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Over the last two decades, the rapid advances in digitization methods put us on the fourth industrial era’s cusp. 
It is an era of connectivity and interactivity between various industrial processes that need a new, trusted envi-
ronment to exchange and share information and data without relying on third parties. Blockchain technologies 
can provide such a trusted environment. This paper focuses on utilizing the blockchain with its characteristics 
to build machine-to-machine (M2M) communication and digital twin solutions. We propose a conceptual design 
for a system that uses smart contracts to construct digital twins for machines and products and executes man-
ufacturing processes inside the blockchain. Our solution also employs the decentralized identifiers standard 
(DIDs) to provide self-sovereign digital identities for machines and products. To validate the approach and 
demonstrate its applicability, the paper presents an actual implementation of the proposed design to a simu-
lated case study done with the help of Fischertechnik factory model. 

1. Introduction  

Until today, the industry has seen three major revolu-
tions, and the fourth is on its way [1] . The fourth indus-
trial revolution (Industry 4.0) represents the next step in 
the evolution of traditional factories towards smart, au-
tomated factories. These factories are designed to re-
duce production costs, increase productivity, improve 
quality, and achieve efficient use of resources. Many 
technologies can be used to achieve the industry 4.0 
goals like Robotics, Autonomous Systems, the Internet 
of Things, Cloud Computing, Intelligent Data Analytics, 
Artificial Intelligence, and many more [2]. However, all 
these technologies rely on centralized networks and 
need to trust intermediaries or third-party operators 
[3]–[7]. As a result, the industry faces many challenges 
related to the data like transparency, security, privacy, 
and trustworthiness. These challenges prevent Industry 
4.0 from reaching its full potential. A decentralized and 
trusted platform is needed to facilitate the relationships 
among parties. Such a platform can be built with the 
help of blockchain technologies. 

Given its key features such as immutability, traceability, 
and reliability, it represents a perfect candidate to be in-
tegrated into Industry 4.0 factories. This paper aims to 
shed light on the blockchain’s capability to improve the 
manufacturing industry and understand how blockchain 
can work with other technologies to overcome the ear-
lier challenges. In particular, the paper focuses on two 
aspects of manufacturing. The first one is the communi-
cation between machines to enable the concept of ma-
chine-to-machine (M2M) communication over the block-
chain, where one machine can ask another machine to 
perform a particular task without human involvement. 
The second one is tracking and tracing the machines and 
products while executing the manufacturing processes 
and building a digital representation with the block-

chain’s help. Our work will also show how this technol-
ogy can provide a blockchain-based digital identity for 
both the machines and the products, by applying emerg-
ing standards in this area: the Decentralized Identifiers 
(DIDs) and Verifiable Credentials (VCs) [8], [9]. 

The fine-grained objectives are the following: 

 Build a digital twin of the machine using the 
blockchain. The digital twin should include infor-
mation about the machine’s functions and opera-
tions like tasks, sensor readings, alerts. It also 
should reflect the status of the machine. 

 Build a digital twin of the product using the 
blockchain. The product’s digital twin should in-
clude information about the operations per-
formed on the product and related information. 

 Provide a blockchain-based digital identity for the 
digital twins. 

 Model the manufacturing process and its busi-
ness logic using the blockchain. In other words, 
make all the communication between the ma-
chines go through the blockchain. 

 The design should be generic and replicable to 
different use cases. 

The remainder of the paper is structured as follows. Fol-
lowing the introduction section, we present the related 
work, which includes the literature review. Section 3 
gives a conceptual design and modeling for the solution. 
Then section 4 proceeds by explaining the conceptual 
design’s implementation details. Besides, it provides in-
formation about the case study used and its prototype. 
Section 5 presents the results with some screenshots of 
the final prototype. The last section summarizes the 
finding and discusses future work. 



