
Blockchain Based Machine-to-Machine (M2M) Communication
and Digital Twins

Mohammad Ghanem, Wolfgang Prinz
RWTH Aachen University, Templergraben 55, 52062 Aachen
Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin

Over the last two decades, the rapid advances in digitization methods put us on the fourth industrial era’s cusp.
It is an era of connectivity and interactivity between various industrial processes that need a new, trusted envi-
ronment to exchange and share information and data without relying on third parties. Blockchain technologies
can provide such a trusted environment. This paper focuses on utilizing the blockchain with its characteristics
to build machine-to-machine (M2M) communication and digital twin solutions. We propose a conceptual design
for a system that uses smart contracts to construct digital twins for machines and products and executes man-
ufacturing processes inside the blockchain. Our solution also employs the decentralized identifiers standard
(DIDs) to provide self-sovereign digital identities for machines and products. To validate the approach and
demonstrate its applicability, the paper presents an actual implementation of the proposed design to a simu-
lated case study done with the help of Fischertechnik factory model.

1. Introduction

Until today, the industry has seen three major revolu-
tions, and the fourth is on its way [1] . The fourth indus-
trial revolution (Industry 4.0) represents the next step in
the evolution of traditional factories towards smart, au-
tomated factories. These factories are designed to re-
duce production costs, increase productivity, improve
quality, and achieve efficient use of resources. Many
technologies can be used to achieve the industry 4.0
goals like Robotics, Autonomous Systems, the Internet
of Things, Cloud Computing, Intelligent Data Analytics,
Artificial Intelligence, and many more [2]. However, all
these technologies rely on centralized networks and
need to trust intermediaries or third-party operators
[3]–[7]. As a result, the industry faces many challenges
related to the data like transparency, security, privacy,
and trustworthiness. These challenges prevent Industry
4.0 from reaching its full potential. A decentralized and
trusted platform is needed to facilitate the relationships
among parties. Such a platform can be built with the
help of blockchain technologies.

Given its key features such as immutability, traceability,
and reliability, it represents a perfect candidate to be in-
tegrated into Industry 4.0 factories. This paper aims to
shed light on the blockchain’s capability to improve the
manufacturing industry and understand how blockchain
can work with other technologies to overcome the ear-
lier challenges. In particular, the paper focuses on two
aspects of manufacturing. The first one is the communi-
cation between machines to enable the concept of ma-
chine-to-machine (M2M) communication over the block-
chain, where one machine can ask another machine to
perform a particular task without human involvement.
The second one is tracking and tracing the machines and
products while executing the manufacturing processes
and building a digital representation with the block-

chain’s help. Our work will also show how this technol-
ogy can provide a blockchain-based digital identity for
both the machines and the products, by applying emerg-
ing standards in this area: the Decentralized Identifiers
(DIDs) and Verifiable Credentials (VCs) [8], [9].

The fine-grained objectives are the following:

 Build a digital twin of the machine using the
blockchain. The digital twin should include infor-
mation about the machine’s functions and opera-
tions like tasks, sensor readings, alerts. It also
should reflect the status of the machine.

 Build a digital twin of the product using the
blockchain. The product’s digital twin should in-
clude information about the operations per-
formed on the product and related information.

 Provide a blockchain-based digital identity for the
digital twins.

 Model the manufacturing process and its busi-
ness logic using the blockchain. In other words,
make all the communication between the ma-
chines go through the blockchain.

 The design should be generic and replicable to
different use cases.

The remainder of the paper is structured as follows. Fol-
lowing the introduction section, we present the related
work, which includes the literature review. Section 3
gives a conceptual design and modeling for the solution.
Then section 4 proceeds by explaining the conceptual
design’s implementation details. Besides, it provides in-
formation about the case study used and its prototype.
Section 5 presents the results with some screenshots of
the final prototype. The last section summarizes the
finding and discusses future work.

2. Related Work

There has been an increased interest in applying block-
chain in the manufacturing industry in the past few
years. We found two groups of work done in this area,
and both are utilizing the blockchain in industrial appli-
cations. The first group focused on horizontal integra-
tion between manufacturing parties to enable manufac-
turing as a service between manufacturers themselves
or between manufacturers and customers. For example,
in [3], the goal is to build a trustless distributed network.
Where different industrial organizations can collaborate
and share information about manufacturing processes.
The network was built using blockchain and smart con-
tracts technologies. They stored information about man-
ufacturers, machines, and their capabilities. A partici-
pant of this network can be a human, manufacturing
machine, computing node, or an agent representing any
organization.

