
MASTER THESIS

Ms.
Shaghik Amirian

Probabilistic Micropayments

2022

Faculty of Applied Computer Sciences and
Biosciences

MASTER THESIS

Probabilistic Micropayments

Author:
Shaghik Amirian

Study Programme:
Applied Mathematics for Network & Data Sciences

Seminar Group:
MA19w1-M

First Referee:
Prof. Dr. Klaus Dohmen

Second Referee:
Dipl. Volkswirt Mario Oettler

Mittweida, May 2022

Acknowledgement

I would like to acknowledge my supervisor, Professor Dr. Klaus Dohmen, for his guid-
ance, kind support, and Mr. Mario Oettler for feedback throughout this thesis research.
I am also thankful to my colleague Mr. Bafna for helpful suggestions. Lastly, my parents
deserve endless gratitude for their loving support in this journey.

Bibliographic Information

Amirian, Shaghik: Probabilistic Micropayments, 63 pages, 10 figures, Hochschule Mittweida,
University of Applied Sciences, Faculty of Applied Computer Sciences and Biosciences

Master Thesis, 2022

Abstract

Probabilistic micropayments are important cryptography research topics in electronic commerce.
The Probabilistic micropayments have the potential to be researched in order to obtain efficient
algorithms with low transaction costs and high speeding computer power. To delve into the
topic, it is vital to scrutinize the cryptographic preliminaries such as hash functions and digital
signatures. This thesis investigates the important probabilistic methods based on a centralized
or decentralized network. Firstly, centralized networks such as lottery-based tickets, Payword,
coin-flipping, and MR2 are described, and an approach based on blind signatures is also dis-
cussed. Then, decentralized network methods such as MICROPAY3, a transferable scheme on
the blockchain network, along with an efficient model for cryptocurrencies, are explained. Then
we compare the different probabilistic micropayment methods by improving their drawback with
a new technique. To set the results from the theoretical analysis of different methods into some
context, we analyze the attacks that reduce the security and, therefore, the system’s efficiency.
Particularly, we discuss various methods for detecting double-spending and eclipse attacks oc-
currence.

I

I. Contents

Contents . I

List of Figures . II

List of Tables . III

1 Introduction. 1

1.1 Thesis Research Goal . 1

1.2 Probabilistic micropayments through time . 2

1.3 History of Micropayment System. 2

1.4 Thesis Structure . 3

2 Cryptographic Preliminaries . 4

2.1 Hash Function. 4

2.2 Data Structure . 4

2.2.1 Linked List . 5

2.2.2 Merkle Trees . 5

2.3 Consensus Mechanism in blockchain. 6

Proof of work model . 7

Properties for Proof of Work schemes . 7

Hashcash . 9

2.4 Digital signature . 11

Elliptic Curve . 11

Elliptic curve discrete logarithm problem . 12

2.4.1 Elliptic curve digital signature scheme . 14

2.4.2 ElGamal digital signature scheme . 15

Key generation . 15

Signature generation . 15

Verification process . 15

Correctness . 16

2.4.3 Schnorr digital signature scheme . 16

Key generation . 16

I

Signing process . 17

Verifying process . 17

3 Analysis of various methods in probabilistic micropayments . 18

3.1 Micropayment . 18

3.2 Probabilistic Micropayment . 19

Overview of Probabilistic Micropayment Protocol . 19

Blockchain scalability . 20

3.3 Analysis of various methods for probabilistic micropayments . 21

3.3.1 Payword . 21

3.3.2 Electronic Lottery Tickets scheme . 23

3.3.3 Efficient Coin-Flipping scheme . 24

3.3.4 MR2 Scheme . 26

3.3.5 Blind signature scheme based on discrete logarithm . 28

Blind signature for modification of DSA. 29

3.4 Analysis of different methods for probabilistic micropayments based on decentralized

network . 30

Decentralized Network . 30

Decentralized anonymous micropayments (DAM) . 31

3.4.1 MICROPAY: Abstract model in cryptocurrency system for probabilistic micropayments 31

MICROPAY3 . 32

3.4.2 Probabilistic Micropayments with a transferable scheme in blockchain 34

Transferable scheme design steps . 34

Proportional fee scheme . 37

3.4.3 Efficient and double-spending resistance micropayment method for cryptocurrencies 37

The efficient micropayment scheme . 38

4 Attack analysis in probabilistic micropayment methods . 41

4.1 Detection method for double-spending attacks . 43

4.2 Double-spend attack with concurrent of eclipse attack in blockchain 44

4.3 Adversary attacks . 46

5 Conclusion . 49

Summary of different methods for micropayments and probabilistic micropayments 50

I

Future Work . 50

Bibliography . 51

A Implementation: Python Code . 55

A.1 Probabilistic Micropayment scheme’s: Payword. 55

A.2 Merkle Tree. 56

A.3 Elliptic Curve Addition operation . 57

A.4 Decentralized vs.Centralized visualization. 59

B Mathematics . 61

B.1 Elliptic Curves: Weierstrass Form for Singular & Non-singular Curves 61

II

II. List of Figures

1.1 Probabilistic Micropayments History . 2

2.1 Merkle Tree Example . 6

2.2 Timeline of consensus algorithm for evolution [1] . 7

2.3 Illustration of digital signature and verification [2] . 11

3.1 Example of Probabilistic micropayment . 19

3.2 Visualization of centralized versus decentralized networks. 31

3.3 Outline of probabilistic micropayment with transferable scheme [3] . 35

4.1 Double-spending outline [3] . 42

4.2 Double-spending Attack scheme [3] . 42

5.1 Summary of various methods . 50

III

III. List of Tables

2.1 Example of finding number of points on Elliptic curve . 12

3.1 Example of Transaction Fees in different structures in PayPal . 18

3.2 Summary of lottery ticket scheme . 24

3.3 Summary of output sequence of Coin-flipping scheme . 26

3.4 Summary of MR2 scheme . 27

3.5 Traffic costs of different schemes . 27

3.6 Features summary for probabilistic micropayments . 28

Chapter 1: Introduction 1

1 Introduction

Micropayment structures are based on electronic payment methods, particularly small
money for virtual goods and services. One of the significant benefits of micropayment
is handling an arbitrarily small amount of payments over the internet by exchanging the
large advance payments with the small fraction of original fees, such as a small number
of purchases involving a single-day subscription to a newspaper and other online ser-
vices. Micropayments protocols consist of basic parties as a user, recipient, and trusted
third party. Despite the high potential of micropayment systems, very few techniques
have been successful. Continual surveying of successful methods is necessary for the
case of real applications, and therefore, it is essential to allocate cryptography research
to analyze various micropayment approaches, particularly probabilistic micropayments.
Probabilistic micropayment schemes are introduced by Rivest and Wheeler to overcome
issues related to high transaction costs in micropayments [4, 5]. The key insight is that
lottery tickets are considered as tickets’ expected value in the micropayment system.
Participants control bank settlements by configuring the winning probability of tickets
and payouts. Besides that, fair payment is secured as long as many tickets are pro-
cessed and received in the long run, as per the law of large numbers in probability.
Finally, the concept of a bank is replaced by blockchain so that instead of depending on
the bank, each new node is analogous to a new member in the blockchain, supporting
a smart contract deployment on a blockchain that is a digital agreement programmed
to handle winning tickets and maintain the cryptocurrencies. Hence, probabilistic mi-
cropayments have a huge potential for researching their mathematical mechanism in
blockchains.

1.1 Thesis Research Goal

There is a growing need for an effective and efficient probabilistic micropayment tech-
nology for e-commerce products and services. This thesis studies detailed probabilistic
micropayments methods with the existing proposed solutions in micropayment technolo-
gies to overcome security, lack of anonymity, and performance issues.
This thesis is aimed at analyzing underlying mathematical and cryptographic aspects
of probabilistic micropayments with respect to various methods in the centralized and
decentralized networks along with studying possible attacks such as double spending in
the network.

2 Chapter 1: Introduction

1.2 Probabilistic micropayments through time

Fair amount of history related to probabilistic micropayments protocols are illustrated in
figure 1.1.

Figure 1.1: Probabilistic Micropayments History

1.3 History of Micropayment System

The history of micropayment dates back to 1960, when the micropayment term was
initiated by Theodor Holm Nelson [6]. Nelson invented hypertext systems and has a
significant role in network growth and web development concepts. During 1990 there
was a huge interest in making micropayments a standard transaction method. In 1989
Chaum presented the electronic cash concept. Based on Chaum’s electronic cash, de-
velopers of the micropayment system initiated the cash in electronic form, denoted as
tokens, digital currency, E-Coins, E-cash, and operating it on Internet [7].
Micropayment systems are classified based on either being an account-based system
or not. Until the end of the 1990s, the illustrated micropayment systems were account-
based. The account-based method is equivalent to a banking system that transfers
money from the user account to the merchant account. Nonetheless, the account-based
methods, denoted as the first generation of micropayments, are broken down due to se-
curity, speed, and transaction cost.
The next generation of micropayments systems unfolded in 2000. The new approaches
improve the issues related to security, attacks, transaction cost, and double-spending in
the network. For this reason, new techniques based on probability for micropayments
evolved as a suitable solution to enhance the methods regarding small payments.
Probabilistic micropayments have been an interesting section for the cryptography sci-
entist community, including Rivest and Wheeler, along with others who are actively work-
ing in this area [4,5]. In 1996, Wheeler proposed the transaction using bets [5]. Then, in
1997 one of the most significant probabilistic micropayment algorithms was presented

Chapter 1: Introduction 3

by Rivest as ”Electronic lottery tickets” [4]. Pass and Shelat’s research on anonymous,
decentralized systems for micropayments is combined with probabilistic micropayments
to secure anonymity in the blockchain protocols [8]. Furthermore, in 2018 there is an
ongoing Orchid payment project that works on cost and time efficiency for probabilistic
micropayments in Ethereum blockchain [9].

1.4 Thesis Structure

This thesis research is structured as follows: Chapter 1 provides the introduction and
historical background of probabilistic micropayment systems. In chapter 2 the crypto-
graphic preliminaries are explained, including hash functions, Merkle trees, proof of work
model, and digital signatures. In Chapter 3, various probabilistic micropayment methods
are compared. Chapter 4 presents the attack analysis in probabilistic micropayments
such as double-spending attacks. Finally, chapter 5 provides conclusions based on
comparing various probabilistic methods and outlines the possible future research.

4 Chapter 2: Cryptographic Preliminaries

2 Cryptographic Preliminaries

2.1 Hash Function

Hash functions have a significant role in the security protocol of blockchains, mining
operations, and identity recognition in the Bitcoin and Ethereum networks. Principally
in the blockchain, the hash function connects the blocks firmly with high security in the
blockchain. The most common hash functions implemented in different protocols are
secure hashing algorithms such as SHA1, SHA2, SHA3, and message digest as MD2,
MD4, and MD5 with the output of 128-bit as message-digest value. Depending on the
security level required, different hashing methods are applied.
Hashing is an operation undertaken to map any arbitrary size of input data to a fixed
length by applying a hash function. The hash function is a mathematical method that
calculates hashed value for the given data in the form of strings or digits [10]. Moreover,
the hash function is a one-way function meaning that the hash value is computed for the
given input, but finding the inverse is not feasible.

Definition 2.1 (Hash Function) Let H(x) denotes a hash function, where x is an input
of arbitrary finite length bit strings, and it returns fixed size hash value Y [10].

Hash-Function =

{
{0,1}∗→{0,1}n

Y = H(x)

where ∗ is termed as Kleene star. Calculation of hash function is fast as it renders
outputs in linear time. In contrast, the inversion of a hash function is computationally
infeasible as it renders the input of the given output in exponential time. Moreover, it
is important that the hash function is collision-resistant. To put it another way, if there
are two different inputs as x1 and x2, the computed hashed value are two distinct output
strings [11].
In cryptographic applications, hash functions are implemented in digital signature schemes
to deliver data integrity to recognize the altering of the message. Moreover, hashing is
useful in both Bitcoin and Ethereum protocols by securing the transactions in different
data structures.

2.2 Data Structure

It is vital to understand how the data is organized and stored in blockchain technology.
Blockchain transactions operate faster with high security. In blockchains, data are stored
in blocks and are immutable. To obtain immutability, it utilizes consensus and crypto-

Chapter 2: Cryptographic Preliminaries 5

graphic methods. The data is stored in distributed nodes, and this technology is denoted
as “Distributed Ledger Technology (DLT)” [12]. In order to figure out more clearly, we ex-
plain how the data structures are utilized and combined to organize blockchains. Data
storing is categorized as linear or non-linear. In the linear data structure, the data is
collected sequentially on top of each other such that each block is linked linearly. For
instance, linked list, arrays, and stacks. In the non-linear data structures, each data
block is connected to more than one data unit. Example of this data structure is graphs,
trees, and the Merkle tree.

2.2.1 Linked List

The linked list scheme is a sequence of blocks that includes data body and pointer in
each block, where the pointer directs to the previous or next block so that data blocks
are tight to each other by chains of pointers. There are two blocks exception in the linked
list structure, the first block (genesis block), as there is no block before it, and the last
block where a pointer is allocated to a NULL value [12].
The differences between blockchain and linked list data structure are as follows. A
hash function is used in the blockchain to define the previous block, whereas a linked
list utilizes a pointer function to determine the preceding node. Another difference is
that tampering and data manipulation is almost impossible in a blockchain, making it
a secure network. While in the linked list, data manipulation happens easily. As a
structure, blockchain is far more complex than a linked list.

2.2.2 Merkle Trees

The theory of Merkle trees is initiated by Ralph Merkle and patented in 1979 [13,14].

Definition 2.2 (Merkle Trees) In cryptography, a Merkle tree, also considered a hash
tree, is a data structure implemented for securely verifying the data. The Merkle tree is
inverted down where the leaf nodes are at the lowest part. While every leaf is labeled
by its hashed value of data blocks and non-leaf nodes contain the hashed value of its
corresponding child nodes [13].

