural protein (Kent, 2019; Zhao and Lu, 2014). In Figure 1.4 the idea

of the two forms being mirror images of each other is depicted and it becomes clear that

they are not superimposable (Zhao and Lu, 2014; Yeates and Kent, 2012).

mirror

Figure 1.4: Schematic illustration of mirrored forms of a protein (PDB-ID:1oc0)
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These mirror or D-amino acids harbor a multitude for applications, especially in synthetic

biology and drug development, because the peptides made of D-amino acids can not

be recognized or degraded by cellular enzymes (Pentelute et al., 2008; Weinstock et al.,

2014). However, there is proof that synthetically produced D-amino acids can be folded

into a functioning protein by the help of a native chaperone (another protein aiding in

folding of other proteins) (Weinstock et al., 2014).

Even though mirror proteins are resistant to a degradation by native enzymes it is possi-

ble for mirror proteins to actually have similar or even the same functions as their natural

pendants (Pentelute et al., 2008). In simulations mirror proteins have suggested they

are even entropically more stable than native ones and the enantiomers might be com-

peting folds, depending on the surrounding environmental conditions (Noel et al., 2012).

Mirror proteins already find use in the so-called mirror image phage display: a technique

for identification of new therapeutic target proteins (Kent, 2019).

For full disclosure, the definition of chirality and, therefore, the interpretation of native

and mirror proteins is a bit intricate and also converse (Mislow, 2002).

Efimov (2018) first of all states that chirality and handedness are two different things. He

declares that chirality indeed is the property of a molecule to have two non superimpos-

able mirror images of itself. In that point, Yeates and Kent (2012), Hoffmann-Ostenhof

(1970), Moss (1996), and Zhao and Lu (2014) agree. However, Efimov, and also Pastore

et al. (1991), further argue that left-handed and right-handed helices in proteins are not

two chiral forms of one structure since the L-amino acids are not converted into D-amino

acids, although they are not superimposable. Other researchers claim that mirror image

conformations of a protein simply constitute misfoldings (Kachlishvili et al., 2014).

Having said that, this thesis simply and only uses the International Union of Pure and

Applied Chemistry’s (IUPAC’s) definition of handedness and chirality of one structure or

molecule being the same (Hoffmann-Ostenhof, 1970; Moss, 1996).
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2 Machine Learning Algorithms

This chapter aims to enlighten the reader on machine learning algorithms with the focus

on classification, one of which then will be used for solving the task of this thesis: the

distinction of native and mirror protein models by using the properties of them.

The automation of intellectual tasks, normally done by humans, is the main core of ar-

tificial intelligence (AI). Machine learning constitutes one of the approaches to achieve

this goal, by concentrating on AI’s learning facet. This is achieved with the development

of algorithms that are able to extract knowledge from data. Data sets usually are divided

into training, testing and validation (data) sets. Typically four different learning methods

can be found in machine learning: supervised, unsupervised, reinforcement learning

and semi-supervised (Choi et al., 2020).

In supervised learning the training set contains pairings of input as well as desired out-

put (label) information. Mapping features for an output prediction is the key component

in this learning method and is accomplished via patterns of the training set (Simeone,

2018). Included in supervised learning are the learning tasks of classification and re-

gression, which predict the category of a certain example and numeric data, respectively

(Choi et al., 2020).

Contrary to supervised learning, there are no label information in unsupervised learning

(Choi et al., 2020). Usually unsupervised learning intends to find patterns and struc-

tures of the data generation mechanism (Simeone, 2018).

Reinforcement learning constitutes an intersection of the two aforementioned learning

methods. As opposed to unsupervised learning, reinforcement learning does have a

kind of supervision, which however is not the label information, as in supervised learn-

ing (Simeone, 2018; Choi et al., 2020). Reinforcement learning receives a delayed

feedback.

Data analysis tasks that include data with and without label information are calling for a

semi-supervised learning method (Kaden, 2016).

The task of this thesis is interpreted as a classification problem, for there is label infor-

mation. In this work the labels are native and mirror for the given protein models (data

samples). Generally speaking the objective of classification is to create a classification

model (or classifier) which predicts the labels for given data as best as possible in the

context of training data. There are many classifiers available for tackling a classification

problem, e.g. Support Vector Machine, k-Nearest-Neighbor and Multi-Layer Perceptron

(Kubat, 2017), but this thesis focuses on Learning Vector Quantization which constitutes

an interpretable machine learning model (Biehl et al., 2017; Villmann, Saralajew, et al.,

2018).
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2.1 Variants of Learning Vector Quantization

This section introduces three variants of the prototype-based classification method

Learning Vector Quantization (LVQ). In the case of this three variants the learning pro-

cess differs from variant to variant, whereas the classification procedure stays the same.

Generally, LVQ belongs to the class of prototype-based classifiers, i.e. class-dependent

prototypes in the data space are taken as reference models for local data. The classifi-

cation procedure follows the paradigm of nearest prototype classification. According to

this paradigm LVQ is easy to interpret (Hofmann et al., 2014).

A training data set T =
{(

x j,c(x j)
)

∈ X ×C , j = 1, . . . ,N
}

, where X ⊂ R
n is the set of

training vectors with class labels c
(

x j

)

∈ C and C is the set of classes. Moreover, a set

of prototypes W = {wk ∈R
n} with the class labels c(wk) ∈ C is necessary, such that at

least one prototype per class is available (Geweniger, 2012).

