
Context-based Role Object Pattern

with On-Chain Smart Contract Programming

Orçun Oruç, Uwe Aßmann, Arbli Troshani
Technische Universität Dresden, Software Technology Group, Nöthnitzer Straße 46, 01187 Dresden

Dynamic object roles and corresponding contexts can model complex applications with higher-level abstrac-

tion. These abstracted applications can be used in wider areas such as financial institutions, health care, and

supply chain network. Role management which consists of the creation of role objects, and binding role object

between core objects still suffers from non-intrusive logging-monitoring, auditing, and resilient data source for

role-based applications. Moreover, immutable smart contracts cause problems concerning bug fixing and

maintenance without dynamic binding to new smart contract objects. An object that is created from a smart

contract (contract class) can be transparently attached to a role object utilizing the Role Object Pattern (ROP).

However, ROP itself does not contain a context definition and context-specific role assignment grouping the

definition of smart contract relationships in abstracted data types. In this study, we would like to implement an

extended version of the role object pattern called Context-based Role Object Pattern (ContextROP) with an on-

chain smart contract language called Solidity to solve fundamental problems. To evaluate the proposal, we will

implement a use case with the design pattern proceeding with qualitative and quantitative analysis.

Keywords: Smart contracts, Role-based Programming, Role-Object Pattern, Object-Oriented Programming

1. Introduction

In software engineering, a design pattern is a repeatable

solution for a common design problem. One can trans-

form a specific design pattern directly into the code. A

smart contract is an autonomous entity and verifiable

agreements between participants. However, a bad de-

sign of a smart contract can cause immersive problems

between participants. For instance, if there is a bug in a

smart contract, it must be updated on-chain network.

When you deployed a new contract to update a depre-

cated contract, smart contract data and application logic

should be altered. That is why eternal storage and up-

gradable contract pattern have been proposed.

Smart Contracts are deterministic, isolated, and immu-

table programs that can work in decentralized networks.

A smart contract must give the same results under the

same inputs to comply with the determinism concept.

Off-chain transactions rely on a blockchain network;

however, the computational logic is stored in off-chain

transactions without hashed values (TransactionX). On-

chain smart contracts can only provide an isolation prin-

ciple because an external computation in a smart con-

tract cannot be isolated virtual machine such as

Ethereum Virtual Machine (Ethereum VM). The most im-

portant principle that we need to emphasize is the im-

mutability of smart contracts.

Immutability issue is an important characteristic of

smart contracts [2]. The immutability character of Solid-

ity contracts can harm the credibility of auditing while

changing the smart contract data structure in case of an

1https://wiki.c2.com/?ObjectSchizophrenia

error. Another problem could be that misused or hacked

contracts, smart contracts cannot be changed [2].

„Object schizophrenia or self-schizophrenia is a combi-

nation arising from the delegation and related tech-

niques in object-oriented programming.“1. Objects can

have a single behavior and attribute at a specific time;

however, there are some programming techniques that

could not lead us to distinguish the singularity of iden-

tity. For instance, the delegation in class-based program-

ming languages causes differen attribute personalities

for an object because a delegated method can call from

a base method of a base class [1]. Analogous to the class-

object concept of object-oriented programming lan-

guages, smart contracts use objects from contracts

(class) relationship. Contracts can be defined as class-

like structures. Once a contract is deployed, the storage

(data) and application logic of a contract should be de-

ployed together. Real-world entities can be represented

with roles. Entities that have several behaviors and at-

tributes can play several roles during their lifetime. Even

in object-oriented programming, each object has a set of

roles because objects can be created with different

properties (attributes and behaviors) from a base class.

To create roles, we have a set of methods like dynamic

classification, multiple classification, multiple inher-

itance, type hierarchy with subtyping (overriding), and

subclassing. For instance, a human can be classified as

Person, Employee, Manager, Teacher, Student, and Retired

Employee. Employee, Manager, and Retired Employee can

belong to a Factory context because they have worked

in this context with attributes (name, id, social security

https://wiki.c2.com/?ObjectSchizophrenia

number). Some roles cannot co-exist like Person cannot

be Employee and Retired Employee at the same time. Iden-

tity sharing can also happen in on-chain smart contracts

because they use object-oriented language with the

aforementioned features. This study would like to show

the possible effect of identity sharing on smart contract

development.