2. Related Work 

There has been an increased interest in applying block-
chain in the manufacturing industry in the past few 
years. We found two groups of work done in this area, 
and both are utilizing the blockchain in industrial appli-
cations. The first group focused on horizontal integra-
tion between manufacturing parties to enable manufac-
turing as a service between manufacturers themselves 
or between manufacturers and customers. For example, 
in [3], the goal is to build a trustless distributed network. 
Where different industrial organizations can collaborate 
and share information about manufacturing processes. 
The network was built using blockchain and smart con-
tracts technologies. They stored information about man-
ufacturers, machines, and their capabilities. A partici-
pant of this network can be a human, manufacturing 
machine, computing node, or an agent representing any 
organization. 

Another work in the same direction is done in [5]. The 
authors integrated cloud manufacturing technologies 
with blockchain. The work proposed a distributed peer-
to-peer network architecture to improve manufacturing 
cloud platforms’ security and scalability. They used 
smart contracts to write the rules of the agreement be-
tween the end-users and the service providers. These 
rules contain the due date, quality measurement, and 
payment information. A similar approach can be found 
in [10]. The goal of this work is to improve communica-
tion between manufacturing service users and manufac-
turing services providers. A use case in the 3D printing 
manufacturing industry has been conducted, and the re-
sults showed that blockchain technologies could help 
solve some existing problems found in cloud manufac-
turing literature. In all these works that focused on hori-
zontal integration, the authors neglected the actual 
manufacturing processes and focused more on the con-
cept of trading using smart contracts. In other words, 
they did not consider what is happening inside the fac-
tories. 

The second group focused on manufacturing processes 
by enabling M2M communication over the blockchain. 
One of the first research works that used the M2M con-
cept with blockchain was done in [4]. The authors ex-
plored the applications of blockchain with Industry 4.0. 
They built a proof of concept where a blockchain is used 
to facilitate the interaction between machines. The goal 
is to enable the M2M electricity market, where industrial 
plants autonomously trade electricity over a blockchain. 
The agreement between the producer and the con-
sumer is built using smart contracts. The information 
about the energy consumption (in kWh) published by the 
machines is stored as transactions in the blockchain. 
Each transaction has a fee (in USD) according to the 
agreement specified by the smart contract. 

A similar approach has been followed in [7]. The authors 
focused on industrial M2M communication and how 
blockchain technologies can improve it. They introduced 

smart contract-based middleware for M2M communica-
tion to make it secure and decentralized. Through this 
middleware, IoT devices can communicate without the 
need for a trusted intermediary. The middleware con-
trols and executes contracts to order tasks from field de-
vices. Also, it monitors the field devices’ states and exe-
cutes actions based on a change in their state. It may 
also request a field device to perform service under a 
smart contract. All information about the actions and 
processes is recorded in the blockchain through smart 
contracts. This work emphasizes the real-time require-
ment for M2M communication in industrial processes. 
The result showed that smart contracts technology is still 
not mature enough to provide such an essential require-
ment. 

Overall, in the second group of related work, the use 
cases were oversimplified and, in most cases, limited in 
size to only two machines. This does not reflect the ac-
tual communications between machines on the produc-
tion line. They did not mention how the machines are 
being modeled in their systems, and this is an essential 
aspect of M2M-based systems because it will help build 
a fully autonomous manufacturing process. Also, none 
of the works discussed how the products are being mod-
eled within the blockchain. 

Another essential aspect is the identity management of 
the machines and the products. Each machine needs to 
know and identify other machines before establishing 
the communication. All the works we discussed used 
only the public/private key pairs as identities. This ap-
proach has many limitations and problems [11]. It makes 
the identity tightly coupled with the algorithm used to 
generate the key pair. None of the work spouted the is-
sue of managing the digital identities of the machines or 
the products. 

3. Conceptual Design 

This section presents the conceptual design for an envi-
sioned system that utilizes the blockchain to build M2M 
communication and digital twins solutions. The system 
is functioning alongside the existing infrastructure of the 
factory. It uses the blockchain to store and manage the 
data generated by the factory infrastructure. The data 
stored in the blockchain is used to build a digital repre-
sentation of the machines and the products. Further-
more, all the communications between the machines go 
through the blockchain. Therefore, the system consists 
of the following three components: 

 Factory Infrastructure: It represents all the exist-
ing hardware and software of the factory. It in-
cludes machines, sensors, and other devices. It 
also includes a client application that connects the 
factory infrastructure with the blockchain. 