Following the nearest prototype principle, a data point x ∈ X with unknown class label

is classified according to the Winner-Takes-All (WTA) rule

s(x) = argmin
k

(

d(x,wk)
)

(2.1)

with the assigned class

ĉ(x) = c(ws(x)) (2.2)

constituting the classification procedure. Here ws(x) is denoted as winner prototype

and d(x,wk) is a dissimilarity measure in the data space (Nebel et al., 2017), often the

squared Euclidean distance.

2.1.1 Basic Learning Vector Quantization according to Kohonen

LVQ was introduced by Kohonen (1986) as a protoype-based heuristic classification

model. The overall goal of LVQ is to distribute the prototypes in the data space such

that a minimization of wrongly classified data points is achieved for the available training

data. In the respective learning scheme the first step is a random initialization of labeled

prototypes. During the iterations of the algorithm a data point x is randomly chosen.

According to the WTA-rule Equation (2.1) the winning prototype for this data point is

determined, where d(x,wk) is the squared Euclidean distance (Geweniger, 2012). The

following step of the algorithm updates the prototypes by means of an Attraction Re-

pulsion Scheme (ARS), whereby the winning prototype is either moved toward or away

from the data point, depending on the class agreement between the training data label

and the winning prototype label.
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∆ws(x) = ε · τ
(

x,ws(x)

)

· (x−ws(x)) (2.3)

with 0 < ε ≪ 1 as the learning rate. The ARS is realized via the term τ(x,ws(x)) accord-

ing to (Kohonen, 1997)

τ(x,ws(x)) =

{

1 i f c(x) = c(ws(x))

−1 i f c(x) 6= c(ws(x))
. (2.4)

The update of the winning prototype is obtained by

ws(x) → ws(x)−∆ws(x) . (2.5)

It should be emphasized that the ARS is the basic common principle of all LVQ vari-

ants.

2.1.2 Generalized Learning Vector Quantization according to Sato

& Yamada

Unfortunately, the original LVQ is a pure heuristic with the motivation to minimize the

overall classification error for the training data. To overcome this limitation, Sato and

Yamada (1996) introduced a new variant of the LVQ, the Generalized Learning Vector

Quantization (GLVQ), optimizing an approximation of this error. This approximation is a

differentiable cost function, based on local errors such that Stochastic Gradient Descent

Learning (SGDL) (Graf and Lushgy, 2000) can be applied for model adaptation.

In particular, Sato and Yamada (1996) considered the cost function

EGLV Q(X ,W ) =
N

∑
j=1

E(x j,W ) (2.6)

with local errors

E(x,W ) = f
(

µ(x,W )
)

. (2.7)

Here

µ(x,W ) =
d(x,w+)−d(x,w−)

d(x,w+)+d(x,w−)
(2.8)

is the so-called classifier function. In this function w+ = argmin
k

(

d(x,wk) | c(x) = c(wk)
)

is the best matching prototype with the same class label as the data point and

w− = argmin
k

(

d(x,wk) | c(x) 6= c(wk)
)

is the best matching prototype with another class

label. Hence, the classifier function gives values in the interval [−1,1]. It becomes
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negative when the data point is classified correctly. The squashing function f has to

be a monotonically increasing and differentiable function, like the sigmoid function or

the identity function. The distance measure itself has to be differentiable to ensure

SGDL. The squared Euclidean distance, for example, is such a distance measure and,

therefore, can be used for GLVQ (Geweniger, 2012).

Following the SGDL approach the ARS is realized by the update rule

∆w± ∝ ε ·
∂E(x j,W )

∂w±
(2.9)

for the prototypes for a randomly chosen training data point x j.

2.1.3 Generalized Matrix Learning Vector Quantization – GMLVQ

GMLVQ is a variant of GLVQ using

dΛ(x,w) = (x−w)T Λ(x−w) (2.10)

as differentiable dissimilarity measure (Schneider et al., 2009). The matrix Λ of full size

n×n is assumed to be decomposed into

Λ = ΩT Ω (2.11)

ensuring positive (semi-) definiteness. The matrix Ω ∈ R
m×n is interpreted as a linear

mapping of both, data and prototypes, before applying the squared Euclidean metric

in the mapping space R
m. In GMLVQ, additionally to the prototype adaptation, also

the mapping matrix is adjusted by the SGDL. After training, the Λ-matrix can be inter-

preted as a classification correlation matrix indicating data feature correlations, which

support the classification decision. The diagonal entries Λii are the relevances ri deliv-

ering the importance of the ith data feature for class separation. All relevance values

ri = Λii are collected in the relevance profile vector r = (v1, . . . ,vn)
T

. This relevance

detection is also denoted as relevance learning. Hence, it contributes to a better model

interpretability (Villmann, Bohnsack, et al., 2017).
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2.2 Classification Validation

In binary classification problems there are a few common measures for evaluating the

classification, for example the classification accuracy (acc). This measure describes

the relative number of data points correctly classified by the model. In a given data set

X ,x ∈ X with known class label c(x) and ĉ(x) being the predicted class label by the

model, the classification accuracy is

acc =
1

|X | ∑
x∈X

δc(x),ĉ(x) (2.12)

with |X | being the cardinality of X and δ being the Kronecker delta

δi, j =

{

1 i f i = j

0 else
. (2.13)

For further classification validation measures like sensitivity and specificity (Choi et al.,

2020) the so-called confusion matrix (see Table 2.1) comes in handy. In our work we

used 0 as the label for positive (which corresponds to mirror protein models) and 1 for the

label for negative (coincides to native protein models). Concluding from these definitions

