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Abstract

VQ-VAE is a successful generative model which can perform lossy compression. It combines
deep learning with vector quantization to achieve a discrete compressed representation of the
data. We explore using different vector quantization techniques with VQ-VAE, mainly neural gas
and fuzzy c-means. Moreover, VQ-VAE consists of a non-differentiable discrete mapping which
we will explore and propose changes to the original VQ-VAE loss to fit the alternative vector
quantization techniques.
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1 Introduction

1.1 Background

Generative models main goal is to generate new unseen data instances that can pass
under some criteria as if they are generated from the the same source of the available
data. This can have different applications. For example, performing missing data impu-
tation which is the process of replacing the missing data with plausible alternatives [16].
Another related application is data augmentation which is the process of generating new
data that can pass as samples from the original distribution of the data with the purpose
of increasing the size of the data set [26].

Besides the goal of synthesising new data, some generative models can build a simpler
representation of the data which is often called the latent representation, a famous ex-
ample is the variational autoencoder (VAE). The latent representation of the data can
be used to perform yet other tasks such as classification [5, 29]. However, the latent
representation produced by generative models is usually not a good alternative for the
non-generative approaches such as the Autoencoder latent representation [29].

In [29], they introduced a generative model called Vector Quantised-Variational AutoEn-
coder (VQ-VAE) which uses a discrete latent representation. Besides being a compet-
itive generative model, they showed that it can produce useful latent representations.
They also showed that it is a viable lossy compression technique [29], where lossy com-
pression is a kind of compression that allows some information loss.

Using a discrete representation can be a natural choice in some domains such as mod-
eling human language [29]. However, discrete mappings are not differentiable and this
makes implementing gradient based optimization problematic. Nevertheless, problems
which are inherently discrete can employ gradient based optimization successfully. For
example, neural gas which is a vector quantization technique.

Vector quantization are unsupervised learning algorithms that can perform clustering.
Clustering itself is a discrete mapping. Despite the discrete nature of the problem,
different vector quantization models were introduced in the literature with differentiable
objective function and thus can be optimized using gradient descent based algorithms

VQ-VAE partly uses vector quantization to optemize its discrete mapping. In [29], they
used k-means. In [9], they replaced k-means with self-organizing map (SOM). In [25,30],
they used Gaussian mixture inspired approach.

In our text, we will investigate two other vector quantization alternatives with VQ-VAE,
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neural gas and fuzzy c-means. We will see that neural gas can provide competitve
results. Moreover, to test the different vector quantization methods, we will give a simple
generalization of the original VQ-VAE.

1.2 The Structure of the Thesis

In chapter 2, we introduce basic concepts that will be needed in later chapters. Mainly
a review of some popular neural network models such as multilayer perceptron, convo-
lutional neural network, and autoencoders.

In chapter 3, we cover different types of generative models that are needed to explain
VQ-VAE.

In chapter 4, we review vector quantization and clustering in general with focus on k-
means, neural gas, and fuzzy c-means.

In chapter 5, we introduce VQ-VAE and a generalization of the VQ-VAE to implement
the different vector quantization methods that we introduced in chapter 4.

Finally, Chapter 6 provides practical results from training some of the described mod-
els.
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2 Preliminaries

2.1 Artificial Neural Networks

Artificial Neural Networks is a term used to describe mathematical models that are in-
spired by biological neurons. We will only briefly describe two models: multilayer percep-
trons (MLP) and convolutional neural netowks (CNN). We will follow notations from [2]

2.1.1 Multilayer Perceptron (MLP)

An MLP consists of multiple layers. The input data is considered as the first layer and
the output of the model is considered as the last layer. This leaves what is called a
hidden layer

hl(xl−1) = g(bl +W lxl) (2.1)

where l is the layer number, xl is the output of layer l except for x0 which is just the input
data x. g is a non-linear function called the activation function. W l is a matrix and bl is
a vector which both are learnable parameter of layer l.

One example of an activation function is the sigmoid

σ(u) =
1

1+ exp(−u)
,u ∈ R

which we will need later on in this text.

2.1.2 CNN

CNN take use of an operation used a lot in signal processing and specifically in image
processing which is convolution. Convulotion is a mathematical operation between two
signals. It’s usually used to express a transformation in which an input signal M is
transformed into an output signal O by applying a convulution between M and another
signal called the kernel K. This operation is represented as

O = K ∗M
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In our case the signals are just matrices and the operation can be written as

O[k, l] = ∑
j
∑

i
M[i, j] ·K[k− i, l− j] (2.2)

Where O[k, l] is the element of row k and column l (which is the same for M and K).

Similar to MLP, CNN can be split into conceptual layers as follows

x`c = f

(
∑

c∈Cl−1

x`−1
c ∗k`

c j +b`j

)
(2.3)

where x`c can be a 3d tensors which consists of columns, rows, and channels similar to
an RGB image. x`c means the channel c of the output of layer `. Cl are the channels
available in layer `. While b j is vector called the bias. Kc j is the kernel of layer l that
gives output to channel c in the next layer. Both b and K are the learnable parameters.

Note this is not the only way CNN can be implemented. Moreover, notice the flipping of
the kernel in equation 2.3 is not important, we will ignore that in the discussion since the
kernel is learnable and if flipping is needed we assume it is possible to learn it during
training.