Each contract has deployment and execution asset costs

concerning the operation of a smart contract in a block-

chain decentralized network. Developers can redeploy a

smart contract so as to eliminate outdated and depre-

cated storage and application logic from updated con-

tracts; however, there is a dangerous point with regards

to the security of smart contracts. This is called Reen-

trancy attack. The reentrancy attack can be eliminated

with the concept of the deep role because a role that has

been played before cannot be played by another core

contract again. In the concept of deep roles concept

(roles are playing roles), a core object can play roles, but

played roles cannot play other roles. In this manner,

smart contract security can prevent reverse calling for

played roles by implementing role modeling.

The rest of the paper is structured as follows: We em-

phasize the research problem in Chapter 2 and describe

our motivation with research questions in SubChapter

2.1 to conduct this research. Then, we provide back-

ground of role abstraction in smart contract design, de-

sign pattern concept in Solidity language, computational

cost in stateful on-chain smart contracts in Chapter 3.

Chapter 4 will be relevant to the current challenges that

we have faced during the research study and the limita-

tions of the study will be listed. After we have empha-

sized the key takeaways from related studies in Chapter

5, we will analyze the implementation of the proposed

design pattern in on-chain smart contract programming.

In Chapter 6, we will give details of implementation. In

Chapter 7, we will discuss key findings regarding the con-

ducted research with a list of conclusions to enlighten

the reader. Finally, in Chapter 8, further key points in re-

gard to development and research will be listed.

2. Research Problem

In this chapter, we will define our research questions

and the major problems that have motivated us to com-

plete this paper. Roles are abstraction layers of an ob-

ject-oriented approach to solve multiple problems,

which are:

- Extending key abstractions of roles should be repre-

sented as an aspect of suitability and cost-effectiveness

in a smart contract language such as Solidity. Which

smart contract language features are necessary to rep-

resent key abstractions of roles?

- Although managing dynamic roles is an important role-

based language feature. Role Object Pattern (ROP) suf-

fers from object schizophrenia and one can solve this

problem with delegation and forwarding in object-ori-

ented programming languages.

- Role-level constraints are necessary to maintain con-

straints among roles without a context. How can we im-

plement constraints between roles?

- By implementing subclassing in a role modeling sce-

nario, we can implement the Role Object pattern recur-

sively. What are the drawbacks and benefits in terms of

performance and gas cost for Solidity on-chain program-

ming language?

In addition to the main problem interests, we would like

to focus on the following research question:

Research Question 1 (RQ1): How to identify different

role subtyping through interfaces in Solidity?

Research Question 2 (RQ2): How can type safety be en-

sured statically?

Research Question 3 (RQ3): What are the benefits and

drawbacks of proxy pattern and interface selector ac-

cording to role modeling in on-chain contract languages?

2.1. Motivation

The main motivation of this paper is to provide a preview

of one of the important design patterns for role model-

ing, which is the Role Object Pattern (ROP). By imple-

menting the extended version of this pattern, we will

elaborate on possible implications while extending the

design pattern with contexts in Solidity language. ROP

focuses on the dynamicity of a role insertion into the sys-

tem of the main design. Even if we have dynamic design

patterns such as Proxy Delegate, Upgradable Standard

for Proxy Delegate, and Eternal Storage, the ROP can

support context which can provide a computational en-

tity and grouping relationships in model-driven engi-

neering.

3. Background

3.1. On-chain and Off-chain Smart Contract Pro-

gramming Decentralized Networks

Concerning the programming concept in smart con-

tracts, we have two different terms, which are on-chain

and off-chain smart contract programming. The funda-

mental difference between off-chain and on-chain smart

contract programming is being connected with an exter-

nal service that is not part of a blockchain network.

A smart contract can check preconditions and postcon-

ditions in the on-chain network. On-chain smart contract

programming has some advantages, which are:

Transactions are executed in an on-chain database,

which is called blockchain network.

The state of the blockchain and smart contracts can be

tracked by means of on-chain events.

With event and emit keywords, one can implement an ad-

vanced logging system without implementing third-

party logging solutions. Beyond that, one can realize a

domain-specific language for logging in the Ethereum

network that works with Solidity language to get infor-

mation about transactions, transaction receipts, and

states2.

Off-chain data can be harmonized with external data

sources such as specialized streaming data platforms,

key-store databases, object databases, relational data-

bases, interplanetary file systems or file regular file sys-

tems. The main difference between off-chain data and

on-chain data is to manage data sources through a

blockchain network or manually. Another property re-

garding off-chain data is supporting non-Turing com-

plete smart contract languages. For instance, Bitcoin has

an internal smart contract script language, however, it

does support basic variable assignment without creating

a loop and reference types.