Table 2.1: Confusion matrix of binary classification problem

real Positive real Negative

predicted Positive True Positive (TP) False Positive (FP)

predicted Negative False Negative (FN) True Negative (TN)

True Positives/Negatives and False Positives/Negatives are calculated according to

TP = ∑
x∈X

δ0,c(x) ·δ0,ĉ(x)

TN = ∑
x∈X

δ1,c(x) ·δ1,ĉ(x)

FP = ∑
x∈X

δ1,c(x) ·δ0,ĉ(x)

FN = ∑
x∈X

δ0,c(x) ·δ1,ĉ(x) . (2.14)

By use of these equations

sensitivity =
T P

(T P+FN)
(2.15)

and

specificity =
T N

(T N +FP)
(2.16)

can be calculated. However, both of these classification validation measures are more

useful to imbalanced data (Banerjee et al., 2018), which we do not have.
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3 Analysis of Mirror and Native Structures

In this chapter we describe the data set in use as well as how it is generated from protein

models. Further, we explain how the machine learning tool is applied to distinguish

between native and mirror protein models.

3.1 Related Work for Distinction of Mirror/Native

Structures

Giving a short overview of related work in the distinction of native and mirror protein

structures is the intention of this section.

In the course of the last years there have been quite a few attempts of solving this dif-

ferentiation problem. Kurczynska, Kania, et al. (2016) have used energy terms from

PyRosetta for a distinction between these predicted models. The application of a simple

minimization algorithm with a cost function taking chirality terms into account was also

done (Lund et al., 1996; Vendruscolo et al., 1997; Havel and Snow, 1991). However

introducing chirality terms commonly only helps in native/mirror distinction in proteins of

protein class A, for models from protein class B do not necessarily reveal a dominant

handedness for either one of the conformations. Further, adjustment of a torsion angle

in a further processing step was undertaken by Aszoódi et al. (1995) to distinguish be-

tween native and mirror protein models.

Summarizing, several research teams have tried to differentiate between the two pro-

tein conformations, but were semi-successful or had not as good accuracies doing so.

Moreover, Kurczynska and Kotulska (2018) proclaimed, that a distinction by using the

Ramachandran Plot, regardless of the analyzed protein class, is not possible.

The aim of this work is to investigate this statement in the light of newly available ma-

chine learning methods.

3.2 Ramachandran Plot

Before we take a closer look at the workflow and data generation we have to understand

the basic concept of a Ramachandran or R-plot. R-plots visualize the distribution of the

torsion angles Φ and Ψ of a protein’s backbone by depicting them in a toroidal plot

(Ramachandran et al., 1963). Although there are three dehidral angles, mainly Φ and

Ψ have an influence on the outcome of the protein folding, since Ω is usually either 0 ◦

or 180 ◦ (Neal et al., 2006). That, however, does not mean that any angle is possible for

Φ and Ψ, because these angles are sterically restrained (Lodish et al., 2013).
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Depending on the angles, a certain secondary structure like α-helix or β -strand, is

folded (Schaeffer and Daggett, 2011) and, therefore, R-plots give information about the

secondary structure elements of a protein (Hollingsworth and Karplus, 2010). Further,

R-plots show areas of favored, allowed and slightly unfavored regions of the dihedral

angles. In Figure 3.1 a generic R-plot with the mentioned regions for right-handed α-

helices (α) and left-handed α-helices (Lα ) and β -strands (β ) and an overlayed 6 ·6 grid

is depicted. Single cells within this R-plot are referred to in coordinate notation.

R-plot

0

60

120

180

-60

-120

-180

-180 -120 -60 0 60 120 180

[°]

[°
]

favored region

allowed region

slightly un-

favored region

L

Figure 3.1: Schematic R-plot with the regions for right-handed α-helices (α), left-handed α-

helices (Lα ) and β -strands (β )
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3.3 Mirror/Native Data Set

In this subsection the generation of the (dihedral angle) data set is described. The

data set was derived from a protein data set containing the atomic coordinates of each

protein (atomic coordinate data set).

3.3.1 Atom Coordinate Data Set

Kurczynska and Kotulska (2018) generated a data set containing atom coordinates for

protein domains with the aim to differentiate between mirror and native models. Under

the link: http://comprec-lin.iiar.pwr.edu.pl/mirrorModels/ the data is avail-

able.

At first 1,961 domains from the SCOP online server were taken. Those domains are rep-

resentatives of the SCOP superfamilies. A pre-processing of these domains was done

in the way that all domains were eliminated, which had one of the following properties:

• special amino acids (like selenocystein)

• heavy atoms in the middle of the chain

• missing residues.

Whenever there was a special amino acid at either the beginning or the end of the

chain, said domain was reduced. A reduction also was done, when heavy atoms were

not found at the beginning or the end of the chain.

Finally, the data set consisted of 1,305 protein domains from seven different protein

classes A – G (Kurczynska and Kotulska, 2018).

For creation of protein models with two orientations (native and mirror) the method for

structure modeling from contact maps was applied. The contact map for each domain

was generated by PConPy and then used as input for C2Sv2.0, which reconstructed

100 structural models for each domain (approximately 50 native and 50 mirror models)

(Kurczynska and Kotulska, 2018).

However, the data availability only covers atom coordinates and not the dihedral an-

gles.

