
MASTER THESIS

Ms.
Tejaswini Devineni

Transfer Learning /
Offset-Learning for Learning

Vector Quantization

2022

Faculty of Applied Computer Sciences and
Biosciences

MASTER THESIS

Transfer Learning /
Offset-Learning for Learning

Vector Quantization

Author:
Tejaswini Devineni

Study Programme:
Applied Mathematics in Networking and DataScience

Seminar Group:
MA18w1-M

First Referee:
Prof. Dr. Thomas Villmann

Second Referee:
Dr. Marika Kaden

Mittweida, January 2022

Acknowledgement

First and foremost I wish to express my sincere gratitude to Prof. Dr. Thomas Villmann
and Dr. Marika Kaden at the University of Applied Sciences Mittweida for their tremen-
dous support, indispensable ideas and invaluable advice throughout my thesis.

I am thankful to all the professors that helped me improve myself both technically and
socially, so that I could finally be able to successfully finish my studies. I am very thankful
to all my friends especially Sunil Kumar Devineni, Sowjanya Yalamanchili and Hanuman-
tha Rao Malapati for their constant support and continuous encouragement during my
studies.

And most of all, I must express my very profound gratitude and dedicate my thesis to
my parents, brother and family members who have always been a unfailing support
throughout my years of study. This accomplishment would not have been possible with-
out them.

Bibliographic Information

Devineni, Tejaswini: Transfer Learning / Offset-Learning for Learning Vector Quantization, 41 pages,
10 figures, Hochschule Mittweida, University of Applied Sciences, Faculty of Applied Computer
Sciences and Biosciences

Master Thesis, 2022

Abstract

In Machine Learning, Learning Vector Quantization(LVQ) is well known as supervised learning
method. LVQ has been studied to generate optimal reference vectors because of its simple and
fast learning algorithm [12]. In many tasks of classification, different variants of LVQ are consid-
ered while training a model. In this thesis, the two variants of LVQ, Generalized Matrix Learning
Vector Quantization(GMLVQ) and Generalized Tangent Learning Vector Quantization(GTLVQ)
have been discussed. And later, transfer learning technique for different variants of LVQ has
been implemented, visualized and we have compared the results using different datasets.

I

I. Contents

Contents . I

List of Figures . II

List of Tables . III

1 Introduction . 1

1.1 Background . 1

1.2 The Structure of the Thesis . 1

2 Learning Vector Quantization . 3

2.1 Basics of Machine Learning . 3

2.2 Basics of Learning Vector Quantization. 4

2.3 Kohonen’s Learning Vector Quantization algorithms . 7

2.4 Generalized Learning Vector Quantization . 8

2.5 Generalized Matrix Learning Vector Quantization . 11

3 Generalized Tangent Learning Vector Quantization . 13

3.1 Generalized Tangent Learning Vector Quantization . 14

4 Transfer Learning for LVQ . 19

4.1 Transfer Learning . 19

4.2 Transfer Model based on concept of Functions . 20

4.3 Transfer model based on the concept of Manifolds . 22

4.4 Basic LVQ for the Source Data Learning . 24

4.5 Transfer Learning for GMLVQ . 25

4.6 Transfer Learning for GTLVQ . 25

5 Experimental Results . 29

5.1 Experimental Results . 29

6 Conclusion and Future work. 37

Bibliography . 39

II

II. List of Figures

5.1 Multivariate normal data (Synthetic data) . 30

5.2 Classification of synthetic data using GMLVQ algorithm . 30

5.3 Classification of synthetic data using GTLVQ algorithm . 31

5.4 Target data for the transfer learning using transformation of 78◦ . 31

5.5 Target data for the transfer learning using transformation of 144◦ . 32

5.6 Target data for the transfer learning using transformation of 205◦ . 32

5.7 Target data for the transfer learning using transformation of 294◦ . 32

5.8 Digit images with 28 × 28 pixels . 34

5.9 Digits considered for source data with 28 × 28 pixels . 35

5.10 Digit considered for target data with 28 × 28 pixels . 35

III

III. List of Tables

5.1 Accuracy of GMLVQ and GMLVQ for transferred data using different transformations . . 32

5.2 Accuracy of GTLVQ and GTLVQ for transferred data using different transformations . . . 33

Chapter 1: Introduction 1

1 Introduction

1.1 Background

Machine Learning (ML) has steadily been acquiring a very important role in industry
as well as individual lifestyle. In Machine Learning, there are different type of learning
schemes such as supervised Learning, unsupervised learning and reinforcement learn-
ing. In this thesis, we will concentrate on prototype-based classification which is a part
of supervised learning. Prototype-based classification is playing a vital role to represent
the data by a set of prototypes. Particularly, in case of big data or complicate classifi-
cation problems, it is still a challenging task for the classification. Suppose a model is
been trained according to initial training data and then the new data becomes available
now for the training, we either have to train all the data including with the new data or
we have to train this new data separately. In which it takes so much time and consumes
more memory for training all the data again which includes new data. Re-training of data
may also cause the problem of information loss and this problem cannot be neglected if
the new data has been added differs from the initial data. So, in order to avoid all such
problems, we use the concept of transfer learning. The main idea of transfer learning is,
the information that has been learned from the training data is kept same and we need
to apply some transformation to new data in such a way that the initial model can be
applied in order to train or learn the new data (transfer data) [14].

In this thesis, transfer learning for Learning Vector Quantization has been studied which
was proposed by Villmann and Saralajew along with the different variants of Learning
Vector Quantization models. We have applied transfer learning for both GMLVQ and
GTLVQ in this thesis and compared the results. The work has been performed by taking
synthetic data and a part of MNIST data. We have trained both the models using these
two datasets in the further sections.

1.2 The Structure of the Thesis

The structure of the thesis is organized as follows:

In chapter 2, we discuss about the basic concepts of Machine Learning and Prototype-
based classification algorithms such as Learning Vector Quantization. We will use these
terms very frequently in this project. Later, we will discuss about the realizations of LVQ
such as Kohonen’s LVQ algorithms, GLVQ and GMLVQ.

In chapter 3, we concentrate on the explanation of implementing tangent distance for
GLVQ which is called as Generalized Tangent Learning Vector Quantization. Initially we

2 Chapter 1: Introduction

will explain few definitions required for GTLVQ and later we will explain the algorithm of
GTLVQ.

In Chapter 4, we first deal with the explanation of transfer learning. Later, we discuss
about transfer learning based on concept of Functions and Manifolds. Further, we elab-
orate how these concept of functions and manifolds are implemented in GMLVQ and
GTLVQ.

In chapter 5, we will see the findings of my thesis. We can see the results of GMLVQ
and GTLVQ and transfer learning for both GMLVQ and GTLVQ perform on the respective
datasets and then we come to the conclusion which techniques performed best in which
kind of situation.

Chapter 2: Learning Vector Quantization 3

2 Learning Vector Quantization

Learning Vector Quantization (LVQ) introduced by Kohonen [8] is a supervised classifi-
cation algorithm which works on the concept of nearest prototype classifier. To calculate
the nearest prototype, dissimilarities has been used. At present, there are many vari-
ants of LVQ, each introduced and designed for distinct applications or objectives. We
start with the common LVQ concept overview and later, we describe Generalized Learn-
ing Vector Quantization (GLVQ) and Generalized Matrix Learning Vector Quantization
(GMLVQ). The reason behind many variants is that the dissimilarity have to be selected
based on the classification task.

2.1 Basics of Machine Learning

Machine Learning is a subset of Artificial Intelligence (AI) that provides the AI System
with the ability to automatically learn from the data and applies that learning to make
better decisions. That is, choosing an algorithm depending on the data or the avail-
able information to imitate the way that humans learn, gradually applying this learning
to improve the accuracy of the model [4]. These algorithms in machine learning are cat-
egorized into supervised, unsupervised, reinforcement learning and semi-supervised
learning.

Supervised Learning is a machine learning task, where we have input and output pairs.
We use an algorithm to learn a function that maps an input to the output and in general,
the inputs are in the form of vectors. The purpose of supervised learning model is to
predict the correct label for a newly provided unseen data. But in order to predict the
correct label, the model must be trained in such a way that the model tries to predict the
correct output. The model compares it to the given label in order to calculate the loss.
To minimize the loss, it is mandatory to change the parameters of model [9].

Unsupervised Learning is a machine learning task where we have only input data and
there will be no corresponding output variables. The main aim of unsupervised learning
is about discovering the unknown relationships and structures in the data in order to
learn much about the given data. Although unsupervised learning can perform complex
task than supervised learning, they can be more unpredictable [5].