2.2 Discrete Distribution

Let z be a discrete random variable that takes N possible values from the set of integers
{0,1, . . . ,n− 1}. A model can output a true discrete distribuiton for z by outputing an
n-dimensional vector (p0, p1, . . . , pn−1) such that the probability of z = i is pi. The vector
elements should satisfy

• pi > 0 ∀i ∈ {0,1, . . . ,n−1}
• ∑

n−1
i=0 pi = 1

One method to enforce these properties is the softmax function. Assume we have the
set of real numbers z1,z2, . . . ,zn−1 ∈ R then we can output a discrete distribution as
follows

pi =
ezi

∑
K
j=1 ez j

for i = 1, . . . ,K

As we will see later, there are other methods to output a discrete distribution.
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2.3 Autoencoder

An Autoencoder consists of an encoder, Aθ : X → Z, and a decoder, Bφ : Z→ X , where
Z is called the latent space and X is the data space. Both θ and φ are learnable
parametrs. The latent representation of the data is its image in the latent space. As it
was described in [1] , the goal is to learn an encoder and a decoder that optimize the
following loss function

L(x) = E[∆(x,Bφ ◦Aθ (x)] (2.4)

The expected value is over the true distribution of the data which will be approximated by
the empirical mean. ∆ is the reconstruction loss which is usually the euclidean distance.
The encoder and decoder are usually parameterised by neural networks.

Using such a loss function, forces all the information to pass through the latent space,
Z. Thus the encoder has to encode the needed information required by the decoder in
order to reconstruct the data. Therefore some representation of the data will be learned
and encoded in the latent space, Z. Different purposes for the encoded data give rise to
different implementation of the autoencoder.
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3 Generative Models

Let X represent our data set. We assume that X was sampled from a distribution which
we do not know. The main problem that we are trying to solve with a generative model
is how to generate new data points from the unknown distribution, given that we know
the data set X.

In this text we will discuss generative models that are needed to understand VQ-VAE.
There are two types of generative models that are related to VQ-VAE: the first is autore-
gressive models and the second is latent based models such as variational autoencoder
(VAE). Both of these models are important to understand VQ-VAE.

3.1 Autoregressive Models

This section is partly follows the ideas from [10]. Assume our data set X consists of
n-dimensional vectors x = (x0,x2, . . . ,xn−1) where each dimensions can take k cate-
gorical values from the set C = {0,1, . . . ,K− 1} such that xi ∈ C, i = 0,1, . . . ,n. Let
x<i represents the set {x0,x1, . . . ,xi−1}. We can then use the chain rule to write the
distribution of x as follows

p(x) =
n

∏
i=1

p(xi | x1,x2, . . . ,xi−1) =
n

∏
i=1

p(xi | x<i) (3.1)

and, thus, the likelihood function would be

log p(x) =
n

∑
d=1

log p(xi | x<i) (3.2)

If we are able to parameterize a seperate function for each conditional such that it only
takes as inputs x<i and output a true discrete distribution for xi, then we can write a true
likelihood function. Outputing a discrete distribution over the categories is described in
2.2. In [10], they called this property the autoregressive property. Models which satisfies
this property are called autoregressive models.

However, having a seperate parametrised model for each conditional distribution is im-
practical because we need a model for each dimension, considering the complexity of
modern deep learning models.

One solution to this problem is parameter sharing [18]. In fact, the two autoregressive
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models that we will mention in this text use only one neural network to parameterise all
the conditionals. For each conditional distribution, p(xi|x<i), the model (e.g. a neural-
network) perform a mapping from the vector x<i to a discrete distribution over the cat-
egories in C as described in 2.2. Again, using equation 3.2 we can obtain a likelihood
function and train it using maximum-likelihood estimation.

However, this brings us to the first issue with AR models. As you can see from equa-
tion 3.1, the choice of ordering the dimensions or features is left up to the practitioner.
Obviously, taking a wrong order of dimensions can make a difference. For example, in
real-life images, far apart pixels are almost independent. In [10], they suggested training
over all possible orderings by sampling an ordering before each update.

3.2 MADE: Masked Autoencoder for Distribution
Estimation

Masked Autoencoder for Distribution Estimation For simplicity (MADE) was introduced
in [10], and we will follow a similar description theirs. Their description help explain
why treating the output of the model as probabilities, such as in the cross entropy loss
functions, are not true probabilities.

Let the number of possible categories equal two, k = 2, x ∈ 0,1n. In [10], they have
shown that a single autoencoder with MLP architecture can be used to parameterise all
the conditional distributions in 3.2.

In our simple case of k = 2, we can design an autoencoder that outputs a vector
p = (p0, p1, . . . , pn) of the same dimensions as the input data such that each pi is a
probability that corresponds to p(xi = 1 | x<i). This can be done by using a sigmoid
activation function at the last layer, see 2.1.1. If we are to implement the cross-entropy
loss function which is what usually done with categorical data we get

`(x) =−
n

∑
i=1

xi log pi +(1− xi) log(1− pi)

Notice that if pi is treated as a probability, then this loss is the negative log-likelihood
function. This means the probability of x based on this model is

P(x) =
n

∏
i=1

xi pi +(1− xi)(1− pi)

However, this is not a true distribution because ∑x∈X p(x) is not one.
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To make it a true distribution we need to satisfy the chain rule. To achieve that, each
output dimension pi should only depends on x<i thus pi would correspond to p(xi = 1 |
x<i) and (pi−1) would correspond to p(xi = 0 | x<i.

To only allow information flowing from x<i, we zero out any computation resulting from
the the input dimensions xi,xi+1, . . . ,xn. This can be done by multiplying the weights
with a binary mask matrix M. The element of the mask matrix is zero at the positions
corresponding to the unwanted computations. Rewriting equation 2.1 of the MLP from
section 2.1.1 as

hl(xl−1) = a(bl +Ml�W lxl) (3.3)

Different choice of the mask M results in different models. The original paper [10] delve
into the details of designing these masks. However, the idea of using masks to cut
off computations that violates the chain rule is what we need to study further related
models.