In order to solve the technical hindrance related to storing and accessing the data in
the decentralized networks, Merkle trees are utilized. It resolves by securely sharing
and verifying transaction data among peers in the network. Satoshi Nakamoto has
implemented the Merkle trees in the Bitcoin blockchain system.

Example 2.3 (Blockchain transaction based on Merkle tree) In figure 2.1 we have a
block that contains 8 transactions denoted as (T l,T m,T n,To,T p,T q,Tr,Ti) in the form
of a Merkle tree.
On each transition, the hash is applied. Consequently, T l is hashed as h(l) and it

6 Chapter 2: Cryptographic Preliminaries

Merkle-Root

h(lmno)

h(lm)

h(l) h(m)

h(no)

h(n) h(o)

h(pqri)

h(pq)

h(p) h(q)

h(ri)

h(r) h(i)

Figure 2.1: Merkle Tree Example

continues till the 8th transaction. We have even nodes; however, it entails appending a
node to the end of the block, copying the last node if it is not an even node.
Take transaction hashes into pairs and perform the hash on that pair of hashes as h(lm).
Keep doing this process until all transactions meet in the single hash. This single hash
is called Merkle Root.

Properties of the Merkle tree are as follows:
Verification: Merkle tree includes the property of data integrity. Implementing a Merkle
tree indicates that there is no need to get through the whole transaction to verify a
particular transaction. Instead, it is only necessary to look through the branch on which
the transaction is on.
Merkle root: It is the root of the entire Merkle tree when the Merkle root gets plugged
into the block header, which is the part of the Bitcoin block and gets hashed in mining.
Merkle root for block invalidation: By accessing the Merkle root in the block header,
if we modify old transactions, that change reflects in the hash of transactions. Then the
modification cascades up to the Merkle root and causes changes in the value of the
Merkle root, which invalidates the block by tampering with it.
In the next section, we explain proof-of-work (PoW), which is a decentralized consensus
mechanism.

2.3 Consensus Mechanism in blockchain

Consensus mechanism is an essential foundation of blockchain with the aim of assisting
all the nodes in the network for verification of each transaction. There is a process to
validate the real transactions cryptographically. If the transaction is validated for other
nodes, they add the new block to the chain of the existing blocks. To guarantee all of
this, it is necessary to maintain a consensus mechanism in the network.

Chapter 2: Cryptographic Preliminaries 7

Figure 2.2: Timeline of consensus algorithm for evolution [1]

In figure 2.2, we illustrate the evolution of the consensus algorithm in the timeline. For
instance, some well-known consensus mechanisms are Proof of Work (PoW) utilized in
Bitcoin and former Ethereum. Proof of Stake (PoS), Proof of Authority (PoA), Byzantine
Fault Tolerance (BFT) are presented in the figure 2.2 [1].

Proof of work model

Proof of work protocol initially is proposed by Dwork and Noar [15]. The project goal is
to compute complex puzzles to provide authentication. There are several applications
for PoW, for instance, in the bitcoins transaction system, it leverages the PoW scheme.
Aside from bitcoin, the PoW scheme is used for identifying denial of a service attacks
and also being able to deter spam email. This concept is also termed client puzzle
protocol (CPP). In addition, Dwork and Naor proposed the utilization of PoWs function
in the computation of square roots modulo a large prime in Fiat Shamir Scheme [16].
Proof of Work (PoW) is a cryptographic algorithm, in which for the verification, the prover
delivers the particular level of computational process in a specific timeline [17].

Properties for Proof of Work schemes

To implement the proof of work schemes a pricing function is required for system eval-
uation. Computing pricing function f is relatively simple while finding inverse of f is
mathematically not feasible. Let F = { fs|s ∈ S} be a family of pricing function. For the
PoW scheme the collection of pricing function F = { fk|k ≥ 1} is selected where k is a
prime number in the length based on difference parameter. The difference parameter is
the same as the security parameter in cryptosystems.

We define the shortcuts in the proof of work scheme. A shortcut is analogous to the
one-way trapdoor permutation proposed by Diffie and Hellman [18]. By permutation we
mean that there exists a bijective mapping f : S→ S where S ∈ Zn and by giving x along
with public key it is easy to compute the f (x) while given y with public key it is difficult to

8 Chapter 2: Cryptographic Preliminaries

compute f−1(y).

The square roots modulo a prime p is implemented as given below.

• Indexing step Select a prime p of the length of 210 bits.

• Function defining step The function fp ∈ Zp and fp(x) =
√

x mod p.

• Verification step For every x,y, y2 ≡ x mod p is satisfied.

Another pricing function is based on Fiat Shamir’s scheme. A Hash function where the
range is the security parameter. The pricing function based on the Fiat Shamir scheme
is as follows:

• Indexing step:

1. Suppose N = pq based on two large prime integers as p and q

2. y1 = x2
1, y2 = x2

2,· · ·, yk = x2
k be the k2 modulo N where k is based on differ-

ence parameter

3. h is the hash function h : Z∗N×Z∗N →{0,1}k

4. Index s is (N,y1,y2, · · · ,yk,h) of length k+2

The square roots of x1,x2, · · · ,xk are considered as shortcuts

• Function definition step: Z∗N is the domain of fs. To find z and r2 the below
property is required to be satisfied.

1.

z2 = r2x2
k

∏
i=1

ybi
i (mod N) (2.1)

where each bi is a single bit in the hash function h(x,r2) = b1, · · · ,bk, and
fs(x) = (z,r2)

2. Verification step: For every x,z,r2 the h(x,r2) = b1, · · · ,bk is calculated and
check that equation 2.1 is satisfied.

3. Evaluation step Evaluation of fs without help of shortcut information is as
follows:

– To find fs(x) = (z,r2) we select b1, · · · ,bk ∈ {0,1}k and then compute
as follows:

B =
k

∏
i=1

ybi
i (mod N)

– select randomly z ∈ Z∗N

Chapter 2: Cryptographic Preliminaries 9

– Suppose r2 = z2

Bx2 mod N is defined. Repeat this process until
the equation of h(x,r2) = b1, · · · ,bk is satisfied

Hence, for evaluating fs, if there is no shortcut, the number of iterations is 2k. The
verification procedure requires k multiplication and one evaluation of the hash functions.
As suggested the best choice for k is 10 [15]. The proposed scheme by Dwork and
Noar in 1992 was based on a centralized network, including a secret key. However, for
today’s applications, decentralized systems are more practical.
One of the well-known PoWs algorithms is hashcash, introduced by Adam Back in May
1997 [19]. In the hashcash method, the sender provides a string whose cryptographic
hash begins with zeros. Therefore, a hashcash puzzle (proof of work puzzle) is quite
costly to solve, while verifying it has a relatively low cost.

Hashcash

The hashcash cost function is created to compute the cost related to the cryptographic
puzzle. Suppose a customer pays electronically for utilizing services on the server.
To verify this transaction, the client calculates a cryptographic puzzle. If the customer is
able to solve the determined puzzle, the client allows to generate the token as a con-
firmation. The token is verified by users in a peer-to-peer network denoted as publicly
auditable [19].
Time is an important concept required for the hashcash cost function to check if it is
solvable in an acceptable amount of time.
The probabilistic cost functions are :

• Bounded: The number of trials to solve the puzzle to generate valid tokens and
the domain of detecting tokens is limited.

• Unbounded: In a practical situation, the probability that a valid token will be gen-
erated is escalated more by performing more trials [15].

Hashcash scheme is categorized as follows:

• Interactive Hashcash: In this case, a challenge value is required to compute the
token sent by the server. The token is utilized to secure the connection between
the client and server.

• Non-interactive Hashcash: It is without server and challenge value. The non-
interactive model is applied in the proof-of-work algorithm.

The goal is to check if two sub-string bits are equal for the initial b bits of the hash values
which started with 0k = 000.........000︸ ︷︷ ︸

k times

. To explain the hashcash cost-function, we need

to define the following [19]:

10 Chapter 2: Cryptographic Preliminaries

1. s is a parameter for differentiating between service names.

2. b is the total number of bits of the left side of bit strings.

3. A≡b B this notation is for checking if the two sub-bit strings of A,B are equal from
the left side (indexed 0 to b) or not. The output is a Boolean value, being true or
false.

4. The notation ‖ is concatenation between two-bit strings.

5. x indicates random bit string.

6. If H(s‖ x) begins with b bits plugged in with zeros then output of V is true.

We explain two algorithms. The first is an interactive base between client and server,
and the next is non-interactive.

Interactive Hashcash Cost-function algorithm is as follows:

• Inputs are s,x, and output is Boolean (true, false).

• Step one: The C =Challenge(s,b) is calculated by server and send to the user.

• Step two: The user explore x as follows:

H(s‖C ‖ x)≡b 0k

• Step three: If H(s‖C ‖ x)≡b 0k output is true then users send (s,x) to server

• Step four: Server computes V = Evaluate H(s‖C ‖ x)

• Step fifth: If V = Evaluate H(s ‖C ‖ x) ≡b 0k as output is true, we return V ;
otherwise, we return false

Non-interactive Hashcash cost-function algorithm is as follows:

• Inputs are as (s,x) and Output is either true or false.

• Step one: User computes the H(s‖ x)

• Step two: User publicises (s,x)

• Step three: All nodes in the network calculate V = Evaluate(s ‖ x). If V ≡b 0k

then it returns true, otherwise false.

The Hashcash is a partial hash function, i.e., there exist many outputs beginning with
the same k zero bits. Suppose that clients identified the parameter x that satisfies
H(s ‖ x) ≡b 0k, and x is utilized several times. To avoid using x multiple times, we
append parameter time that adds a timestamp to x. Finally, birthday paradox in the case
of brute-forcing requires 2

k
2 operations to achieve x. It ensures that the cryptographic

puzzle yields either the exact or closest to the output in the polynomial-time [15].

Chapter 2: Cryptographic Preliminaries 11

2.4 Digital signature

The Digital Signature is a method to verify to improve the security of communications
and transactions. Cryptographic methods create digital signatures where encrypted
data exists to demonstrate the signer’s authenticity. For instance, Alice sends important
documents to Bob, and for this, Alice signs her documents with her private key. For this,
Alice needs to use a hash function to obtain a unique hash value where she utilizes her
private key to convey the hash digest into a digital signature. Then, Bob needs to verify
the digital signature with Alice’s public key. Hence, by utilizing the public key and new
hash digest, Bob verifies if the digital signature is valid or not.

Figure 2.3: Illustration of digital signature and verification [2]

Moreover, Digital signatures are utilized in Bitcoin and some other cryptocurrencies for
verifying transactions in the blockchain. In other words, digital signatures indicate the
ownership of a particular currency and the participation of each person in the specific
transaction [2].

Elliptic Curve

Elliptic curve cryptosystem (ECC) was introduced by Nael Koblitz and Victor Miller [20,
21]. The elliptic curve is comparable to discrete logarithm (DL) cryptosystems. Since the
elliptic curve is a broad topic, we focus on the useful properties required for cryptography
and blockchain. We define the elliptic curve on finite fields, which are important in
cryptography.

Definition 2.4 (Elliptic curve on finite fields) Suppose that p≥ 3 be a prime. An elliptic
curve on a finite field Fp is a set of all points (X ,Y) ∈ Fp in the form of the following

12 Chapter 2: Cryptographic Preliminaries

equation:
EC : Y 2 = X3 +AX +B (2.2)

where A,B ∈ Fp and the following inequality 4A3 +27B2 6= 0 holds in Fp. Together with
an imaginary point at infinity O .

E(Fp) = {(x,y) : x,y ∈ Fp satis f y Y 2 = X3 +AX +B}∪{O}

Question
Why we consider p≥ 3? Elliptic curve over F2 is crucial in cryptography since computers
are well suited for conducting calculation module 2. However if we consider elliptic curve
over F2, then E(F2) includes at most 5 points which is not practical for cryptography.
Question
Why does 4A3 +27B2 6= 0 hold ?
(See in appendix B in Eqn. (B.1))

Example 2.5 suppose EC: Y 2 = X3 + 3X + 1 indicate a finite elliptic curve on F7. In
order to obtain all the points on elliptic curve, it is required to solve the EC equation
of our example for all possible x values in the finite filed F7 = {0,1,2,3,4,5,6}. (Since
for some integer n ≥ 1 EC(Fn) ≈ Zn [22]). We need to list all values of X2 mod 7 and
all value of X3 + 3X + 1 mod 7 and then compare based on the table 2.1 to obtain the
points as follows:

X X3 +3X +1 X2

0 1 0
1 5 1
2 1 4
3 2 2
4 0 2
5 1 4
6 4 1

Table 2.1: Example of finding number of points on Elliptic curve

EC(F7 = {O,(0,1),(0,6),(2,1),(2,6),(3,3),(3,4),(4,0),(5,1),(5,6),(6,2),(6,5)}

Elliptic curve discrete logarithm problem

In order to explain elliptic curve discrete logarithm problem (ECDLP) we need to define
discrete logarithm problem (DLP) in a group G. For discrete logarithm it is required to
explain cyclic group and primitive root definitions.

Definition 2.6 (Cyclic group) Assume that G is a group and a ∈G. By assuming that G

Chapter 2: Cryptographic Preliminaries 13

is a finite group with order(G) = n. If the order of element a is similar to order of group
G such that order(G) = order(a) = n then element a is the generator of group G. So
G =<a> where G denoted as a cyclic group.

Definition 2.7 (Primitive root) Assume p is a prime number and there exist an element
g ∈ {1, · · · , p−1} such that its powers covers every element of Z∗p given as:

Z∗p = {g,g2,g3, · · · ,gp−1}

Such elements g possessing this property are termed as primitive roots of Z∗p [2]. Par-
ticularly, g is a primitive root of p if and only if g is the cyclic group Z∗p generator such
that:

g j 6= 1 (mod p) f or j = 1,2, ..., p−2

Question Why j = p−1 is not considered?
Since when j = p−1

gp−1 = 1 (mod p)

Because of Fermat’s little theorem, which indicates as following [23]:

Definition 2.8 (Fermat’s little theorem) If p is a prime number and for any integer a ∈ Z
where a 6= 0 (mod p)

ap−1 = 1(mod p) (2.3)

Definition 2.9 (Discrete logarithm) Assume p is a prime number and g be a primitive
root modulo p. Then the discrete logarithm modulo p of h is based on the smallest
positive integer x that is as follows:

gx ≡ h (mod p)

where discrete logarithm is denoted as logg(h) (mod p)

Definition 2.10 (Discrete logarithm problem) Let G be a group, p a prime number and
g,h ∈ G where g is a primitive root of p, 1 ≤ h ≤ p− 1. The problem states that there
exists 1 ≤ x ≤ p− 1 such that gx = h (mod p) where x = loggh is denoted as discrete
logarithm of h to base g.