Gradient Descent is an iterative method and the objective is to minimize a cost function.
It should be possible to compute the partial derivative of the function which is slope or
gradient. The coefficients are computed at each iteration by taking batch of training
samples and taking the negative of the derivative and by reducing the coefficients at
each step by a learning rate multiplied by derivative. So that the local minima can

4 Chapter 2: Learning Vector Quantization

be achieved after a few iterations. So eventually the iterations are stopped when it
converges to minimum value of the cost function after which there is no further reduction
in cost function.

The gradient descent that we use in GLVQ, GMLVQ and GTLVQ is Stochastic Gradient
Decent (SGD). In SGD, error is calculated for each training sample within the dataset
and parameters are updated for every training sample. Given a training dataset T of
labeled inputs (v,c(v)) where c(v) is the correct label of v and a learning rate η ∈ R>0

and a loss function l(f (v;ϑ),c(v)), the update rule in SGD is given as

ϑ ←− ϑ −η∇ϑ l(f (v;ϑ),c(v)) (2.1)

2.2 Basics of Learning Vector Quantization

Although there are many variants of LVQ algorithms, the basic concept always remains
same, that is, to use the concept of prototypes and dissimilarities. So, we firstly define
the concept of dissimilarities and prototypes similar to the explanation given by Sascha
Saralajew [12].

2.2.1 Dissimilarities

We use the concepts of distance greatly in our daily life: For example, to illustrate how
much distance is present in between two points or for the travel, such as we calculate
the average time of travel and distance between two places. Typically, the most funda-
mental part of prototype-based classification is the concept of mathematical distance
(mathematical metric). The distance is calculated in between the arbitrary objects and
is restricted to neither scalars nor points.

Definition 2.1 (metric and metric space). The distance (metric) d on a non-empty set S
is a function that maps to real numbers as follows:

d : S×S→ R

which should satisfy the below conditions for all a,b,c ∈ S:

• d(a,b)≥ 0 (nonnegativity);
• d(a,b) = 0 if and only if a = b (identity);
• d(a,b) = d(b,a) (symmetry);
• d(a,b)≤ d(a,c)+d(c,b) (triangle inequality).

The metric space (S,d) is a set S with a metric d defined on S. The function d is also
called as distance function or commonly distance(metric).

Chapter 2: Learning Vector Quantization 5

Definition 2.2 (translation-invariant metric). Let (S,d) be a metric space with an opera-
tion

+ : S×S→ S

that forms a group (S,+) on S. If we consider the operation + is a vector shift, then
the translation-invariant can be explained as the distances remains same although the
points a and b are shifted in the same direction. That is, the translation-invariant is true
on metric d if

d(a,b) = d(a+ c,b+ c) (2.2)

for all a,b,c ∈ S.

A dissimilarity is obtained by dropping basic axiom of a metric(distance), i.e. nonnega-
tivity [11]. The most often used distance measure is the Euclidean distance which was
named after the Greek mathematician Euclid. This Euclidean distance calculates the
length of the line segment between two considered points in Euclidean space.

Definition 2.4 (Euclidean distance). Let a and b be the vectors of n-dimensional real
vector space Rn. The Euclidean distance can be defined as

dE(a,b) =

√
n

∑
i=1

(ai−bi)2

and in terms of vector operations as

dE(a,b) =
√
(a−b)T (a−b) (2.3)

Euclidean distance is both the metric and translation-invariant metric. In this thesis,
the generalization of the Euclidean distance that is used is the Mahalanobis distance.
This distance can model the proper distance measure in case if we have the knowledge
about the underlying data distribution.

Definition 2.3 (Quasimetric). The quasimetric is a function d that fulfills all the metric ax-
ioms except the triangle inequality. The squared Euclidean distance d2

E(a,b) becomes
quasimetric.

Definition 2.5 (Mahalanobis distance). Let the two random vectors be a,b ∈ Rn are
drawn from a probability distribution along with the full ranked covariance matrix Σ.
Then, the Mahalanobis distance can be defined as

dM(a,b) =
√
(a−b)T Σ−1(a−b) (2.4)

where Σ−1 is called the precision matrix and the precision matrix is positive definite and

6 Chapter 2: Learning Vector Quantization

symmetric.

In general, if the covariance matrix is the identity matrix, then the Mahalanobis distance
becomes Euclidean distance. The full rank Σ states that the covariance matrix is in-
vertible. If we drop the assumption that the Σ as the full rank, then, we can explain the
so-called quadratic-dissimilarity.

Definition 2.6 (quadratic-dissimilarity). Let the two vectors a,b ∈ Rn and Q ∈ Rn×m

be the transition matrix that does a linear mapping. The quadratic-dissimilarity can be
explained as

dQ(a,b) =
√

(Q(a−b))T Q(a−b) (2.5)

where m is a hyperparameter that finds the dimensionality of vector space after the linear
mapping. Generally, whenever the rank of Q equals n, then the quadratic-dissimilarity
is a metric. Same as Mahalanobis distance, the quadratic-dissimilarity calculates the
Euclidean distance for renewed input vectors which can be denoted as

dQ(a,b) =
√
(a−b)T Λ(a−b) (2.6)

where Λ equals QT Q.

2.2.2 Prototypes

One of the classification scheme is the prototype based classification. In general, pro-
totype based classification uses the concept of dissimilarity by measuring distances. To
be specific, in other words, prototypes are like centroids in data points. Prototypes of
class c is calculated as the points that are away from other class data points and they
should be near to many data points of same class c [7].

Prototype: A vector wk of the data space Rn is said to be a prototype(vector) if there
exists an element equipped with a class label c(wk) ∈ C. The set W contains all the
collected set of prototypes and M represents the overall number of prototypes.

W = {wk ∈ Rn |k = 1,2,,M}, (2.7)

Given a data point v, we can find the prototype wk that is fit to the data point by using
the dissimilarity measure d. The distance vector with the dissimilarity measure d with
respect to the data point v is given by

d(v) = (d(v,w1),d(v,w2,), ...,d(v,wM))T (2.8)

Chapter 2: Learning Vector Quantization 7

To compute the nearest prototype, we need to consider the smallest dissimilarity, that
is, prototypes compete against each other to be the closest prototype w∗. For an input
v, we can find the closest prototype using

w∗(v) = argmin
wk∈W

(d(v,wk)) (2.9)

and is also known as best matching prototype with respect to v.

For a input v, the predicted class is denoted as c∗(v)= c(w∗). The main aim of prototype-
based learning is to find the proper set of prototypes for a training dataset T . According
to Bien and Tibshirani [7], we have to find the set of prototypes such that:

• The prototypes number M should be as limited as possible.

• For a class c, the prototypes are the closest points of as many training data points
as possible.

• For a class c, the prototypes are the closest points of as many training points as
possible other than class c.

In the following sections, we will describe variants of LVQ. Firstly, we describe about
Kohonen’s LVQ algorithms. And next GLVQ algorithm that is a version of Kohonen’s
algorithm that includes differentiable loss function which uses Stochastic Gradient De-
scent. Later, we describe about the extended version of GLVQ known as GMLVQ, that
makes use the concept of matrices.

2.3 Kohonen’s Learning Vector Quantization
algorithms

We suppose the dataset V = {vi ∈ Rn, i = 1, ...,m} are the data vectors which has
class labels c(vi)∈ C is the set of classes. Let the prototype set be W = { w j ∈ Rn,
j = 1, ...,M} with the class labels c(w j) . The main characteristic property of LVQ is,
for each prototype wk, a class label c(wk) is allotted in such a way that at least one
prototype is exposed for each class. LVQ introduced by Kohonen as a heuristic scheme
has different flavours like LVQ1, LVQ2, LVQ3 as described in [8]. In this section, let
us concentrate the basic intention behind all the algorithms. We initialize the set of
prototypes W randomly. After that, we iterate the below steps:

• From the training dataset, randomly select a data sample (v,c(v)) and find the
nearest prototype w∗ as in equation (2.9).

• If the class label c(w∗) of the nearest prototype is equal to the class label c(v) of
the input, the nearest prototype w∗ is pushed towards v (attraction) or otherwise
prototype is pushed away (repulsion).

8 Chapter 2: Learning Vector Quantization

More precisely, the update of prototypes is defined as :

w∗←− w∗−η∆w∗ (2.10)

where,
∆w∗ = s(v−w∗) (2.11)

with,

s =

{
−1, c(w∗) = c(v)

1, c(w∗) 6= c(v)
(2.12)

and η is the learning rate (η ∈R>0). This η controls the magnitude of the applied shift.
Generally, all the variants mentioned above of LVQ uses the Euclidean distance dE as
in equation (2.2) with respect to prototype is given as

∆wdE(v,w) =
−1

dE(v,w)
(v,w) (2.13)

if dE(v,w) 6= 0.