Another work in the same direction is done in [5]. The
authors integrated cloud manufacturing technologies
with blockchain. The work proposed a distributed peer-
to-peer network architecture to improve manufacturing
cloud platforms’ security and scalability. They used
smart contracts to write the rules of the agreement be-
tween the end-users and the service providers. These
rules contain the due date, quality measurement, and
payment information. A similar approach can be found
in [10]. The goal of this work is to improve communica-
tion between manufacturing service users and manufac-
turing services providers. A use case in the 3D printing
manufacturing industry has been conducted, and the re-
sults showed that blockchain technologies could help
solve some existing problems found in cloud manufac-
turing literature. In all these works that focused on hori-
zontal integration, the authors neglected the actual
manufacturing processes and focused more on the con-
cept of trading using smart contracts. In other words,
they did not consider what is happening inside the fac-
tories.

The second group focused on manufacturing processes
by enabling M2M communication over the blockchain.
One of the first research works that used the M2M con-
cept with blockchain was done in [4]. The authors ex-
plored the applications of blockchain with Industry 4.0.
They built a proof of concept where a blockchain is used
to facilitate the interaction between machines. The goal
is to enable the M2M electricity market, where industrial
plants autonomously trade electricity over a blockchain.
The agreement between the producer and the con-
sumer is built using smart contracts. The information
about the energy consumption (in kWh) published by the
machines is stored as transactions in the blockchain.
Each transaction has a fee (in USD) according to the
agreement specified by the smart contract.

A similar approach has been followed in [7]. The authors
focused on industrial M2M communication and how
blockchain technologies can improve it. They introduced

smart contract-based middleware for M2M communica-
tion to make it secure and decentralized. Through this
middleware, IoT devices can communicate without the
need for a trusted intermediary. The middleware con-
trols and executes contracts to order tasks from field de-
vices. Also, it monitors the field devices’ states and exe-
cutes actions based on a change in their state. It may
also request a field device to perform service under a
smart contract. All information about the actions and
processes is recorded in the blockchain through smart
contracts. This work emphasizes the real-time require-
ment for M2M communication in industrial processes.
The result showed that smart contracts technology is still
not mature enough to provide such an essential require-
ment.

Overall, in the second group of related work, the use
cases were oversimplified and, in most cases, limited in
size to only two machines. This does not reflect the ac-
tual communications between machines on the produc-
tion line. They did not mention how the machines are
being modeled in their systems, and this is an essential
aspect of M2M-based systems because it will help build
a fully autonomous manufacturing process. Also, none
of the works discussed how the products are being mod-
eled within the blockchain.

Another essential aspect is the identity management of
the machines and the products. Each machine needs to
know and identify other machines before establishing
the communication. All the works we discussed used
only the public/private key pairs as identities. This ap-
proach has many limitations and problems [11]. It makes
the identity tightly coupled with the algorithm used to
generate the key pair. None of the work spouted the is-
sue of managing the digital identities of the machines or
the products.

3. Conceptual Design

This section presents the conceptual design for an envi-
sioned system that utilizes the blockchain to build M2M
communication and digital twins solutions. The system
is functioning alongside the existing infrastructure of the
factory. It uses the blockchain to store and manage the
data generated by the factory infrastructure. The data
stored in the blockchain is used to build a digital repre-
sentation of the machines and the products. Further-
more, all the communications between the machines go
through the blockchain. Therefore, the system consists
of the following three components:

 Factory Infrastructure: It represents all the exist-
ing hardware and software of the factory. It in-
cludes machines, sensors, and other devices. It
also includes a client application that connects the
factory infrastructure with the blockchain.

 Blockchain: It is the data storage and computa-
tional component of the system. It is the network
of all the nodes processing the transactions and
running smart contracts.

 Web Application: It is the application used by dif-
ferent actors to access the information stored in
the blockchain. It consists of a front-end applica-
tion and a blockchain client application.

The following figure shows a high-level diagram of the
system components and the data flows between them.