DLP is also generalized to arbitrary finite cyclic groups such as groups on a finite elliptic
curve. We explain DLP for our further studies, which ensures the security of cryptosys-
tems.

In elliptic curves, we include a group of points over a finite field Fp. Suppose P,Q ∈

14 Chapter 2: Cryptographic Preliminaries

EC(Fp) such that it satisfies (Q,P) as follows:

Q := P+P+ · · ·+P︸ ︷︷ ︸
n-additions of point P on EC

then as per the discrete logarithm in elliptic curves n is the smallest positive integer as
n = logP(Q).

2.4.1 Elliptic curve digital signature scheme

Elliptic curve digital signature algorithm (ECDSA) was initiated by Scott Vanstone as a
solution to the requirement of the National Institute of standards and technology (NIST)
[24]. To apply ECDSA as a signature, we require suitable parameters as an elliptic curve
which is determined over the finite field Fp. Suppose Alice requires to sign a message
m by applying ECDSA. At first, she requires applying the hash function to refer to the
message she needs to sign. Then she chooses elliptic curve EC over a finite field Fp.
Afterward, she selects a point P on the curve such that the order of P is n. Alice selects
randomly her private key as Kpr and calculates the public key Kpub = Kpr ∗ P. The
parameters of EC over Fp, (n,P,Kpub) are publicized. Hence, to create the signature
associated with elliptic curves, we are required to sign the signature by Alice and verify
the signature by Bob.

• Alice calculates the hash value of message as z = H(m)

• Cryptographically secure random number k where 1 ≤ k ≤ n− 1 is used as a
nonce1 to calculate r and s values.

• Kpr is a private key and Kpub is a public key employed for signing and verifying the
message.

Signing process by Alice are demonstrated as following:

1. Alice generates cryptographically secure random number k where 1≤ k ≤ n−1.

2. She computes (x,y) = k ∗P where P is a generator point of the curve.

3. She calculates r = x (mod n) in case r = 0 generates other random integer k.

4. Afterwards, Alice computes s = k−1(z+ r ∗Kpr) (mod n).

Verification process of signature pair (r,s) by Bob are shown as following:

1. Bob computes u1 = z∗ s−1 (mod n) and u2 = r ∗ s−1 (mod n).
2. Bob calculates u1 ∗P+u2 ∗Kpub as (x,y)
3. The signature is valid if and only if r = x (mod n)

1 nonce refers to a random number that is devised for particular usage in cryptography and is ’used once’
for each iteration.

Chapter 2: Cryptographic Preliminaries 15

Why it works?

u1 ∗P+u2 ∗Kpub = z∗ s−1 ∗P+ r ∗ s−1 ∗Kpr ∗P = s−1 ∗P(z+ r ∗Kpr) = k ∗P

2.4.2 ElGamal digital signature scheme

ElGamal signature scheme was introduced by Taher ElGamal in 1984 [25]. By imple-
menting the ElGamal signature scheme, the verifier is able to check and authenticate
the message m and prove that the signer conveys the message through the insecure
channel. Assume that 0< int(m)< p−1 is the message that is required to be signed.

Key generation

• Select randomly a secret key s where 0≤ s≤ p−1.

• Calculate β = gs (mod p) where g < p is randomly selected and is the generator
of multiplicative group of integers module p which is Z∗p. p is a large prime number
where calculating discrete logarithm modulo p is challenging.

• (p,g,β) is the public key.

• (p,g,s) is the secret key.

Signature generation

The signer requires to sign a message m based on the following steps:

• Select an ephemeral key e randomly such that 0 < e < p− 1 and e, p− 1 are
co-prime.

• Compute S1 = ge (mod p).

• Calculate S2 = (H(m)−sS1)e−1 (mod p−1) where H is a collision-resistant hash
function.

Following this, the pair (S1,S2) is considered as the digital signature of message m.

Verification process

Any signature needs to verified by the receiver of the message.

• Verification of the signature (S1,S2) is considered as follows: where 0 < S1 < p
and 0 < S2 < p−1

• gH(m) ≡ β S1S1
S2(mod p)

16 Chapter 2: Cryptographic Preliminaries

The verifier authorizes the signature on the two conditions mentioned above to be vali-
dated. [25].

Correctness

To prove the correctness of the ElGamal digital signature algorithm, we indicate as fol-
lows:

H(m) = sS1 + eS2 (mod p−1)

Such that by implying Fermat’s little theorem:

gH(m) ≡ gsS1geS2

≡ (gs)S1(ge)S2

≡ (β)S1(S1)
S2 (mod p)

Moreover, the signer needs to randomly select a different ephemeral key e, following
uniform distribution for each signature. Suppose that two messages send with the same
secret key. In this case, an attacker is apt to calculate a secret key which is not desirable
for the security of the system [25].

2.4.3 Schnorr digital signature scheme

The Schnorr signature scheme is proposed by Claus Schnorr [26]. This method obtains
from the extension of Schnorr’s identification protocol. This algorithm operation is based
on the subgroup of the Z∗p with the prime order q such that q is a factor of p−1.

Key generation

Inputs are γ and λ as security parameters where γ > λ . Following are the steps for key
generation:

• Generate random λ ∈ Zq which is the set of congruence class module prime
number q.

• Generate random γ ∈ Z∗p so that q divides p−1 hence ∃ r∈ Z such that p= qr+1.
• Select an element g ∈ Z∗p with the order of q.
• Choose a random integer as α ∈ [1,q] and then compute y = gα where it belongs

to Z∗p.
• Assume H is the hash function which is H : {0,1}∗→ Zq.

Accordingly, private key is (p,q,g,α,H) and public key is as (p,q,g,y,H). We consider
(p,q,g) as global and public variables meaning that everyone have access to these
three variables in the system.

Chapter 2: Cryptographic Preliminaries 17

Signing process

Sender requires to sign the message m ∈ {0,1}∗ by using private key (p,q,g,α,H).

• Choose a random k ∈ Z∗p. Where p≥ 2512bits.
• Calculate r = gk which belongs to Z∗p. Then the signer will concatenate the r

with the message m, and c = H(m ‖ r) ∈ Zq. Afterwards obtain the value of s as
s = αc+ k ∈ Zq.

• The pair (s,c) are the signature for the message m where (s,c) ∈ Zq for q ≥
2140bits.

Verifying process

The receiver of a message m with signature (s,c) needs to verify the message indicated
as follows, by the public key.

• Compute v = gsy−c ∈ Zp

Proof of correctness:
v = gαc+ky−c = (gα)cgky−c = ycgky−c = gk ∈ Zp

• Receiver will approve the signature in the condition that c = H(m‖v) = H(m‖gk)

so that r = r′ otherwise, the signature will be rejected.

With respect to the performance characteristics of the Schnorr digital signature scheme
in the signature generation, we require one exponentiation modulo prime p and one
multiplication modulo q. The verification process needs two exponentiations modulo a
prime number p. Although utilizing the subgroup of Z∗p with the order of q does not
necessarily improve the computational efficiency over the ElGamal scheme, it delivers a
smaller signature with the same extent of security compared to the ElGamal protocol.

18 Chapter 3: Analysis of various methods in probabilistic micropayments

3 Analysis of various methods in
probabilistic micropayments

3.1 Micropayment

Micropayments are considered as a small number of transactions ranging from one
cent to a couple of dollars [4]. Micropayments have demand in different areas, including
downloadable content such as articles, movies, music, and games [27]. Nevertheless,
micropayment systems are confronted with some challenges, as below [28].

• Inquiries concerning micropayments are indispensable to offline payments, which
are at risk of double-spending.

• Also, there are transaction fees on the chain, which are considered high for these
micropayment values.

In an effort to lower the processing fees in micropayment systems, it is suggested by
Rivest and Wheeler to gradually pay off the initial fees for probabilistic micropayments
protocol [4, 5]. This system makes it possible for a customer to pay ’M’ units of any
currency to the vendor by the probability of p. As a result, the seller will obtain full
payment with the probability of 1-p.

Example 3.1 Suppose we require to pay an order with PayPal. In the PayPal payment
model, anything less than 12$ would be better off at the micropayment structure than it
would be in the standard payment. The reason for different fee structures per transaction
are as follows:

• Micropayment PayPal account fee structure: 5%+5 cents

• Standard PayPal account fee structure: 2.9%+30 cents

Assume that the order is 1$ we show that the transaction fee difference between stan-
dard payment, and micropayment is 23%. As the number of items increase the differ-
ence in transaction fees over a year will be huge.

Standard Transaction fees Micropayment Transaction fees
1∗0.29 = 0.29≈ 3 cents
3 cents+30 cents = 33 cents

1∗0.05 = 5 cents
5 cents+5 cents = 10 cents

which is 33% of total fee which is 10% of total fee

Table 3.1: Example of Transaction Fees in different structures in PayPal

Chapter 3: Analysis of various methods in probabilistic micropayments 19

3.2 Probabilistic Micropayment

Wheeler and Rivest introduce the concept of probabilistic micropayments [4,5]. The idea
relates to a lottery-ticket protocol rather than sending an exact micropayment amount;
a lottery ticket is issued as a currency. The value per each ticket of micropayment
is considered the ticket’s expected value. Based on the statistic analysis, the expected
value’s formula is calculated by multiplying attainable results with the probability of every
outcome and then summing it up.

E[X] =
n

∑
i=1

xiP(X = xi) (3.1)

Also, each lottery ticket has some face value that is paid out if the ticket wins. Moreover,
a winning probability is pre-negotiated between two particular parties.

Overview of Probabilistic Micropayment Protocol

In figure 3.1, an overall overview of probabilistic micropayments is illustrated in the di-
agram. In the flow diagram, we have Alice, Bob, and John, where Alice sends tickets
simultaneously to Bob and John, and none of them wins except the one sent to John.
If the single one sent to John wins, it has the opportunity to settle on-chain with that
ticket and noted that each party is aware of being paid, on average, a fair amount.
The only time that they need to go on-chain is when one of these tickets pays out [3].

Figure 3.1: Example of Probabilistic micropayment

20 Chapter 3: Analysis of various methods in probabilistic micropayments

We consider some important properties of probabilistic micropayments.

• Many to many large volume micropayments.
• Flexibility of ticket parameterization: It is possible to modify the face value and win-

ning probability to adjust to price fluctuation, such as in the Ethereum blockchain
[9].

• Proper for high volume and high recipient/sender use cases [3].

With the purpose of lowering the processing and deployment costs, recent cryptography
researchers and projects increased interest in decentralized systems for digital curren-
cies [9,28].

The term trusted third party as a bank is altered by blockchain, and payers construct a
deposit with the smart contract containing the payer’s escrow fund. Whenever a payer
sends a ticket to a payee, at first payer calls for the tickets parameter from the payee,
including faceValue (the payout if the ticket wins), winProb (winning probability) with the
secret random number created by the payee. Then, the payer utilizes the obtained pa-
rameters of tickets and sends the ticket’s expected value as f aceValue∗winProb along
with its random number and signature of each ticket. The winning tickets are approved
based on the winProb and a random value created by hashing the payer’s random num-
ber with the payee’s secret random number. Assuming that the payee obtains a winning
ticket, the ticket with the secret random number and the payer’s signature is submitted
to the smart contract. The smart contract verifies that the received ticket was won.

Blockchain scalability

The main concept of blockchain scalability is to execute more transactions per second
such that the throughput in the blockchain increases. Blockchain is considered a dis-
tributed ledger-based technology in which all transactions are stored in a secure and
immutable network. It does not depend on a trusted third party such as a bank to val-
idate the transactions executed and add new blocks to the chain. To add a new node
and extend the blockchain, network nodes as miners utilize a consensus mechanism to
approve which new node generates a valid block, meaning mine faster and accurately
so that the new block is attached to the end of the blockchain. For the issue of scalability
in the blockchain to enlarge throughput, it is necessary to keep the security and decen-
tralization property of the blockchain. Blockchain scalability solutions are categorized
into the following:

• On-chain explanations such as sharding and increasing the block sizes for the
issue of scalability in blockchain are provided to modify the blockchain network.
Sharding splits the data sets into multiple sets.

• Off-chain solutions such as layer-two blockchains indicate the secondary protocol
added on top of the exiting blockchain. They execute micropayment transactions,

Chapter 3: Analysis of various methods in probabilistic micropayments 21

particularly outside the blockchain, and store significant transactions such as the
final one on the blockchain.

The orchid micropayments protocol focuses more on off-chain solutions for scalability
for micropayment transactions [9].

3.3 Analysis of various methods for probabilistic
micropayments

This section focuses on the academic literature review and comparison of different prob-
abilistic micropayments. All discussed methods are related to the last three decades.
The cryptographic research for micropayments concerned several issues, such as ob-
solete cryptographic schemes that required some improvements in the system’s se-
curity, speed of the operating systems, and reducing high transaction fees for online
e-payments.

3.3.1 Payword

The Payword method is proposed by Rivest and Shamir and is similar to a credit-based
system where it utilizes cryptography to generate unique secure tokens [29]. Hash
structures are utilized for developing the token by using the hash chains as one-time
passwords [30].
We consider user, vendor, and bank U, V, and B, respectively. Banker provides user
validation proving that the user is the authentic customer and provides Payword autho-
rization, which is signed digitally along with a certificate including the banker’s name,
IP address, and user’s name. The user generates Paywords as payment tokens for
the transaction. The user selects a random value to repeatedly deploy one-way and
collision-resistance hash functions such as ’SHA’ to generate the chain.
Transaction steps when the user purchases from a vendor are as given below:

• User conducts a general Payword chain as y1,y2, · · · ,yn. The user randomly se-
lects the last Payword yn from the Payword chain and computes the Payword
chain in the reverse order. The user calculates the H-chain function that includes
y0,y1, · · · ,yn as input:

y j = H(y j+1) where j = n−1,n−2, · · · ,0 (3.2)

As we mentioned in 2.1, H is a one-way hash function that is simple to compute
for each input entry, however, it is considered a complex problem for inverting with
the given output.