2.4 Generalized Learning Vector Quantization

To give generalization of Kohonen’s LVQ algorithms, Sato and Yamada [18] has pro-
posed GLVQ. Sato and Yamada have realized this by introducing differentiable cost
function which is called as GLVQ loss. But the explanation of GLVQ given in this thesis
is inspired from Sascha Saralajew [12]. As before, we suppose that the labeled training
data (v,c(v)) and a set of labeled prototypes (w j,c(w j)) with {w}M

j=1 = W. We use the
following notations in GLVQ:

• w+ is denoted as best matching correct prototype for (v,c(v)) within all the proto-
types w j with c(w j) = c(v).

• w− is denoted as best matching incorrect prototype for (v,c(v)) within all the pro-
totypes wk with c(wk) 6= c(v).

• d+(v) = d(v,w+), is the distance from v to w+.

• d−(v) = d(v,w−), is the distance from v to w−.

In order to calculate the dissimilarity of a prototype to the correct class c(v) given the
classifier function f (v) and a training sample (v,c(v)) as

d+(v) = min{− fc(v)(v) |c = c(v)} (2.14)

Chapter 2: Learning Vector Quantization 9

where f (v) is the classifier function and is calculated as negating the smallest dissimi-
larity value of each class and mathematically written as

f (v) =−

min{dk(v)| (wk) = 1}
min{dk(v)| (wk) = 2}

.

.

.

min{dk(v)| c(wk) = #C}

(2.15)

where fc(v) is the negative value of smallest dissimilarity of v to a prototype of class c.
The smallest dissimilarity of a class to the prototype different than c(v) of v by

d−(v) = min{− fc(v) |c 6= c(v)} (2.16)

Then, we define the classifier function µ(v) as

µ(v) =
d+(v)−d−(v)
d+(v)+d−(v)

∈ [−1,1] (2.17)

µ(v) < 0 if v is correctly assigned to the class whereas µ(v) > 0 informs about the
incorrect classification. The function µ is differentiable with respect to w and in general,
it has nontrivial gradients and is given as

∂ µ(v)
∂w+

=
+2d−(v)

(d+(v)+d−(v))2
∂d(v,w+)

∂w+
(2.18)

∂ µ(v)
∂w−

=
−2d+(v)

(d+(v)+d−(v))2
∂d(v,w−)

∂w−
(2.19)

Using the relative distance dissimilarity µ(v), one can compute classification error for
the given training data set (T) as in (2.20). f is parameterized by a parameter vector ϑ

of trainable weights.

error(f (v,ϑ),T) = 1
#T ∑

(v,c(v))∈T
H(µ(v)) (2.20)

where ϑ is trainable parameter vector(also called weight) and H(x) is a Heaviside step
function which is not differentiable and is represented as

H(x) =

{
1, if x≥ 0

0, otherwise
(2.21)

As Heaviside function is non-differentiable, Sato and Yamada replaced it with monoton-
ically increasing function φ : [−1,1]→ R. All these together results as

l(f (v;ϑ),c(v)) = φ(µ(v)) (2.22)

10 Chapter 2: Learning Vector Quantization

where l(f (v;ϑ),c(v)) is called as loss function or GLVQ loss function and φ(µ) is a
monotonically increasing function. Usually, the identity function f (m) =m or the sigmoid
function f (m) = 1/(1+emθ) is used. For a given training sample from T and a learning
rate η ∈ R>0, SGD is given as

ϑ ← ϑ −η∇ϑ l(f (v;ϑ),c(v)) (2.23)

Training

Training sample (v,c(v)) have to be picked randomly and we need to perform stochastic
gradient descent for l(f (v;ϑ),c(v)) using (2.23). Because of µ(v), the loss function is
dependent on w+ and w−, which are prototypes. w+ and w− are the closest prototypes
of correct class (d+(v)) and incorrect class (d−(v)). We have to calculate the gradient
with respect to w+ and w− as the derivatives of loss function are nonzero with respect
to ϑ . We calculate the gradient for the loss function with respect to w+ and w− for given
(v,c(v)) as

∂

∂w+
φ(µ(v)) = 2φ

′
(µ(v))

d−(v)
(d+(v)+d−(v))2

∂d(v,w+)

∂w+
. (2.24)

∂

∂w−
φ(µ(v)) =−2φ

′
(µ(v))

d+(v)
(d+(v)+d−(v))2

∂d(v,w−)
∂w−

. (2.25)

The above equations (2.24) and (2.25) can be also written as

∂

∂w+
φ(µ(v)) = ξ

+
µ ∆w+ (2.26)

∂

∂w−
φ(µ(v)) = ξ

−
µ ∆w− (2.27)

where

ξ
+
µ = 2φ

′
(µ(v))

d−(v)
(d+(v)+d−(v))2 ≥ 0 (2.28)

ξ
−
µ = 2φ

′
(µ(v))

d+(v)
(d+(v)+d−(v))2 ≥ 0 (2.29)

and

∆w+ =+
∂d(v,w+)

∂w+
(2.30)

∆w− =−∂d(v,w−)
∂w−

(2.31)

The learning rule of the prototypes in Stochastic Gradient Descent(SGD) is denoted
as

w+←− w+−ηξ
+
µ ∆w+ (2.32)

w−←− w−−ηξ
−
µ ∆w− (2.33)

Chapter 2: Learning Vector Quantization 11

GLVQ algorithm implemented by Sato and Yamada makes use of squared Euclidean
distance d2

E as the dissimilarity d. The above equations (2.30), (2.31) using squared
Euclidean distance can be written as

∆w+ =−2(v−w+) (2.34)

∆w− =+2(v−w−) (2.35)

which are called as gradient and the learning rule(equations (2.32), (2.33)) using squared
Euclidean distance is given as

w+←− w++2ηξ
+
µ (v−w+) (2.36)

w−←− w−−2ηξ
−
µ (v−w−) (2.37)

Contrary to Kohonen’s LVQ algorithms, the elaborated factors ξ+ and ξ− makes sure
that the repulsion forces are not much stronger than the attraction forces because the
prototype w+ is attracted for a considered sample and prototype w− is repelled. So, the
convergence condition will be fulfilled. As we already got the weight update method for
GLVQ, we can observe different types of measures in the below section.

2.5 Generalized Matrix Learning Vector Quantization

Generalized relevance LVQ (GRLVQ) algorithm which was proposed by Hammer and
Villmann [3] increase or reduce the dimension of given input data. That is, it only
calculates how each dimension affects the input data space for the classification. An
additional idea to this is to find pairwise correlations among the data dimensions. So
to find unknown correlations, a concept of matrices is needed. Schneider, Biehl, and
Hammer [16] introduced GMLVQ as an extension of GRLVQ.

GMLVQ is a method that can be explained by using a (m× n) matrix, which accom-
modate to the correlation of different features [16]. The parameter vector ϑ of GLVQ
is extended to Q, so that this method GMLVQ tries to learn about the transformation of
data points. Instead of using Euclidean distance, GMLVQ uses the squared quadratic-
dissimilarity d2

Q because it is detected that all the input dimensions of Rn has similar
importance. So to overcome the class discrimination, we extend the learning rules of
GLVQ by adapting rules for Q ∈Rm×n. Remaining part of GLVQ learning framework will
be the same for GMLVQ such as GLVQ loss and derived learning rules of prototypes.