3.3.2 Dihedral Angle Data Set

Of all the created protein models a calculation for all dihedral angles (Φ, Ψ and Ω)

was done. All in all, the data set of this thesis contained the 100 models from each of

the 1,305 protein domains, their respective class label and all dihedral angles of each

model. See Table 3.1 for the size of the examined protein classes, which in turn do

represent seven distinctive data sets. Moreover, a summary of all models was done into
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the class ALL.

However the data set generation is not scope of this work. For detailed information on

that, see Kurczynska and Kotulska (2018).

Table 3.1: Numbers of samples for each of the described protein classes A – G

protein class protein models

A 343

B 233

C 149

D 368

E 21

F 78

G 113

3.4 Data Analysis Workflow

In this section the workflow of this thesis’ data analysis is introduced.

Each of the data sets described in Subsection 3.3.2 defines an unique learning task to

differentiate between native and mirror protein models. The differentiation is done by

extraction of a relative R-plot histogram vector x ∈R
n with n = N ·N with N = 6 for each

protein model. These data vectors served as training data for GMLVQ according to the

considered tasks.

A separate GMLVQ model with three prototypes per class (native/mirror) was trained

for each learning task A – G and ALL. In addition to the prototypes also the mapping

matrix Ω was adapted with the mapping dimension m = n = 36. The obtained averaged

test performances of 50 independent runs constitute the classification results. Every run

was done as a five-fold cross-validation procedure.

A summarized R-plot was generated to enable a visual inspection and evaluation. This

R-plot is a collection of all dihedral angle pairs (Φ,Ψ) for all samples of a certain learning

task and one was done for each class (native/mirror) separately. In other words, these

R-plots can be considered as estimated dihedral angles densities of native and mirror

protein models in the (Φ,Ψ)-plane. And by this, a visual inspection of the dihedral angle

distributions can be done, see Figures 4.1, 4.2 and 4.3.
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4 Results and Discussion

This chapter is essentially based on the subsection Results and Discussion of the paper

Detection of native and mirror protein structures based on Ramachandran plot analysis

by interpretable machine learning models, submitted to PLOS ONE in parallel.

By taking advantage of the inherent interpretable nature of GMLVQ, particularly by con-

sidering the relevances of the data features, we can extract insightful knowledge regard-

ing the classification decision. Especially the connection of the relevant features with the

favored and allowed regions in the R-plots for each protein class offers a biological in-

terpretation. Table 4.1 summarizes the areas of the R-Plot of each protein class which

are considered most relevant by the model.

Table 4.1: Most relevant cells (by visual decision) for differentiation of mirror and native models

obtained by the classification model

protein class cells for α-helices cells for β -strands

ALL (1,4), (2,4), (4,1) (1,2), (2,1)

class A (1,3),(1,4), (2,3), (2,4), (4,1), (4,2) —

class B — (1,2), (2,1)

class C (1,4), (2,4), (4,1), (4,2) (2,1)

class D (1,4), (2,4), (4,1), (4,2) (1,2), (2,1)

class E (1,4), (2,4), (4,1), (4,2) (2,1)

class F (1,4), (2,4), (4,1), (4,2) —

class G (2,4) (1,2), (2,1)

As previous publications suggest (Kurczynska and Kotulska, 2018; Vendruscolo et al.,

1997), native and mirror conformations of proteins rich in helices (belonging to class A),

can be distinguished based on chirality derived information, or in more detail: right-

handed α-helices are favoured in native conformations (Novotny and Kleywegt, 2005).

We can confirm this finding, since the features corresponding to the left- and right-

handed α-helices predominantly contribute to the class discrimination of mirror and

native (see Figure 4.1(A) and Table 4.1). The accuracy for this class is 86.57% (see

Table 4.2 for all accuracies). Interestingly, our model achieves an accuracy of 92.56% for

class B, which obviously collides with the statement of those native and mirror models

being indistinguishable (Kurczynska and Kotulska, 2018; Vendruscolo et al., 1997) and

furthermore even exceeds the accuracy of class A. The relevant features for class

discrimination are those corresponding to β -strands in the R-plot, see Figure 4.1(B).

In detail the important underlying secondary structures in this case might be the right-

handed triple helices (collagen) and parallel β -strands (Bella, 2016; Hollingsworth and

Karplus, 2010). However, the confirmation of the actual underlying secondary structure

as well as their relation to chirality are still pending.
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Figure 4.1: The summarized R-plots for native (left) and mirror (right) samples. The plots are es-

timators for the dihedral angles densities in the (Φ,Ψ)-plane for samples of classes

A – D. The obtained relevance profile vector r= (v1, . . . ,v36)
T

from relevance learn-

ing in GMLVQ is depicted in the middle, arranged accordingly to the cells of the

R-plot.
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As protein class C and D, see Figure 4.1(C) and 4.1(D) structurally show a combination

of the aforementioned two classes all-alpha and all-beta, the relevant features for class

discrimination also do. Class C shows the best of all investigated accuracies and this

result concurs with the findings in (Kurczynska and Kotulska, 2018). Among the protein

classes which were not categorized due to their secondary structure, the multi-domain

class E by far shows the best accuracy with 91.8%, whereas classes F and G do not

exceed 80%. Even though class E has got such a high accuracy it has to be treated with

care, since there has not been enough data for this protein class. The relatively poor

accuracy for class F is most likely due to the fact that membrane proteins propose some

difficulties in structure elucidation (Zhou et al., 2004; Postic et al., 2015; Martin and

Sawyer, 2019) and this results in low resolutions (Moraes et al., 2014). A poor resolution

in turn may lead to inaccurate atom coordinates and that means the calculations of the

dihedral angles cannot be correct either and therefore complicate the classification. As

for class G the obtained low accuracy is probably due to the fact that small proteins do

not have that many amino acids, less than 100 (Su et al., 2013; Miravet-Verde et al.,

2019), and therefore show less α-helices or β -strands than other proteins.