Fig. 1: High-Level System Overview

3.1. Machine Modeling

The machine is the main and the most crucial entity in
the system. Our modeling is generic and can be applied
to any machine. We use the term machine to refer to any
factory component, including machines and robots of all
sizes. We assume that the machine already has its digital
representation provided by its manufacturer or third-
party software. Each machine can perform several in-
dustrial tasks, and several processes can use the ma-
chine. There are no restrictions on the size and the com-
plexity of the machine or its tasks.

3.1.1. Machine Digital Twin

We decided to model the machine as a smart contract to
build the machine’s digital twin in our system. Each ma-
chine will have a corresponding smart contract deployed
into the blockchain. The smart contract with all the infor-
mation stored within it represents the machine’s digital
twin created by the blockchain. Once the smart contract
updates itself to include new information about the ma-
chine, it will be part of its digital twin, and it cannot be
altered or changed. The ultimate goal when building a
digital twin is to make a replica of the physical entity.
However, we decided to limit the information included
in the machine’s digital twin to:

 Identity: The identity of the machine. More about
the identity in the following section.

 Basic Information: Static information about the
machine like the serial number, the model, manu-
facturing year, and similar info. Only the machine
owner can provide such information, and once it
is added to the digital twin, it cannot be changed.

 Processes: Information about the processes
which use the machine. The authorized processes
are allowed to assign tasks to the digital twin of
the machine. The machine owner provides this in-
formation.

 Tasks: Information about the machine’s tasks. It
involves information about the starting time, fin-
ishing time, the parameters, the process, and the
product.

 Readings: Any numeric information coming from
the machine sensors like temperature or humid-
ity. This information is sent by the physical ma-
chine and stored in the digital twin alongside the
reading’s timestamp.

 Alerts: Information about unexpected scenarios
or failures. This information could be provided by
the physical machine or by the digital twin itself.
The digital twin can perform some logical checks
as described later in this section and create alerts
based on the check result.

All this information is managed and stored by the smart
contract of the machine. Therefore, the machine’s digital
twin protects the information from being altered by un-
authorized users or parties. However, all the information
stored in the machine’s smart contract will be publicly
readable. So far, we have described the machine’s digital
twin as a registry of information. To go beyond this and
make the digital twin of the machine an active compo-
nent, we used the programmability feature of the block-
chain. The smart contract of the machine can do com-
plex programmable behaviors on the stored data. It
could be programmed to perform conditions checks on
the stored data and then do some actions once these
conditions are verified. Of course, the physical machine
can perform these checks by itself. However, having the
digital twin to perform them will bring trust as the block-
chain runs it. For example, it could be programmed to
perform the following checks:

 Product Quality Check: This is a check per-
formed to ensure that the product has some
properties or meets a certain quality standard.
The check might involve accessing the digital twin
of the product.

 Reading Values Check: This is a check on the nu-
merical values of the machine sensors. If a read-
ing value, for example, the temperature, exceeded
a certain threshold, the digital twin can do some
actions like creating an alert.

3.1.2. Machine Identity

As we explained in the previous section, the machine’s
digital twin is an active actor. It needs a digital identity to
facilitate communication and interaction with other en-
tities of the system. The industrial and manufacturing
systems have very long-life cycles, and therefore the
identity of the machine should be the same during its
lifetime. As our system is blockchain-based, identity

management cannot be based on traditional ap-
proaches. Otherwise, the objectives of the system can-
not be achieved. The identity must be owned and con-
trolled by the machine rather than stored or managed
by a third party. Therefore, we decided to use a block-
chain-based identity management approach. One of the
emerging standards that use the blockchain features is
Decentralized Identifiers (DIDs) [8]. Our system is using
DID as a standard to manage the identities of the ma-
chines. Each machine has a permanent identifier called
DID. A simple text string e.g. did:exam-
ple:123456789abcdefghi. Each DID resolvable to a DID
document that contains information associated with the
identity of the machine. The DID document is stored
within the blockchain, making the DID and its document
persistent and immutable.