The learning rule that uses quadratic-dissimilarity with the gradient is denoted as

∇wd2
Q(v,w) =−2QT Q(v−w) (2.38)

12 Chapter 2: Learning Vector Quantization

where
dQ(v,w) = (v−w)T QT Q(v−w) (2.39)

and ∂d
∂w+ , ∂d

∂w− in the signed gradient ∆w+, ∆w− (refer to equations (2.34) and (2.35)).
The gradient of GMLVQ loss is same as the gradient of GLVQ loss with respect to matrix,
that is

∇Qφ(µ(v)) = ξ
+
µ ∇Qd2

Q(v,w
+)−ξ

−
µ ∇Qd2

Q(v,w
−) (2.40)

where ξ+ and ξ− are same as in GLVQ and they are given as

ξ
+
µ (v, f ,dQ+) =

2dQ−(v)φ(µ(v))
(dQ+(v)+dQ−(v))2 (2.41)

ξ
−
µ (v, f ,dQ−) =

2dQ+(v)φ(µ(v))
(dQ+(v)+dQ−(v))2 (2.42)

and the gradient of d2
Q with respect to Q is

∇Qd2
Q(v,w) = 2Q(v−w)(v−w)T (2.43)

The basic SGD rule to learn Q is defined as

Q←− Q−η(ξ+
µ ∇Qd2

Q(v,w
+)−ξ

−
µ ∇Qd2

Q(v−w)) (2.44)

Whenever w+ and w− are updated, the matrix receives the updates and hence matrix Q
is adjusted with respect to the class of w+ and the class of w−. If we split the equation
(2.43), the updated formulas for the matrices Q+ and Q− are given as

Q+ = Q+−ηξ
+

∂d2
Q+(v,w+)

∂Q+
(2.45)

Q− = Q−+ηξ
−∂d2

Q−(v,w
−)

∂Q−
(2.46)

Chapter 3: Generalized Tangent Learning Vector Quantization 13

3 Generalized Tangent Learning Vector
Quantization

If the data in the dataset is having noise, classification learning from such noisy data
is still a challenging task in the machine learning which may lead to lower classification
performance. In such cases, LVQ is the concept which is able to handle and process
such noisy data because LVQ uses the concept of prototypes as explained in the above
sections. Not only noise, data can also have some systematic transformations such as
drift or different measuring settings. If the model is unable to process these variations
correctly, then these variations can also lead to lower classification performance. For
example, if we consider the given data are images, then the systematic variations can
be in the form of rotations or shifts inside an image. If we know about these system-
atic variations of an image in advance, corresponding data preprocessing techniques
such as scale-invariant transform (SIFT) [10] can be used to reduce their impact on
the classification model. If the knowledge of expected invariances are not known be-
fore hand, then invariant dissimilarity measures could be used as the substitute of data
preprocessing methods.

Systematic variations are also known as transformations, classification of transformed
data can be exploited as transformation invariant class detection [13]. However, in gen-
eral, it is not easy to find suitable transformations. So to overcome such general cases,
we can use the popular strategy [13] that can define a parameterized transformation
model. Estimation of parameters of the transformation model on a training dataset
should be either previous or parallel with classification model’s training.

Systematic variations in LVQs can be modeled using distribution of many prototypes to
one class or by using the concept of dissimilarity measure. The dissimilarity measure is
been used in this thesis and we can see how to train GLVQ using derived dissimilarity
measures and this concept is affiliated to the concept of tangent distances introduced by
Simard et al [17]. In the below sections, we will see how high amount of data variations
can be assigned to a single prototype by using the concept of tangent distance. The
explanation of GTLVQ discussed below is inspired from Sascha Saralajew from [12]
and [13].

Basics for GTLVQ

Definition 3.1 (Affine subspace): Let θ be a parameter vector and t ∈ Rn is a vector
which is called as translation. Then the affine subspace (linear manifold) is a set

{t +Bθ |θ ∈ Rn} (3.1)

14 Chapter 3: Generalized Tangent Learning Vector Quantization

where B ∈ Rn×n is the basis of n-dimensional linear subspace [12].

Definition 3.2 (Orthogonal projector): For a vector x ∈ Rn, the orthogonal projection
is Pjx = WjW T

j x onto the subspace defined by the basis Wj. H jx is called the projec-
tion to its complement and mathematically written as H j = (I−WjW T

j). The distance
dH j(vi,w j) is the dissimilarity between vi and w j after projection onto the complement
subspace [13].

3.1 Generalized Tangent Learning Vector Quantization

The GTLVQ presented here is proposed by Sascha Saralajew and Thomas Villmann in
the paper [13] . Let vi be a data vector in the parametrized data manifold Vi(γ) with
the parameter vector γ ∈ Rs, s� n and vi = Vi(0). We assume w j = W j(0) with the
prototype manifoldW j(θ),θ ∈Rr with r� n. The distance between data and prototype
manifolds can be calculated as

D̂∗(Vi,W j) = min
γ,θ

d(Vi(γ),W j(θ)) (3.2)

where d is the dissimilarity measure of parametrized manifold and prototype manifold.
The linear Taylor expansion of the manifold Vi(γ) at the point vi is known as the tangent
subspace (also called as set of tangent vectors at vi) of Vi(γ) at vi and tangent subspace
basis Vi which can be written as:

Vi(γ)' vi +Viγ (3.3)

with a tangent subspace basis at vi as:

Vi =
∂Vi(γ)

∂γ

∣∣∣∣
γ=0

(3.4)

In the same way, we have
W j(θ)' w j +W jθ (3.5)

with a tangent subspace basis at w j as:

Wj =
∂W j(θ)

∂θ

∣∣∣∣
θ=0

(3.6)

By using equations (3.4) and (3.6), one-sided tangent distance is calculated as

D̂(vi,w j,Wj) = min
θ
{d(vi,w j +Wjθ)} (3.7)

Chapter 3: Generalized Tangent Learning Vector Quantization 15

where d is the dissimilarity measure for vectors. This tangent distance is called as one-
sided tangent distance because we are using only one tangent subspace (Wj). If we use
two tangent subspaces (Vi and Wj) in the tangent distance, then the tangent distance
will be called as two-sided tangent distance and it is given as

D̂(vi,Vi,w j,Wj) = minγ,θ{d(vi +Viγ,w j +Wjθ)} (3.8)

In this paper we discuss only about one-sided tangent distance for GLVQ. In order to
incorporate tangent distance for GLVQ, we rewrite the equation (3.7) using the dissimi-
larity d as the squared Euclidean distance, so that it transforms into

D(vi,w j,Wj) = min
θ
{d(vi−w j−Wjθ)

2} (3.9)

But in order to satisfy equation (3.9), we needs to solve the minimum problem. The
mandatory condition to solve the minimum is

∂D(vi,w j,Wj)

∂θ
= 0

which leads to the specific formula

θ =W T
j (vi−w j) (3.10)

assuming that W T
j Wj = I, that is, an orthonormal basis has been assumed in the tangent

subspace basis Wj as explained by Villmann and Saralajew in [13].

We use Gram-Schmidt orthonormalization in this thesis to orthonormalize the basis Wj.

From the above assumption of W T
j Wj = I, we have ∂ 2D(vi,w j,W j)

∂θ∂θ
= I where I is the Identity

matrix, equation (3.10) provides the minimum for D(vi,w j,Wj). If we substitute the value
of θ as in (3.10) in equation (3.9), we will have

D(vi,w j,Wj) = (vi−w j−WjW T
j (vi−w j))

2 (3.11)

The equation (3.11) can be also written as

D(vi,w j,Wj) = (H j(vi−w j))
2

D(vi,w j,Wj) = dH j(vi,w j) (3.12)

where
H j = (I−WjW T

j) (3.13)

and H j is called as a orthogonal projector as explained in Definition (3.2). Now, if the
distance in equations (2.9) and (2.17) are replaced by the tangent distance explained
in equation (3.12), we will get H+ = H j, W+ = Wj, and w+ = w j if w j +Wjθ is the
best matching prototype with correct class c(w j) = c(vi). Similarly, H−,W−,w− are

16 Chapter 3: Generalized Tangent Learning Vector Quantization

considered as best matching prototype with incorrect class, that is c(w j) 6= c(vi). And
later, we can update the translation as

∆w+
∝−2εt ·ξ+

µ (vi, f ,dH+) ·H+(vi−w+) (3.14)

∆w− ∝ +2εt ·ξ−µ (vi, f ,dH−) ·H−(vi−w−) (3.15)

with the translation rate 0< εt� 1 and ξ+
µ (vi, f ,dH+) and 0< εt� 1 and ξ−µ (vi, f ,dH−)

are same as equations (2.41) and (2.42) but instead of taking the matrix Q, we replace
it with matrix H. Here, we have used the derivative as

∂dH+(vi,w+)

∂w+
=−2H+(vi−w+) (3.16)

∂dH−(vi,w−)
∂w−

=−2H−(vi−w−) (3.17)

So in order to improve the separation of classes in the GLVQ, we now adapt the tangent
basis that uses SGD for W j as

∆W+
∝−2εb ·ξ+

µ (vi, f ,dH+) · (vi−w+)(vi−w+)TW+ (3.18)

∆W− ∝ +2εb ·ξ−µ (vi, f ,dH−) · (vi−w−)(vi−w−)TW− (3.19)

where 0 < εb� 1 is known as the learning rate of the tangent basis.

Initialization

It is recommended by Sascha and Villmann in [13] to use k-means initialization to each
and every class and number of means is considered as number of prototypes in that
particular class. We use the same methods that we have used in LVQ methods to de-
termine number of prototypes per class. Further, if we have knowledge on the training
dataset, we can use orthonormal bases to initialize the bases. But, if we do not have
any knowledge on dataset, then we have to use below steps to initialize the each basis
Bk:

• Using dissimilarity, we need to find all the data samples that belongs to correct
class and we will consider tk as the nearest prototype vector. secondly, we have to
find all the data samples that belongs to receptive field of tk using LVQ approach.