Figure 3.1: On the left is an autoencoder with three hidden layers. In the middle, three masks
in which a black colour is zero and white is one. On the right, we see how applying
these masks to each aligned layer cut the computational paths. For example, MW 1

is applied to the first hidden layer to cut x1 completely and cuts x3 for the second
neuron in the second layer. Overall, the uncut computational paths corresponds
the probability chain rule such that the probability of x can be written as P(x) =
P(x2)P(x3 | x2)P(x1 | x2,x3) [10]

.

Finally, this description can be generalized to data with more categories by mapping
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the data x into their one-hot encoding. A one-hot encoding of the feature xi is a k-
dimensional vector u = (u0,u1, . . . ,uk−1) that is one at ui and zero everywhere else.
The probability of xi in this model would be the dot product with the vector representing
the discrete distribution, as described in section 2.2.

3.3 PixelCNN

We have seen how MADE applies masks to satisfy the autoregressive property. Pix-
elCNN solves a similar problem but for CNNs. To explain the basic concept, we will
assume that each data point x belongs to Rnxn which is a 2d matrix of n columns and n
rows. Each element xi, j of x is k categorical.

PixelCNN [23] tries to parametrise each of the following conditionals p(xi, j|x{<i,< j})

where x<i,< j = {xu,t | u< i, t < j}. Thus it needs to output n×n categorical distributions,
see section 2.2.

Note that we did the same thing with MADE example in the previous section except
that the categories are two and thus one probability p(xi = 1) output is enough, since
p(xi = 1) = 1− p(xi = 1).

The computational path of each output distribution of xi, j must depend only on x{<i,< j}.

Figure 3.2: Left: A visualization of generating the discrete distribution using the receptive field
caused by the masked kernel. Middle: Type A mask of size 5. Right: The receptive
field of the described PixelCNN caused by the introduced masks have blind spots in
nearby pixels [28]

.

To achieve that we zero out any computation done with any input that is not from the
set x{<i,< j}. This is done again using binary masks Ml

c, where l is the layer number
and c is the channel number, see section 2.1.2. The mask Ml

c is multiplied with the
corresponding kernel element-wise.

The mask of the first layer M0
c is the same size as the corresponding kernel which is
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m×m size. It can be defined as follows

M0
c [i, j] =

{
1 if i < dn

2e or i = dn
2e, j < dn

2e
0 otherwise

(3.4)

In the original paper this is called mask type A. However, this mask can not be used
again in other layers, instead mask type B is applied. Mask type B is similar to type A
except it is set to one at the center M0

c [i, j] instead of zero,

Ml
c[i, j] =

{
1 if i < dn

2e or i = dn
2e, j ≤ dn

2e
0 otherwise

(3.5)

This is enough to satisfy the autoregressive property. However, type B can be defined
differently if we want to achieve conditioning between colors in images, see [23, 28] for
more details. Moreover, as you can see from figure 3.3, some nearby pixels are missing
from the receptive field, to obtain a better receptive field see [23] for details.

3.4 VAE

Another way to model the data distribution is to assume that their are unobserved vari-
ables that influence the data. These variables are called latent variables.

Let z be a latent variable that is distributed by P(z) is called the prior. Instead of defining
an explicit distribution of the data directly, we define a conditional pφ (x | z) which is the
distribution of data conditioned on the latent variable and it is called the decoder. φ is
the learnable parameters of whatever model we chose. If we defined p(z) to be some
fixed distribution, then this is enough to define the likelihood function as

`(x) = logEp(z) pφ (x|z) (3.6)

where the expectation is over the distribution of the latent variable.

Example 3.1 A Gaussian mixture model (GMM) consists of a discrete latent variable z
which takes values from {0,1, . . . ,K− 1}. The latent is distributed via a uniform prior
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P(z). Finally, it consists of k different conditional distributions defined as follows

Pµz,Σz(x | z) =
exp
(
−1

2(x−µz)
TΣ
−1(x−µz)

)√
(2π)k|Σz|

(3.7)

Where µz is the mean of the Gaussian and Σz is the covariance matrix.

Following equation 3.6, the log-likelihood function becomes

`(φ | x) = log∑
z

P(z)Pµz,Σz(x | z),

Where φ represents the set of all mean and covariance matrices defined by the condi-
tionals. Our goal is to learn the parameters φ that maximize the log-likelihood.

Note that the distribution P(z|x) can be viewed as the responsibility of the Gaussian z to
generate instance x.

Notice that if the latent variable z is multidimensional and can take large number of
values, then both evaluating and differentiating the expectation in 3.6 can become in-
tractable.

We will describe the solution for this intractability from the perspective of importance
sampling, see more in [4]. Again, let X be the data set, and x be a data instance which
is sampled from the unknown distribution. Note that it is wronge to approximate the ex-
pectation by sampling from p(z), because it is hard to sample z that carries information1

about the already sampled x, if z can take large number of values.

It is not made clear yet, but it seems that we need to sample from P(x | z) which can be
written as

P(z | x) = p(z)pθ (x | z)
P(x)

However, P(x) is intractable, because, again, the log-likelihood 3.6 is intractable. We
will call P(x | z) the true posterior.

Instead, we introduce a different parameterised distribution qθ (z|x) that will be used
to sample latent variable values. This distribution is called the approximate posterior.