3.1.3. Twin Interaction

According to our modeling, the information between the
physical and digital twins is being exchanged in both di-
rections. The machine sends information stored in the
digital twin and vice versa; the digital twin sends infor-
mation to control and change the physical machine’s be-
havior. Interacting with blockchain is done by participat-
ing in the network and running the client software of the
blockchain platform. The details of this software may be
different depending on the implementation of the plat-
form. Regardless of this, every network node needs this
client to process the transactions and validate/create
blocks in the chain. Such functionality requires a large
amount of storage and processing power as the node
needs to have a full copy of the whole chain. The manu-
facturing machines could not have such capabilities to
be a node and run the blockchain client software. There-
fore, we decided that the physical machine will not run
the blockchain client by itself. Instead, the physical ma-
chine will communicate via some protocol with a gate-
way running the blockchain client and acting like one of
the blockchain nodes. The gateway will use the ma-
chine’s private and public key pair to interact with the
blockchain on behalf of the machine. An assumption has
to be made regarding the communication channel be-
tween the machine and the gateway. We assume the
channel is secured, and no attackers can alter or modify
the messages exchanged between the machine and the
gateway. Through this gateway, the machine will send
data to its digital twin inside the blockchain.

So far, we have explained how the physical machine can
send data to its digital twin. The next type of interaction
is when the digital twin wants to notify or send data to
the physical machine. As the machine’s digital twin is a
smart contract deployed on the blockchain, it runs in a
closed execution environment and cannot directly inter-
act with external systems. The only way the digital twin
of the machine can communicate with the outside world
is through events. The smart contract of the machine the
following events to interact with the physical machine:

 Task Assigned: An event emits when a process
assigns a task for the machine. The emitted event
has all the information about the assigned task.

 Task Started: An event emits when the machine
starts executing a task.

 Task Finished: An event emits when the machine
finishes executing a task.

Anyone can watch these events, including the gateway.
Once the gateway receives new events, it forwards them
to the machine. Figure 2 illustrates the interaction be-
tween the machine and its twin while executing a task.

Fig. 2: Twins Interaction

The sequence starts when an authorized process as-
signs a task for the machine by calling a function on its
smart contract. The contract emits a task-assigned
event. The gateway is listening to the events generated
by the smart contract of the machine. Once the gateway
receives the task assigned event, it will first get its pa-
rameters and then send the task to the physical ma-
chine. At the same time, the gateway will call the start
function on the machine’s smart contract. Calling this
function will store the starting time of the task and emit
the ‘Task Started’ event. The physical machine is now
performing the task. After it finishes the task, it will in-
form the gateway about the finished task. Then, the
gateway calls the finish task function of the smart con-
tract of the machine. This function call will store the fin-
ishing time of the task and emit the ‘Task Finished’ event.
The machine might send information about the product
operations being performed to the gateway during the
task execution. The gateway takes this information and
passes it to the machine’s digital twin, which stores it in
the product’s digital twin.

3.2. Product Modeling

3.2.1. Product Digital Twin

The product is the second primary entity in our system.
The product as an entity can be modeled in many ways.
Lots of information can be stored throughout the prod-
uct’s life cycle. In our work, we focus only on what is hap-
pening during the manufacturing process inside the fac-
tory. Our modeling only takes into consideration simple
non-compounded products, and the granularity is a sin-
gle product. All the product information is stored in one
smart contract called ‘Product’. This information is pro-
vided autonomously by the machine’s digital twins.

While the machine executes one of its tasks, the ma-
chine’s digital twin will add this operation to the prod-
uct’s digital twin if the machine operates on the product.
In this way, all the operations performed on the product
by different machine is stored in one place, and they
form the digital representation of the manufactured
product. The contract stores the following information
for each product:

 Identity: Information about the digital and physi-
cal identity of the product.

 Operations: This is general information about the
operations performed on the product. Each oper-
ation is stored with a name, result, timestamp,
and information about the machine that did this
operation.

 Processes: Information about the authorized pro-
cesses allowed to modify the digital twin of the
product.

3.2.2 Product Identity

For the product identity, we are using the same identity
management as the machine. Each product has a DID
associated with it.

3.2.3 Product Credentials

Besides having the product information stored on-chain
in the digital twin, the product has off-chain credentials.
For every operation performed on the product, it re-
ceives an offline credential/claim from the machine. The
credential can be verified by a third party to ensure its
authenticity. To achieve this, we used the emerging
standard from the W3C, which is called Verifiable Cre-
dentials (VCs) [9]. This standard fits well with the DID
standard we used to build identity management. The
machine is the issuer of the credential, and the product
is the subject. It creates the credential containing infor-
mation about the product, the operation, the machine’s
DID, and cryptographic proof. The product can claim it
underwent a particular operation or satisfied a certain
standard by presenting the corresponding credential to
a verifier. The verifier can check the machine’s DID doc-
ument (the issuer) and cryptically verify the claim’s au-
thenticity. Having each operation as a separate creden-
tial allows the product to present the needed infor-
mation to the verifier without revealing other infor-
mation that might be sensitive.