• So for these data samples, compute eigenvectors that belongs to largest eingen-
values of estimated covariance matrix.

• Use these eigenvectors as an initialization for basis Bk. If it is necessary, orthonor-
malize the remaining matrix.

Training

Chapter 3: Generalized Tangent Learning Vector Quantization 17

Same as GMLVQ model, we will train GTLVQ model by using GLVQ loss function as
in equation (2.22) and also we adapt all the learning rules same as GLVQ. For a training
sample (v,c(v)), we need to find the nearest correct prototype w+ and nearest incorrect
prototype w−. Once both the correct and incorrect prototypes are found, we update the
translation as given in equations (3.14) and (3.15) using the derivative as in equations
(3.16) and (3.17). Later, we have the learning rule of basis as equations (3.18) and
(3.19). Succeeding the changes and adjustments of bases, orthonormalizing bases
(W+ and W−) is important because to make sure that the supposed property W T

j Wj = I
is necessary for solving the equation (3.10) and we use Gram-Schmidt process for or-
thonormalization of bases.

The entire learning process of every bases is sort of projected gradient descent. That
is, there is a possibility that we apply an update which may lead to violation of the
assumed solution. This means, that the matrices are orthonormal bases and therefore
we use an appropriate strategy to project the updated bases back to solution space. If
we consider the learning rules, see equations (3.14), (3.15) and (3.18), (3.19), we can
notice that SGD updates affine subspaces in such a way that the correct affine subspace
are attracted towards similar data points of a class and pushes away the incorrect affine
subspace.

.

18

Chapter 4: Transfer Learning for LVQ 19

4 Transfer Learning for LVQ

4.1 Transfer Learning

Technologies such as Machine learning and Data mining have been achieving significant
success in most of the knowledge engineering areas including classification, regression
and clustering. However, many machine learning models work well under a common
assumption: the training data and test data are drawn from the same distribution. If
the distribution changes, most statistical models need to be rebuilt from the scratch
using newly collected sample data. It is impossible or very expensive in the real world
applications, to recollect the needed training data and rebuild the models. It would be
nice to reduce the need and effort to recollect the training data. In such cases, concept
of knowledge transfer or transfer learning between the task domains would be desirable.
The study of transfer learning is motivated by the fact that people can intelligently apply
knowledge learned previously to solve new problems faster or with better solutions. For
example, we may find that learning to recognize apples might help to recognize pears.
Transfer learning, in contrast, allows the domains, tasks and distributions used in training
and testing to be different.

As a example, consider the problem of sentiment classification, where our task is to
automatically classify the reviews on a product, such as brand of camera, into positive
and negative views. For this classification task, we need to first collect many reviews
of the product and annotate them. We would then train a classifier on the reviews with
their corresponding labels. Since the distribution of review data among different types of
products can be very different, to maintain good classification performance, we need to
collect a large amount of labeled data in order to train the review-classification models
for each product. However, this data-labeling process can be very expensive to do. To
reduce the effort for annotating reviews for various products, we may want to adapt a
classification model that is trained on some products to help learn classification models
for some other products. In such cases, transfer learning can save a significant amount
of labeling effort [6].

In this thesis, we concentrate only on transfer learning in Supervised learning (LVQ)
which was proposed by Sascha Saralajew and Thomas Villmann in [14] as explained in
the following sections.

20 Chapter 4: Transfer Learning for LVQ

4.1.1 Mathematical description of transfer Learning for Supervised
Learning

Let us assume K0 ⊆ Rn is the domain which has to be learned using supervised ma-
chine learning model and C is the classification co-domain, then the classification func-
tion is given as

f0 : K0 −→C (4.1)

and the approximation or estimation of f0 is given as

f0 : W −→ F(Rn,C)

where W is the set of parameters ω and F(Rn,C) is defined as space of functions
(F(X,Y) is defined as function from X onto Y). As discussed in the above sections,
here also we assume the set of training vectors V ⊆ K0 with cardinality #V and each
element vi ∈ V contains a class label c(vi). To find the approximation f0(ω) ≈ f0 for a
parameter set ω over W , the learning task have to be figured out depending on a given
source training dataset V = {(vi,c(vi))|vi ∈ V}. In general, the cost function E0 has to
be minimized when learning in dependence with the parameter set ω for a given training
data set V , i.e.,

ω = argmin
ω
′∈W

E0(V, f0(ω
′
)) (4.2)

is the minimization problem that have to be solved to get the approximation f0(ω) for a
classification function f0.

In the case of LVQ, we have parameter space W as

WLV Q = {ω ∈ P (span(V)) | #ω = M} (4.3)

where P(span(V)) is the power set of linear span(V) of V . The class label for prototypes
vectors wk ∈ ω are given as c(wk) ∈C.

4.2 Transfer Model based on concept of Functions

The domain K0 is also called as initial data space or source data space. In this thesis, we
assume transfer or target data space as Kg ⊆ Rn with a continuous transfer function

g : K0 −→ Kg (4.4)

which is generally not known. As we are determining transfer learning for classification,
we need to find the mapping and is given as

fg : Kg −→C (4.5)

Chapter 4: Transfer Learning for LVQ 21

with the co-domain C which is based on the knowledge of f0(ω). But in order to find the
above mapping, it is mandatory to use the concept of inverse mapping as explained by
Sascha Saralajew and Thomas Villmann in [14]. According to them, inverse mapping is
to learn a mapping of the transfer data to the initial data space such that the mapped
transfer data can be fed into the initial model. If we are able to identify this inverse
mapping, it is easy to transfer new data into intial data space. So that we can apply
initial model very easily.

Let the target training dataset be Yg = {(y j,c(y j)) | y j ∈ Yg ⊆ Kg} and a cost function
Eh for the transfer learning task (4.5). Now, the inverse mapping function h = g−1 is
determined by

h= argmin
h
′∈F(Rn,Rn)

Eh(Yg, f0(ω)◦h
′
) (4.6)

where ◦ is the function decomposition given as (f ◦g)(x) = f (g(x)) and the function fg
can be estimated using fg = f0(ω)◦h. In general, solving the minimization problem (4.6)
is very hard. So, the authors have considered the Taylor expansion of h at the center
x0 ∈ Kg in order to overcome the difficulty

Tx[h(x)]x=x0 =Ax[h(x)]x=x0 +O(x
2)

with the affine part
Ax[h(x)]x=x0 = h(x0)+H(x0)(x−x0) (4.7)

where

H(x0) =
∂h(x)

∂x

∣∣∣∣
x=x0

∈ Rn×n

is the Jacobi-matrix which describes the linear term andO(x2) is the bigO notation with
respect to x that addresses higher order terms.

Affine Function: For a matrix(linear transformation) H ∈ Rn×n and a vector(translation
transformation) h ∈ Rn, an affine function a(H,h) : Rn −→ Rn is defined as [14]

a(H,h)(x) = Hx+h (4.8)

The affine partAx[h(x)]x=x0 of Taylor expansion by using above definition of affine func-
tion can be written as

Ax[h(x)]x=x0 = a(H,h)(x0)

Using this new affine part, the transfer learning task (4.6) can be simplified in order to
find a pair (H,h) by

(H,h) = argmin
(H′ ,h′)∈(Rn×n,Rn)

Eh(Yg, f0(ω)◦a(H
′
,h
′
)) (4.9)

22 Chapter 4: Transfer Learning for LVQ

and estimation of fg is realized by fg = f0(ω)◦a(H,h).

Another approach to estimate transfer learning function g is to transfer the already
trained parameter set ω indirectly, so that task (4.5) is simplified directly. To explain
in the mathematical terms, we define the minimization problem as

t = argmin
t ′∈(F(W,W))

Eg(Yg, f0(t
′
(ω))) (4.10)

4.3 Transfer model based on the concept of Manifolds

Let us consider a parametric transfer function

γ : K0×Rr −→ KM ⊆ Rn (4.11)

instead of (4.4) with γ(x,θ)|θ=0r = x as a restriction where 0r is the r-dimensional zero
vector and γ(x,θ) is continuous with respect to θ . The restriction says that having zero
disturbance of the system does not make any change and the continuity assumption
defines that a minor change in θ leads to a minor change in the signal. Additionally, it
is important that the transfer function have to be a well-posed problem with respect to
θ . So, the authors in [14] have considered the parametric transfer function γ(x,θ) as a
manifold with respect to θ . Hence, in the reference to the transfer model based on the
functions, the transfer function g(x) can be written as an instance to the manifold γ(x,θ)
for a fixed θ ∗ ∈ Rr, i.e. g(x) = γ(x,θ ∗). So, as KM is the target data space in (4.1), we
therefore have, K∗

θ
= Kg ⊆ KM.