3.2. Dynamic Contract Approach with Proxy Pattern

is Solidity

Proxy patterns have been invented and implemented to

realize hot bug fixes in Solidity programming since a con-

tract code is immutable after deployment. Generally, the

concept is widely used for gas savings and dynamic con-

tract upgrading. After deploying a proxy contract, all

messages will be transferred to the corresponding ad-

dress, which can be a new version of a contract. In es-

sence, we have three different types of proxy patterns3.

 Eternal Storage: Updated contract remains in

a blockchain network with old contract data

layer and the data layer might consist of user

information, account balances, or references

to other contracts.

 Unstructured Storage: In this type of proxy

contract, we need to follow the structure of

reference data (attributes of a struct type)

whether in the right order or not. Since the So-

lidity language sets up variables in a contract

sequentially, the caller contract should move

the references of storage variables (state varia-

bles) from the callee contract. The drawback of

the pattern is that cannot be implemented to

reference data structure of Solidity such as

mapping and structs.

 Inherited Storage: This type of proxy contract

ensures that the order and state of storage var-

iables between caller and callee will be the

same. The main aim is to protect the data layer

of a smart contract without inserting compli-

cated assembly code blocks in a smart con-

tract4.

2 https://github.com/ChrisKlinkmueller/Ethereum-Logging-

Framework

3 https://blog.openzeppelin.com/proxy-patterns/
4 http://blog.openzeppelin.com/upgradeability-using-unstruc-

tured-storage/

5 https://blog.openzeppelin.com/upgradeability-using-unstruc-

tured-storage/

All of the above-mentioned patterns require low-level

dynamic calls that only should be invoked by experi-

enced developers because they can easily contain a code

snippet that has a hard-to-find bug. The main challenge

in upgraded contracts is to preserve old storage (data

layer) with updated contracts (application layer). All of

the described patterns can be used to implement dy-

namic smart contracts; however, the main difference be-

tween them is being asset cost and handling storage of

contracts because they share both proxy and contract

behavior 5.

We have a couple of dynamic proxy patterns standards

as below 6 :

Diamond pattern, Multi-Facet Proxy (EIP-2535): It

solves the maximum contract size limit in the Ethereum

world. A diamond pattern provides a way to organize

smart contract code and smart contracts can be as-

signed as upgradable and immutable for the future.

Moreover, the incremental upgradable smart contract is

possible so that one can take the altered part of a smart

contract is possible so that one can take the changed

part of a smart contract, and can assign this part as up-

gradable by means of Diamond Pattern7.

Transparent Proxy Pattern: The goal of the proxy pat-

tern is to make indistinguishable an externally owned ac-

count with actual logic contract 8. In order to prevent

proxy selector clashing, which means that the same

function signatures should be controlled in external con-

tracts as well so that the transparent proxy pattern can

be used because one can make a transaction without an

admin of the proxy contract.

Universal Upgradable Proxy Standard (UUPS) (EIP-

1822): This relies on a standard called EIP-18229. In this

standard, authors have two essential motivations which

are 10:

 Easy to deploy and maintain proxy and logic

contracts.

 Standardization of proxy contract implementa-

tion by verifying the bytecode used by the

Proxy Contract.

3.3. Role and Core Objects in Solidity

Although object-oriented programming solves major

problems in software development, abstraction of ob-

jects and dynamicity have not been properly addressed

and these are still hard to solve with object-oriented pro-

gramming.

6 https://blog.logrocket.com/using-uups-proxy-pattern-up-

grade-smart-contracts/

7 https://eips.ethereum.org/EIPS/eip-2535
8 https://blog.openzeppelin.com/the-transparent-proxy-pat-

tern

9 https://eips.ethereum.org/EIPS/eip-1822

10 https://eips.ethereum.org/EIPS/eip-1822

https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework
https://github.com/ChrisKlinkmueller/Ethereum-Logging-Framework
https://blog.openzeppelin.com/proxy-patterns/
http://blog.openzeppelin.com/upgradeability-using-unstructured-storage/
http://blog.openzeppelin.com/upgradeability-using-unstructured-storage/
https://blog.openzeppelin.com/upgradeability-using-unstructured-storage/
https://blog.openzeppelin.com/upgradeability-using-unstructured-storage/
https://blog.logrocket.com/using-uups-proxy-pattern-upgrade-smart-contracts/
https://blog.logrocket.com/using-uups-proxy-pattern-upgrade-smart-contracts/
https://blog.logrocket.com/using-uups-proxy-pattern-upgrade-smart-contracts/
https://eips.ethereum.org/EIPS/eip-2535
https://blog.openzeppelin.com/the-transparent-proxy-pattern
https://blog.openzeppelin.com/the-transparent-proxy-pattern
https://eips.ethereum.org/EIPS/eip-1822
https://eips.ethereum.org/EIPS/eip-1822

Single Role Type: All role features incorporate into one

single role type. For instance, engineers, salesman, and

directors can be differentiated by job descriptors and

description IDs [3]. If each of the occupations has differ-

ent features, different types can be generalized by

means of interfaces from base interface classes. This

concept is similar to role subtyping.