In order to assess the models suitability for a more general problem we considered all

protein classes for training as well as for testing and achieved an overall accuracy of

88.09%. Pursuing this approach, which is more general and more considerable for ap-

plication, we investigated the behaviour of our model by training with all protein classes

but testing with only one protein class at a time. The achieved accuracies are in good

agreement with those of the single classes as Table 4.2 shows.

Table 4.2: Obtained averaged (test) accuracies (A), obtained accuracies using the general

model for specific classes together with their respective standard deviations for the

protein classes (results refer to 50 runs of cross-validated GMLVQ). For comparison,

additionally the best classification results AK from Kurczynska and Kotulska (2018)

are given (for all classes as average of the others)

protein class/results A σA Aoverall σAoverall
AK

ALL 88.09% 0.03 88.09% 0.03 69%

class A 86.57% 1.48 85.34% 0.03 71%

class B 92.56% 1.23 90.78% 0.03 76%

class C 98.50% 0.70 98.46% 0.01 78%

class D 93.04% 0.39 92.76% 0.01 70%

class E 91.80% 8.92 92.42% 0.03 70%

class F 65.84% 3.03 67.38% 0.03 60%

class G 75.45% 2.48 75.50% 0.01 61%
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Figure 4.2: The summarized R-plots for native (left) and mirror (right) samples. The plots are es-

timators for the dihedral angles densities in the (Φ,Ψ)-plane for samples of classes

E – G. The obtained relevance profile vector r= (v1, . . . ,v36)
T

from relevance learn-

ing in GMLVQ is depicted in the middle, arranged accordingly to the cells of the

R-plot.
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Figure 4.3: The summarized R-plots for native (left) and mirror (right) samples. The plots are

estimators for the dihedral angles densities in the (Φ,Ψ)-plane for samples of ALL

classes. The obtained relevance profile vector r = (v1, . . . ,v36)
T

from relevance

learning in GMLVQ is depicted in the middle, arranged accordingly to the cells of the

R-plot.

Further, we have also looked at the third dihedral angle Ω and included it into our cal-

culations (results not shown here). However, the accuracies did not change in a drastic

matter. This is most likely due to the fact, that Ω takes angle values of either 0 ◦ or

180 ◦.

Now we can extract knowledge from the interpretable machine learning method GMLVQ,

in particular the obtained relevance profiles (as the diagonals of the Λ-matrix) provide

information regarding the secondary structures. As we can see in Figures 4.1 – 4.3

these relevance profiles are in nice agreement with the structural knowledge of proteins

as depicted in the generic R-plot (Figure 3.1). The high relevance values of the cells

correspond to the biologically predicted allowed regions of secondary structures like

α-helices or β -strands. This confirms that the used machine learning method GMLVQ

was able to detect the relevant biological structures adequately and make use of that for

mirror/native differentiation.

Also, we have calculated the classification validation measures sensitivity and specificity

(see Table A.1 in Appendix). But since they do not constitute striking results and rather

support our good accuracies, they have not been further discussed in this chapter.
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5 Conclusion and Outlook

In this section the previous chapters will be concluded and it will be based on the sub-

section Conclusion of the paper Detection of native and mirror protein structures based

on Ramachandran plot analysis by interpretable machine learning models, submitted to

PLOS ONE in parallel.

In the present contribution we offer a valid approach for distinguishing mirror and native

conformations of proteins based on structure information. The approach is based on

the evaluation of the respective R-plots by means of an interpretable machine learning

model. This model, the Generalized Learning Matrix Vector Quantizer, is known to be

robust and highly interpretable according to the underlying reference principle. More-

over, according to the integrated relevance learning metric adaptation, the approach

provides beside the classification ability additional knowledge regarding the classifica-

tion decision. In the context of R-plot analysis this information consists in a weighting of

importance of R-plot regions regarding best mirror-native-separability.

Kurczynska and Kotulska (2018) state that structural features are no discriminatory

property of native and mirror models. Although information regarding chirality can be

used to differentiate models rich in α-helices, according to Vendruscolo et al. (1997)

this does not hold for all-β structures. However, we were able to show that a discrimi-

nation of native and mirror models using structural features is indeed possible.

The GMLVQ classifier achieves high separation accuracies for all protein classes except

class F and G. At least for the latter one, acceptable results are obtained. In fact, the re-

sulted accuracies for protein classes F and G show that a distinction of mirror and native

structures by means of R-plots is possible with high specificity and sensitivity. The inter-

pretable model offers additional insights: In particular, the relevance profiles, weighting

the regions like α-helices and β -strands of R-plots for mirror-native-discrimination, differ

for the considered protein classes. The obtained relevance profiles are in good agree-

ment with respective biological knowledge about protein structure chirality, at least for

the considered data set.