In the previous section, we have defined the transfer learning task based on simple
functions. In general and in fact, all the description explained based on simple functions
remains same for manifold approach if we fix θ in γ(x,θ). It is versatile for modelling of
transfer function for a arbitrary θ by the manifold (γ(x,θ)) as the intrinsic state of this
system is dynamic. Everytime the θ changes, we have to calculate transfer function g
or its inverse h everytime.

Transfer learning task based on manifolds can be seen as the mapping

fM : KM −→C (4.12)

depending on the knowledge of f0(ω), which is the classification model calculated for
θ = 0r. Therefore, the existence of such a mapping is supposed mathematically.

Let the target training data set be YM = {(y j,c(y j)) | y j ∈ YM ⊆ KM} and a cost
function EM for a transfer learning task based on the classification error, estimating the
manifold γ for an arbitrary space of functions F(Rn×Rr,Rn) remains hard. So therefore,

Chapter 4: Transfer Learning for LVQ 23

authors in [14] used Taylor expansion to calculate and simplify the problem. Additionally,
the authors have also assumed that manifold function γ(x,θ) is differentiable in both x
and θ . The Taylor expansion of manifold function γ(x,θ) which is centered at x0 and θ0

is given as

Tx,θ [γ(x,θ)]x=x0,θ=θ0 =Ax,θ [γ(x,θ)]x=x0,θ=θ0 +O(x
2,θ 2)

with

Ax,θ [γ(x,θ)]x=x0,θ=θ0 = γ(x0,θ0)+G(x0,θ0)(x−x0)+W(x0,θ0)(θ −θ0) (4.13)

with the affine part of the series and

G(x0,θ0) =
∂γ(x,θ)

∂x

∣∣∣∣
x=x0,θ=θ0

∈ Rn×n

W(x0,θ0) =
∂γ(x,θ)

∂θ

∣∣∣∣
x=x0,θ=θ0

∈ Rn×r (4.14)

are the Jacobi-matirces that are describing the linear terms.

Clearly equation(4.13) matches the shape of previously described general affine trans-
formation a(H,h) from (4.8) with H=G(x0,θ0) and h= γ(x0,θ0)+G(x0,θ0)x0+W(x0,θ0)(θ−
θ0) for a fixed θ .

Also, the authors from [14] have assumed that for a given δ > 0 there exists an ε-
neighborhood Uεx(x0) ⊆ K0 and Uεθ

(θ0) ⊆ Rr with εx > 0 and εθ > 0, such that the
approximation error fulfills the inequality

‖ γ(x,θ)−Ax0,θ0(x,θ) ‖< δ (4.15)

for all points x ∈ Uεx(x0) and θ ∈ Uεθ
(θ0) with respect to an appropriate norm ‖ . ‖. If

Uεx(x0) = K0 and Uεθ
(θ0) =Rr are valid, then the approximation of γ(x,θ) by the affine

part (4.13) is globally accurate with the error δ . If it is not globally accurate, then it will
be locally accurate for x ∈ Uεx(x0) and θ ∈ Uεθ

(θ0), i.e. x and θ are required to belong
to vicinities Uεx(x0) and Uεθ

(θ0), respectively, for a valid approximation.

The transfer function t(ω) for the parameter set ω is redefined from (4.10). But in order
to realize the approach efficiently for prototype based classifiers, the parameter set ω

should be a subset of the data space, i.e. ω ⊆ K0. So, the parametric transfer function
γ from (4.11) is also used to transform the prototype vectors wk ∈ ω according to

wk(θ) = γ(wk,θ) (4.16)

such that wk(θ) will become the prototype vector in the target data space KM. We use
affine approximationAx0,θ0(x,θ) of the Taylor expansion for γ(wk,θ) of particular choice

24 Chapter 4: Transfer Learning for LVQ

x0 = wk. Because of trivial fact that wk ∈ Uεx(wk) is valid, we get a valid approximation
for γ(wk,θ) in the vicinity of the prototype vector wk. Hence, without loss of generality
we take θ0 = 0r such that the affine approximation finally becomes

Awk,0r(wk,θ) = wk +W(wk)θ (4.17)

with the Jacobian W(wk) from (4.14). In order to highlight the affine approximation
of wk(θ), we will make use of the symbol wk(θ). And final tasks is to determine the
metrices W(wk) to model the approximation and in order to handle the new parameter
vector θ , it is important to extend the estimated classifier f0.

4.4 Basic LVQ for the Source Data Learning

As explained in the section (4.2), we suppose a source training data set V for GLVQ
and a dissimilarity measure d : Rn×Rn −→ R and the distance between data points
and prototypes is calculated using the squared Euclidean metric dE(v,w) = (v−w)2.
Later, we suppose M prototype vectors which forms the parameter set ω so that a class
C should have at least one prototype.

For a class, given data vector v is assigned in the GLVQ model f0(ω) : K0 −→C as

v
f0(ω)7−−−→ c(w(v,ω,C))

where
w(v,ω,C) = argmin

wk∈ω|c(wk)∈C
dE(v,wk)

determines the best matching prototype vector w(w,ω,C) for a given data vector v,
prototype vector set ω and set of class labels C. The cost function to be minimized in
(4.2) is

EGLV Q(V, f0(ω)) = ∑
v∈V

ψ(µE(v)) (4.18)

with ψ(z) being a monotonously increasing differentiable squashing function and usually
we choose sigmoid function as a squashing function. Using stochastic gradient descent
learning, prototype vectors are adapted for EGLV Q(V, f0(ω)) as

∆w±(v) ∝
∂ψ

∂ µE

∣∣∣∣
µE(v)

.
∂ µE

∂d±E

∣∣∣∣
d±E (v)

.
∂d±E
∂w±

∣∣∣∣
w±(v)

(4.19)

for the prototype vectors w±(v) if the random training sample v ∈ V is given. The re-
maining algorithm of GLVQ stays same as explained in the previous section.

Chapter 4: Transfer Learning for LVQ 25

4.5 Transfer Learning for GMLVQ

Transfer learning for GMLVQ has been proposed by PAASSEN ET AL. in [2]. In that
paper, GMLVQ has been trained using the initial data which realizes the classification
model f0(ω). Then, the authors in [2] assumed a transfer function g according to (4.4)
in which the inverse transfer function h can be calculated globally by this linear transfer
learning model. In such a case, the inverse map h becomes a matrix H so that each
point v

′ ∈ Kg is mapped back to the source data space K0 by v = Hv
′
. Villmann and

Sascha in [14] have verified by taking the special choice h = 0n for the affine transfor-
mation a(H,0n) = H by considering equation (4.8). Hence, it is possible to fed v into
already learned classification model f0(ω).

In transfer learning, if the transformation is substituted into the dissimilarity measure
dΩ(v,w) = (Ω(v−w))2, then we have

dΩ,H(v
′
,w) = (Ω(Hv

′
−w))2 (4.20)

and hence, the classifier function of GMLVQ becomes

µΩ,H(y) =
d+

Ω,H(y)−d−
Ω,H(y)

d+
Ω,H(y)+d−

Ω,H(y)

Therefore, the transfer learning task (4.9) is given as

H = argmin
H′∈Rn×n

Eh(Yg, f0(ω)◦a(H
′
,0n))

= argmin
H′∈Rn×n

(
∑

y∈Yg

ψ(µ
Ω,H′ (y))+λ ‖ H

′
‖2

F

)
with the parameter set ω of the GMLVQ scheme is fixed. The scaled Frobenius norm
λ ‖H

′ ‖2
F plays as regularization term with λ ∈R+. The matrix H is adapted by a SGDL

using ∆H ∝
∂ψ

∂H . So, for that reason, the matrix H is defined initially as the identity In.
The main drawback of transfer learning for GMLVQ is that, it is possible to learn only
linear transformations.

4.6 Transfer Learning for GTLVQ

In this section, we will first explain about transfer learning for GLVQ and extend that to
GTLVQ. Authors in [14] have assumed that the parameter set ω is the set of prototypes
wk and the affine transformation as a(G,g) = Gx+ g according to (4.8) which is used
as a approximation of the transfer function g(x) = γ(x,θ ∗) for a fixed manifold param-
eter θ ∗. Same like previous section, if we substitute this affine transformation into the

26 Chapter 4: Transfer Learning for LVQ

dissimilarity measure dE , we obtain

dG,g(v
′
,wk) = (v

′
− (Gwk +g))2

where vectors v
′ ∈Kg and an arbitrary prototype wk ∈ω . The cost function Eg(Yg, f0(a(G,g)(ω)))

with the target training data set Yg to find the pair (G, g) is given as

(G,g) = argmin
(G′ ,g′)∈(Rn×n,Rn)

Eg(Yg, f0(a(G
′
,g
′
)(ω)))

= argmin
(G′ ,g′)∈(Rn×n,Rn)

(
∑

y∈Yg

ψ(µG′ ,g′ (y))

)
and we suppose that affine part a(G,g) is globally accurate approximation.