Role Subtyping: We can represent the many roles of an

object in a smart contract language by making a subtype

for each role [3].

Role Object: Common features can be inserted into a

host object with a separate role object. In this case, oc-

currence constraints are hard to achieve, but it is easy to

implement with client applications that work with host

objects.

Role Relationship: Roles can be represented by many

role objects. If a host object may have more than one

role object, a role relationship comes into the game to

represent occurrences between role objects.

4. Limitations and Challenges

This study is limited to the on-chain smart contract pro-

gramming language that has object-oriented features to

analyze and discuss the results of role modeling map-

ping in the object-oriented programming world. We

have created qualitative and quantitative research pa-

rameters to test role-based applications. We exclude the

networking and consensus layer of blockchain technolo-

gies because they are irrelevant to the implementation

of ROP.

ContextROP is supporting only a static view of the con-

text, which means that roles cannot be migrated from

one context to another dynamically. We will mainly dis-

cuss on-chain crypto assets (gas cost optimization with

role object pattern to reduce deployment, operational

and computational costs of on-chain smart contracts.

One of the biggest challenging points is to manage im-

mutable smart contracts integrating role modeling.

Roles can be assigned dynamically and static represen-

tation with interfaces does not provide all of the role-

based modeling features such as dynamic loading, deep-

role playing, and dynamic role type without interface

definition.

One of the language limitations is the immutability of

smart contracts in the runtime and advanced role-based

type safety. Even if the Solidity programming language is

statically typed, role subtyping could not be ensured

with an extra effort of type safety structure. Another lim-

itation can be mentioned regarding contexts, and one

cannot easily describe constraints between roles. For in-

stance, occurrence constraints can be implemented em-

ploying abstracted data types such as Set, HashSet, and

11https://www.fernuni-hagen.de/ps/prjs/IROP/

HashMaps by checking the maximum or minimum num-

ber of occurrences at runtime. However, Solidity offers

Mappings abstract data structure with limited functional-

ity of Map data structure.

Another language limitation is the lack of isInstance or in-

stanceOf keyword like in an object-oriented language to

provide type safety. Programming languages support

static type safety for primitive data types such as integer,

boolean, float, and double. If a developer wants to create

an abstract type from a class, the possessiveness of a

new object with an abstract type should be assured. Un-

like Mappings and structs are major abstract non-intru-

sive types in Solidity language, one can create abstract

new types with single, multiple, multi-level, and hierar-

chical inheritance systems with this language.

The last limitation is the dynamic deployment of a smart

contract. A single smart contract has the limitation of a

maximum 24KB contract size, which means that smart

contracts cannot have a complex role-based application

with extensive computational loops. ContextROP design

pattern does not address the smart contract size limita-

tion.

5. Related Work

The main paper about the role object pattern has been

proposed by Bäumer et. al. [4] and they have claimed

that attached role objects represent a role that can be

played by an object in a client’s context. In their design

pattern description, they have described role objects

and core objects.

Stolz and Steimann have proposed lightweight role ob-

jects that can refactory roles implemented as subclasses

of a role player letting instances of three role objects

share state and identity with an instance of the role

player object 11 . Moreover, the authors have used the

method that is called Replace Inheritance with Delega-

tion Refactoring (RIWD) to allow reuse without role sub-

typing in order to avoid cumbersome and bloat inter-

faces that define role subtyping and supertyping 12 .

Martin Fowler has divided up different parts of role-

based modeling, which are Single Role Type, Separate

Role Type, Role Subtype, Role Object, Role Relation-

ship, Internal Flag, Hidden Delegate, State Object,

Explicit Type Method, and Parameterized Type

Method [3]. The main motivation of this paper is to dis-

tinguish role-based modeling features from different

conceptual ideas by emphasizing the main takeaways. In

the Conclusion chapter of the study, the author stated

that every selection of a design pattern in role-modeling

has a trade-off in software modeling and programming.

Another fact from the paper can be deducted as role-

playing assumptions that may not be true for all condi-

12http://www.feu.de/ps/prjs/RIWD/

https://www.fernuni-hagen.de/ps/prjs/IROP/
http://www.feu.de/ps/prjs/RIWD/

tional testing. A role player can be important for an indi-

vidual use case, but another user may not need to con-

strain the role player because the role objects itself is

more important than the role players in this case.