 Blockchain: It is the data storage and computa-
tional component of the system. It is the network 
of all the nodes processing the transactions and 
running smart contracts. 



 Web Application: It is the application used by dif-
ferent actors to access the information stored in 
the blockchain. It consists of a front-end applica-
tion and a blockchain client application. 

The following figure shows a high-level diagram of the 
system components and the data flows between them. 

 

 
Fig. 1: High-Level System Overview 

3.1. Machine Modeling 

The machine is the main and the most crucial entity in 
the system. Our modeling is generic and can be applied 
to any machine. We use the term machine to refer to any 
factory component, including machines and robots of all 
sizes. We assume that the machine already has its digital 
representation provided by its manufacturer or third-
party software. Each machine can perform several in-
dustrial tasks, and several processes can use the ma-
chine. There are no restrictions on the size and the com-
plexity of the machine or its tasks.  

3.1.1. Machine Digital Twin 

We decided to model the machine as a smart contract to 
build the machine’s digital twin in our system. Each ma-
chine will have a corresponding smart contract deployed 
into the blockchain. The smart contract with all the infor-
mation stored within it represents the machine’s digital 
twin created by the blockchain. Once the smart contract 
updates itself to include new information about the ma-
chine, it will be part of its digital twin, and it cannot be 
altered or changed. The ultimate goal when building a 
digital twin is to make a replica of the physical entity. 
However, we decided to limit the information included 
in the machine’s digital twin to: 

 Identity: The identity of the machine. More about 
the identity in the following section. 

 Basic Information: Static information about the 
machine like the serial number, the model, manu-
facturing year, and similar info. Only the machine 
owner can provide such information, and once it 
is added to the digital twin, it cannot be changed. 

 Processes: Information about the processes 
which use the machine. The authorized processes 
are allowed to assign tasks to the digital twin of 
the machine. The machine owner provides this in-
formation. 

 Tasks: Information about the machine’s tasks.  It 
involves information about the starting time, fin-
ishing time, the parameters, the process, and the 
product. 

 Readings: Any numeric information coming from 
the machine sensors like temperature or humid-
ity. This information is sent by the physical ma-
chine and stored in the digital twin alongside the 
reading’s timestamp. 

 Alerts: Information about unexpected scenarios 
or failures. This information could be provided by 
the physical machine or by the digital twin itself. 
The digital twin can perform some logical checks 
as described later in this section and create alerts 
based on the check result. 

All this information is managed and stored by the smart 
contract of the machine. Therefore, the machine’s digital 
twin protects the information from being altered by un-
authorized users or parties. However, all the information 
stored in the machine’s smart contract will be publicly 
readable. So far, we have described the machine’s digital 
twin as a registry of information. To go beyond this and 
make the digital twin of the machine an active compo-
nent, we used the programmability feature of the block-
chain. The smart contract of the machine can do com-
plex programmable behaviors on the stored data. It 
could be programmed to perform conditions checks on 
the stored data and then do some actions once these 
conditions are verified. Of course, the physical machine 
can perform these checks by itself. However, having the 
digital twin to perform them will bring trust as the block-
chain runs it. For example, it could be programmed to 
perform the following checks: 

 Product Quality Check: This is a check per-
formed to ensure that the product has some 
properties or meets a certain quality standard. 
The check might involve accessing the digital twin 
of the product. 

 Reading Values Check: This is a check on the nu-
merical values of the machine sensors. If a read-
ing value, for example, the temperature, exceeded 
a certain threshold, the digital twin can do some 
actions like creating an alert. 