The matrix G and the vector g in GLVQ can be adapted by a SGDL scheme using
∆G ∝

∂ψ

∂G and ∆g ∝
∂ψ

∂g gradients. In order to calculate the first value of G, we have to use

the formula G = ∑[Yg](∑[ω])−1 where ∑[S] denotes the matrix that is generated after
sorting the eigen vectors (i.e. normalized to the unit length) of the empirical covariance
matrix of a set S⊂ Rn with respect to corresponding eigen values.

In the next step, we illustrate that each prototype wk ∈ω of GLVQ model as an instance
of the manifold wk(θ) = γ(wk,θ). Then, the manifold distance is

dM(v,wk(θ)) = min
θ∈Rr

dE(v,γ(wk,θ))

and it is also called as single-sided manifold distance of a data point v to the manifold
wk(θ).

We calculate wk(θ) by the affine part wk(θ), see (4.17), the respective Taylor expan-
sion. We have also discussed in section (4.3) that this approximation wk(θ) is locally
accurate for θ ∈ Uk

εθ
(0r). If we substitute affine part into dE , we have

drT (v,wk(θ)) = min
θ∈Uk

εθ
(0r)

dE(v,wk +Wkθ) (4.21)

which is said to be restricted tangent distance [15]. If we insert the Taylor expansion
that is globally accurate in (4.21), we can simplify the restricted tangent distance as

dT (v,wk(θ)) = min
θ∈Rr

dE(v,wk +Wkθ) (4.22)

which is called as single-sided tangent distance [1]. In order to solve the minimization
problem, (4.22) has to be solved and it is given as

θ = WT
k (v−wk)

Chapter 4: Transfer Learning for LVQ 27

having WT
k Wk = Ir is valid, i.e. for a subspace described by Wk, an orthonormal basis

has been assumed. So, if we substitute the above equation in (4.22), we will have

dT (v,wk(θ)) = (Pk(v−wk))
2

where Pk = In−WkWT
k is the orthogonal projector onto the complement subspace de-

fined by the basis Wk.

Transfer learning task (4.12) with a given source GLVQ model f0(ω) and the target data
set YM is acquired by inserting dT into f0(ω). Consequently, the cost function of GLVQ
in transfer learning is

EM(YM, f0(w(ω))) = ∑
y∈YM

ψ(µT (y))

where w(ω) is the notation of transformation of prototype vectors. As in GMLVQ, we
again use SGDL to optimize the above cost function EM in order to learn the transfor-
mation matrix Wk for each prototype according to ∆Wk ∝

∂ψ

∂Wk
.

So, as an extension of GLVQ, GTLVQ which was explained in the above section 3.2 and
is proposed by Villmann and Saralajew in [13] . For the transfer learning of GTLVQ, the
author in [14] have assumed that both the training data V and transfer data YM are
available at the same time. Hence, the overall training data set is VM = V ∪YM. The
only difference for the transfer learning of GLVQ and transfer learning of GTLVQ is that
in GTLVQ method, both the vector wk and matrix Wk are determined together at the
same time, i.e. the transformation wk(θ) is learned directly.

28

Chapter 5: Experimental Results 29

5 Experimental Results

In this chapter, we will be discussing about the different experiments that are conducted
and their results with respect to LVQ models. We will compare the results of trans-
fer learning when applied to GMLVQ model and transfer learning applied to GTLVQ
model.

The experiments were performed over two datasets, first is the synthetic dataset and
the second is on MNIST dataset. We have considered just a part of MNIST dataset and
applied the above models on it.

For implementation, we have considered batch gradient descent learning and our dataset
has been splitted using train_test_split with the test_size of 33% in synthetic data and
we have considered just 18000 values out of 60000 from MNIST dataset for training and
for testing we have considered 3000 values out of 10000 values.

We have used following system requirements to implement GMLVQ, GTLVQ and trans-
fer learning technique:

• Python 3.7
• Matplotlib
• Tensorflow
• Keras

We are doing these experiments in order to check which algorithm works better when
transfer learning technique is applied. By applying these models to the two datasets,
we have observed that how different values and different datasets affect our results in
terms of accuracy.

5.1 Experimental Results

The experimental results which were performed on the two datasets are discussed in
the following sections. So, to build the models using LVQ-based approaches, we need
data v and class labels c(v). In the below sections, we will first discuss about the results
of models applied on synthetic data and later we will discuss about MNIST dataset.

5.1.1 Synthetic Data

We have considered randomly generated two-dimensional multivariate normal data with
six clusters and generated 100 data samples for each cluster as shown in Fig.5.1

30 Chapter 5: Experimental Results

Figure 5.1: Multivariate normal data (Synthetic data)

We have used train_test_split for splitting data and the size of test_data is 33%. For the
transfer learning task, we have considered all the above as a source data and for the
target data, we have used transformation as rotating the data using some angle for the
same data. Further, this dataset is been used for examining the results for GMLVQ and
GTLVQ models.

GMLVQ using Synthetic data

As discussed above, we have taken data as a vector v with class labels c(v). So to
represent the data, we initialized the set of prototypes w with the class labels c(w).
Further, we have used the Euclidean distance to calculate the distance between data
and prototypes. We have calculated also the value of cost function and updated the
value of cost function by minimizing the error. Fig. 5.2, explains about the training of
the GMLVQ algorithm using 1 prototype per class with a learning rate = 0.001 with the
accuracy of 93%.

Figure 5.2: Classification of synthetic data using GMLVQ algorithm

GTLVQ using Synthetic data

Similar to GMLVQ algorithm, we will be using the same data, the set of prototypes

Chapter 5: Experimental Results 31

and we will calculate the cost fucntion. The Fig.5.3 explains the training of GTLVQ
algorithm using 1 prototypes per class with learning rate = 0.001 and we have received
the accuracy of 95%.

Figure 5.3: Classification of synthetic data using GTLVQ algorithm

Transfer Learning for GMLVQ model

We have considered the 100 data samples for each cluster in source data as D0 and
for the target data, we have considered affine transformation of the source data as
g(α) : K0 −→ Kg(α) as

v
g(α)7−−→ R(α)(v− t)+ t (5.1)

in which t = (6,5)T as a fixed translation (vector shift) and R(α) is the linear mapping is
taken as a rotation

R(α) =

(
cosα sinα

−sinα cosα

)

We have considered Ω = I2 as defined in (4.20) and it is fixed throughout the training. In
this thesis, for the experiments, we have considered α ∈ {78◦,144◦,205◦,294◦}. The
dataset looks like in Fig. 5.4, Fig. 5.5, Fig. 5.6, Fig. 5.7 after the transformations.

Figure 5.4: Target data for the transfer learning using transformation of 78◦

32 Chapter 5: Experimental Results

Figure 5.5: Target data for the transfer learning using transformation of 144◦

Figure 5.6: Target data for the transfer learning using transformation of 205◦

Figure 5.7: Target data for the transfer learning using transformation of 294◦

Now, as explained in section(4.5), we will apply transfer learning technique for GMLVQ.
Firstly, we have trained transfer learning for GMLVQ by considering one prototype per
class on the training source dataset. The accuracy of all the transformations are pro-
vided in the following table 5.1.

78◦ 144◦ 205◦ 294◦

GMLVQ 94.9% 93.9% 93.9% 95.4%
GMLVQ for transferred data 75.2% 94.9% 61.6% 78.7%

Table 5.1: Accuracy of GMLVQ and GMLVQ for transferred data using different transformations

Transfer Learning for GTLVQ model

Chapter 5: Experimental Results 33

Same as GMLVQ, we have considered 100 samples for each cluster in source data
as K0 and for the target data, we have considered affine transformation of the source
data. We have also considered Ω = I2 as defined in (4.20) and it is fixed throughout
the training. Same as GMLVQ, we have considered α ∈ {78◦,144◦,205◦,294◦} and
the images are same as shown above. We have trained transfer learning for GTLVQ by
considering one prototype per class on the training source dataset. The accuracy of all
the transformations are provided in the following table 5.2.