3.3. Manufacturing Process Modeling

The actual manufacturing processes in real life tend to
be complicated and consist of several stages or even
sub-processes. Each one of them involves a lot of ma-
chines and devices. We are considering a simple manu-
facturing process that consists of several steps and no
sub-processes. Each step is a high-level task performed
by a specific machine, such as fetching an empty con-
tainer. We also assume that the process is fixed. In other
words, the steps, their order, and the corresponding task

types are known in advance. However, the machine allo-
cation is dynamic. So, the machine executing a specific
task can be replaced by any other machine that can do
the same type of task. Executing the process requires
communication and interaction between the digital
twins of the machines involved in the process.

3.3.1 Process Structure

We modeled the manufacturing processes as smart con-
tracts. Each process is a smart contract written by a man-
ufacturer and running on his behalf on the blockchain.
The smart contract is programmed to assign tasks to the
digital twins of the machines. The smart contract con-
sists of several functions. Each function represents a
step in the process. The function body assigns the task
to the machine and executes other business logic if nec-
essary. The contract is responsible for starting/finishing
the execution of the process instances. For each execu-
tion, the contract creates a process instance and stores
information like the starting time, the finishing time, and
the execution status.

3.3.2 Process Execution

The process execution is done with the help of a client,
which also runs in the gateway. The communication be-
tween the client and the smart contract of the process is
done the same way explained in the twin interaction sec-
tion. The client calls functions in the smart contract by
signing transactions, and the smart contract emits the
following events to communicate with the outside world:

 Process Started: An event emits when a process
instance is started. The emitted event has all the
information about the started instance.

 Process Step Started: An event emits when a
process step is started.

 Process Finished: An event emits when a process
instance is finished.

The client will be listening to these events and other
events from machines’ smart contracts. The execution is
carried on by the client calling the process functions.
Each function represents a step in the process, and the
function call assigns a task to the corresponding ma-
chine. Before executing the process, the addresses of
the digital twin of the involved machines must be sup-
plied into the smart contract. It starts when the owner or
an authorized actor triggers the process by calling the
start function, which emits the ‘Process Started’ event.
The client then calls the first step function, which assigns
the first task of the process to the corresponding ma-
chine. Now the machine will work on the task as we ex-
plained in a previous section. Once the machine finishes
its task, and the task finished event is emitted from its
digital twin, the client can resume the execution by call-
ing the second step function, assigning the second task
to the responsible machine.

The execution continues in the same way until the pro-
cess finishes all its steps, and then the ‘Process Finished’

event is emitted. Before assigning each task, the pro-
cess’s smart contract needs to authorize the machine if
the task involves performing product operations. During
the execution of the process, the smart contract of the
process can access the digital twin of the product or the
machines’ digital twins and get data from them. In such
a way, the smart contract will enforce the manufacturing
process’s rules and requirements. With this modeling,
the machines act as separate entities and can be used
by several processes.

To illustrate the execution, we present an example of a
process that involves two machines. Each machine has
its digital twin as a smart contract deployed into the
blockchain. These two machines belong to different
owners and might be in different locations. The process
owner (the manufacturer) decided that his process
needs two machines capable of doing task 1 and task 2.
The manufacturer writes and deploys the smart contract
of the process, including all the business logic that im-
plements the argument between him and the machines’
owners. The following figure shows the sequence dia-
gram for executing this example process.

Fig. 3: Process Example

All the interactions between the machine and its digital
twin go through the gateway. The gateway was omitted
from the diagram for simplicity. However, the machines
and the manufacturer might be using different gateways
to access the blockchain in this process.

4. Implementation

To validate our conceptual design and modeling, we im-
plemented it for a case study done with the help of the
Fischertechnik Learning Factory [12]. The factory model
is shown in figure 4. It has a built-in program that depicts
the ordering, production, and delivery processes in dig-
itized and networked steps. The factory model comes
pre-configured and programmed to perform a set of
built-in demo scenarios controlled and monitored
through an online dashboard. Even though the Fischer-
technik factory model is a fully functional simulation, we
had to customize it to fit our needs. We split the factory
into four machines Vacuum Gripper Robot (VGR), High-
Bay Warehouse (HBW), Multi-Processing Station with
Oven (MPO), and Sorting Line with Color Detection (SLD).
Each machine has one or more task types. The machines
collaborate to perform two processes, namely the sup-
plying process and the production process.