3.1.2. Machine Identity 

As we explained in the previous section, the machine’s 
digital twin is an active actor. It needs a digital identity to 
facilitate communication and interaction with other en-
tities of the system. The industrial and manufacturing 
systems have very long-life cycles, and therefore the 
identity of the machine should be the same during its 
lifetime. As our system is blockchain-based, identity 



management cannot be based on traditional ap-
proaches. Otherwise, the objectives of the system can-
not be achieved. The identity must be owned and con-
trolled by the machine rather than stored or managed 
by a third party. Therefore, we decided to use a block-
chain-based identity management approach. One of the 
emerging standards that use the blockchain features is 
Decentralized Identifiers (DIDs) [8]. Our system is using 
DID as a standard to manage the identities of the ma-
chines. Each machine has a permanent identifier called 
DID. A simple text string e.g. did:exam-
ple:123456789abcdefghi. Each DID resolvable to a DID 
document that contains information associated with the 
identity of the machine. The DID document is stored 
within the blockchain, making the DID and its document 
persistent and immutable. 

3.1.3. Twin Interaction 

According to our modeling, the information between the 
physical and digital twins is being exchanged in both di-
rections. The machine sends information stored in the 
digital twin and vice versa; the digital twin sends infor-
mation to control and change the physical machine’s be-
havior. Interacting with blockchain is done by participat-
ing in the network and running the client software of the 
blockchain platform. The details of this software may be 
different depending on the implementation of the plat-
form. Regardless of this, every network node needs this 
client to process the transactions and validate/create 
blocks in the chain. Such functionality requires a large 
amount of storage and processing power as the node 
needs to have a full copy of the whole chain. The manu-
facturing machines could not have such capabilities to 
be a node and run the blockchain client software. There-
fore, we decided that the physical machine will not run 
the blockchain client by itself. Instead, the physical ma-
chine will communicate via some protocol with a gate-
way running the blockchain client and acting like one of 
the blockchain nodes. The gateway will use the ma-
chine’s private and public key pair to interact with the 
blockchain on behalf of the machine. An assumption has 
to be made regarding the communication channel be-
tween the machine and the gateway. We assume the 
channel is secured, and no attackers can alter or modify 
the messages exchanged between the machine and the 
gateway. Through this gateway, the machine will send 
data to its digital twin inside the blockchain. 

So far, we have explained how the physical machine can 
send data to its digital twin. The next type of interaction 
is when the digital twin wants to notify or send data to 
the physical machine. As the machine’s digital twin is a 
smart contract deployed on the blockchain, it runs in a 
closed execution environment and cannot directly inter-
act with external systems. The only way the digital twin 
of the machine can communicate with the outside world 
is through events. The smart contract of the machine the 
following events to interact with the physical machine: 

 Task Assigned: An event emits when a process 
assigns a task for the machine. The emitted event 
has all the information about the assigned task. 

 Task Started: An event emits when the machine 
starts executing a task. 

 Task Finished: An event emits when the machine 
finishes executing a task. 

Anyone can watch these events, including the gateway. 
Once the gateway receives new events, it forwards them 
to the machine. Figure 2 illustrates the interaction be-
tween the machine and its twin while executing a task. 

 

Fig. 2: Twins Interaction 

The sequence starts when an authorized process as-
signs a task for the machine by calling a function on its 
smart contract. The contract emits a task-assigned 
event. The gateway is listening to the events generated 
by the smart contract of the machine. Once the gateway 
receives the task assigned event, it will first get its pa-
rameters and then send the task to the physical ma-
chine.  At the same time, the gateway will call the start 
function on the machine’s smart contract. Calling this 
function will store the starting time of the task and emit 
the ‘Task Started’ event. The physical machine is now 
performing the task. After it finishes the task, it will in-
form the gateway about the finished task. Then, the 
gateway calls the finish task function of the smart con-
tract of the machine. This function call will store the fin-
ishing time of the task and emit the ‘Task Finished’ event. 
The machine might send information about the product 
operations being performed to the gateway during the 
task execution. The gateway takes this information and 
passes it to the machine’s digital twin, which stores it in 
the product’s digital twin. 

3.2. Product Modeling 

3.2.1. Product Digital Twin 

The product is the second primary entity in our system. 
The product as an entity can be modeled in many ways. 
Lots of information can be stored throughout the prod-
uct’s life cycle. In our work, we focus only on what is hap-
pening during the manufacturing process inside the fac-
tory. Our modeling only takes into consideration simple 
non-compounded products, and the granularity is a sin-
gle product. All the product information is stored in one 
smart contract called ‘Product’. This information is pro-
vided autonomously by the machine’s digital twins. 