78◦ 144◦ 205◦ 294◦

GTLVQ 94.9% 93.9% 93.9% 95.4%
GTLVQ for transferred data 85.3% 95.9% 85.8% 99.4%

Table 5.2: Accuracy of GTLVQ and GTLVQ for transferred data using different transformations

Comparison of Transfer learning of GMLVQ and GTLVQ

We have trained the two models (GMLVQ and GTLVQ) using transfer learning using the
source and training datasets. We can clearly observe that GTLVQ approach performed
very good when compared with GMLVQ when transfer learning at Yg(144◦) for GTLVQ
reflects the class distribution very well , because the model is able to learn an affine
transformation that consists of both linear and a shift term.

As we have considered manifold approximation for prototypes, the structure of manifold
is taken as γ(v,α) = g(α)(v) where γ(v,α) is a transfer function and α plays the role
of parameter vector θ of the manifold. Manifold here is the rotation R(α) at a center
t. In this experiments, we have estimated that the manifold that is based on a proto-
type vectors wk ∈ ω of the sources GMLVQ and GTLVQ models (f0(ω)) by adapting
orthonormal bases Wk ∈ R2. So, in order to train the transfer models, we have consid-
ered the overall training data set, i.e. VM = V ∪Yg. As we can observe from the 5.1
GMLVQ is not able to perform good when learning the affine transformation. For the
target data, we have considered transformations as explained in the above paragraph,
the accuracy is low when compared to source data because source data does not have
any transformations applied.

After training GTLVQ model, we have achieved a classification training error of 7.6%
and a classification test error of 8.6% where as for GMLVQ model, we have achieved
a classification training error of 7.6% and a classification test error of 31.4%. We can
clearly observe the good generalization performance when GTLVQ model is applied.

5.1.2 MNIST Dataset

We will try to test GMLVQ and GTLVQ models and transfer learning technique for GM-
LVQ and GTLVQ. So, we have considered MNIST dataset of handwritten digits which

34 Chapter 5: Experimental Results

contains 70,000 black and white images representing the digits 0 to 9 having 10 classes
and the images were centered in 28× 28 pixels for the testing. The entire data has
been split into 60,000 training images and 10,000 testing images as shown in the below
Figure 5.8 and this figure is not having the labels.

Figure 5.8: Digit images with 28 × 28 pixels

We have not applied any of the preprocessing techniques to the dataset before training
but we have rescaled images which lies in between 0 and 1 and the normalization have
been applied only for the data visualization. We have trained GMLVQ and GTLVQ by
considering only one prototype per class. The learning rate that we have considered is
0.001 and we have chosen r = 7 for the dimension of tangent basis which is maintained
equally to all of the prototypes. We have used k-means initialization for initializing the
prototypes and we have used stochastic gradient descent to minimize the error in the
cost function.

For the source data, we have considered 19,000 images which are the variants of digits
0,1,2. For the target data we have considered the digits 1,2,4 but with the data noise
of 5% and we have rotated the images with the angle of 40◦ which can be said as the
transformation. We have considered the variants of digits 0,1,2 for the source data and
the variants of digits 1,2,4 for the target data as shown in below figures 5.9 and 5.10 .

Chapter 5: Experimental Results 35

Figure 5.9: Digits considered for source data with 28 × 28 pixels

Figure 5.10: Digit considered for target data with 28 × 28 pixels

The accuracy rate we found was quite impressive. The accuracy of GMLVQ for the

36 Chapter 5: Experimental Results

MNIST dataset and the accuracy of GMLVQ after the transfer learning technique applied
is 87.5% and 90.5%. The accuracy of GTLVQ for the MNIST dataset and the accuracy of
GTLVQ after the transfer learning technique applied is 86.1% and 81.4%. The accuracy
of GTLVQ after applying the transfer learning is not that good when compared with
GMLVQ and the reasons we have observed are might be because of high dimensional
data and as there are many features.

Chapter 6: Conclusion and Future work 37

6 Conclusion and Future work

In this master thesis, we have discussed variants of LVQ’s and transfer learning for
GMLVQ and GTLVQ. These algorithms have been compared using practical results and
we have analysed on different datasets. We run the algorithms on the preprocessed
dataset(MNIST dataset) and synthetic dataset. Further, we investigated the results from
the mentioned algorithms and compared them in order to see which algorithm gives the
best result on our dataset.

In the beginning we have created synthetic data and trained GMLVQ algorithm and
received the accuracy of 93%. Later, we have trained the same dataset using GTLVQ
algorithm and got the accuracy of 95%. We have also trained the transfer learning for
GTLVQ and GMLVQ on the datasets and the accuracies were given in the tables 5.1
and 5.2.

Later, we have applied the models on MNIST dataset by considering 3 digits and their
variants as source data. On the other side, we have considered again 3 digits and
added the data noise and changed the angle of images as transformations for the target
data. After successfully running the models on huge MNIST dataset, the accuracy is
so impressive and we have observed the results are between 85%− 90%. From the
experimental results, we have observed that GTLVQ works better for both small and
huge dataset and provides the better results.

One conclusive evidence obtained by these experimental results is that GTLVQ per-
forms much better than GMLVQ. Consequently even after applying the transfer learning
technique, we can observe that GTLVQ performs much better than GMLVQ and one
reason is that tangent bases are adapted in GTLVQ. The main advantage of transfer
learning is that if the data dimension is large, we will have the lower computational com-
plexity and hence we have to transform the prototypes only once.

The work performed in this thesis provides the basis for the future, that is a theoreti-
cal and practical comparison between GMLVQ and GTLVQ when the transfer learning
technique is applied. Although it takes so much of time to run the huge dataset using
the transfer learning technique, it is suggestible that at least it will be easy to train when
the new data have been added to the already trained data. GTLVQ has been turned out
to be a powerful classifier but due to computational constraints, it could not be deeply
explored. This could be fuel for future research.

38

Appendix : Bibliography 39

Bibliography

[1] B. Hammer B. Paassen, A. Schulz. Learning discriminant tangent models for hand-
written character recognition. Internatonal Conference on Artificial Neural Net-
works (ICANN*95), 2:585–590, 1995.

[2] B. Hammer B. Paassen, A. Schulz. Linear supervised transfer learning for gener-
alized matrix lvq. Proceedings of the Workshop New Challenges in Neural Com-
putation 2016, pages 11–18, 2016.

[3] Barbara Hammer and Thomas Villmann. Generalized relevance learning vector
quantization. Neural Networks, 15(8):1059–1068, 2002.

[4] Andreas Holzinger. Introduction to machine learning knowledge extraction (make).
Machine Learning and Knowledge Extraction,, 1:1–20, 2017.

[5] Eyke Hüllermeierr. Towards analogy-based explanations in machine learning.
2020.

[6] M. Dredze J. Blitzer and F. Pereira. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. pages 432–439, 2007.

[7] Robert Tibshirani Jacob Bien. Prototype selection for interpretable classification.
Annals of Applied Statistics 2011, 7(2):2403–2424, 2016.

[8] Teuvo Kohonen. Learning vector quantization. In Self-organizing maps, chapter
Learning Vector Quantization, pages 175–189. Springer, 1995.

[9] Qiong Liu and Ying Wu. Supervised learning. Encyclopedia of the Sciences of
Learning, page 3243–3245, 2012.

[10] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[11] David Nebel, Marika Kaden, Andrea Villmann, and Thomas Villmann. Types of
(dis-) similarities and adaptive mixtures thereof for improved classification learning.
Neurocomputing, 268:42–54, 2017.

[12] Sascha Saralajew. New prototype concepts in classification learning. page 198,
2020.

[13] Sascha Saralajew and Thomas Villmann. Adaptive tangent distances in general-

40 Appendix : Bibliography

ized learning vector quantization for transformation and distortion invariant classifi-
cation learning. 2016 International Joint Conference on Neural Networks (IJCNN),
pages 2672–2679, 2016.

[14] Sascha Saralajew and Thomas Villmann. Transfer learning in classification based
on manifold models and its relation to tangent metric learning. 2017 International
Joint Conference on Neural Networks (IJCNN), pages 1756–1765, 2017.

[15] Sascha Saralajew and Thomas Villmann. Restricted tangent distances for local
data dissimilarities. 2018.

[16] Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices
in learning vector quantization. Neural computation, 21(12):3532–3561, 2009.

[17] Patrice Simard, Yann LeCun, and John Denker. Efficient pattern recognition using a
new transformation distance. Advances in Neural Information Processing Systems,
5:50–58, 1993.

[18] Atsushi Sato Keiji Yamada. Generalized learning vector quantization. Touretzky
DS, Mozer MC, Hasselmo ME (eds) Advances in neural information processing
systems, page 423–429, 1996.

Erklärung 41

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, im January 2022

HSMW-Thesis