Fig. 4: Fischertechnik Factory Model

The implementation of this prototype was made using
Ethereum blockchain with the help of open-source li-
braries and frameworks like Truffle, Ganache, Open Zep-
pelin, Web3.js, and others.

4.1. Smart Contracts Implementation

4.1.1. Machines

To make the implementation of the machine smart con-
tract generic, we decided to use the template method
pattern by making the machine contract an abstract con-
tract. This abstract contract contains all the functionality
mentioned in the machine modeling section, shared be-
tween all machines. In this way, all digital twins of our
system will have the same interface, so other compo-
nents can interact with any machine if its smart contract
extent the abstract base contract. For a new digital twin
of a machine to be created in the system, the machine’s
smart contract must extend the abstract machine con-
tract. The new contract must implement few abstract
functions to define the tasks and their types. The custom
functionality can then be added to the child contract by
using/overriding the parent contract’s functions. The
child contract can also implement and enforce custom
rules or business logic by overriding the abstract con-
tract’s functions. For example, one machine can override
the ‘save reading’ function and check the reading value.
If the value is below/above a certain threshold, an alert
will be created by calling the ‘save alert’ function.

4.1.2. Products

The implementation of the product digital twin is a sin-
gle, smart contract called ‘Product’. The contract stores
information about all products of the system. The prod-
uct smart contract allows creating a product by calling
the create product function. The function takes an
Ethereum address as the DID of the product and creates
a record for this product. The caller of this function will
be the product owner, and it cannot be changed. The
product owner can add info to the product’s digital twin
using the web application by calling the corresponding
functions and signing transactions with his keys. As we
explained in the modeling section, the product smart
contract authorizes processes that can authorize ma-
chines to modify the digital twin of a single product. The
authorized machine can save the operations performed
on a particular product in its digital twin. Operations info

and their results can be accessed later by smart con-
tracts to ensure that they meet specific requirements.
Another essential info stored about the product is the
physical identifier. The identifier could be an NFC UID or
a barcode. It is used to access the digital twin of a prod-
uct and get all the information about it. Another way of
retrieving the info is using the product’s DID, an
Ethereum address.

4.1.3. Processes

The implementation of processes uses the same ap-
proach as machines. Therefore, we created an abstract
smart contract called Process to include all processes’
standard functionality. For a new process to be created
in the system, the smart contract must extend the ab-
stract process contract and implement the functions
that define the number of machines, the number of
steps of the processes, the order of execution, and the
process name.

After deploying the process smart contract, the process
owner must set the smart contract address for every ma-
chine involved in the process. The machine address can
be changed at any time but only by the owner of the pro-
cess. The process can then be started on a particular
product by calling the start process function, which takes
the product’s Ethereum address (DID) as an argument.
The start process function calls the authorize process
function in the product smart contract to authorize itself.
Only the product owner can authorize a process; there-
fore, the product owner can only call the start process
function.

Once the process owner calls the start function and the
corresponding transaction is confirmed, the contract
emits the ‘Process Started’ event. The process client
which runs in the gateway will be listening to this event
type. After the process contract emits the starting event,
the client will begin executing the process by calling the
first step function. All steps functions take the process
instance ID as an argument, and inside each of them, the
corresponding task is assigned to the machine by ac-
cessing its digital twin and calling the assign task func-
tion. In addition to this, custom functionality can be part
of the step function body. The process client is also lis-
tening to the task finished events emitted by the ma-
chine smart contracts. Whenever a machine finishes a
task assigned to it, the process client will trigger the next
step, which assigns the next task in the process. This ex-
ecution continues until the process reaches its final step.
Then the process client calls the finish process function
to mark this instance of the process as finished.