Thus, the interpretable GMLVQ method is able to extract biological structure informa-

tion, which contributes to a good separation of the two cases native and mirror. Of

course, other machine learning methods for classification like deep Multi-Layer Per-

ceptrons (Goodfellow et al., 2016) or Support Vector Machines (Schölkopf et al., 2002)

probably would achieve similar performance. However, as it is known for Multi-Layer Per-

ceptrons it is not generally obvious whether the distinguishing features detected by them

are in compliance with the biological knowledge. Regarding attempts of explanations by

heat maps frequently fail because of the problem of vanishing gradients (Hochreiter et

al., 2001).
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Thus, the presented approach offers a successful alternative to the statistical approach

based on energy levels as proposed in Kurczynska and Kotulska (2018) and empha-

sizes the importance of R-plots for structural analysis of proteins as already mentioned

in Ayoub and Lee (2019). Along this line, also data processing is easier in the present

approach compared to the complex calculations of the energy levels (Alford et al.,

2017).

Further investigation should include to improve the classification performance by finer

cell resolutions of R-plots. However, this requires more training data for sufficient learn-

ing stability. Further, reject option strategies should be included to detect outliers. Also,

the numbers of samples regarding the protein classes A–G differ heavily, thus the sta-

tistical validation of the results might be on different levels. This in turn also influences

the overall result of the learning task ALL.
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Appendix

Table A.1: Overall model (test) sensitivities(Se) and specificities(Sp) together with their respec-

tive standard deviations for the protein classes (results refer to 50 runs of cross-

validated GMLVQ)

protein class / results Se σSe Sp σSp

ALL 87.38% 8.79 88.77% 8.95

class A 83.31% 0.12 87.48% 0.06

class B 91.70% 0.21 89.93% 0.13

class C 98.59% 0.01 98.32% 0.03

class D 92.01% 0.06 93.43% 0.03

class E 88.51% 0.08 96.33% 0.04

class F 65.74% 0.14 69.00% 0.08

class G 75.66% 0.15 75.35% 0.13



28



Appendix : Bibliography 29

Bibliography

Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O’Meara, M. J., DiMaio, F. P., Park, H.,

Shapovalov, M. V., Renfrew, P. D., Mulligan, V. K., Kappel, K., Labonte, J. W., Pacella,

M. S., Bonneau, R., Bradley, P., Dunbrack, R. L., Das, R., Baker, D., Kuhlman, B.,

Kortemme, T., and Gray, J. J. (2017) The Rosetta All-Atom Energy Function for

Macromolecular Modeling and Design. Journal of Chemical Theory and Computa-

tion 13(6):pp.3031–3048.

Aszoódi, A., Gradwell, M. J., and Taylor, W. R. (1995) Global fold determination from a

small number of distance restraints. Journal of Molecular Biology 251(2):pp.308–326.

Ayoub, R. and Lee, Y. (2019) Rupee: A fast and accurate purely geometric protein struc-

ture search. PLoS ONE 14(3):pp.1–17.

Banerjee, P., Dehnbostel, F. O., and Preissner, R. (2018) Prediction Is a Balancing Act:

Importance of Sampling Methods to Balance Sensitivity and Specificity of Predictive

Models Based on Imbalanced Chemical Data Sets. Frontiers in Chemistry 6:pp.1–11.

Bella, J. (2016) Collagen structure: New tricks from a very old dog. Biochemical Journal

473(8):pp.1001–1025.

Biehl, M., Hammer, B., and Villmann, T. (2017) Prototype-based Models for the Super-

vised Learning of Classification Schemes. Proceedings of the International Astronom-

ical Union (325):pp.129–138.

Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F., and Peter Campbell, J.

(2020) Introduction to machine learning, neural networks, and deep learning. Trans-

lational Vision Science and Technology 9(2):pp.1–12.

Deng, H. Y., Jia, Y., and Zhang, Y. (2018) Protein structure prediction. International

Journal of Modern Physics B 32:p.17.

Dixon, H. B. F. (1984) Nomenclature and Symbolism for Amino Acids and Peptides:

Recommendations 1983. European Journal of Biochemistry 138(1):pp.9–37.

Efimov, A. V. (2018) Chirality and Handedness of Protein Structures. Biochemistry

(Moscow) 83:pp.103–110.

Floudas, C. A., Fung, H. K., McAllister, S. R., Mönnigmann, M., and Rajgaria, R. (2006)

Advances in protein structure prediction and de novo protein design: A review. Chem-

ical Engineering Science 61(3):pp.966–988.

Fox, N. K., Brenner, S. E., and Chandonia, J.-M. (2014) SCOPe: Structural Classification

of Proteins - extended, integrating SCOP and ASTRAL data and classification of new

structures. Nucleic Acids Research 42(D1):pp.304–309.

Geweniger, T. (2012). Fuzzy Variants of Prototype Based Clustering and Classification

Algorithms. PhD thesis. Rijksuniversiteit Groningen.

Goodfellow, I., Bengio, Y., and Courville, A. (2016) Deep Learning. MIT Press. Cam-

bridge.

Graf, S. and Lushgy, H. (2000) Foundations of Quantization for Probability Distributions.

Springer. Berlin.



30 Appendix : Bibliography

Havel, T. F. and Snow, M. E. (1991) A new method for building protein conformations

from sequence alignments with homologues of known structure. Journal of Molecular

Biology 217(1):pp.1–7.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2001). Gradient Flow in

Recurrent Nets: the Difficulty of Learning Long-Term Dependencies. In: A Field Guide

to Dynamical Recurrent Networks. New York: Wiley-IEEE Press.

Hoffmann-Ostenhof, O. (1970) Commission on Biochemical Nomenclature. Journal of

Molecular Biology 52(1):pp.1–17.

Hofmann, D., Schleif, F. M., Paaßen, B., and Hammer, B. (2014) Learning interpretable

kernelized prototype-based models. Neurocomputing 141:pp.84–96.