• After calculation of the H-chain, the user utilizes its secret key to calculate the

22 Chapter 3: Analysis of various methods in probabilistic micropayments

commitment M for the payment.

M = {V,CU ,W0,D, IM}
SKU

where D is the current date and IM is any extra information that might be required.
CU is the Payword certificate is generated by a bank to authorize a user.

• Suppose user provides the payment P to the vendor and the payment contains
payword and the number as P = (y j, j) for j = 1,2, · · ·.

• The vendor verifies the user’s certificate CU and commitment W0. The user’s
certificate is provided by the bank and signed by the bank’s secret key as CU =

{B,U,AU ,PKU , IU}SKB . The vendor verifies messages by applying the user’s and
broker’s public keys. Hence, provided pair (y j, j) from user to the vendor is verified
by applying y j−1.

• Vendor repeatedly executes the hash function after obtaining the P = (y j, j). In
each payment process, a hash function is executed by V. This process is suitable
for the vendor to aggregate the user’s payment in the chain.

• After transaction steps have been confirmed in the system, the vendor delivers
goods or services to the user by the user’s provided address.

This process is continued for jth payment to a vendor for j = 1,2, · · · and including
the pair (y j, j), which is verified by V. This process is suitable for the vendor with the
purpose of aggregating user’s payment in the chain. Suppose that U conducted the j
micropayments and V aggregates all the transactions to make considerable macropay-
ments. Therefore, V is required to store only one payment. For the validation purpose,
the bank verifies U ’s signature of y0 and calculates how many iterative applications of
H are required to map y j to y0 and consider that y0 is the root of payword chain.
However, the payword method has its drawback. Aggregation via the vendor is impossi-
ble since each user conducted its H chain operation related to each vendor. Hence, the
payword sequence is a user-specific, and vendor-specific payword chain [29].
Suppose a customer decides to buy from several vendors such as Vi; therefore, the user
generates multiple payword chains specific to each vendor.

An improved payword method for the purpose of multiple vendors as a new payword is
proposed [31]. The general payword method allows users to conduct a single payword
chain to pay for several vendors. The general payword scheme consists of the registra-
tion stage, transaction stage, and redemption [31].

Suppose that the user U wants to buy some commodities from several vendors V1,V2, · · · ,Vk.
The transaction process for the user and the vendors is given as follows.

• Step 1: User U constructs a general payword chain w1,w2, · · · ,wn. Payword chain

Chapter 3: Analysis of various methods in probabilistic micropayments 23

is computed in reverse order

wi = h(wi+1) f or i = n−1,n−2, · · · ,0

• Step 2: User U calculates a payment root RVi

corresponding to vendor Vi as follows:

RVi = h(w j⊕ (U ‖Vi))

where ‖, ⊕ indicate as concatenation and exclusive OR accordingly. Payword w j

is the first unused payword in the sequence of payword.

• Step 3: Commitment MC for the payment includes below attributes:

MC = {Vi,CU ,RVi,DC, IM}XU

• Step 4: The user U forwards the payment P to the vendor Vi. P contains a payword
and a number as below:

P = (wt ,k)

where k = t− j+1
• Step 5: The vendor V verifies the commitment MC and the certificate CU , and

checks the expiration date D with the user and broker public keys as YU and YB

respectively.

• Step 6: The vendor delivers the commodities to the user if P′Vi

?
= PVi . Vendor Vi

conduct a hash function operation as follows:

hk−1(wt) = hk−2(wt−1) = · · ·= h(wt−k+2) = wt−k+1

As well the vendor Vi calculates

P′Vi
= h(wt−k+1⊕ (U ‖Vi))

if the equation stay true which means the paywords are conducted by the user U .
At the end vendor forwards goods to the user U .

3.3.2 Electronic Lottery Tickets scheme

The electronic lottery tickets method is proposed by Rivest and is based on micropay-
ments the only tickets that banks execute are the winning tickets, and the rest are not
handled anymore [4]. In the lottery ticket protocol, hash chains applied are similar to
payword. The vendor provides for the user the hash chain root x = x0 and merchant’s
paywords are denoted as x0,x1, · · · ,xn:

x j = H(x j+1) where j = 0,1,2, · · · ,n−1 (3.3)

24 Chapter 3: Analysis of various methods in probabilistic micropayments

After 3.3 equation, the user adds paywords to its commitment (root x0) and own Hash
chain. Presume that the chance of winning is 1

1000 and formerly the jth payment of the
buyer’s chain is selected if it satisfies the equation 3.4:

x j mod 1000 = yi mod 1000 (3.4)

where yi is a Payword chain of a new micropayment protocol from the vendor to the
buyer. The lottery-based protocol steps are summarized as follows:
Here U , V , and B respectively denote user, vendor and bank.

Steps
No.

Parties Transactions

1 U→ V Payment request
2 V→ U W0is a root of hash

chain
3 U→ V SIGu(ticket)
4 V→ U Goods or services plus

Wi if it is winning ticket
5 V→ B SIGU(ticket)

Table 3.2: Summary of lottery ticket scheme

There is a possibility of fraud from the vendor side in the selection part. Because the
vendor determines whether a micropayment x j selected is a winning ticket or not by
revealing the yi. If the payment is not deposited, the vendor rejects the user’s expected
commodity. However, this behavior is not beneficial from the vendor’s point of view since
it may be of very little worth.
The electronic lottery protocol has some drawbacks. Processing time is slow due to
interaction between vendor and user in the whole chain. There is a possibility of a
collision attack in the lottery scheme.
Suppose the vendor does not commit the yi precedently in a collision attack, and it
still consists of winning tickets. Due to this, the vendor keeps storing a vast number of
payments since the merchant is required to wait until the winning ticket is determined.
Therefore, the merchant cooperates with the external body contrary to the user. This
scenario also has the possibility of occurring in the opposite order.

3.3.3 Efficient Coin-Flipping scheme

Coin-Flipping schemes is proposed in 1998 by Lipton and Ostrovsky that compromises
the probabilistic polynomial-time user, merchant, and the bank [32]. Properties of coin-
flipping include efficiency, fairness, and validation. In this scheme, the executions are
done based on a public-key setting, which is validated by a reliable foundation being

Chapter 3: Analysis of various methods in probabilistic micropayments 25

considered as a banking system. Processing is on circular bases in which each round
is categorized into two stages:

1. Pre-processing stage

2. Polynomially bounded sequences (where future output coin flips are defined).

Polynomially bounded functions and sequences play a significant role in the security of
cryptographic protocols to assess and categorize the problems concerning the compu-
tational complexity of algorithm [33].

Definition 3.2 (Polynomially bounded functions) A function f ∈ R is polynomially
bounded if ∃ k ∈ N such that f (x) ∈ O(xk).

Definition 3.3 (Polynomially bounded sequences) Assume that s is a sequence of real
numbers. Then s is defined as polynomially bounded if and only if ∃ k ∈ N such that
s ∈ O({nk}n∈N).

For generating the micropayment by the user to the merchant, the following steps are re-
quired. Assume that f is a bijective one-way permutation function significantly affecting
cryptographic primitive algorithms.

• Step 1: merchant selects a random number a and then calculates the values on
the chain as follows: b = f (f (f · · ·(a))), and merchant sends b to user.

• Step 2: User examines the zero-knowledge proof of the knowledge related to the
merchant to check whether it is being rejected in any of the steps [34, 35]. On
the condition being approved, the user picks a random number a′ then evaluates
values on-chain as follows: b′ = f (f (f ...(a′))), then the user sends (a,a′) with
the signature to the merchant. Moreover, the user provides the merchant a zero-
knowledge proof of the knowledge related to a′.

• Step 3: The merchant validates the zero-knowledge proof related to the user
and user’s signature and the public key; if any section is not valid, the merchant
terminates the process.

Here we define the summary of steps related to future output coin-flips:

In the coin-flipping method, the interaction with the bank compared to a lottery-based
ticket is less, reducing bank fees for the transactions. Also, it is an anonymous scheme
because of the usage of pseudonyms in the algorithm process. Zero-knowledge proofs
of knowledge are needed for security, although causing inefficiency in this scheme si-
multaneously eliminates the double-spending attack. Although it provides the security
for all future coin-flips based on the pseudo-random principle for the cases compris-
ing the execution of payments, it is required to merge with other schemes to increase
security which is a costly process.

26 Chapter 3: Analysis of various methods in probabilistic micropayments

Steps
No.

Parties Transactions

1 U→ V Payment request
2 V→ U b is a root of hash chain

starting from a
3 V→ M ZK(a) denotes the

zero-knowledge proof
of knowledge of a.

4 U→ V SIGu(a,a′)
5 U→ V ZK(b′)
6 U→ V Next b′ image with ’get-

page’ message
7 V→ U Next b image with ’here

it-is’ message
8 V→ B SIGu(a,a′)

Table 3.3: Summary of output sequence of Coin-flipping scheme

3.3.4 MR2 Scheme

In this section, we present the selective base deposit micropayment scheme that over-
comes the issues related to excessive payments for users and interactions in the pay-
ments network [36]. MR2 is a non-interactive protocol such that the user sends a micro
cheque to the vendor, and the cheque is chosen from a macro deposit. First, in the se-
lective deposit, the bank verifies the signatures. Then, it sends the serial number (SN)
of the payable cheque and date to guarantee that there are no exceptional cases such
as dates that are out of order or cases when the amount of cheque is excessive. The
basic scheme for MR2 consist of the following steps:

• Setup: Every user and vendor publicise their public keys for digital signature pro-
tocol.

• Transactions for payment: User U transfer the payment transaction T by the
cheque as C = SIGU(T) to merchant M.

Remark 3.4 Cheque C is payable if it holds 3.5 inequality:

F(SIGM(C))< s (3.5)

where s is a selection rate. The merchant forwards the cheque and SIGM(C) to
the bank if the cheque is considered payable.

• Selective deposit: maxSNU denotes the maximum number of serial numbers
(SN) related to the paycheque of the user. In the initial step maxSNU = 0. If we
have a new payable cheque C, the signature of U , and M are verified, then the
bank credits from a merchant bank account with the rate of 1

s cents.
If SN > maxSNU then the user account is debited as SN−maxSN cents via the

Chapter 3: Analysis of various methods in probabilistic micropayments 27

bank, and the value of a serial number with the maximum number is set as
MaxSNU ← SN and thereby proving the user by the signature SIGM(C).

• Selective Discharge: In this case, banks record the statistics and reject the trans-
actions when there are exceptional cases. Exceptional cases are when the bank
recognizes that the new cheques have the same serial number as the previously
executed cheques. Another case is when the date of the cheque is expired com-
pared to other processed cheques. Furthermore, the case when the cheques
are more frequently processed for payments than excepted is considered as an
excessive amount.

Table 3.4 gives the summary of steps related to the MR2 method.

Steps
No.

Parties Transactions

1 U→ V Cheque = SIGC(T) where T =
{CertC, pageno.,SN, time,Bid}

2 V→ U goods or services is provided
3 V→ B cheque, SIGM(C)

Table 3.4: Summary of MR2 scheme

Example 3.5 (Traffic fees related to the Internet) In this example, we calculate the costs
related to the traffic generated for one page, which is added to the price of the page [37].
For traffic cost analysis, we process as follows: The average URL length is 320 bytes,
and there exists 6 automatic URLs for each page. Then internet traffic costs as $550 for
each gigabyte, and encrypted message appends 30% to the size. In the table 3.5, we
calculate the price of traffic which is issued to carry out one payment according to three
schemes. The highest traffic cost corresponds to the coin-flipping method.

Lottery ticket
scheme

Coin-flipping
scheme

MR2 scheme

5×6×320×1 =
9600 bytes
leads to 0.528
cent/page

8×6×320×1 =
15360 bytes
leads to 0.844
cent/page

3× 6× 320× 1.3 =
7488 bytes where
leads to 0.411
cent/page

Table 3.5: Traffic costs of different schemes

Three probabilistic micropayment methods are compared: lottery-based tickets, coin-
flipping, and MR2, which are categorized as centralized. The following features in prob-
abilistic micropayments are necessary to explain for the evaluation.

• Computation overhead: It is the number of digital signature’s hash functions
required to carry out the transaction.

• Transaction delay: It is the computational transaction delays involved in the com-
munication channel.

28 Chapter 3: Analysis of various methods in probabilistic micropayments

• Internet traffic Cost: It represents transaction execution fees.

• Anonymity: It describes the level of anonymity in the information shared from a
user to a merchant.

• Double Spending: It indicates the user utilizing a similar cheque/ticket frequently.

• Cognition: It shows how easy it is to understand the structure of a particular
scheme.

We compare three different probabilistic schemes according to the features in table 3.6.
Because of the feature summary and traffic cost analysis for probabilistic micropay-
ments, we conclude that the coin-flipping method is the least proper method compared
to other methods due to higher traffic cost and computation overhead with no improve-
ments in other features compared to the two other schemes. The MR2 method is more
suitable for probabilistic micropayments.

Features Lottery ticket
scheme

Coin-flipping
scheme

MR2 scheme

Computation
Overhead

low high low

Transaction delay low high low
Traffic cost medium high low
Anonymity partial partial partial
Double spending No No detected
Cognition low high low

Table 3.6: Features summary for probabilistic micropayments

Probabilistic Micropayments are utilized in a large number of applications. However,
processing the probabilistic micropayments consists of high transaction fees that exceed
the payment value. However, the small transactions are aggregated into a few larger
ones to overcome this issue.

3.3.5 Blind signature scheme based on discrete logarithm

We analyze the blind signature scheme derived from modifying the digital signature
algorithm (DSA) based on a discrete logarithm.