While the machine executes one of its tasks, the ma-
chine’s digital twin will add this operation to the prod-
uct’s digital twin if the machine operates on the product. 
In this way, all the operations performed on the product 
by different machine is stored in one place, and they 
form the digital representation of the manufactured 
product. The contract stores the following information 
for each product: 

 Identity: Information about the digital and physi-
cal identity of the product. 

 Operations: This is general information about the 
operations performed on the product. Each oper-
ation is stored with a name, result, timestamp, 
and information about the machine that did this 
operation.  

 Processes: Information about the authorized pro-
cesses allowed to modify the digital twin of the 
product. 

3.2.2 Product Identity 

For the product identity, we are using the same identity 
management as the machine. Each product has a DID 
associated with it. 

3.2.3 Product Credentials 

Besides having the product information stored on-chain 
in the digital twin, the product has off-chain credentials. 
For every operation performed on the product, it re-
ceives an offline credential/claim from the machine. The 
credential can be verified by a third party to ensure its 
authenticity. To achieve this, we used the emerging 
standard from the W3C, which is called Verifiable Cre-
dentials (VCs) [9]. This standard fits well with the DID 
standard we used to build identity management. The 
machine is the issuer of the credential, and the product 
is the subject. It creates the credential containing infor-
mation about the product, the operation, the machine’s 
DID, and cryptographic proof. The product can claim it 
underwent a particular operation or satisfied a certain 
standard by presenting the corresponding credential to 
a verifier. The verifier can check the machine’s DID doc-
ument (the issuer) and cryptically verify the claim’s au-
thenticity. Having each operation as a separate creden-
tial allows the product to present the needed infor-
mation to the verifier without revealing other infor-
mation that might be sensitive. 

3.3. Manufacturing Process Modeling 

The actual manufacturing processes in real life tend to 
be complicated and consist of several stages or even 
sub-processes. Each one of them involves a lot of ma-
chines and devices. We are considering a simple manu-
facturing process that consists of several steps and no 
sub-processes. Each step is a high-level task performed 
by a specific machine, such as fetching an empty con-
tainer. We also assume that the process is fixed. In other 
words, the steps, their order, and the corresponding task 

types are known in advance. However, the machine allo-
cation is dynamic. So, the machine executing a specific 
task can be replaced by any other machine that can do 
the same type of task. Executing the process requires 
communication and interaction between the digital 
twins of the machines involved in the process. 

3.3.1 Process Structure 

We modeled the manufacturing processes as smart con-
tracts. Each process is a smart contract written by a man-
ufacturer and running on his behalf on the blockchain. 
The smart contract is programmed to assign tasks to the 
digital twins of the machines. The smart contract con-
sists of several functions. Each function represents a 
step in the process. The function body assigns the task 
to the machine and executes other business logic if nec-
essary. The contract is responsible for starting/finishing 
the execution of the process instances. For each execu-
tion, the contract creates a process instance and stores 
information like the starting time, the finishing time, and 
the execution status. 

3.3.2 Process Execution 

The process execution is done with the help of a client, 
which also runs in the gateway. The communication be-
tween the client and the smart contract of the process is 
done the same way explained in the twin interaction sec-
tion. The client calls functions in the smart contract by 
signing transactions, and the smart contract emits the 
following events to communicate with the outside world: 

 Process Started: An event emits when a process 
instance is started. The emitted event has all the 
information about the started instance. 

 Process Step Started: An event emits when a 
process step is started. 

 Process Finished: An event emits when a process 
instance is finished. 

The client will be listening to these events and other 
events from machines’ smart contracts. The execution is 
carried on by the client calling the process functions. 
Each function represents a step in the process, and the 
function call assigns a task to the corresponding ma-
chine. Before executing the process, the addresses of 
the digital twin of the involved machines must be sup-
plied into the smart contract. It starts when the owner or 
an authorized actor triggers the process by calling the 
start function, which emits the ‘Process Started’ event. 
The client then calls the first step function, which assigns 
the first task of the process to the corresponding ma-
chine. Now the machine will work on the task as we ex-
plained in a previous section. Once the machine finishes 
its task, and the task finished event is emitted from its 
digital twin, the client can resume the execution by call-
ing the second step function, assigning the second task 
to the responsible machine. 