Stephan Hermann has claimed that roles define the in-

tersection of objects and contexts. Contexts can be

grouped by static and dynamic views, which means that

either a set of roles can be assigned to a static context

or they can migrate from one context to another [6]. In

this paper, the author proposed a language called Ob-

jecTeams that has the capability to group a number of

roles into a context, more precisely in the paper is called

team [6].

Steimann and Urs Stolz [7] have proposed refactored

role object pattern by way of intensive usage of subclass-

ing in an object-oriented language. These subclassing

methods can be listed as follows [7]:

 Entity Type: A base class can be renamed as an

entity type in order to create abstracted role types

from a core component class.

 Base Interface: From an interface, an entity type

and abstract role type can be created to constitute

concrete role types.

 Component Type: This is the regular way of creat-

ing role types in the Role Object Pattern. It inserts

a new abstract class between the entity class and

intermediate subclasses to create role classes that

do not change the behavior of a program because

it does not add anything [7]

In this paper, the main idea is to replace inheritance with

delegation refactoring to add roles to the component

core. Cabot and Raventos emphasized the importance

of the Role as Entity Types pattern that can be useful to

represent roles while a role-based application requires

full expressiveness [5]. Cabot and Raventos have started

to list role features such as ownership, control, role-play-

ing, role identity, adoption, and relationship. In the de-

sign and implementation phase, they have been catego-

rized into three major topics, which are [5]:

 Roles as Subtypes Pattern: Roles can be designed

by subtypes of a base class. For instance, Teacher

and Student can appear as subtypes of Person

class.

 Roles as Interfaces Pattern: Roles are repre-

sented as interfaces and this study utilizes the ap-

proach in the implementation. We can specify en-

tity types that play a certain role through inter-

faces.

 Roles as Reified Entity Types Pattern: Roles are

represented as reified entity types with a relation

type. A Student type can represent a relationship

between University and Person even if it is not

13https://eips.ethereum.org/EIPS/eip-165

clear possessive of role type to University or Per-

son.

 Roles as Participant Names Pattern: A role is

barely represented as a name assigned to an entity

type in a relationship type. For instance, Project

Manager and Branch Manager cannot be occurred

in the same conceptual schema since in this case,

a role cannot play other roles.

Steimann [6] claims that interfaces are a prominent Ob-

ject-Oriented programming concept since they allow de-

coupling of implementation [8]. One can declare every

variable and parameter with an abstract type in order to

realize roles as interfaces. In the definition UML meta-

model of the paper, a merger module can merge Inter-

face and ClassifierRole to a new metaclass called Role. In

the conclusion of the study, the conceptual representa-

tion of roles with interfaces does not cover all features

of the role concept.

Wöhrer and Zdun [9] summarize a set of patterns such

as contract register pattern, contract relay pattern, and

satellite pattern. Through the contract register pattern,

contract participants can be pointed to the latest con-

tract version. The register contract keeps track of differ-

ent versions (addresses) of a contract. Moreover, a con-

tract relay pattern can be useful to handle the update

process of a contract [9]. By means of the satellite pat-

tern, one can store addresses of them in a base contract

that allows for modification and replacement contract

functionality.

6. Implementation

Implementation is twofold for the application of Solidity

programming. Dynamic proxied and static interface sep-

arator for team activation. We would like to list both fea-

tures to evaluate differences in asset cost (gas cost), and

performance evaluation in deployment. The static inter-

face has been implemented with a standard interface

detector that is called EIP-165.

We have major 5 different classes, which are:

 ERC165 (EIP-165)

 Component

 ComponentCore

 ComponentRole

 Team

 ExtendedRole

 Each of them has a different purpose while creat-

ing role-based applications in specified contexts,

which are:

ERC165 (EIP-165): Interfaces should be identified and

differentiated in Solidity programming. The main aim is

to detect if a contract implements any given interface13.

https://eips.ethereum.org/EIPS/eip-165

In the ERC165 contract, there is a function called sup-

portsInterface() that takes an interfaceID bytes32 format.

Component: This is an interface that represents a key

abstraction for ComponentRole and ComponentCore to

define adding and removing role objects. Component is

the base entity that provides a role management inter-

face.

ComponentCore: A core object creates a role object

from this «abstract» contract to play a role and it imple-

ments role management protocol through the Compo-

nent interface.

ComponentRole: ComponentRole is the main compo-

nent that can create role objects from core objects.