1 From an information theory perspective, we need to reduce the the uncertainty about x given z
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Following [4], the method of replacing P(z) with qθ (z|x) in equation 3.6 is as follows

logP(x) = logEp(z)
qθ (z|x)
qθ (z|x)

pφ (x|z)

= logEqθ (z|x)
p(z)

qθ (z|x)
pφ (x|z)

≥ Eqθ (z|x) log
p(z)

qθ (z|x)
pφ (x|z)

= Eqθ (z|x)
[
log p(z)− logqθ (z|x)+ log pφ (x|z)

]︸ ︷︷ ︸
ELBO

(3.8)

Where the inequality is the Jensen inequality. The last term is called the evidence lower
bound (ELBO).

From the deriviation we can see that maximizing the ELBO corresponds to maximizing
the log-likelihood.

The gap between the ELBO and the log-likelihood is due to Jensen inequality. Note
that Jensen inequality is an equality if and only if the function inside the expectation is
constant or affine [6]. However, the log is convex, and thus we achieve an equality if and
only if the term is constant [14].

As it was pointed out in [14], to obtain a constant, qθ (z | x) should be directly proportional
to p(z)pθ (x | z) (meaning their division equals a constant). Dividing p(z)pθ (x | z) by
the unknown constant P(x) (constant in terms of the expectation) we obtain the true
posterior P(x | z), therefore, the approximate posterior should be directly proportional
to the true posterior which in turns means they should be equivalent because they are
distributions of the same random variable z.

Figure 3.3: Bayesian network representation of the VAE [30]
.

To measure the difference between the true posterior and the approximate posterior
qθ (z|x) we use the Kullback–Leibler divergence (DKL) which is a well-known approach
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to derive the ELBO and it is as follows

DKL [qθ (z|x)‖P(z|x)] = Eqθ (z|x)
[
logqθ (z|x)− log pφ (z|x)

]
= Eqθ (z|x)

[
logqθ (z|x)− log

pφ (x|z)p(z)
P(x)

]
= Eqθ (z|x)

[
logqθ (z|x)− log pφ (x|z)+ log p(z)− log p(x)

]
= Eqθ (z|x)

[
logqθ (z|x)− log pφ (x|z)+ log p(z)

]
− logP(x)

(3.9)

where the last equality is because log p(x) is a constant in terms of the expectation,
which gives

log p(x) = Eqθ (z|x)
[
logqθ (z|x)− log pφ (x|z)+ log p(z)

]
−DKL [qθ (z|x)‖p(z|x)] (3.10)

This means that the error gap between the ELBO and the true logP(x) is the DKL

divergence between the approximate posterior and the true posterior.

The ELBO can be simplified as follows

ELBO = Eqθ (z|x)
[
log p(z)− logqθ (z|x)+ log pφ (x|z)

]
= Eqθ (z|x)

[
log pφ (x|z)

]︸ ︷︷ ︸
reconstruction error

+DKL [qθ (z|x)‖p(z)]︸ ︷︷ ︸
`DKL

(3.11)

Where the first term is the reconstruction error and the last is divergence between the
approximate posterior and the prior.

3.4.1 Repramatrisation Trick

We introduced the approximate posterior to perform sampling for our optimization prob-
lem. However, if we to use sampling to replace the expectation of the reconstruction loss
in equation 3.11 by the empirical expectation, we lose qθ (z|x) and thus the derivative
with respect to θ .

One solution is to use what is called the reparameterization trick. The trick is done by
rewriting the random variable z as a function of another random variable with a fixed
distribution that is easy to sample from. Let this variable be y which is distributed by the
fixed distribution p(y) such that
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z = gθ (y,x)

This means that we can sample from qθ (z|x) by sampling y from p(y) and then z =
gθ (z,x) is a sample from the approximate posterior.

The reconstruction loss can be rewritten as

`reconstruction−loss = Ep(y) logqφ (gθ (e,x)|x)

With that, we can approximate the expectation by sampling from p(y) and take the
gradient over θ .

Unfortunately, this method is not applicable for discrete distributions [15]. One solution
for that is to approximate the discrete distribution with a continuous one as it was done
in [3, 15]. However, we will not discuss this in this text. Instead, we will use vector
quantization to solve this problem as we will see in section 5.
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4 Clustering

Clustering algorithms partition the data into sets called clusters with the goal that in-
stances within a single cluster are more similar to each other than instances belonging
to different clusters [7]. Similarity between data instances can be based on distance
measures such as the Euclidean distance, the shorter the distance the more similar
they are2. Clustering can be fuzzy in such away that a single element can belong to
multiple clusters with different degree of certainty.

In machine learning, clustering algorithms are unsupervised learning algorithms mainly
because they do not require data labels. In this chapter we are interested in clustering
algorithms that represent each cluster with a vector called prototype or cluster center.
These algorithms are also called vector quantization (VQ) which can be viewed as a
compression algorithms in which the data is encoded into a finite set of vectors.

Let k be the number of clusters that we wish to find. Assume our data belong to a
d-dimensional vector space Rd and let C = {0,1, . . . ,k− 1} be a set of indices of car-
dinality k in which each number represents a cluster. Hard clustering maps the input
data to the set C by assigning each instance to a single cluster, forming a many-to-one
mapping γ : Rd → C which is a discrete mapping. On the other hand, soft-clustering
introduces scores that evaluate how likely for a data instance x to belong to a certain
cluster z∈C. These scores can be called membership scores. Of course, soft clustering
can perform hard clustering by choosing the cluster with the maximum score.