The execution continues in the same way until the pro-
cess finishes all its steps, and then the ‘Process Finished’ 



event is emitted. Before assigning each task, the pro-
cess’s smart contract needs to authorize the machine if 
the task involves performing product operations. During 
the execution of the process, the smart contract of the 
process can access the digital twin of the product or the 
machines’ digital twins and get data from them. In such 
a way, the smart contract will enforce the manufacturing 
process’s rules and requirements. With this modeling, 
the machines act as separate entities and can be used 
by several processes. 

To illustrate the execution, we present an example of a 
process that involves two machines. Each machine has 
its digital twin as a smart contract deployed into the 
blockchain. These two machines belong to different 
owners and might be in different locations. The process 
owner (the manufacturer) decided that his process 
needs two machines capable of doing task 1 and task 2. 
The manufacturer writes and deploys the smart contract 
of the process, including all the business logic that im-
plements the argument between him and the machines’ 
owners. The following figure shows the sequence dia-
gram for executing this example process. 

 
Fig. 3: Process Example 

All the interactions between the machine and its digital 
twin go through the gateway. The gateway was omitted 
from the diagram for simplicity. However, the machines 
and the manufacturer might be using different gateways 
to access the blockchain in this process. 

4. Implementation 

To validate our conceptual design and modeling, we im-
plemented it for a case study done with the help of the 
Fischertechnik Learning Factory [12]. The factory model 
is shown in figure 4. It has a built-in program that depicts 
the ordering, production, and delivery processes in dig-
itized and networked steps. The factory model comes 
pre-configured and programmed to perform a set of 
built-in demo scenarios controlled and monitored 
through an online dashboard. Even though the Fischer-
technik factory model is a fully functional simulation, we 
had to customize it to fit our needs. We split the factory 
into four machines Vacuum Gripper Robot (VGR), High-
Bay Warehouse (HBW), Multi-Processing Station with 
Oven (MPO), and Sorting Line with Color Detection (SLD). 
Each machine has one or more task types. The machines 
collaborate to perform two processes, namely the sup-
plying process and the production process. 

 
Fig. 4: Fischertechnik Factory Model 

The implementation of this prototype was made using 
Ethereum blockchain with the help of open-source li-
braries and frameworks like Truffle, Ganache, Open Zep-
pelin, Web3.js, and others.  

4.1. Smart Contracts Implementation 

4.1.1. Machines 

To make the implementation of the machine smart con-
tract generic, we decided to use the template method 
pattern by making the machine contract an abstract con-
tract. This abstract contract contains all the functionality 
mentioned in the machine modeling section, shared be-
tween all machines. In this way, all digital twins of our 
system will have the same interface, so other compo-
nents can interact with any machine if its smart contract 
extent the abstract base contract. For a new digital twin 
of a machine to be created in the system, the machine’s 
smart contract must extend the abstract machine con-
tract. The new contract must implement few abstract 
functions to define the tasks and their types. The custom 
functionality can then be added to the child contract by 
using/overriding the parent contract’s functions. The 
child contract can also implement and enforce custom 
rules or business logic by overriding the abstract con-
tract’s functions. For example, one machine can override 
the ‘save reading’ function and check the reading value. 
If the value is below/above a certain threshold, an alert 
will be created by calling the ‘save alert’ function. 