Team: Team smart contract provides context-based

grouping for role-based applications. Principally, the

Team represents the context concept that can activate

and deactivate to single or multiple roles accordingly.

Extended Role: This smart contract utilizes the ap-

proach of a dynamic proxy pattern that can help us to

deploy an updated contract with a low gas cost. Ex-

tendRole can be used in the UUPS Proxy Contract imple-

mentation in order for providing dynamic upgradable

contracts.

1 Interface Component {

2 function addRole(bytes32 spec, address

role) external;

3 function removeRole(bytes32 spec) ex-

ternal;

4 function isPlayingRole(bytes32 spec)

external;

5 function getRole(bytes32 spec) external

returns (address);

6 function activateTeam(address team)

external;

7 function deactivateTeam() external;

8 function getActivateTeam() external

view returns(address);

9 }

Listing 1: Component Interface in ContextROP

As listed in Listing 1, we have major functions activating

context and dispatching role objects to them with

bytes32 spec addresses. Bytes32 dynamic array of bytes

can be selected because the data type can be utilized in

function arguments to pass arguments and return a re-

sult from a contract.

1 library InterfaceCodes {
2 bytes4 constant COMPONENT_ID = type(Compo-

nent).interfaceId;
3 bytes4 constant COMPONENT_ROLE_ID = type(Com-

ponentRole).interfaceId;
4 bytes4 constant TEAM_ID = type(TEAM).interfaceId;
5 }

Listing 2: InterfaceCodes for EIP165 Contract Separator

As for Listing 2, InterfaceCodes can be customized to dis-

tinguish abstract types from base classes from each

other. Interfaces are identified as a set of function selec

tors in the Application Binary Interface (ABI) definition of

Solidity programming language. To prevent invoking dif-

ferent function signatures as if they were the same,

bytes4 of the function signature hash should be used

with customized InterfaceCodes.

Figure 1: UML Class Diagram for ContextROP Standard Inter-

face Detector (EIP-165)

As shown in Figure 1, we have different modules to cre-

ate the fundamental requirements of the ContextROP

design pattern that consists of ERC165, InterfaceCodes,

Team, RoleCreator, ComponentRole, ComponentCore.

Team, ComponentRole, and ComponentCore should in-

herit a set of functions such as doesContractImple-

mentInterface, and noThrowCall. Chiefly, these two

functions can control interface identification numbers to

simulate functions like typeOf or isInstance in object-ori-

ented languages. Since natural type safety mechanism is

not found in on-chain smart contract language, namely

Solidity, developers can provide the subclassed type

safety by way of interface detectors.

To connect through an externally owned account (EOA)

to the Context-ROP application, load, and deploy meth-

ods should be given. These methods are overloaded

methods with function signatures that take contrac-

tAddress, Web3j credentials, unit value of the gas price,

and gas limit. After one loaded a contract, they might be

deployed with the same aforementioned parameters

through RemoteCall.

Order to reach on-chain ContextROP application by

means of a general-purpose language. Contract address,

credentials, and contract gas provider should be defined

by externally owned accounts.

Figure 2: UUPS Diagram for Roles

As depicted in Figure 2, one of the concepts is the UUPS

Proxy Pattern that originated from EIP-1822. This pat-

tern relies on the storage holder (proxy) and logic con-

tract implementation. In the proxy contract, the contract

stores storage variables that can be used by a logic of an

external contract. A state variable or storage layout or-

ganizational pattern is needed because Solidity’s built-in

storage layout system does not support proxy contracts
14. Through advanced libraries, using DelegateCall15 is not

a hurdle that developers should cope with.

Figure 3: Sequence Diagram for Roles

As shown in Figure 3, we have different stages to interact

with a role-based application from creation to termina-

tion. When a role creation function is invoked by an Ex-

ternally Owned Account (EOA), a particular address

should be given to the reciprocal function. It works with

external clients or wallet accounts in the blockchain net-

work. A smart contract naturally cannot activate another

on-chain smart contract in a blockchain network. After

adding a particular role, the role can be played with its

name in a registered team (context) via activate-

Team(roleName) function. A strict condition in the se-

14https://eips.ethereum.org/EIPS/eip-2535

quence diagram is to deny role-playing after deactivat-

ing with the function called deactivateTeam(). Analogous

to creating roles, accessing roles can invoke similar

methods with bytes4 or bytes32 variables for Ethereum

VM addresses in the shared memory.