Hollingsworth, S. A. and Karplus, P. A. (2010) A fresh look at the Ramachandran plot

and the occurrence of standard structures in proteins. Biomolecular Concepts 1(3-

4):pp.271–283.

Hubbard, T. J., Ailey, B., Brenner, S. E., Murzin, A. G., and Chothia, C. (1998) SCOP,

structural classification of proteins database: Applications to evaluation of the effec-

tiveness of sequence alignment methods and statistics of protein structural data. Acta

Crystallographica Section D: Biological Crystallography 54(6 I):pp.1147–1154.

Kachlishvili, K., Maisuradze, G. G., Martin, O. A., Liwo, A., Vila, J. A., and Scheraga,

H. A. (2014) Accounting for a mirror-image conformation as a subtle effect in protein

folding. Proceedings of the National Academy of Sciences of the United States of

America 111(23):pp.8458–8463.

Kaden, M. (2016). Integration of Auxiliary Data Knowledge in Prototype Based Vec-

tor Quantization and Classification Models. PhD thesis. University Leipzig, Faculty of

Mathematics and Computer Science.

Kent, S. B. (2019) Novel protein science enabled by total chemical synthesis. Protein

Science 28(2):pp.313–328.

Kohonen, T. (1997) Self-Organizing Maps. Springer-Verlag. Berlin, Heidelberg.

Kohonen, T. (1986) Learning Vector Quantization for Pattern Recognition. Technical Re-

port TKK-F-A601(Helsinski Universtiy of Technology).

Kubat, M. (2017) An Introduction to Machine Learning. Springer. Cham.

Kurczynska, M., Kania, E., Konopka, B. M., and Kotulska, M. (2016) Applying PyRosetta

molecular energies to separate properly oriented protein models from mirror models,

obtained from contact maps. Journal of Molecular Modeling 22(111):pp.1–10.

Kurczynska, M. and Kotulska, M. (2018) Automated method to differentiate between

native and mirror protein models obtained from contact maps. PLoS ONE 13(5):pp.1–

19.

Li, B., Fooksa, M., Heinze, S., and Meiler, J. (2018) Finding the needle in the haystack:

towards solving the protein-folding problem computationally. Critical Reviews in Bio-

chemistry and Molecular Biology 53(1):pp.1–28.

Ling, J., Fan, C., Qin, H., Wang, M., Chen, J., Wittung-Stafshede, P., and Zhu, T. (2019)

Mirror-Image 5S Ribonucleoprotein Complexes. Angewandte Chemie International

Edition 59:pp.1–22.



Appendix : Bibliography 31

Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., and

Scott, M. P. (2013) Molecular Cell Biology. Katherine Ahr Parker. New York.

Lund, O., Hansen, J., Brunak, S., and Bohr, J. (1996) Relationship between protein

structure and geometrical constraints. Protein Science 5(11):pp.2217–2225.

Margara, L., Vassura, M., Di Lena, P., Medri, F., Fariselli, P., and Casadio, R. (2008)

Reconstruction of 3D structures from protein contact maps. IEEE/ACM Transactions

on Computational Biology and Bioinformatics 5(3):pp.357–367.

Martin, J. and Sawyer, A. (2019) Elucidating the structure of membrane proteins.

BioTechniques 66(4):pp.167–170.

Miravet-Verde, S., Ferrar, T., Espadas-García, G., Mazzolini, R., Gharrab, A., Sabido,

E., Serrano, L., and Lluch-Senar, M. (2019) Unraveling the hidden universe of small

proteins in bacterial genomes. Molecular Systems Biology 15(2):pp.1–17.

Mislow, K. (2002) Stereochemical terminology and its discontents. Chirality 14(2-

3):pp.126–134.

Moraes, I., Evans, G., Sanchez-Weatherby, J., Newstead, S., and Stewart, P. D. (2014)

Membrane protein structure determination - The next generation. Biochimica et Bio-

physica Acta - Biomembranes 1838(1 PARTA):pp.78–87.

Moss, G. P. (1996) Basic terminology of stereochemistry (IUPAC Recommendations

1996). International Union of Pure and Applied Chemistry 68(12):pp.2193–2222.

Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995) SCOP: A Structural

Classification of Proteins Database for the Investigation of Sequences and Structures.

Journal of Molecular Biology 247:pp.536–540.

Naveenkumar, N., Kumar, G., Srinivasan, N., Sowdhamini, R., and Vishwanath, S.

(2019) Fold combinations in multi-domain proteins. Bioinformation 15(5):pp.342–350.

Neal, S., Berjanskii, M., Zhang, H., and Wishart, D. S. (2006) Accurate prediction of

protein torsion angles using chemical shifts and sequence homology. Magnetic Res-

onance in Chemistry 44(7 SPEC. ISS.):pp.158–167.

Nebel, D., Kaden, M., Villmann, A., and Villmann, T. (2017) Types of (dis-)similarities

and adaptive mixtures thereof for improved classification learning. Neurocomputing

268:pp.42–54.

Noel, J. K., Schug, A., Verma, A., Wenzel, W., Garcia, A. E., and Onuchic, J. N. (2012)

Mirror images as naturally competing conformations in protein folding. Journal of

Physical Chemistry B 116(23):pp.6880–6888.

Novotny, M. and Kleywegt, G. J. (2005) A survey of left-handed helices in protein struc-

tures. Journal of Molecular Biology 347(2):pp.231–241.