4.1.2. Products 

The implementation of the product digital twin is a sin-
gle, smart contract called ‘Product’. The contract stores 
information about all products of the system. The prod-
uct smart contract allows creating a product by calling 
the create product function. The function takes an 
Ethereum address as the DID of the product and creates 
a record for this product. The caller of this function will 
be the product owner, and it cannot be changed. The 
product owner can add info to the product’s digital twin 
using the web application by calling the corresponding 
functions and signing transactions with his keys. As we 
explained in the modeling section, the product smart 
contract authorizes processes that can authorize ma-
chines to modify the digital twin of a single product. The 
authorized machine can save the operations performed 
on a particular product in its digital twin. Operations info 



and their results can be accessed later by smart con-
tracts to ensure that they meet specific requirements. 
Another essential info stored about the product is the 
physical identifier. The identifier could be an NFC UID or 
a barcode. It is used to access the digital twin of a prod-
uct and get all the information about it. Another way of 
retrieving the info is using the product’s DID, an 
Ethereum address. 

4.1.3. Processes 

The implementation of processes uses the same ap-
proach as machines. Therefore, we created an abstract 
smart contract called Process to include all processes’ 
standard functionality. For a new process to be created 
in the system, the smart contract must extend the ab-
stract process contract and implement the functions 
that define the number of machines, the number of 
steps of the processes, the order of execution, and the 
process name.  

After deploying the process smart contract, the process 
owner must set the smart contract address for every ma-
chine involved in the process. The machine address can 
be changed at any time but only by the owner of the pro-
cess. The process can then be started on a particular 
product by calling the start process function, which takes 
the product’s Ethereum address (DID) as an argument. 
The start process function calls the authorize process 
function in the product smart contract to authorize itself. 
Only the product owner can authorize a process; there-
fore, the product owner can only call the start process 
function.  

Once the process owner calls the start function and the 
corresponding transaction is confirmed, the contract 
emits the ‘Process Started’ event. The process client 
which runs in the gateway will be listening to this event 
type. After the process contract emits the starting event, 
the client will begin executing the process by calling the 
first step function. All steps functions take the process 
instance ID as an argument, and inside each of them, the 
corresponding task is assigned to the machine by ac-
cessing its digital twin and calling the assign task func-
tion. In addition to this, custom functionality can be part 
of the step function body. The process client is also lis-
tening to the task finished events emitted by the ma-
chine smart contracts. Whenever a machine finishes a 
task assigned to it, the process client will trigger the next 
step, which assigns the next task in the process. This ex-
ecution continues until the process reaches its final step. 
Then the process client calls the finish process function 
to mark this instance of the process as finished. 

4.2. Identity Implementation 

We used the DID standard to assign digital identities for 
machines and products. The DID standard is just a spec-
ification, and the implementation details are left to the 
DID method. There are many DID methods available 
with a functional implementation. Each one of them has 
different functions, but all of them comply with DID 

specifications. We used the ethr DID method developed 
by uPort. The ethr method uses the registry specified by 
the ERC 1056 which is available as an open-source pro-
ject [13]. The implementation of the verifiable creden-
tials in our system is based on the library called did-jwt 
developed by Decentralized Identity Foundation [14]. It 
allows signing and verifying JSON Web Tokens (JWT), and 
all public keys are resolved using DIDs. The library sup-
port ethr DID method alongside many other methods. In 
our case study, the signer is the machine, and the sub-
ject receiving the credential is the product. Each machine 
client uses the library to sign a credential using its DID. 
The content of the credential could be anything if it is a 
valid JSON object. In our implementation, the credential 
content is information about a product operation. Any-
one interested in verifying the credential can use the li-
brary or a similar library to check its validity. Under the 
hood, the library access the DID registry to check the cre-
dential signer’s validity. We build a verifiable credential 
resolver to decode the credential and verify its validity.  

5. Results 

The implementation result is a fully functional prototype 
of the conceptual design applied to the Fischertechnik 
factory. The prototype includes a distributed web appli-
cation (DApp) that allows different actors to interact with 
the machines, products, and processes through the 
blockchain. It provides dashboards to monitor and con-
trol manufacturing machines and processes that run au-
tonomously by smart contracts. The following are some 
of the web application user interfaces. As the web user 
interface is big and cannot fit in one image, some images 
are not a full user interface but rather a snippet that 
shows a particular part of the interface.  