Assume we have a user Alice along with a complete overview of her exchange values as
V with documents signature pair as (m,sig(m)). Any signature scheme such as RSA,
ElGamal, Schnorr, and discrete logarithm is called blind if the occurrence of signature
pair (m,sig(m)) does not affect the possibility of occurrence of V , hence they are statis-
tically independent. The idea of a blind signature was initially proposed by Chaum [7].

Chapter 3: Analysis of various methods in probabilistic micropayments 29

The main reason behind the blind signature scheme is to protect customers’ privacy in
online electronic payments.

Blind signature for modification of DSA

1. Alice selects randomly k′ ∈ Z∗q
2. Alice chooses g which is a generator of the cyclic group Z∗P and calculates

R′ = gk′ (mod p)

Remark 3.6 Assume g is generator of the cyclic group Z∗P if and only if g is prim-
itive root of p.

gi 6= 1 (mod p) where i = 1,2, · · · , p−2

Based on Fermat’s little theorem 2, if i = p−1 then gp−1 = 1 (mod p)
3. Alice checks if R′ and q are co-prime i.e. gcd(R′,q) = 1 and then sends R′ to

vendor Bob. Otherwise she turns back to step 1.
4. Bob checks gcd(R′,q) = 1 and then he chooses randomly u,v ∈ Zq, then he cal-

culates R = (R′)ugv (mod p)
5. Bob checks gcd(R,q) = 1 then he determines the value of

m′ = umR′R−1 (mod q) and sends m′ to Alice. Otherwise if they are not co-prime
he returns to step 4

6. Alice conveys s′ = k′m′+R′x (mod q) to Bob
7. Bob verifies the signatures s = s′R(R′)−1 + vm (mod q) and r = R (mod q)

The pair (r,s) is the signature for a message m in the blind signature for modification
of DSA. To check the validity of signature (r,s) we consider T from variation of DSA
scheme. For this reason we explain the modification of DSA as follows and then we
prove the verification. In this scheme we consider a prime number p with a prime
factor q of p− 1. The cyclic group generator is denoted as g ∈ Z∗P. The prvate key
related to signer is selected randomly where x ∈ Zq. The public key is computed as
y = gx (mod p). To conduct a sign a message m which is an integer co-prime to q, it is
required to select a random number k ∈ Zq and compute the below parameters.

R = gk (mod p)
r = R (mod q)

s = km+ rx (mod q)

The pair (r,s) consider the signature of message m. With the aim of checking the validity,
we compute as below:

T = (gsy−r)m−1
(mod p)

where m−1 is termed as the modular inverse of m modulo q and verify that r =T (mod q).

2 For any prime number p and any integer a ∈ Z where a 6= 0 (mod p),
ap−1 = 1 (mod p)

30 Chapter 3: Analysis of various methods in probabilistic micropayments

Proof: To proof the verification of signature (r,s) we utilize T .

T = (gsy−r)m−1
= g(s

′rR
′−1+vm−xr)m−1

(mod p)
= gk′u+v = R

′ugv = R (mod p)

Hence, (r,s) is a valid signature of m and it indicates that r = T (mod q) why?.
For blind signature scheme the blind factors u and v are selected randomly. Since
m,R′, and r are co-prime with q, then the blind factors u and v are identified as follows:

u = m′m−1rR
′−1 (mod q)

v = (s− s′rR
′−1)m−1

(mod q)

Hence, we substitute u and v in the following:

k′u+ v = k′m′m−1rR
′−1 + sm−1− s′rR

′−1m−1 = (s− rx)m−1 (mod q) (3.6)

Then we replace the k′u+ v with 3.6.

Proof:
r = R

′ugv = gk′ugv = gk′u+v = g(s−rx)m−1
(mod p)

= (gsy−r)m−1
= T (mod p)

The blind signature scheme ensures the anonymity of the users, and it has a significant
impact on online payment to increase security.

3.4 Analysis of different methods for probabilistic
micropayments based on decentralized network

This section describes the probabilistic micropayments schemes based on a decentral-
ized network.

Decentralized Network

A decentralized network distributes information across multiple devices instead of de-
pending on a single central server. Hence, decentralized systems are enticing for mi-
cropayments since there is no involvement of a single trusted party, and it helps to
overcome the high processing fees [38].
Decentralized transaction systems are noticeably captivating for digital currencies, es-
pecially Bitcoin, which deploys peer-to-peer transaction systems [39]. Bitcoin operates

Chapter 3: Analysis of various methods in probabilistic micropayments 31

on a distributed public ledger on a blockchain to store all transactions in the blocks,
and these proceedings are validated within the peer-to-peer systems. In figure 3.2 we
present the comparison of centralized versus decentralized networks by visualization.

Figure 3.2: Visualization of centralized versus decentralized networks.

Decentralized anonymous micropayments (DAM)

The decentralized anonymous micropayments (DAM) scheme indicates the security of
the offline probabilistic payments protocol. This system enables each party to enter
a ledger to establish transactions with one peer to another, whether direct or indirect.
Moreover, DAM officially cancels the deposits declared as double-spending and remains
anonymous across macropayments and nullpayments.

3.4.1 MICROPAY: Abstract model in cryptocurrency system for
probabilistic micropayments

In the following section, we study methods that are used in the decentralized net-
work for transferring small amounts, such as 1

10
th

to 1 cent. Various cryptocurrencies
have removed the centralized dependency on traditional banks. They have consider-
ably decreased fees related to the large international transaction, though there is no
proper solution to reduce fees in micropayment transactions. Therefore, cryptography
researchers are analyzing and proposing different methods for micropayment systems
that are related to cryptocurrencies.
Authors proposed a lottery-based micropayment method for ledger-based transaction
systems [8]. MICROPAY1, MICROPAY2, and MICROPAY3 methods are given by Pass
& Shelat. The first method, MICROPAY1, is not feasible in real applications due to
limitations in cryptocurrency scripting languages. In the second method, MICROPAY2,
authors consider a ’verifiable transaction service’ as VTS, a trusted third party. VTS
checks if the transactions related to coin tossing win and then provides the escrow funds
and signs the release transaction. However, it is confronted with attacks due to VTS dis-
honesty. In order to improve and overcome this problem, the MICROPAY3 method is
proposed. This method includes hidden third parties meaning that VTS should not be
activated if the users are honest. Here are the steps in the MICROPAY3 methods by

32 Chapter 3: Analysis of various methods in probabilistic micropayments

utilizing invisible VTS.

MICROPAY3

In the MICROPAY3 scheme, the user U transfers the money to merchant M while M
obtains the winning ticket along with signed transaction T . The system consist of the
following steps in more detail:

• Penalty Escrow Setup:

1. User along with its address as a=(pk,π) produce a new key pairs (pkpen,skpen)

where pen is penalty escrow.
2. λX bitcoins are transferred to penalty escrow as apen = (pkpen, π̃ pen

3) along
with signed (a,apen) using public key pk.

Remark 3.7 Release condition π̃
pen
3 (x,apen,a2) = 1 should be satisfied if

and only if the transaction is signed by each of U and T .

• Escrow Setup:

1. User generates new key pair (pkesc,skesc) with its address a = (pk,πstd).
2. X bitcoins are transferred to escrow address as aesc = (pkesc, π̃esc

3) along
with signed (a,aesc).

• Payment Request:

1. Merchant selects a random number as r3→ {0,1}128 in a case of payment
request from user.

2. Generates a commitment as c→Com(r1,s) where s denotes the string uti-
lized to reveal the commitment.

3. Creates new bitcoin address aM in which the payments send.
4. Send the pair (c,aM) to the payer U.

• Payment Insurance:

1. After agreement, user selects a random string r2 to send probabilistic pay-
ment X

100 .
2. User generates signature σ1 on transaction (aesc,aM).
3. And user creates signature σ on transaction related to (c,r2,aM,apk) with

respect to public key of escrow pkesc.
4. User sends the signatures to merchant M, and M verifies that payment and

penalty escrows are not spent yet.

Chapter 3: Analysis of various methods in probabilistic micropayments 33

• Claim Prize:

1. Merchant sends to user the winning tuple as (x,aesc,aM).

2. User verifies and signs the respective transaction as (aesc,aM) by secret key
skesc

3 .

3. User sends the signature σ2 to merchant.

4. Merchant utilizes respective signatures σ1,σ2 for the purpose of spending
the escrow aesc.

Remark 3.8 In a case the user is not able to send verified signature during
a particular timeframe, then merchant induces the ’Resolved Aborted Prize
Method’ [8].

• Resolve Aborted Prize:

1. T obtains a tuple as (x,aesc,aM) where x = (c,r1,s,r2,σ) and
c =Com(r1,s).

Remark 3.9 σ is an authenticated signature corresponding to (c,r2,aM)

signed by pkesc
1 and if the last two digits of r1

⊕
r2 are 00 then T signs

(aesc,aM) with pkT .

2. Merchant applies both signatures (σ ,σT) to pay out the escrow aesc.

• Penalty:

1. If for the similar payment escrow aesc two winning lottery tickets are provided
by merchant within the partially signed penalty transaction σpen then T signs
the penalty transaction and pays out to the address 0.

2. T also publishes witness for penalty transaction corresponding to the two
winning tickets (aesc,apen).

Hence in the MICROPAY3, the invisible VTS is utilized. In case a user or a vendor
diverges from the main structure, VTS is activated. On the contrary, if the user or mer-
chant is honest the trusted third party is hidden.
MICROPAY3 also has a few drawbacks, such as being unsteady in gaining profits for
a recipient. Also, because of the double-spending attack, the penalty escrow fund in-
creases as the number of recipients grows. Furthermore, it is not based on a trans-
ferable scheme, which means that in MICROPAY3, the lottery ticket is transferred from
the ticket issuer to a beneficiary. For this reason, we need to analyze other probabilistic
micropayments methods.

34 Chapter 3: Analysis of various methods in probabilistic micropayments

3.4.2 Probabilistic Micropayments with a transferable scheme in
blockchain

This section indicates a decentralized probabilistic micropayment transferable scheme
based on the proportional fee method [3]. The transferable scheme secures offline
payments by using a tamper-proof wallet. Moreover, it reduces the transaction fees for
micropayments in the blockchain.

Transferable scheme design steps

• Step 1: Ticket issuer publishes escrow account e in the smart contract, registers
it, and confirms that e has been registered in the blockchain.

• Step 2: The ticket issuer publishes the ticket t and forwards it to the user. Then the
payee validates that the tickets are from a legitimate wallet. After authentication,
the user obtains the tickets and relays the service or product to the payer.

• Step 3: If the obtained ticket matches the requisites for winning, the ticket is trans-
ferred to the escrow account e.

The tamper-proof wallet includes a tamper-proof device that does not approve unautho-
rized transactions such as double-spent tickets. The Keys in the wallet are as follows:
skWx ,PKWx are pairs of keys in the wallet for personal usage.

• Hashed value of PKWx is the address related to the wallet owner.

• Secret key (skT) is applied to confirm that the ticket is issued and sent from the
authentic wallet.

• certT is the certificate associated with the private key (skT), the wallet owner
acquires.

For the escrow setup in the Blockchain network the following steps are required:

1. The issuer X creates a new account request wX from the wallet
wx← hash(PKWx).

2. The creator issues the escrow transaction Tl by transferring β coins from the
created account x to the issued wallet address wX and executing in the network.
Tl ← Sign(skx;x→ wx,β).

3. After verification of Tl and integration into the blockchain network Bi, X is added
in the chain and takes Bi. Then Tl , and Bi is forwarded to WX .

4. Generate the escrow account e as followed: e← Sign(skwx ;(β ,h0,T0, p.µ)) and
T0 as T0 ← Sign(skWx ;wx → .,β). Eventually, X transfers the e and T0 to the
Blockchain network.

The overall design of the transferability system is illustrated in the figure 3.3 based on

Chapter 3: Analysis of various methods in probabilistic micropayments 35

Figure 3.3: Outline of probabilistic micropayment with transferable scheme [3]

the idea of a probabilistic micropayment transferable scheme [3]. For payment with
lottery tickets in the blockchain below steps are necessary to follow:

1. The payee Y transfer PKWY . Payee Y’s wallet termed as WY consists of (skT ′ ,PKWY ,skWY)

and payers X’s Wallet denoted as WX includes (skT ,PKWX ,skWX).

2. Ticket T1 is generated by wallet WX as followed: T1 ← Sign(skW ;wX → wY ,e).
Then signed with private key skWX and also signing with the wallet construc-
tor secret key skT . Afterwards, wallet WX sends ticket T1 and proo f1 which is
(proo f1← Sign(skT ,T1)) and certT to the payee with wallet WY that is generated
as hashed value of public key as followed: wY ← hash(PKWY).

3. Approve and store T1 and proo f1 if and only if the following conditions are satis-
fied:
certT is trustworthy
Veri f y(PKT ; proo f1) = 1
T1 is verified and valid if payment conditions are satisfied. Then Y responds to WX

with the status as : Sign(skY ;status).

If payee Y requires to send the obtained ticket to a different user, the same process is
followed [3]. For claiming the winning ticket and avoiding double-spending, we consider
the steps given below:

1. Suppose ticket T is the winning ticket (T ∈ {X | X is a winning ticket}) then Y
sends T and proo f to the contract account.

2. In case T is validated and eligible, the escrow account e records the escrow trans-
action T0 by wY . Also payee Y from time to time upgrades the local chain and ap-
prove that T0 signed as T0← Sign(skWX ;wx→ wY ,β) is authentic, and note that
β is the lottery winning value.

3. In case T is one of the double-spent tickets which is issued by a double-spending
attacker, then the contract account e approves that T is the same unit of digital
currency used more than once.

36 Chapter 3: Analysis of various methods in probabilistic micropayments

4. In this step, Y establishes the revocation by issuing the revocation transaction as
Tr = Sign(skY ; proo f ,cancel T), then sends it to insurer termed as Z.

5. Z checks the Tr and refunds to Y for the attacker damage, then issuer creates and
commits Tz = Sign(skZ;z→ y,(1−q) jβ) to the network.