4.1 Vector Quantization

Again let k be the number of clusters we wish to find. VQ algorithms perform clustering
by introducing a finite set of vectors w = {w0,w1, . . . ,wk−1}. The set of vectors w is
called the codebook and each vector is called a prototype. Each prototype wz belongs
to the space of the input data and z belongs to the set C = {0,1, . . . ,k− 1}. Each
prototype wz corresponds to a single cluster z.

Notice that any choice of prototypes will partition the data space into subregions called
the Voronoi polyhedra. In [8], they are defined as follows

Ri = {x | d(x,wi)≤ d(x,w j) ∀i 6= j}, i, j ∈ C .

2 This is an informal way to describe similarity, see [22]
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Figure 4.1: The circles corresponds to 2d prototypes. The black boundaries corresponds to an
equal distance between at least two prototypes. [8]

.

A distortion measure is introduced to quantify assigning an instance x to a cluster z
represented by the prototype wz. In this text, the distortion measure is a distance mea-
sure d(x,wz) defined on the data space. Through out the text, the distance will be the
Euclidean distance, d(x,wz) = ‖x−wz‖2.

Let the mapping γ(x) = argmaxz∈C dis(x,wz) be called the quantizer encoder which en-
codes the data x into a symbol from C [12]. That is why vector quantization is a form of
compression in which we map the data into code symbols from C. Lastly, Let the map-
ping β (x) = wγ(x) be called the quantizer which maps a data instance x to the nearest
prototype.

4.1.1 A Mutual Information Loss

In VQ the general goal is to choose a cluster assignments that minimize the expected
distance d(x,wz) [12]. We will let z to be a discrete random variable that only takes
values from the cluster indices C. For any instance x the a clustering algorithm outputs
a probability pw(z|x) for each cluster z ∈ C. We call it the responsibility in analogy with
GMM [19,30]. The higher the probability the more likely that x belongs to cluster z.

In this model the expected d(x,wz) is

E = Ex,z d(x,wz)≈ ∑
x∈X

∑
z∈C

Pw(z|x)d(x,wz) (4.1)

While clustering algorithms do not need to be probabilistic, we will see that some VQ
algorithms can be reduced to the loss in equation 4.1.
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Note this is a generalization of hard-clustering, because we can think of any hard
clustering algorithm as if it outputs a deterministic probabilities p(z|x) = 1γ(x)=z which
means a probability of one is given to the cluster γ(x). Moreover, this type of cluster-
ing algorithms can be reduced to a hard clustering algorithm by defining the mapping
γ(x) = argmaxz∈C p(z|x).

Note that the Euclidean distance, can be viewed as the log of a conditional Gaussian
with identity covarinace, ignoring constants. This Gaussian is conditioned on z. So we
can view equation 4.1 as the cross entropy H (x | z) and in consequence the mutual
information between z and x since x has an unknown fixed distribution. Therefore op-
timizing equation 4.1 corresponds to finding the posterior that maximizes the mutual
entropy between x and z. That is why we will call equation 4.1, the VQ mutual informa-
tion loss. See [20]

4.1.2 K-means

K-means is a well-known hard clustering algorithm. Again let γ(x) = argminz∈C d(x,wz).
We can define the following posterior

Pw(z|x) = 1z=γ(x)

Which is a deterministic posterior that is one at z = γ(x). The k-means objective function
can be written by substituting this posterior in equation 4.1

E = ∑
x∈X

∑
z∈C

1z=γ(x) d(x,wz) = ∑
x∈X

d(x,wγ(x)) (4.2)

Taking the gradient over E gives the Lloyd’s and MacQueen k-means algorithm [21].
However, the problem with this algorithm is that `(x) has many local minima [21].

4.2 Neural Gas

Neural gas [21] defines a ranking function r(x,z) called "the neighbourhood ranking"
which outputs the rank of the prototype wz relative to all other prototypes in terms of the
distortion measure d(x,wz). r(x,z) permutes the set C such that r(x, i) = 0 if wi is the
closest prototype, r(x, i) = 1 if wi is the second closest and so on until wi is the furthest
then r(x, i) = k−1.

For a data set X and a codebook C, [7] defines the objective function of neural gas as
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follows

E = ∑
x∈X

∑
z∈C

hλ (rw(x,z))d(x,wz) (4.3)

such that hλ (u) = e(
−u
λ
).

Let D = ∑z∈Z h(rw(x,z)) be a normalization factor. Notice that D is a constant. We can
thus define the following discrete posterior

pw(z|x) =
hλ (rw(x,z))

D

Thus the neural gas algorithm can be reduced to optimizing the objective function in
equation 4.1. In [21], they have shown that this constitute a differentiable objective
function.

4.3 Fuzzy c-Means

Fuzzy c-means is a soft-clustering algorithm. For each instance x, it outputs member-
ship scores for each prototype that measure how likely an instance x to belong to each
one. The membership score of an instance x to belong to the cluster z is wz(x) and is
defined as follows

wz(x) =

(
∑
c∈C

(
d(x,wz)

d(x,wc)

) 2
m−1
)−1

(4.4)

Where m≥ 1. m is a hyperparameter and it is called a fuzzifier. The fuzzifier control the
"softness" of the membership in such away that the limit of the memberships approaches
a deterministic distribution as m approaches one and thus the algorithm becomes similar
to k-means if m is very close to one.

The objective function of fuzzy c-means is

E(x) = ∑
x∈X

∑
z∈C

wz(x)md(x,wz) , (4.5)

which is differentiable [27].
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The objective functions can not be reduced to equation 4.1, because ∑z wz(x)m 6= 1 and
a normalization factor would not be a constant.