4.2. Identity Implementation

We used the DID standard to assign digital identities for
machines and products. The DID standard is just a spec-
ification, and the implementation details are left to the
DID method. There are many DID methods available
with a functional implementation. Each one of them has
different functions, but all of them comply with DID

specifications. We used the ethr DID method developed
by uPort. The ethr method uses the registry specified by
the ERC 1056 which is available as an open-source pro-
ject [13]. The implementation of the verifiable creden-
tials in our system is based on the library called did-jwt
developed by Decentralized Identity Foundation [14]. It
allows signing and verifying JSON Web Tokens (JWT), and
all public keys are resolved using DIDs. The library sup-
port ethr DID method alongside many other methods. In
our case study, the signer is the machine, and the sub-
ject receiving the credential is the product. Each machine
client uses the library to sign a credential using its DID.
The content of the credential could be anything if it is a
valid JSON object. In our implementation, the credential
content is information about a product operation. Any-
one interested in verifying the credential can use the li-
brary or a similar library to check its validity. Under the
hood, the library access the DID registry to check the cre-
dential signer’s validity. We build a verifiable credential
resolver to decode the credential and verify its validity.

5. Results

The implementation result is a fully functional prototype
of the conceptual design applied to the Fischertechnik
factory. The prototype includes a distributed web appli-
cation (DApp) that allows different actors to interact with
the machines, products, and processes through the
blockchain. It provides dashboards to monitor and con-
trol manufacturing machines and processes that run au-
tonomously by smart contracts. The following are some
of the web application user interfaces. As the web user
interface is big and cannot fit in one image, some images
are not a full user interface but rather a snippet that
shows a particular part of the interface.

Dashboard Interface

This interface shows three kinds of information: ma-
chines’ current status, processes’ current status, and
events log. The current machine’s status is coming di-
rectly from the machine’s digital twin for each machine.
The web application is listening to the smart contract
events, and based on the emitted events, it changes the
machine’s status in the UI. The upper part of the inter-
face shows the status of the Fischertechnik machines.

Fig. 5: Dashboard UI

Machine Interface

This interface displays the information stored in the dig-
ital twin of the machine. It includes information about
tasks, readings, and alerts with links to the correspond-
ing pages. Other information about the machine like the
DID, the machine owner, the contact address is also pre-
sented. Moreover, the interface also lists the authorized
processes with an option to unauthorize them. The fol-
lowing figure shows the interface for the SLD machine.
There are three other similar interfaces for the rest of
the Fischertechnik machines. This interface can display
the information for any machine if its smart contract is
inherited from the base Machine contract.

Fig. 6: Machine UI

Product Interface

This interface shows information about the digital twin
of the product. Information about the product like the
DID, owner name, owner address, and the creation time
is displayed. Furthermore, it shows all the operations
performed on this product by different machines. Figure
7 shows the information about a product that went
through three operations by two machines. For each op-
eration, a link to the corresponding verifiable credential
is provided. The verifiable credential resolver interface is
used to display the credential's details by clicking on the
link.

Fig. 7: Product UI

Process Interface

This interface displays the process information, includ-
ing the number of instances, machines, and steps. Also,
it allows starting the process on a particular product by
providing the DID product. The execution can be tracked
with the same UI compound used in the dashboard in-
terface if the process is started. Figure 8 shows the inter-
face for the Fischertechnik factory model’s production
process.

Fig. 8: Process UI

5.1. Source Code

The source code of the implementation is divided into
two parts. The first one is the source code for the Fisch-
ertechnik factory model. It is a fork of the source code
provided by the manufacturing company [15]. In this
fork, we made the necessary changes to implement the
presented scenarios. The second part is the source code
of the smart contracts, the gateway, and the web appli-
cation [16]. Inside the source code repositories, the Re-
adme file contains technical details on how to get started
with the code and run it and other implementation as-
pects that were not discussed in this paper.

6. Conclusion

This paper investigated the applicability of blockchain in
the manufacturing industry. Our main contribution was
building a generic conceptual design for a system that
utilizes blockchain and smart contract technologies to
implement M2M communication and digital twins for
machines and products. The conceptual design dis-
cussed how machines, products, and manufacturing
processes are modeled as smart contracts. The model-
ing defined which information is stored in the digital
twins of machines and products. We showed how the
digital twin and the physical machine could interact and
share information. We also spouted the blockchain-
based identities for both the machines and the products.
The design also discussed how M2M communication is
implemented and executed through the blockchain.