Pastore, A., Atkinson, R. A., Saudek, V., and Williams, R. J. (1991) Topological mir-

ror images in protein structure computation: An underestimated problem. Proteins:

Structure, Function, and Bioinformatics 10(1):pp.22–32.

Pentelute, B. L., Gates, Z. P., Dashnau, J. L., Vanderkooi, J. M., and Kent, S. B. (2008)

Mirror image forms of snow flea antifreeze protein prepared by total chemical syn-

thesis have identical antifreeze activities. Journal of the American Chemical Society

130(30):pp.9702–9707.



32 Appendix : Bibliography

Postic, G., Ghouzam, Y., Guiraud, V., and Gelly, J. C. (2015) Membrane positioning for

high- and low-resolution protein structures through a binary classification approach.

Protein Engineering, Design and Selection 29(3):pp.87–91.

Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V. (1963) Stereochemistry

of polypeptide chain configurations. Journal of Molecular Biology 7:pp.95–99.

Sato, A. and Yamada, K. (1996) Generalized Learning Vector Quantization. Advances

in neural information processing systems 8:pp.423–429.

Schaeffer, R. D. and Daggett, V. (2011) Protein folds and protein folding. Protein Engi-

neering, Design and Selection 24(1-2):pp.11–19.

Schneider, P., Biehl, M., and Hammer, B. (2009) Adaptive relevance matrices in learning

vector quantization. Neural Computation 21(12):pp.3532–3561.

Schölkopf, B., Smola, A., Smola, A., and Smola, A. (2002) Support Vector Machines

and Kernel Algorithms. Encyclopedia of Biostatistics, (2005) pp.5328–5335.

Simeone, O. (2018) A Very Brief Introduction to Machine Learning with Applications

to Communication Systems. IEEE Transactions on Cognitive Communications and

Networking 4(4):pp.648–664.

Su, M., Ling, Y., Yu, J., Wu, J., and Xiao, J. (2013) Small proteins: Untapped area of

potential biological importance. Frontiers in Genetics 4(DEC):pp.1–9.

Vassura, M., Margara, L., Di lena, P., Medri, F., Fariselli, P., and Casadio, R. (2008) FT-

COMAR: Fault tolerant three-dimensional structure reconstruction from protein con-

tact maps. Bioinformatics 24(10):pp.1313–1315.

Vendruscolo, M., Kussell, E., and Domany, E. (1997) Recovery of protein structure from

contact maps. Folding and Design 2(5):pp.295–306.

Villmann, T., Bohnsack, A., and Kaden, M. (2017) Can Learning Vector Quantization be

an Alternative to SVM and Deep Learning? Journal of Artificial Intelligence and Soft

Computing Research 7(1):pp.65–81.

Villmann, T., Saralajew, S., Villmann, A., and Kaden, M. (2018). Learning Vector Quan-

tization Methods for Interpretable Classification Learning and Multilayer Networks. In:

Proceedings of the 10th International Joint Conference on Computational Intelligence

(IJCCI), Sevilla. Lissabon, Portugal: SCITEPRESS - Science and Technology Publi-

cations, Lda., pp.15–21.

Wang, Z., Xu, W., Liu, L., and Zhu, T. F. (2016) A synthetic molecular system capable

of mirror-image genetic replication and transcription. Nature Chemistry 8(7):pp.698–

704.

Weinstock, M. T., Jacobsen, M. T., and Kay, M. S. (2014) Synthesis and folding of a

mirror-image enzyme reveals ambidextrous chaperone activity. Proceedings of the

National Academy of Sciences of the United States of America 111(32):pp.11679–

11684.

Yeates, T. O. and Kent, S. B. (2012) Racemic Protein Crystallography. Annual Review

of Biophysics 41:pp.41–61.

Zhao, L. and Lu, W. (2014) Mirror image proteins. Current opinion in chemical biology

22:pp.56–61.



33

Zhou, C., Zheng, Y., and Zhou, Y. (2004) Structure prediction of membrane proteins.

Genomics, proteomics & bioinformatics / Beijing Genomics Institute 2(1):pp.1–5.



34



Declaration of authorship 35

Declaration of authorship

I hereby certify that this thesis has been composed by me and is based on my own

work, unless stated otherwise. No other persons work has been used without due ac-

knowledgement in this thesis.

All references and verbatim extracts have been quoted, and all sources of information,

including graphs and data sets, have been specifically acknowledged. I further declare

that I have not submitted this thesis at any other institution in order to obtain a degree.

Mittweida, August 19, 2020

Julia Abel

HSMW-Thesis


	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acknowledgement
	1 Introduction
	1.1 Motivation
	1.2 Biological Background
	1.2.1 Proteins
	1.2.1.1 Chemical Structure of a Protein
	1.2.1.2 Protein Domains, Families and Classes

	1.2.2 Native and Mirror Structure of a Protein


	2 Machine Learning Algorithms
	2.1 Variants of Learning Vector Quantization
	2.1.1 Basic Learning Vector Quantization according to Kohonen
	2.1.2 Generalized Learning Vector Quantization according to Sato & Yamada
	2.1.3 Generalized Matrix Learning Vector Quantization – GMLVQ

	2.2 Classification Validation

	3 Analysis of Mirror and Native Structures
	3.1 Related Work for Distinction of Mirror/Native Structures
	3.2 Ramachandran Plot
	3.3 Mirror/Native Data Set
	3.3.1 Atom Coordinate Data Set
	3.3.2 Dihedral Angle Data Set

	3.4 Data Analysis Workflow

	4 Results and Discussion
	5 Conclusion and Outlook
	Bibliography