However, we will define two alternative posteriors for experimentation purposes. First,
we define the posterior

pw(z|x) = wz(x) (4.6)

Second, if we divided wz(x)m by a a normalization factor Dw(x) = ∑z∈Cwz(x)m, then we
can define a discrete posterior as follows

pw(z|x) =
1

Dw(x)

(
∑
c∈C

(
d(x,wz)

d(x,wc)

) 2
m−1
)−m

(4.7)

If we substitute these posteriors in equation 4.1, we obtain objective functions that are
different from the original fuzzy c-means. Again, these are just for experimenting on
different posteriors.

4.4 VQ with Large Number of Prototypes

Vector quantization as a compression technique where we encode a data point x to one
element from C or the codebook W . We can lose a lot of information by having a small
number of prototypes (or small number of clusters k), especially if we have complex data
such as real life images.

In every VQ objective function we encountered in this text, there is a summation over
the set C, which corresponds to the expectation over the posterior in equation 4.1. If C
has a large cardinality the objective function would be intractable.

One solution to this problem is to partition the dimensions of the input data into subsets.
We can then assume these subsets are independent and thus apply vector quantization
independently on each subspace. We also can share the same prototypes between all
these subspaces, thus we obtain a tractable algorithm in both time and space (space
corresponds to memory allocation in practice).

For example, Let the input data belong to Rd and d = c× d′. Choose k prototypes
{w1, . . . ,wk−1} such that each prototype wi belongs to Rc, then we can have kd number
of prototypes in the Rd space
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w = {
(
wz,0, . . . ,wz,k−1

)
| wz,i ∈ w ∀i ∈C}

which also corresponds to the discrete representation of categorical vectors that belong
to Ck = {(z0,z1, . . . ,zk−1) | zi ∈C, ∀i ∈C}.

Note that this will compress a data of d-dimensional data into categorical data of d′

dimensions where each dimension can take k values only. This is important because
many models such as PixelCNN or MADE require categorical data

For example, images of 16× 16 dimensions can be turned into 4× 4 dimensions by
applying VQ to orthognal subspaces of four dimensions each (e.g. applying VQ to four
pixels independently).

One flaw with this approach is the assumption that the subspaces are independent. To
obtain a better compression we need to drop this assumption which is what VQ-VAE
does.
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5 VQ-VAE

Using discrete functions in Machine Learning can be problematic. They are basically
not differentiable and this makes implementing gradient optimization methods a hurdle.
We have seen that clustering is a mapping from the data space to a finite set of clusters
and thus this mapping is discrete and not differentiable, yet we were able to implement
gradient descent optimization using some vector quantization models. In this chapter
we will discuss VQ-VAE which is a generative model that take use of vector quantization
methods.

VQ-VAE is a latent variable model that consists of an encoder zθ (x), a VQ inspired
posterior qw(z | zθ (x)) that is parametrised by a codebook w, and a decoder pφ (x | z).
Note if the chosen VQ algorithm does not permit a posterior, we opt for a determnestic
posterior on the output of the quantizer β (x). Both φ and θ are learnable parameters.
The encoder zθ (x) maps from the input data to what we will call a continuous latent
space.

Let z be a latent variable that takes values from C = {0,1, . . . ,k− 1} where k is the
number of prototypes. The posterior qw(z | zθ (x)) is parameterized by a codebook w =

{w0,w1, . . . ,wk−1} that consists of vectors called prototypes. Each prototype belongs
to the continuous latent space. Similar to VQ we define a distortion measure over the
continuous latent space d(zθ (x),wz) which will be the Euclidean distance between zθ (x)
and the prototype wz.

Also similar to VQ, we define a quantizer encoder γ(x) maps from the continuous latent
space to the set C, γ(x) = argminz∈C d(zθ (x),wz).

Note that this is a simplification that makes discussion easier, in practice, we will have
multiple latent variables, or z is a random categorical vector that belongs to Cm such that
m is large enough to achieve a reasonable compression in the latent space as described
in 4.4.

As it has been described in [24], VQ-VAE consists of two main stages: The first stage is
compressing the input data into a smaller discrete representation in the discrete latent
space. The second stage is learning the distribution of this discrete representation which
is called learning the prior p(z). Once we have learned the prior p(z), we can sample
from p(z) and pass to the encoder to sample x, thus it is a generating model. We will
go through all of this in more details.
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5.1 Stage 1: Compression

Similar to an autoencoder, the main goal is to optimize the reconstruction loss `(x) =
log pφ (x | β (x)). However the quantizer is a discrete mapping and we can not back-
probogate to the encoder zθ (x). In [29], they proposed to use the straight-through gra-
dient estimator which is simply to copy the gradient with respect to the quantizer directly
to the encoder.

VQ-VAE take use of the stop-gradient operator, represented by sg. This operator stops
the gradient from being evaluated on its argument [29]. In the backpropagation algo-
rithm, it is treated as the identity during forward pass, while it is treated as a constant
during the backward pass, thus no need to flow through it.

We can rewrite the straight-through estimator for the reconstruction error in terms of sg
as follows

`(x) = log pφ (x | zθ (x)+ sg[wγ(x)− zθ (x)])

With that we pass the wγ(x) to the decoder but we flow through zθ (x) in the backward
pass. However, the prototypes are fixed (and so is β (x)) because they do not receive
gradient information [29].