Different aspects could be improved upon in our work,
which forms a basis for future work. Our modeling for
the digital twin of the machine only included the opera-
tional aspect of the machine. However, there is much in-
formation directly related to the machine’s operational
conditions, like maintenance operations. Extending the
digital twin information by considering other aspects of
the machine will allow building more services that fit the
industry 4.0 needs. M2M communication represents an-
other area of interest. It was modeled in our design to fit
particular types of manufacturing processes. Additional
work needs to be done in order to make it applicable to
other types of processes. Another direction to improve
the process modeling is to use model-driven engineer-
ing. It allows auto-generation of the smart contract
source code instead of writing it manually.

Even using our conceptual design without modification
can still provide a foundation for building other services
and applications. The smart contracts of the machines
and the processes can be extended to enforce any cus-
tom logic. It can be a business logic to implement the
payment between the machine owner and the product
owner. Alternatively, it can be used to implement the
warranty agreement between the machine owner and
the maintenance company. Lastly, some technical as-
pects of the solution can be improved. For example, the
interaction between the machine and its digital twin can
be optimized by eliminating the gateway role and letting
the machine interacts directly with the blockchain.

References

[1] A. Rojko, “Industry 4 . 0 Concept : Background and
Overview,” vol. 11, no. 5, pp. 77–90, 2017.

[2] T. M. Fernández-caramés and S. Member, “A Re-
view on the Application of Blockchain for the Next
Generation of Cybersecure Industry 4 . 0 Smart
Factories,” 2018.

[3] A. Angrish, B. Craver, M. Hasan, and B. Starly, “A
Case Study for Blockchain in Manufacturing: ‘fa-
bRec’: A Prototype for Peer-to-Peer Network of
Manufacturing Nodes,” Procedia Manufacturing,

vol. 26, pp. 1180–1192, 2018, doi:
10.1016/j.promfg.2018.07.154.

[4] J. J. Sikorski, J. Haughton, and M. Kraft, “Blockchain
technology in the chemical industry: Machine-to-
machine electricity market,” Applied Energy, vol.
195, pp. 234–246, 2017, doi: 10.1016/j.apen-
ergy.2017.03.039.

[5] Z. Li, A. V. Barenji, and G. Q. Huang, “Toward a
blockchain cloud manufacturing system as a peer
to peer distributed network platform,” Robotics and
Computer-Integrated Manufacturing, vol. 54, no. Jan-
uary, pp. 133–144, 2018, doi:
10.1016/j.rcim.2018.05.011.

[6] M. Y. Afanasev, Y. V. Fedosov, A. A. Krylova, and S.
A. Shorokhov, “An application of Blockchain and
Smart Contracts for Machine-to-Machine Commu-
nications in Cyber-Physical Production Systems,”
no. May, 2018, doi: 10.1109/ICPHYS.2018.8387630.

[7] C. Garrocho, C. Marcio Soares Ferreira, A. Junior, C.
Frederico Cavalcanti, and R. R. Oliveira, “Industry
4.0: Smart Contract-based Industrial Internet of
Things Process Management,” pp. 137–142, 2019,
doi: 10.5753/sbesc_estendido.2019.8649.

[8] DID-Core, https://www.w3.org/TR/did-core/ (ac-
cessed Jan. 15, 2021).

[9] VC-Data-Model, https://www.w3.org/TR/vc-data-
model/ (accessed Jan. 15, 2021).

[10] A. V. Barenji, Z. Li, W. M. Wang, G. Q. Huang, and A.
David, “Blockchain-based ubiquitous manufactur-
ing: a secure and reliable cyber-physical system,”
International Journal of Production Research, vol. 0,
no. 0, pp. 1–22, 2019, doi:
10.1080/00207543.2019.1680899.

[11] X. Zhu and Y. Badr, “Identity management systems
for the internet of things: A survey towards block-
chain solutions,” Sensors (Switzerland), vol. 18, no.
12, pp. 1–18, 2018, doi: 10.3390/sxx010005.

[12] Fischertechnik, https://www.fischertech-
nik.de/en/products/teaching/training-models/ (ac-
cessed Jan. 15, 2021).

[13] uPort, https://github.com/uport-project/ethr-did-
registry (accessed Jan. 15, 2021).

[14] D. Identity, https://github.com/decentralized-iden-
tity/did-jwt/ (accessed Jan. 15, 2021).

[15] M. Ghanem, https://github.com/ghanem-
mhd/txt_training_factory/ (accessed Jan. 15, 2021).

[16] M. Ghanem, https://github.com/ghanem-
mhd/master-thesis-implementation (accessed Jan.
15, 2021).