Dashboard Interface 

This interface shows three kinds of information: ma-
chines’ current status, processes’ current status, and 
events log. The current machine’s status is coming di-
rectly from the machine’s digital twin for each machine. 
The web application is listening to the smart contract 
events, and based on the emitted events, it changes the 
machine’s status in the UI. The upper part of the inter-
face shows the status of the Fischertechnik machines. 

 
Fig. 5: Dashboard UI 



Machine Interface 

This interface displays the information stored in the dig-
ital twin of the machine. It includes information about 
tasks, readings, and alerts with links to the correspond-
ing pages. Other information about the machine like the 
DID, the machine owner, the contact address is also pre-
sented. Moreover, the interface also lists the authorized 
processes with an option to unauthorize them. The fol-
lowing figure shows the interface for the SLD machine. 
There are three other similar interfaces for the rest of 
the Fischertechnik machines. This interface can display 
the information for any machine if its smart contract is 
inherited from the base Machine contract. 

 
Fig. 6: Machine UI 

Product Interface 

This interface shows information about the digital twin 
of the product. Information about the product like the 
DID, owner name, owner address, and the creation time 
is displayed. Furthermore, it shows all the operations 
performed on this product by different machines. Figure 
7 shows the information about a product that went 
through three operations by two machines. For each op-
eration, a link to the corresponding verifiable credential 
is provided. The verifiable credential resolver interface is 
used to display the credential's details by clicking on the 
link. 

 
Fig. 7: Product UI 

Process Interface 

This interface displays the process information, includ-
ing the number of instances, machines, and steps. Also, 
it allows starting the process on a particular product by 
providing the DID product. The execution can be tracked 
with the same UI compound used in the dashboard in-
terface if the process is started. Figure 8 shows the inter-
face for the Fischertechnik factory model’s production 
process. 

 
Fig. 8: Process UI 

5.1. Source Code 

The source code of the implementation is divided into 
two parts. The first one is the source code for the Fisch-
ertechnik factory model. It is a fork of the source code 
provided by the manufacturing company [15]. In this 
fork, we made the necessary changes to implement the 
presented scenarios. The second part is the source code 
of the smart contracts, the gateway, and the web appli-
cation [16]. Inside the source code repositories, the Re-
adme file contains technical details on how to get started 
with the code and run it and other implementation as-
pects that were not discussed in this paper. 



6. Conclusion 

This paper investigated the applicability of blockchain in 
the manufacturing industry. Our main contribution was 
building a generic conceptual design for a system that 
utilizes blockchain and smart contract technologies to 
implement M2M communication and digital twins for 
machines and products. The conceptual design dis-
cussed how machines, products, and manufacturing 
processes are modeled as smart contracts. The model-
ing defined which information is stored in the digital 
twins of machines and products. We showed how the 
digital twin and the physical machine could interact and 
share information. We also spouted the blockchain-
based identities for both the machines and the products. 
The design also discussed how M2M communication is 
implemented and executed through the blockchain. 

Different aspects could be improved upon in our work, 
which forms a basis for future work. Our modeling for 
the digital twin of the machine only included the opera-
tional aspect of the machine. However, there is much in-
formation directly related to the machine’s operational 
conditions, like maintenance operations. Extending the 
digital twin information by considering other aspects of 
the machine will allow building more services that fit the 
industry 4.0 needs. M2M communication represents an-
other area of interest. It was modeled in our design to fit 
particular types of manufacturing processes. Additional 
work needs to be done in order to make it applicable to 
other types of processes. Another direction to improve 
the process modeling is to use model-driven engineer-
ing. It allows auto-generation of the smart contract 
source code instead of writing it manually. 

Even using our conceptual design without modification 
can still provide a foundation for building other services 
and applications. The smart contracts of the machines 
and the processes can be extended to enforce any cus-
tom logic. It can be a business logic to implement the 
payment between the machine owner and the product 
owner. Alternatively, it can be used to implement the 
warranty agreement between the machine owner and 
the maintenance company. Lastly, some technical as-
pects of the solution can be improved. For example, the 
interaction between the machine and its digital twin can 
be optimized by eliminating the gateway role and letting 
the machine interacts directly with the blockchain. 
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