Moreover, the quantizer introduces an error that can be measured by d(zθ (x),wγ(x)) =

‖zθ (x)− β (x)‖2. Therefore, besides optimizing the reconstruction error, we need to
minimise the expectation of d(zθ (x),wγ(x)). Given the VQ inspired posterior qw(z |
zθ (x)), the expectation would be

Eqw(z|zθ (x))‖zθ (x)−wz‖2 (5.1)

However, this expectation sends gradient information to the encoder zθ (x) which al-
ready receives gradient information from the reconstruction loss. We simply need to
change the update "speed" of the encoder parameters caused by this expectation. One
solution is changing the step size used by the gradient descent algorithm for this expec-
tation on the encoder parameters. Another solution is to use the sg operator to split the
expectation into two losses. One loss is called the commitment loss, which is respon-
sible for updating the encoder parameter to commit to the prototypes. It is derived by
simply applying sg to the prototypes

α ∑
z

qsg(w)(z | zθ (x))‖zθ (x)− sg(wz)‖2 (5.2)
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Where α is to control the update "speed" of the encoder parameters. The commitment
loss help the output of zθ (X) from growing arbitrarily large, which corresponds to large
polyhedra areas and thus bad pass-through estimator as ‖zθ (x)−wγ(x)‖ becomes large
[29].

The other loss is derived by applying sg to the encoder as follows

η Ez qw(z | x)‖sg(zθ (x))−wz‖2 (5.3)

where η is a hyperparameter. This loss will be called the VQ loss because it treats the
output of zθ (x) as the input data in a VQ loss (by not updating them).

The overall loss function becomes

`(x) = log pφ (x | β (x))
+α Eqsg(w)(z|zθ (x))‖zθ (x)− sg(wz)‖2 +η Eqw(z|x)‖sg(zθ (x))−wz‖2 (5.4)

The model is very sensitive to α because it will interfere with the gradient information
from the reconstruction error. Notice that if α and η are equal then the commitment loss
and the VQ loss add up to be

α ∑
z

qw(z | x)‖zθ (x)−wγ(x)‖2.

Finally, we can create different variants of this model via simply introducing different
discrete posteriors. We can replace the posterior qw(z | x) with the neural gas posterior
to obtain our implementation of neural gas with VQ-VAE. Posteriors defined in section
4.3 in both equation 4.5 and 4.6 can be applied to this loss function.

Notice also that the reconstruction error and the expectation of ‖zθ (x)− sg(wz)‖2 are
done on different spaces with possibly different losses, thus the choice of the decoder
pφ (x | zθ (x)) will affect the right choice of α . Informally, it is hard to balance the gradient
information coming from the decoder with the gradient obtained from the expectation at
the continuous latent space.

5.1.1 Vanilla VQ-VAE

VQ-VAE was first introduced in [29], where they defined the posterior as follows
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qw(z | x) =

{
1 z = argmin j∈C‖e(x)−w j‖
0 otherwise

which corresponds to the k-means posterior described in 4.1.2. Substituting the loss of
the k-means in equation 5.8, we arrive at the original VQ-VAE loss function

`(x) = log p(x | β (x)) +α‖zθ (x)− sg(wz)‖2 +η‖sg(zθ (x))−wz‖2 (5.5)

We will call this the vanilla VQ-VAE. Note that in [29] suggests changing the last term
(the VQ loss) to introduce different VQ models while leaving the commitment loss (the
second term) without change. In our experiments we found our approach to perform
better with neural gas.

5.1.2 VQ-VAE with Fuzzy c-Means

The problem with fuzzy c-means is that it can not be reduced to optimizing a true ex-
pectation over a discrete posterior. The loss function of the fuzzy c-means is

E(x) = ∑
x∈X

∑
z∈C

wz(x)md(x,wz) (5.6)

Notice the factor wz(x)m that multiplies d(x,wz). Because ∑z∈Cwz(x)m is not constrained
to a constant, this summation value will be changing during training. Thus the scaling
that we control with the hyperparameter α is chaotic and controlling it with one hyper-
parameter seems hard.

On the other hand, using this loss

E(x) = ∑
x∈X

∑
z∈C

wz(x)d(x,wz) (5.7)

provides good results, because ∑z∈Cwz(x) = 1. Moreover, the normalized fuzzy c-
means that we introduced in section 4.3, also, provides good results. Both of these
variants can be reduced to an expectation over a posterior.

Obviously, this needs more investigation, and a better understanding of the commitment
loss hyperparameter α .
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5.1.3 Replacing the Quantizer With an Expectation

In [25], they replaced the quantizer β (x) with the empirical expectation Eqw(z|x)wz in the
reconstruction error. Note that we do not evaluate the expectation, we only sample m
fixed number of samples and calculate the emperical average

The number of samples, m, should be a small number. We experimented with one up to
three without problems. The reconstruction loss becomes

log p
(
x | zθ (x)− sg

[
Eqw(z|x) [wz− zθ (x)]

])
, z0,z1, . . . ,zm ∼ qw(z | x)

where the expectation is approximated as follows

Eqw(z|x)wz ≈
1
m

m−1

∑
i=0

wzi such that z0,z1, . . . ,zm ∼ qw(z | x).

They claimed that this provides a more stable training. Note that this is the expectation
is the one we are trying to minimize in the commitment loss and the VQ loss.

5.2 VQ-VAE as a VAE

Quoting [11], "Despite the name, VQ-VAEs are neither stochastic, nor variational, but
they are deterministic autoencoders." So far, we have described VQ-VAE as a regular-
ized autoencoder, but as we have seen in section 5.1.3, VQ-VAE can be trained as in
stochastic manner.