We define the transferred transaction and winning condition with eligibility as follows:

Definition 3.10 (Transferred transaction) Suppose we consider two tickets in the chain
as Ti = (A→ B,Tpre)X and Ti+1 = (A′→ B′,T ′pre)X ′ . The tickets are transferred if and
only if the proposed properties are satisfied [3]:

• H(Ti) = T ′pre

• A = X ,B = A′ = X ′

• certT
X ′ is validated

• multi signatures as σW
X ′ and σT

X ′ are also valid.

Then Ti < Ti+1. If T includes no preceding lottery tickets, the ticket is termed as genesis
ticket. The genesis ticket T1 connects to escrow account e where e < T1, and the lottery
tickets are shown as follows:

e < T1 < T2 < ... < Tn (3.7)

A is the sender account, and B is the receiver account. Multi signatures σW are signed
by the key related to the sender’s account, and σT is signed with the tamper-proof tool to
validate the signing device with the issued certT . In the following definition, we explain
the condition that a ticket needs to succeed in order to be considered as a winning
ticket.

Definition 3.11 (Winning condition of Tickets) The ticket Ti is considered a winning
ticket if and only if the proposed condition is satisfied [3]:

win = {Tn | p : H(V DF(h0 +n ·µ))< D ∀n ∈ N} (3.8)

where X&Y ∈ U are termed as payer and payee, respectively. Then, n is the total
cardinality of generators of T , and µ is the fixed number that is stated in the escrow
account e to calculate the winning ticket. P is the probability to determine whether the
ticket is a winning ticket or not. And h0 is the height of block to determine probability of
p which is calculated based on verifiable delay function (VDF) that is the triple denoted
as V DF = (Setup,Eval,Veri f y) [40]. Duplicated tickets are shown by D.

After the winning conditions are satisfied β is obtained, and the ticket
(T ∈ {X | X is a winning ticket}) is transferred. The user who possesses the eligible
ticket is able to receive β from the escrow account e.

Chapter 3: Analysis of various methods in probabilistic micropayments 37

Definition 3.12 (Eligibility of Tn) The winning ticket Tn is eligible if and only if the condi-
tion is given below satisfied:

eligible = {Tn′ | Tn′ = max({Tn′′ | n′′ ≥ n})} (3.9)

whereas the final winning ticket is the eligible one [3].

There is no benefit in utilizing transferable methods for the issuer while the blockchain
fees γ are considered. Since there exists a deduction from the available amount, which
is β − γ the proportional fee scheme is suggested [3].

Proportional fee scheme

Suppose that we consider the transaction fee rate as q. Payer sends a ticket Ti, and
in response, the payee transfers goods or services as (1− q)iβ to the sender. The
transaction fees are (1− q)i−1qβ . Particularly, the respective fee for each payment is
as follows:

Ti−1−Ti = (1−q)i−1qβ (3.10)

Moreover, to calculate the profit, we deduct expenditure from the income (income−
expenditure). So the ticket Ti is eligible to be considered as a winning ticket, and the
profit is:

β − (Ti + γ) = (β − ((1−q)i
β)+ γ) = β (1− (1−q)i)− γ (3.11)

The transaction fees related to lottery tickets are reduced by applying a proportional fee
scheme on the blockchain.

3.4.3 Efficient and double-spending resistance micropayment
method for cryptocurrencies

Authors have demonstrated a new approach for micropayment in the transactions of
cryptocurrencies on blockchain [41]. This method is based on the transition commit-
ment, which succeeds in being more cost and time effective. The following cryptography
functions are implemented in this scheme.

• Chameleon hash function: Chameleon hash function is a collision resistance
hash function based on public and private key cryptography. With respect to input
as message m and r a random string the chameleon hash function creates a hash
value as CHashU(m,r) with the properties given below:

– Collision resistance: There is no algorithm associated with the public key
pkU that perceives distinct pairs of (m1,r1) and (m2,r2) such that

38 Chapter 3: Analysis of various methods in probabilistic micropayments

CHashU(m1,r1) = CHashU(m2,r2).

– Trapdoor collisions: There is an algorithm associated with the private key
skU that can perceive distinct pairs of m1 , r1 and m2, r2 such that
CHashU(m1,r1) = CHashU(m2,r2).

– Uniformity: For every value of m it obeys the uniform distribution on CHashU(m,r)
where r is chosen randomly based on uniform distribution.

• Digital signature: In this method, ElGamal signature or Schnorr signature schemes
are possible to implement. This signature scheme is related to the public and
private keys where the signer signs the massage m with its private key sk as
σ ← Signsk(m). The verification is indicated as Veri f ypk(σ) where the input mes-
sage m along with the signature σ is considered. For verification output it returns
true or false to indicate the validity of signature.

The efficient micropayment scheme

In this section the details regarding the transaction scheme for cryptocurrencies such
as bitcoin is presented.

• KeyGen3(1λ): Considers the input as a security parameter λ . Pair of private and
public keys as (x,y) such that x ∈ Zq

∗ and y = gx(mod p) where g ∈ Zp
∗. We

utilize Zp
∗ and cyclic sub group of order q such that ∃ k ∈ Z satisfying p = kq+1.

• Sign(sk,m): It considers the input as sk = x along with message m and utilizing
the Schnorr digital signature scheme, returning the signature as σ .

• Verify(σ , pk,m): It considers input as Schnorr signature σ , message m and public
key pk = y.Then based on the Schnorr scheme it returns true or false.

• CHashGen(pk,r,m): The chameleon hash function is created with respect to dis-
crete logarithm [42]. It is followed by chameleon commitments scheme as given
below:

– Setup: Setup process is same as KeyGen that we explained in micropay-
ment scheme.

– Chameleon function: For any value of m ∈ Zq
∗ we choose a random value

r ∈ Zq
∗ and determine the chameleon hash function as:

CHashy(m,r) = gmyr mod p (3.12)

• CollComp(sk, pk,r,m,m′): Chameleon hash function includes collision resistance
property i.e. for any given m,m′,r ∈ Zq

∗ and private key sk = x there exists a
value r′ ∈ Zq

∗ where CHashy(m,r) = CHashy(m′,r′). It is derived by solving the

3 A process of generating key pairs in cryptography. The program that is utilized to generate keys is
called a keyGen.

Chapter 3: Analysis of various methods in probabilistic micropayments 39

equation:
m+ xr = m′+ xr′(mod q)

In order to verify, we require to use a public key as pk = y.

• MicroCoinGen(b,sk, pk,n): For the creation of a chain of microcoins, the user’s
transactions are required so that the bitcoin is altered into n chain of microcoins
and spent separately based on a single recipient. For inputs we consider bitcoin
value b and private key for each i as ski = x ∈ Zq

∗ along with public key pki =

y = gx(mod p). For every (j = 1,2, ...,n) it returns n chain of microcoins as
{c j} denoted as c. Finally, we include Aux as auxiliary information specific to the
scheme parameters.

To create a micropayment chain for the n coins the owner of the bitcoin b chooses the
committed integer n and proceeds as below:

hn← Signx(H(b,y,n)),
hn−1← H(hn),

hn−2← H(hn−1),
...
h1← H(h2)

Then the holder of bitcoin calculates the chameleon hash function as follows:

b =CHashy((n,h1),r′)
where CHashy((n,h1),r′) = gn1yr′ mod p

The micropayment coins where each indicates the same monetary unit are as follows:

cn,cn−1, · · · ,c1,c0

Suppose the holder of microcoins requires to transfer k coins to the receiver R. In that
case, it is necessary to conduct the process based on the commitment transaction and
consider the input as microcoins ck and auxiliary information as Aux. The commitment
of transactions:

Ti+1← Signx(H(c0, pki+1)) (3.13)

where Ti+1 is located in the ledger and publicised in the bitcoin network for which miners
perform the verification process. In this method, the minimal transaction is one micro-
coin. Suppose that U transfers k microcoins, then U user forwards c′k to receiver R.
Then, R verify the validity by following process:

40 Chapter 3: Analysis of various methods in probabilistic micropayments

1. Compute hashing chain:
c′k′−1← H(c′k′),
c′k′−2← H(c′k′−1),
...
c′1← H(c′2)

2. Checks if below equality holds:

CHashy((n,c′1),r
′)

?
=CHashy(b,r)

gn·c′1yr′ = gbyr (mod p)

Hence, if the equality holds the algorithm returns true, i.e.

c′1 = c1,

c′2 = c2,
...
c′k = ck

The receiver of the following transaction updates the ledger and publicises to all
other users in the network.

Assume that the owner of the coins considered as Ui, it transfers continuously for re-
maining k′− k microcoins where k′ > k so that Ui transfers c′k′ to receiver R.

c′k′−1← H(c′k′),
c′k′−2← H(c′k′−1),
...
c′k← H(c′k+1)

Then R checks if the equality hold as c′k = ck, c′k+1 = ck+1,· · ·, c′k′ = ck′ so that the
algorithm will return true. Then the Ui updates the ledger and publicise the information
for all users. The micropayment commitment is created based on the main chain, and it
indicates a proof that the transaction of the micropayment is executed.

Chapter 4: Attack analysis in probabilistic micropayment methods 41

4 Attack analysis in probabilistic
micropayment methods

Probabilistic micropayments (PM) is a necessary and beneficial scheme for many-to-
many payments by solitary funding deposit authorized by universal payment aggrega-
tion. Since winning tickets determination is provably fair, a recipient does not care that
a ticket from any individual sender does not pay out because, on average, it will be paid
fairly throughout many tickets across many senders.

The main challenge to be addressed with PM is securing it against double-spending.
Unfortunately, in real applications double-spend attack is not fully prohibited due to the
following reasons:

• Senders have a single deposit for multiple recipients.

• Payments are offline. In other words, participants in the network do not put on
hold for transactions to confirm on-chain, hence, guaranteeing global consensus
on the availability of funds.

One of the solutions that are provided to overcome the problem of double-spending is
to force senders to have a non-spendable penalty escrow that creates tickets along with
the sender’s funding deposit [8]. If the sender is involved in double-spending, penalty
escrow will charge it. As a result, a sender would lack an economic motivation to try
double-spending if the additional benefit it gains is less than the economic loss encoun-
tered by deducting its penalty escrow amount. For probabilistic micropayment security
against double-spending attacks, the following condition is proposed:

• A recipient needs to agree on payments for services from an anonymous sender
safely.

• A recipient needs to attain simultaneous payments from different senders.

• A sender needs to pay any recipient regardless of whether the sender has been
a customer to the recipient or not.

However, the PM double-spend security protocol still requires more research and devel-
opment. The double-spending attack steps are illustrated in figure 4.1, as follows [43]:

• (a) It is a state in the blockchain when the attack starts. It is a leaf block that does
not include corresponding transactions yet.

• (b) On the left side, there is a branch known to the network. This branch consists
of a payment transaction to the seller and two confirmations. The seller transfers
the product or service, and simultaneously the attacker detects one block in the
other private branch credited to himself.

42 Chapter 4: Attack analysis in probabilistic micropayment methods

• (c) In this state, if the attacker makes its branch longer, one block is already known
to the network and pays himself as the attacker is confirmed in the network.

Figure 4.1: Double-spending outline [3]

With respect to the transferable scheme that is discussed in chapter 3, the double-
spending attack is indicated as followed: [3]:

Figure 4.2: Double-spending Attack scheme [3]

In figure 4.2, for the transferable method, the attacker profit is i ·β where β is the winning
amount and the i is the number of duplicated tickets. In the transferable scheme, the
adversary attacker interferes, breaks the k-tempered proof wallet, and obtains tickets
with various wallet addresses. Those issued along with double-spending attacks are
termed duplicated ones.

Chapter 4: Attack analysis in probabilistic micropayment methods 43

4.1 Detection method for double-spending attacks

We analyze two methods to identify the double-spending attacks and obtain the adver-
sary address. If the attacked address is revealed, it is broadcasted among all users in
the network. Afterward, it is discarded by all users in the chain. So in this situation, the
adversary does not obtain utility from a single block attack unless this attack surpasses
the corresponding cost related to k-tamper-proof wallet.

Theorem 4.1 (Fork4 detection) The double-spending attacks are able to be detected
by fork detection.

In order to prove this theorem, it is essential to define the fork of a series of transac-
tions.

Definition 4.2 (Fork of series transaction) Suppose we conducted two series of trans-
actions which begins with the same escrow account e ≺ ... ≺ θ and e ≺ ... ≺ θ ′ . This
series of transactions are considered as fork if and only if it satisfies conditions simulta-
neously θ ⊀ θ ′ and θ ′ ⊀ θ [3].

Proof: Suppose two forked series of transactions exist as θ and θ ′. Assume that users
check the eligible tickets which are registered in the blockchain. The user who owns
the θ ′ reports the adversary attack as double-spending. Then the adversary address is
confirmed by the recent similar prefix of θ and θ ′.

Theorem 4.3 (Collision Recognition) Assume that u is the cardinality of users in the
transfer scheme network. So, in the collision detection, Ed is the upper bound for the
below inequality [3]:

Ed ≤
√

u
e

β (4.1)

where Ed is the statistical expected amount of utility for double-spending attacks.

Proof: Hypothetically assume that each user has αu addresses. However, in real time
scenario, user’s number of addresses are considered as an exponential distribution
rather than uniform. Suppose p(i,u) denotes the probability of selection of the par-
ticular user address that is selected i-times by user u. The probability is as follows:

p(i,u)≈ 1− e−
i2
2u (4.2)

Presumably, the attacker double-spends the i tickets along with the greatest possible
extent value of β for each ticket. The attacker’s expected utility amount is as follows:

Ed < max
i
{iβ · (1− p(i,u))} (4.3)

4 a situation that "occurs when two or more blocks have the same block height."