7. Evaluation

In this chapter, we would like to evaluate the Contex-

tROP application that we have created in Solidity Pro-

gramming Language. In role-based definitions of

Steimann [10], Kühn (PhD Thesis, A Family of Role-based

Languages, Thomas Kühn), we can list 26 different state-

ments. These statements cover most of the role model-

ing features from two different research studies. Result

of the qualitative evaluations can be seen in Figure 4 and

Listing 3.

Figure 4: Assessment of approaches with regards to develop-

ing roles at runtime using 26 classifying features taken from

[10] [11]. Features are completely supported (■), partially sup-

ported (⊞), and not supported (□) features.

15https://solidity-by-example.org/delegatecall/

https://eips.ethereum.org/EIPS/eip-2535
https://solidity-by-example.org/delegatecall/

A detailed list of the role features from [10] [11]:

1. A role comes with its own properties and behavior:
2. Roles depend on relationships:
3. An object may play different roles simultaneously
4. An object may play the same role several times, simultane-

ously
5. An object may acquire and abandon roles dynamically.
6. The sequence in which roles may be acquired and relin-

quished can be subject to restrictions.
7. Objects of unrelated types can play the same role.
8. Roles can play roles
9. A role can be transferred from one object to another.
10. The state of an object can be role-specific.
11. Features of an object can be role-specific
12. Roles restrict access.
13. Different roles may share structure and behavior.
14. An object and its roles share an identity.
15. An object and its roles have different identities.
16. Relationships between roles can be constrained.
17. There may be constraints between relationships.
18. Roles can be grouped and constrained together.
19. Roles depend on compartments.
20. Compartments have properties and behaviors like objects.
21. A role can be part of several compartments.
22. Compartments may play roles like objects.
23. Compartments may play roles that are part of themselves.
24. Compartments can contain other compartments.
25. Different compartments may share structure and behavior.
26. Compartments have their own identity.

Listing 3: Quantitative Evaluation for the Context-based Role

Object Pattern (ContextROP)

In Table 1, we see deployment and execution costs to

understand the difference between methods in Contex-

tROP implementation. The UUPS and normal methods

have already been discussed in previous chapters. In this

section, we had a use case that simulates a banking ap-

plication with a set of investors and borrowers. Borrow-

ers can borrow a certain amount of money from Banking

Institution and discharge the debt before the overdue

payment. Borrowers and Investors have a creator

method that will associate the ContextROP smart con-

tract package to create abstract role types. In the follow-

ing Table 1, readers can see the deployment and execu-

tion costs during the interaction between roles and ob-

jects.

The results have been taken from Remix (v0.25.1) with

Hardhat Provider by interacting same functions with dif-

ferent methods. The calculation unit has been given as

Gas. Deployment cost shows us the cost of contract de-

ployment into the network. Transaction cost refers to

the cost of method interaction with a parameter in on

chain environment. Normally, the transaction cost is uti-

lized for sending the contract code to the blockchain, but

we did not use that meaning. Execution cost is based on

the cost of computational operations.

One of the important results is the deployment cost of

EIP-165 for both roles is lower than UUPS Pattern roles.

This can be understood because we are using additional

libraries to implement UUPS Pattern; however, incresing

gas costs can make the development process expensive.

Even the execution cost has been doubled while imple-

menting UUPS Proxy since it can solve the contract max-

imum size problem. Deployment and Execution costs

are the initial cost to interact the contract with the block-

chain network. Transaction cost should be considered

when producing the cost to invoke a specific method. In

Table 1, transaction costs of different role methods are

similar to each other and one can say that runtime exe-

cution cost is not different from each other.

Table 1: Assessment of the gas cost while executing different

methods in ContextROP Standard Implementation.

8. Discussions and Conclusion

Contexts and Roles are the modeling nature of program-

ming languages and they can be used for producing key

abstractions to model abstract states and behavior.

While implementing this pattern, the most prominent

feature of the on-chain smart contract programming oc-

curs in non-intrusive dynamic contract behavior without

coping with low-level calls such as DelegateCall. Even if

we realize DelegateCall by way of proxy patterns such as

diamond standard pattern, unstructured storage pat-

tern, or transparent proxy pattern.

The first finding is that the type-safety can be imple-

mented with Interface Separator (EIP-165) in role-based

applications with Solidity programming language. Imple-

mentation of proxy pattern with the EIP-165 concept can

reduce a great deal of gas cost initial development stage.