Many published research view it as a VAE. In fact, VQ-VAE consists of the components
needed for a VAE. The posterior qw(z | zθ (x)) is the approximate posterior and pφ (x | z)
is the decoder. The prior can be assumed to be uniform p(z) during training [29].

The closest justification we found for a VQ-VAE to be a VAE is in [30] where they gen-
eralized the vanilla VQ-VAE with what they called Hierarchical Quantized Autoencoder
(HQA), which is a VAE with GMM prior. Their loss is

`(x) = log p(x | β (x))−H (qw(z | zθ (x)))+Eqw(z|zθ (x))‖zθ (x)− (wz)‖2 (5.8)

Where H (qw(z | zθ (x))) is the entropy of the posterior which is the main difference
between the loss in 5.8. This loss is similar to 5.8 for the neural gas inspired posterior
because the entropy of the neural gas posterior is constant. The case is also the same
for the k-means posterior. However, they still needed to introduce a separate commit-
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ment loss (‖zθ (x)−wγ(x)‖2 from the vanilla VQ-VAE which does not show up in their
derivation of the loss. Moreover, their derivation of the loss contains a lot of approxima-
tions.

5.3 Stage 2: Learning the Prior

After we optimized the VQ-VAE loss function, the mapping γ(x) can perform compres-
sion by mapping the data instance x to the set C= {0,1, . . . ,k−1}. In practice we need
huge number of prototypes to be able to encode complex data such as real life images.
Thus we apply ideas from section 4.4. Therefore we end up with multiple discrete ran-
dom variables similar to z that takes values from C, or simply z is a random vector or
tensor.

We used CNN to parameterize the encoder and decoder such that the continuous latent
space corresponds to a three dimensional tensor that belongs to RCxHxW . One of these
dimensions corresponds to the number of channels, while we call H the height and
W the width. As we described in section 4.4. Ignoring the channel dimension, the
dependency between two elements in the tensor that belong to different width and height
dimensions is analogous to the dependency between two pixels in a picture at different
height and width. The reason for that is the receptive field of each tensor element is
more likely to intersect with close by elements.

As described in section 4.4, we can obtain the following quantization: the prototypes
belong to RC, and our latent z belongs to Ck×W×H which correspond to a categorical
matrix. This data is both categorical and is analogous to images thus PixelCNN can
learn the distribution of z from the set V n(X), where X is our data set and V n(X) is
the image the set X under the quantizer V n(x). Basically, You can think of V n(X) as
another data set for PixelCNN. V n(X) are samples from p(z) and thus we are learning
the prior.

Having learned the prior p(z), we can sample from it and pass to the decoder. Thus,
generating new data points.
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6 Training

The encoder zθ (x) and the decoder pφ (x | β (x)) are ResNet [13] architectures, please
see [13] for details. We use similar architecture to the one in [29] for the neural network
part.

The encoder starts by two CNNs of stride 2 and kernel size 4×4. The output of these
passed to two residual blocks. Each residual block is a ReLU followed by 3× 3 CNN
then ReLU and lastly a 1×1 CNN.

The decoder tries to invert the encoder by starting with the same residual blocks in the
encoder, followed by two transposed CNNs with stride 2 and kernel 4×4.

The optemizer is Adam [17] with learning rate 1e− 3. We use 512 prototypes, with 64
dimension each. We experimented with the CIFAR10 data set.

We faced some technical difficulty, we lost our small set of test results. Here, we run
small tests on the training set instead. For neural gas, we did a quick compression
results and they are as follows:

• α = 0.15, η = 1, λ = 3, reconstruction-error on the training set is 0.058 and
perplexity 450 after 30 epochs of training.

• α = 0.10, η = 1,λ = 3, reconstruction-error on the training set is 0.06 and per-
plexity 450 after 20 epochs of training.

• α = 0.15, η = 1, λ = 10, reconstruction-error on the training set is 0.065 and
perplexity 463 after 20 epochs of training.

Note that we divided the model with the batch size on all the above items.

For the posterior in 4.6, a reconstruction loss of 0.62 with α = 0.08 and η = 1 after 20
epochs. However, for fuzzy c-means it diverges on most tests.
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7 Conclusion and Future Work

We have discussed different generative models with focus on VQ-VAE. We have shown
that VQ-VAE can perform well with neural gas vector quantization and some other
stochastic based models. However, it seems that no major improvement can be at-
tained without considering hierarchical models.

Moreover, one major issue is that there is no clear theoretical justification for VQ-VAE
and the choice of the hyperparameters. This and the fact that it is very sensitive to the
hyper-parameter makes it hard to train as we need to keep the reconstruction error low
and the VQ based error low simultaneously. This should be an area to investigate in the
future.
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Mathematical Symbols

C The set of cluster indices.

X The data set.

β (x) A vector quantizer, mapping x to a prototype.

γ(x) Quantizer encoder, mapping x to C.

d(x,y) Eucledian distance between x and y.

E Objective function or energy function.

`(x) The loss function on instance x.

`(x) The log likelihood function.

zθ (x) The encoder.

sg(x) The stop gradient operator.

ELBO The evidence lower bound loss function.

DKL The KL divergence.

H (x) The entropy of the random variable x .

H (x | z) The conditional entropy of x given z.

H (x | z) The conditional entropy of x given z.

� The element-wise product.

∗ The convolution.

ANN Artificial Neural Networks.

GMM Gaussian mixture model.

MLP Multilayer perceptron.

CNN Convolutional neural network.

V Q Vector quantization.

AR Autoregressive Model.

VAE Variational autoencoder.

V Q−VAE Vector Quantised-Variational AutoEncoder.
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