44 Chapter 4: Attack analysis in probabilistic micropayment methods

Hence, the Ed is maximum
√u

e β in a case i =
√

u

Therefore in the transferable scheme, the adversary attack as double spending is dis-
tinguished by all users. In this case there is no benefit for attacker as long as the fees of
breaking a single tamper-proof wallet surpasses the maximum expected value which is
obtained by the attack. If the φ is considered as the fees obtained on breaking k-tamper
proof wallet, the attacker receives no advantage under the below condition:

√
u
e

β < φ (4.4)

4.2 Double-spend attack with concurrent of eclipse
attack in blockchain

The security of transactions in Bitcoin is analyzed based on a double-spending attack
with the occurrence of an eclipsed attack. A mathematical model associated with a
blockchain mining steps are given, in which the model is utilized to conduct an eco-
nomic assessment of double-spend attack in the blockchain [44].
Eclipse attack is represented by Heilman et al. for peer-to-peer Bitcoin network [45].
In an eclipse attack, an attacker blocks a peer’s view from the peer’s neighboring con-
nections by isolating a peer node to connect only to the attacker node. Suppose that
the attacker blocks the merchant’s view in the blockchain by a double-spend attack with
eclipsing possibility. The following assumptions are considered for the attacker model:

• q is a fraction of total mining power. An attacker’s mining power is 0 < q < 0.5. If
q≥ 0.5, the Bitcoin is not able to secure any transactions since the attacker con-
trols the most mining power.

• New blocks are created every 10 minutes. Mining follows Poisson point process
consisting of properties of independence and Poisson property, which indicates
the occurrence of mining continuously and independently at a constant average
rate.

• Cost associated with eclipse attack is not considered in this model. Also, we
assume that the attacker does not conduct a denial-of-service attack concerning
honest miners.

To identify Bitcoin security for eclipse-base attack, economic break-even point 5 is cal-
culated. The Break-even point is calculated as R−C = 0, where R is the revenue
generated by the company and C is associated with the cost incurred in a company. A
merchant forwards goods or services when the paying transaction reaches z-blocks in
the blockchain.
5 The break-even point in the economy is the point where a company’s revenue equals the cost incurred

in a company.

Chapter 4: Attack analysis in probabilistic micropayment methods 45

Remark 4.4 A random variable is denoted as X which is a function from possible out-
comes Ω mapped to a measurable space E. The random variable function associates
values to every experiment’s outcomes. So the probability of X : Ω→ E obtaining a
value in a measurable set S⊆ E is given as: P(X ∈ S) = P({ω ∈Ω | X(ω ∈ S)}) [46].

Suppose that Xq
i is an exponential random variable, i.e. Xq

i ∼ exp(β) where β = 10
q .

Xq
i indicates the time duration for an attacker with mining power of q to mine the respec-

tive ith block.

X =
z

∑
i=1

Xq
i (4.5)

The time taken by an attacker to mine in order to obtain block z is given as 4.5.
X ∼Γ(z, 10

q), since Xq
i ∼ exp(β) is an exponential distribution. Exponential distribution is

subcategory of gamma distribution with rate of β which is the inverse of scale parameter,
and shape of α = z. The probability density function (PDF) associated with gamma
distribution with shape-scale parameters is f (x;z,β) = xz−1e−x/β

β zΓ(z) . Evaluating the cost of
an attack with a mining power of q in duration x along with deadline d is denoted as
C(x;d,q), which is computed as given below:

C(x;d,q) =

qxB
10

f or x≤ d

qdB
10

f or x > d

where B denotes block reward, and blocks are mined in a frequency of 10 minutes.
The reason to evaluate the attack cost is to determine the utility gaining of an attacker
compared to being an honest miner. Assume that g(x;z,β) is a probability density
function (PDF), and G(x;z,β) is its cumulative distribution function (CDF). We compute
expected value of opportunity cost as given below:

E[C(X ;d,q)] =
∫

∞

0
C(x,d,q)g(x;z,β)dx

=
∫ d

0

qxB
10

g(x;z,β)dx+
∫

∞

d

qdB
10

g(x;z,β)dx

=
qB
10

∫ d

0
x · x

z−1e−x/β

β zΓ(z)
dx+

qdB
10

(1−G(d;z,β))

=
qB

10β z(z−1)!

∫ d

0
xze−x/β dx+

qdB
10

(1−G(d;z,
10
q
))

=
qB

10β z(z−1)!
xze−x/β

−β
− z

∫
xz−1e−x/β dx+

qdB
10

(1−G(d;z,
10
q
))

Hence, we continue with integration by parts till we obtain the expected value as given
below:

E[C(X ;d,q)] =
qB
10

[
10z
q

G(d;z+1,
10
q
)]+

qdB
10

(1−G(d;z,
10
q
))

=
qdB
10

+ zBG(d;z+1,
10
q
)− qdB

10
G(d;z,

10
q
).

(4.6)

46 Chapter 4: Attack analysis in probabilistic micropayment methods

The probability of earning benefit from the attack is P(X ≤ d) = G(d;z, 10
q). The attacker

gains revenue R if the mining time is less than the deadline for mining each block. For
example, revenue is given as below:

R(x;d) =

{
v f or x≤ d

0 f or x > d

The expected revenue associated with the eclipse attack is calculated as E[R(X ;d)] =
vG(d;z, 10

q). The break-even point concept is utilized to compute v. The expected break-
even point takes place when the expected value of revenue is equal to the expected
value of cost; hence we substitute the expected value of revenue with the cost as given
in 4.7:

E[R(X ;d)]−E[C(X ;d,q)] = 0

hence it follows that:

v =
E[R(X ;d,q)]
G(d;z, 10

q)

=
E[C(X ;d)]
G(d;z, 10

q)

=

qdB
10 + zBG(d;z+1, 10

q)−
qDB
10 G(d;z, 10

q)

G(d;z, 10
q)

(4.7)

With utilizing this model, we compute the revenue of an attacker in the case of double-
spend attack with occurrence of eclipse attack in Bitcoin network. The important param-
eters for success of attacker are as below:

• Attacker mining power q
• Depth of block that is to be mined

• Confirmation deadline d which is announced by merchant.

The security of transaction execution in a blockchain network against a double-spend
with the eclipse attack increases logarithmically with the z depth of the block, conse-
quently adding more profit to an attacker. For the merchants that set the long confir-
mation time rather than one confirmation with the same mining power q = 10%, the
merchants prohibit the system from an attacker.

4.3 Adversary attacks

In the adversary attacks, we define two types of malicious attacks as Types I and II.
In Type I, the attacker is the owner of the crypto coin who plans to spend more than
its sufficient fund during the transactions. In Type II, the adversary attack is related to

Chapter 4: Attack analysis in probabilistic micropayment methods 47

the receiver of the crypto transaction, who has the purpose of declaring more than the
amount obtained.
The efficient and double-spending resistance micropayment method for cryptocurren-
cies which is discussed in chapter 3, is secure against Type I and Type II adversary
attacks [41].

Theorem 4.5 The efficient micropayment scheme for cryptocurrencies is secured in
case of a Type I adversary attack if the security of the Chameleon hash function and
digital signature is guaranteed.

Proof: Let us suppose Type I adversary as A and simulator as B. The adversarial attack
is modeled as an interaction between A and B.
Setup: Algorithm6 KeyGen(1λ) is requested by simulator B with the purpose of issuing
a pair of public and private keys (pk,sk). The pair of keys as (x,y) is selected from
multiplicative cyclic subgroup as x ∈ Z∗q and y = gx(mod p) where g ∈ Z∗p. Then key
pair (x,y) is forwarded to adversary A.
Query: The adversary A is able to issue as many microcoins as possible. Suppose we
consider bitcoins as b and set of microcoins as Z = (c1,c2, · · · ,cu) where ci termed as
a whole set of microcoins initiated from b.
Challenge: The simulator B chooses a set of microcoins from Z = (c∗0,c

∗
1, · · · ,c∗n) and

forwards the set to A. Adversary A win the challenge, if A is able to replace a valid
microcoin as cn′ such that n′ > n. The probability of adversary winning is trivial since it
is supposed that blockchain is secured and integrating into the ledgers, then

Ti+1← Signx(H(c0, pki+1))

transactions are recorded into the ledgers. Hence, it is impossible to mutate the com-
mitted value n even though the private key is recognized. While the set of microcoins
(c∗0,c

∗
1, · · · ,c∗n) is possible to generate, minors still eliminate it since the commitment for

transactions Ti+1 is already documented in the immutable ledgers.

Theorem 4.6 The efficient micropayment scheme for cryptocurrencies is secured against
Type II adversary attacks. Suppose micro coins ci are stored in the network since it is
mathematically impossible for A to build a valid microcoin c j hence the security is en-
sured.

Proof: Suppose Type II adversary as A and simulator as B.
Setup: In the setup it is followed the process based on KeyGen(1λ . It is generated the
public and private key pairs as (x,y) where x ∈ Z∗q and y = gx(mod p) where g ∈ Z∗p
sends it to adversary A.
Query: The adversary is able to create at most n−1 queries to simulator B. Since the
queries are created in an order so even if a microcoin is not queried, it is still considered

6 In 3.4.4 the method is discussed.

48 Chapter 4: Attack analysis in probabilistic micropayment methods

a valid microcoin. The adversary A is able to gain multiple set of microcoins from differ-
ent bitcoins such as (c0,c1, · · · ,cl1)b1 , (c0,c1, · · · ,cl2)b2 , ... denoted by Z.
Challenge The simulator B chooses a challenge for a microcoin set as (c∗0,c

∗
1, · · · ,c∗n)bi

from the query set Z and forward it to adversary A. A is able to return a valid microcoin
c′l such that l′ ≥ li if c∗li = H(c′l). Based on the definition of hash function given on chap-
ter 2, it is infeasible for adversary A to calculate the inverse of a hash value. Hence the
probability of winning the challenge by A is trivial.

Chapter 5: Conclusion 49

5 Conclusion

This thesis has undertaken a detailed analysis of different probabilistic micropayments
systems based on centralized and decentralized networks. We have also compared the
methods based on particular features such as cost-saving and time-efficiency. Our study
indicates that probabilistic micropayments provide flexible payment methods, increasing
cryptographic security and reducing the network’s transaction costs.
According to the evaluation of comparison among Lottery tickets, coin flipping, and MR2
schemes, we conclude that the MR2 and lottery tickets are almost the same in the
computation time, with partial anonymity of low risks. The coin-flipping method is not
proper for micropayment since it has high computational and transaction costs. Since
the MR2 scheme has less traffic cost, it delivers the message authentication with no
overcharging fees. Hence, MR2 proves to be an important scheme for the case of
micropayments in centralized networks.

The comparison between lottery tickets, coin flipping, and MR2 schemes are as fol-
lows:

• MR2 schemes include a selective deposit approach ensuring that the customer is
not overcharged. While in the case of coin-flipping, there exists a probability that
the customer may be charged more than the actual value.

• Based on the complexity of the payments scheme, the user is required to identify
the hashing process for the lottery ticket method. The customer needs to know
about the zero-knowledge proof of the information, hashing process, and signa-
tures in the coin-flipping scheme. While in the MR2 scheme, it is only necessary
for the buyer to identify signatures.

• In the lottery tickets and coin-flipping methods, there is no double-spending attack
since the generated tickets include the customer data as the root of the hash
chain. However, in the MR2 scheme, there is a possibility of double-spending
attacks. Since the user submits the same cheque to different sellers by using the
same serial number again, and bank detects this issue later if the same serial
number is already deposited from the bank or when the serial number and the
timestamp of the cheque are expired.

The MR2 scheme is the proper solution in the case of centralized networks. It is nec-
essary to conduct more research from the commercial and usability point of view and
usability purpose. Besides those, to improve the payword scheme, we analyze the
general payword scheme and blind signature method, which delivers better results for
transaction fees.
In the case of decentralized network implementation in the blockchain system, we scru-
tinize different methods based on transferability and proportional fee schemes. Then,

50 Chapter 5: Conclusion

we analyze the micropayments in cryptocurrencies, such as bitcoin utilizing chameleon
hash functions and a commitment scheme. The MICROPAY3 protocol, a ledger-based
transaction system, is derived from lottery tickets. The orchid payment protocol is in-
fluenced by the MICROPAY3 protocol as a second layer solution to reduce transaction
fees in the Ethereum blockchain.

Summary of different methods for micropayments and probabilistic
micropayments

Figure 5.1: Summary of various methods

Future Work

• To improve probabilistic micropayment scheme it requires to analyze on the blind
signature.

• Concerning attack analysis, it is important to specify the structure of the penalty
escrow fund. Furthermore, it is important to design the PM double-spend security
protocol as a future implementation.

• The traffic detection in the payment protocol is ongoing research by utilizing dif-
ferent randomization transformations. In which it is possible to relate with deep
learning area for traffic detection in payment systems [9].

Appendix : Bibliography 51

Bibliography

[1] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping
Wang, Yonggang Wen, and Dong In Kim. A survey on consensus mechanisms
and mining strategy management in blockchain networks. IEEE, 7:22328–22370,
2019.

[2] Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman. An
introduction to mathematical cryptography, volume 1. Springer, 2008.

[3] Taisei Takahashi and Akira Otsuka. Probabilistic micropayments with transferability.
European Symposium on Research in Computer Security, pages 390–406, 2021.

[4] Ronald L Rivest. Electronic Lottery Tickets as Micropayments. International Con-
ference on Financial Cryptography, pages 307–314, 1997.

[5] Dan Wheeler. Transactions Using Bets. Security Protocols Workshops, 1996.

[6] Theodor Holm Nelson. Complex information processing: a file structure for the
complex, the changing and the indeterminate. In Association for Computing Ma-
chinery: Proc. 20th National Conference, pages 84–100, 1965.

[7] David Chaum. Online cash checks. In Workshop on the Theory and Application of
of Cryptographic Techniques, pages 288–293. Springer, 1989.

[8] Rafael Pass and Abhi Shelat. Micropayments for Decentralized Currencies. Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 207–218, 2015.

[9] David L Salamon, Gustav Simonsson, Jay Freeman, Brian J Fox, Brian Vohaska,
Stephen F Bell, and Steven Waterhouse. Orchid: enabling decentralized network
formation and probabilistic micro-payments. Orchid Labs, Tech. Rep., Available:
https://www. orchid. com, 2018.

[10] Paul C Van Oorschot, Alfred J Menezes, and Scott A Vanstone. Handbook of
applied cryptography. CRC press, 1997.