Method Deployment

Cost

Execution

Cost

Transaction Cost

EIP-165

(Role In-

vestor)

1333374 gas 1159455

gas

Invest () method -

54123 gas

EIP-165

(Role

Bor-

rower)

1467419 gas 1276016

gas

Borrow() method -

54145 gas

UUPS

Pattern

(Role In-

vestor)

2863718 gas 2490189

gas

Invest() method –

54174 gas

UUPS

Pattern

(Role

Bor-

rower)

2987612 gas 2597923

gas

Borrow() method -

54106 gas

Moreover, it can be more flexible to deploy a contract in

case of bug fixing and regular maintenance. However,

hardcoded InterfaceCodes can cause the function selec-

tor clashing. To prevent this, a random UUID (Universal

Unique Identifier) can be generated by external libraries.

The second finding is that deployment and execution

costs can be reduced through the usage of the EIP-165

standard with a role-based application. Even though

there is no difference between the transaction cost of

similar function signatures, EIP-165 originated smart

contracts can reduce deployment and execution costs

more than pro contracts do. However, proxy patterns

can solve the contract size limitation, unlike EIP-165 con-

tracts.

The third finding is that most of the role features (14 fea-

tures) can be completely supported by Solidity program-

ming languages because it is utilizing object-oriented

programming techniques. Abstraction of core objects

and role subclassing are the fundamental techniques for

role-based programming and most smart contract pro-

gramming languages cannot provide OOP concept ex-

cept for EOA client source code itself (not in on-chain

contract language).

The fourth finding is that trust enabling, and auditable

actions are a strong necessity for role-based applica-

tions because participants of external clients (roles)

should be trustable and auditable. Smart contracts can

provide trustable and auditable context-awareness by

Modifier keyword (function modifiers) to role objects by

enabling a trust layer on the network.

 Additionally, source code of ContextROP can be found

at the following link: https://github.com/zointblack-

briar/Smart_Contract_Examples/tree/develop-

ment/Context-Based-CROP-Solidity.

9. Future Work

Different adaptations, test cases, and a set of use cases

have already been implemented; however, some parts

are still open to research on them. Dynamic contexts can

be added to migrate roles from one context to another.

Even though there is no consensus on how to create a

role, role features from various research studies can be

implemented in an object-oriented approach with on-

chain smart contracts.

Refactoring roles as subclasses for entity types and hier-

archical interface methods can also define role object

pattern with context. Different patterns can be com-

pared to aspects of execution and deployment cost in

the blockchain network.

Acknowledgment

The author would like to thank his supervisor, Prof. Dr.

Uwe Aßmann, for the patient guidance, encouragement,

and comments he provided to shape his paper vision.

This work is funded by the German Research (DFG)

within the Research Training Group Role-Based Software

Infrastructures for Continuous Context-Sensitive Sys-

tems (GRK 1907, TU Dresden, Software Technology

Group, Nöthnitzer Straße 46, 01187, Dresden).

References

[1] Herrmann, S. (2010). Demystifying object schizo-

phrenia.

[2] Khan, S. N.; Loukil, F.; Ghedira-Guegan, C.;

Benkhelifa, E. and Bani Hani, A. (2021). Blockchain

Smart Contracts: Applications, Challenges, and Fu-

ture Trends, Peer-to-Peer Networking and Applica-

tions: 2901-2925.

[3] Fowler, M. (1997). Dealing with roles, 97.

[4] Bumer, D.; Riehle, D.; Siberski, W. and Wulf, M.

(1997). The Role Object Pattern.

[5] Cabot, J. and Raventós, R. (2006). Conceptual Mod-

elling Patterns for Roles, Journal on Data Semantics

- JODS 3870: 158-184.

[6] Herrmann, S. (2007). Programming with Roles in

ObjectTeams/Java, Applied Ontology 2 : 181-207.

[7] Steimann, F. and Stolz, F. U. (2011). Refactoring to

Role Objects: 441–450.

[8] Steimann, F. and Wissensverarbeitung, R. (2000).

Role = Interface - A merger of concepts.

[9] Wohrer, M. and Zdun, U. (2018). Design Patterns

for Smart Contracts in the Ethereum Ecosystem:

1513-1520.

[10] Steimann, F. (2000). On the Representation of

Roles in Object-Oriented and Conceptual Model-

ling, Data & Knowledge Engineering 35: 83-106.

[11] Kühn, T.; Leuthäuser, M.; Götz, S.; Seidl, C. and Aß-

mann, U. (2014). A metamodel family for role-

based modeling and programming languages: 141-

160.

https://github.com/zointblackbriar/Smart_Contract_Examples/tree/development/Context-Based-CROP-Solidity
https://github.com/zointblackbriar/Smart_Contract_Examples/tree/development/Context-Based-CROP-Solidity
https://github.com/zointblackbriar/Smart_Contract_Examples/tree/development/Context-Based-CROP-Solidity