[11] Joseph H. Silverman Jeffrey Hoffstein, Jill Pipher. An introduction to mathematical
cryptography. Undergraduate texts in mathematics. Springer, 1 edition, 2008.

[12] Mohammad Jabed Morshed Chowdhury, Alan Colman, Muhammad Ashad Kabir,
Jun Han, and Paul Sarda. Blockchain versus database: A critical analysis. In 2018

52 Appendix : Bibliography

17th IEEE International Conference On Trust, Security And Privacy In Computing
And Communications/ 12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), pages 1348–1353. IEEE, 2018.

[13] Ralph Charles Merkle. A digital signature based on a conventional encryption func-
tion. In Conference of the Theory and Application of Cryptographic Techniques,
pages 369–378. Springer Berlin Heidelberg, 1987.

[14] Ralph Charles Merkle. Secrecy, authentication, and public key systems. Stanford
university, 1979.

[15] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
Annual International Cryptology Conference, pages 139–147. Springer, 1992.

[16] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In
Annual International Cryptology Conference, pages 37–54. Springer, 2005.

[17] Markus Jakobsson and Ari Juels. Proofs of Work and Bread Pudding Proto-
cols(Extended Abstract. Springer US, 1999.

[18] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transac-
tions on Information Theory, 22(6):644–654, 1976.

[19] PoW function hashcash. http://www.hashcash.org/, 1997. Accessed: 10-01-
2022.

[20] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[21] Victor S Miller. Use of elliptic curves in cryptography. In Conference on the theory
and application of cryptographic techniques, pages 417–426. Springer, 1985.

[22] Lawrence C Washington. Elliptic curves: number theory and cryptography. CRC
press, 2008.

[23] Moses Liskov. Fermat’s Little Theorem, volume 455–457. Springer, 2005.

[24] Scott Vanstone. Responses to nist’s proposal. Communications of the ACM,
35(7):50–52, 1992.

[25] Taher ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[26] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Con-

Appendix : Bibliography 53

ference on the Theory and Application of Cryptology, pages 239–252. Springer,
1989.

[27] Paula L Hernandez Verme and Ruy A Valdes Benavides. Virtual currencies, Mi-
cropayments and the payments systems: a challenge to fiat money and monetary
policy? European Scientific Journal, 9(19):325–343, 2013.

[28] Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian Miers, and
Pratyush Mishra. Decentralized Anonymous Micropayments. Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
609–642, 2017.

[29] Ronald L Rivest and Adi Shamir. Payword and micromint: Two simple micropay-
ment schemes. pages 69–87. Springer, 1996.

[30] Leslie Lamport. Password authentication with insecure communication. Commu-
nications of the ACM, 24(11):770–772, 1981.

[31] Ching-Te Wang, Chin-Chen Chang, and Chu-Hsing Lin. A new micropayment sys-
tem using general payword chain. Electronic Commerce Research, 2(1):159–168,
2002.

[32] Richard J Lipton and Rafail Ostrovsky. Micro-payments via efficient coin-flipping.
International Conference on Financial Cryptography, pages 1–15, 1998.

[33] Hiroyuki Okazaki and Yuichi Futa. Polynomially bounded sequences and polyno-
mial sequences. open access: De Gruyter open, 2015.

[34] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Annual
International Cryptology Conference, pages 390–420. Springer, 1992.

[35] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[36] Silvio Micali and Ronald L Rivest. Micropayment Revisted. Cryptographers’ Track
at the RSA Conference, pages 149–163, 2002.

[37] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. A review of internet payments schemes. Proceedings of the Australian
Telecommunication Networks and Applications Conference (ATNAC’96), 1996.

[38] Paul Baran. On distributed communications networks. IEEE transactions on Com-
munications Systems, 12(1):1–9, 1964.

54 Appendix : Bibliography

[39] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, 9:21260, 2008.

[40] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay
functions. In Annual international cryptology conference, pages 757–788. Springer,
2018.

[41] Fatemeh Rezaeibagha and Yi Mu. Efficient micropayment of cryptocurrency from
blockchains. The Computer Journal, 62(4):507–517, 2019.

[42] Hugo Krawczyk and Tal Rabin. Chameleon hashing and signatures. 1998.

[43] Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint
arXiv:1402.2009, 2014.

[44] George Bissias, Brian Neil Levine, A Pinar Ozisik, and Gavin Andresen. An analy-
sis of attacks on blockchain consensus. arXiv preprint arXiv:1610.07985, 2016.

[45] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse at-
tacks on {Bitcoin’s} {Peer-to-Peer} network. In 24th USENIX Security Symposium
(USENIX Security 15), pages 129–144, 2015.

[46] Moshe Zukerman. Introduction to queueing theory and stochastic teletraffic mod-
els. arXiv preprint arXiv:1307.2968, 2013.

[47] Mathematical Cryptography elliptic curves in cryptography. https://web.
northeastern.edu/dummit/handouts.html. Accessed: 20-03-2022.

Appendix A: Implementation: Python Code 55

Appendix A: Implementation: Python Code

https://git.hs-mittweida.de/amirian/master-thesis

A.1 Probabilistic Micropayment scheme’s: Payword
1 import hashlib
2 class payword_initial:
3 def __init__(self ,seq):
4 self.seq = seq
5

6 #payword creation by user
7 def payword_init(self):
8 self.seq.reverse ()
9 w1 = self.seq [0]

10 w2 = self.seq [0]
11 w3 = self.seq [0]
12 # h is a hash function and three different hash functions are

applied.
13 MD5 = []
14 SHA256 = []
15 SHA512 = []
16 # not including the root W0 in the range function.
17 for _ in range(0,len(self.seq) -2):
18 c1 = hashlib.md5(w1.encode ()).hexdigest ()
19 c2 = hashlib.sha256(w2.encode ()).hexdigest ()
20 c3 = hashlib.sha512(w3.encode ()).hexdigest ()
21 MD5.append(c1)
22 SHA256.append(c2)
23 SHA512.append(c3)
24 w1 = c1
25 w2 = c2
26 w3 = c3
27 return MD5 ,SHA256 ,SHA512
28 # number of occurance and applying hash functions on the payword

chain based on each input.
29 if __name__==’__main__ ’:
30 x = int(input ())
31 L = []
32 for _ in range(x):
33 y = input ()
34 L.append(y)
35 obj = payword_initial(L)
36 print(L)
37 print(obj.payword_init ())

Listing A.1: Payword creation by User

56 Appendix A: Implementation: Python Code

A.2 Merkle Tree
1 from hashlib import sha512
2

3 class Merkle_tree:
4

5 def build_merkle_tree(self ,leaves):
6 self.leaves = leaves
7 if len(self.leaves)==1:
8 return sha512(self.leaves [0]. encode ()).hexdigest ()
9

10 else:
11 N = []
12 for i in range(0,len(self.leaves) ,2):
13 x = sha512(self.leaves[i]. encode ()).hexdigest ()
14 y = sha512(self.leaves[i+1]. encode ()).hexdigest ()
15 N.append ((sha512 ((x+y).encode ())).hexdigest ())
16 if len(N)==1:
17 return N[0]
18

19

20

21 return self.build_merkle_tree(N)
22

23 #Adjust the blocks of hashes until we have an enen No. of items in
the blocks

24 #This entails appending to the end of the list as the last entry
25 #To do this we use power function to determine if the given list is

power of 2 and be even no. of items.
26

27

28 if __name__==’__main__ ’:
29 x = int(input ())
30 L = []
31 for _ in range(x):
32 y = input ()
33 L.append(y)
34 try:
35 for i in range(0,int(x/2)):
36 if pow(2,i)==len(L):
37 break
38 x = i
39 obj = Merkle_tree ()
40 print(’\n’,obj.build_merkle_tree(L))
41 except:
42 print(’\n Total number of elements should be a power of

2.’)

Listing A.2: Merkle Tree

Appendix A: Implementation: Python Code 57

A.3 Elliptic Curve Addition operation

1 # Program for performing addition operation over an elliptic curve
2 import math
3

4 # Class of functions required to perform the addition operation
5 class elliptic_curve_operations:
6

7 #1 Function to check whether number is prime or not
8 def prime_check(x):
9 if x > 1:

10 z=int(math.sqrt(x))
11 for i in range(2,z+1):
12 if x%i!=0:
13 continue
14 else:
15 return False
16 else:
17 return False
18 return True
19

20 #2 Function to perform addition operation
21 def Elliptic_curve_operations(self ,p,a,b,points):
22 self.p = p
23 self.a = a
24 self.b = b
25 self.points = points
26 if 4*pow(self.a,3) +27* pow(self.b,2) !=0:
27 if elliptic_curve_operations.prime_check(self.p):
28 EC = EllipticCurve(GF(self.p),[self.a,self.b])
29 if len(self.points)==1:
30 x = (int(points [0][0]) ,int(points [0][1]))
31 if x in EC:
32 return EC([int(self.points [0][0]) ,int(self.

points [0][1])])
33 else:
34 point1 = (int(self.points [0][0]) ,int(self.

points [0][1]))
35 point2 = (int(self.points [1][0]) ,int(self.

points [1][1]))
36 if point1 in EC and point2 in EC:
37 SUM=EC([int(self.points [0][0]) ,int(self.

points [0][1])])+EC([int(self.points [1][0]) ,int(self.points
[1][1])])

38 if len(self.points) >2:
39 for i in self.points [2: len(self.points)]:
40 x = (int(i[0]),int(i[1]))
41 if x in EC:
42 SUM+= EC([int(i[0]),int(i[1])])
43 return SUM
44 else:
45 return ’Since p is not prime power it does not

58 Appendix A: Implementation: Python Code

create Galois Field.’
46 else:
47 return ’Since 4a^3 + 27b^2 = 0, elliptic curve is not

considered.’
48

49 # passing the variables in the form of input to create an elliptic
curve over a Galois field and performing the addition operation

50 if __name__==’__main__ ’:
51 p = int(input(’Enter a prime number for creation of GF : ’))
52 a = int(input(’Enter a in elliptic curve y^2 = x^3+ax+b : ’))
53 b = int(input(’Enter b in elliptic curve y^2 = x^3+ax+b : ’))
54 n = int(input(’No. of points for addition operation : ’))
55 points = []
56 for _ in range(n):
57 point = tuple(input().strip().split ())
58 points.append(point)
59 obj = elliptic_curve_operations ()
60 print(obj.Elliptic_curve_operations(p,a,b,points))

Listing A.3: Elliptic Curve

Appendix A: Implementation: Python Code 59

A.4 Decentralized vs.Centralized visualization

1 import networkx as nx
2 import matplotlib.pyplot as plt
3 #N is degree
4 class graph_cons:
5

6 def graph_centralized(self ,N):
7 self.N=N
8 L = []
9

10 for i in range(1,self.N+1):
11 L.append(i)
12 G = nx.Graph ()
13 G.add_nodes_from(L)
14 for j in range(2,len(L)+1):
15 G.add_edge(1,j)
16 nx.draw(G)
17 plt.show()
18

19

20 def graph_decentralized(self ,N,M):
21 self.N=N
22 self.M=M
23 L = []
24

25 for i in range(1,self.M+1):
26 L.append(i)
27 V1=[]
28 a = self.M+1
29 for i in range(2,self.M+1):
30 V2=[]
31 for k in range(len(self.N)):
32 for j in range(a,a+self.N[k]):
33 if L.index(i)==k+1:
34 V2.append(j)
35 a=a+self.N[k]
36 V1.append(V2)
37 G = nx.Graph ()
38 G.add_nodes_from(L)
39 for j in L:
40 G.add_edge(1,j)
41 for k in L[1:len(L)]:
42 for j in V1:
43 G.add_nodes_from(j)
44 for i in j:
45 if L.index(k)==V1.index(j)+1:
46 G.add_edge(k,i)
47 nx.draw(G)
48 plt.show()
49

50 if __name__ == ’__main__ ’:

60 Appendix A: Implementation: Python Code

51 M=int(input())
52 n=input().strip ().split()
53 N = []
54 for i in n:
55 N.append(int(i))
56 obj= graph_cons ()
57 #obj.graph_centralized(N)
58 print(obj.graph_decentralized(N[1: len(N)],M))
59 #Calling methods separately instead simultaneously for generating

different figures.

Listing A.4: Decentralized vs.Centralized visualization

Appendix B: Mathematics 61

Appendix B: Mathematics

B.1 Elliptic Curves: Weierstrass Form for Singular &
Non-singular Curves

Motive is to study cubic curves in the plane [47]. An elliptic curve over a field K is the
curve in the Weierstrass form as given below:

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6 (B.1)

a1,a2, ...,a6 are appropriate coefficients in K where in cryptography we restrict our at-
tention to the field of integers modulo p.
Suppose that we reduce Weierstrass equations to the form as given below:

y′ = y+(a1
2)x+(a3

2)

x
′′
= x+(a2

3)

(y′)2 = (x
′′
)3 +A(x

′′
)+B

hence the elliptic curve equation in the form of y2 = x3+Ax+B is denoted as a reduced
Weierstrass equation, which is more flexible for computation.
Repeated root in the polynomial x3 +Ax+B means that it includes the root in common
with its derivative 3x2 +A where replacing the x in polynomial result in ∆ = 0.

• A curve is called singular if and only if its discriminant ∆ = −16(4A3 + 27B) is
equal to zero, i.e., the polynomial x3 +Ax+B includes a repeated root, and the
elliptic curve y2 = x3 +Ax+B is singular. Also, the factor of −16 is added to avoid
denominators in the ∆ expression.

– Singular points are the points where the curve is non-differentiable. In some
cases, for the real field, it occurs when x3 +Ax+B has a double root where
the curve crosses itself and is denoted as a node.

– The other case is when a singular point occurs in the origin (0,0) where poly-
nomial x3 +Ax+B has a triple root as (A = B = 0).

• A curve is categorized as non-singular if the roots are distinct.

The elliptic curves have properties related to non-singular curves where ∆ 6= 0.

62

Erklärung 63

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, im May 2022

HSMW-Thesis

