
Self-Sovereign Identities for Smart Devices

Stephan Penner1, Thomas Wieland1, Marquart Franz2
1Hochschule Coburg, Friedrich-Streib-Straße 2, 96450 Coburg, Germany
2Siemens AG, Technology, Otto-Hahn-Ring 6, 81739 München, Germany

Abstract: Current research in identity management is focusing on decentralized trust establishment for dis-
tributed identities. One of these decentralized trust models is Self-Sovereign Identities (SSI). With SSI each entity
should be able to independently present and manage provable information about itself as well as request and
review evidence from other entities. Using a distributed blockchain, information for verifying the authenticity
of this evidence can be obtained from any other entity. This concept can be used not only for people, but also
for authentication and authorization during the life cycle of devices in the Internet of Things (IoT). This paper
presents an SSI-based concept for authentication and authorization of IoT devices among each other, intended
to contribute to the change in trust on the internet. The SSI methodology employing a blockchain offers the
possibility to establish mutual trust and proof of ownership without relying on any third party. The paper de-
scribes the concept, offers a reference implementation, and gives a discussion of the approach.

1. Introduction

Communication and interaction over digital channels of-
ten require that the entities involved are able to author-
ize themselves mutually before exchanging information
or committing transactions. Authenticity and the confir-
mation of certain abilities become more and more im-
portant, for human users as well as for IoT devices.

In the physical world certificates are one example to pro-
vide this confirmation for certain information, like an ac-
ademic degree or the skill to maintain certain machines.
In numerous countries, these certificates are also used
for the authentication and authorization of an entity, like
a driver’s license. In this context, trust is established by
trusting the author and signatures of the certificates and
testing if the certificate is still valid. Then the checking
entity can decide to trust this information or not. If the
verifier trusts the issuer of the credential, the infor-
mation stored in the certificate can also be trusted. This
model is well known and has been used in various forms
for decades in our connected world [1], [2].

In the digital world, a similar model is widely used to es-
tablish trust between entities and to check the authen-
ticity of information. For this purpose, a third party is
used as an anchor of trust, which stores and manages all
relevant information and makes it available to others,
for example in the form of digitally signed certificates.
This anchor is intended to ensure the integrity and au-
thenticity of this data to establish trust between the en-
tities [2], [3], [4], [5], [6], [7].

What is already economically crucial in e-commerce or
financial services systems, is even more important for
cyber-physical systems like power plants or trains,
where errors could endanger the safety of many people.
Especially for the devices in the Internet of Things (IoT)
[8] that are becoming more and more popular in these
facilities a robust IoT system architecture is required. For

this, it is necessary, among other things, that infor-
mation and attributes of IoT devices can be securely
managed, maintained, received and tracked across com-
pany boundaries throughout their lifetime [9], [10], [11],
[12]. One approach to ensure such a system is to use a
life cycle view on IoT devices [3], [4], [5], [11], [12], [13].
During this lifecycle, IoT devices interact with each other.
For this interaction a system for authentication and au-
thorization is required. Today most of such systems are
using a central trust anchor, holding the data of system
participants. Each entity that uses this trust anchor is
forced to trust it in order not to leak, misuse or change
any sensitive data. Protecting own data from such a mis-
use is hard because the data is stored in the data pro-
cessing system with trust anchors [3], [4], [5], and [14].

For solving this trust issue, research and development
currently focusses on concepts to eliminate centrally ori-
ented trust anchors for the interaction between entities,
including IoT devices. One promising approach utilizes
blockchain architectures, leveraging the concept of self-
sovereign identities (SSI for short) [3], [9], [15], [16]. With
the help of SSI, entities can establish trust between each
other on their own using digitally signed certificates,
eliminating the need of a central trust anchor. Data can
be stored and managed by the entities themselves.

Those previously mentioned certificates could also be
used for unequivocal and verifiable proofs of attributes
of IoT devices in their life cycle. While stored and man-
aged by the devices, those certificates give a device the
possibility to provide evidence for authentication and
authorization without involving a third party. Any de-
vices can be programmed in such a way that trust to an
entity for particular actions during various scenarios in
its lifetime is only given under certain conditions, de-
pending on information in a digital certificate.

In this contribution we present a concept including a ref-
erence implementation and evaluation of a system that

can establish an authentication and authorization mech-
anism for the management and tracking of the life cycle
of a cyber-physical system, consisting of several differ-
ent IoT devices from different manufacturers, using SSI,
without the need for a central storage of private data.
Other issues of the security of IoT systems, which could
theoretically be addressed by SSI, are not discussed
here. This paper is structured as follows: First, back-
ground is provided about IoT, cyber-physical systems,
project context, self-sovereign identities, and the block-
chain systems Hyperledger Indy and Aries. Next, the pro-
posed concept will be introduced including a view on re-
lated works by other authors. Afterwards an implemen-
tation of this concept, using Hyperledger Indy and Hy-
perledger Aries together with the Python web frame-
work Flask, will be discussed and evaluated. At the end,
the main aspects will be summarized, and possible fu-
ture work will be presented.

2. Background

2.1 Trust Anchors

The Internet of Things, or IoT for short, is a network of
devices with embedded microcontrollers collecting in-
formation about their physical environment using sen-
sors [8]. Within this network, those devices can com-
municate with each other or with other systems. A typi-
cal property of an IoT device is its limitation of resources
like computing capacity, RAM, bandwidth, or available
energy.

This work has been conducted in the context of a project
focusing on cyber-physical systems in trains [17], [18].
We define a cyber-physical system as an entity consist-
ing of one or several IoT devices as computational units
collecting information about its environment and for-
warding this information via wired or wireless networks.
An example for such a system is a train, consisting of
multiple actuators, sensors, and subsystems realized
with IoT devices.

Currently a central anchor of trust is often used for au-
thentication and authorization in a cyber-physical sys-
tem. Humans and devices rely on this anchor to author-
ize activities during the lifecycle of IoT devices - in man-
ufacturing, in trains as well as in various other scenarios.
It is very important in such cyber-physical systems to
provide evidence that an information has not been al-
tered.

Such a central instance must be trusted unconditionally.
The trust anchor is necessary for the authentication and
authorization of all actions in the system holding all nec-
essary information about the connected devices. Tech-
nically, authentication is usually realized by asymmetric
cryptography, offering public keys in X.509 certificates,
signed by a trust authority [19], [13, p. 5]. In many use
cases the trust anchor additionally provides signed infor-
mation for the mutual interaction of the IoT devices, like
the affiliation of the owner of a public key. This third

party is also necessary for authentication and authoriza-
tion between the entities. In complex environments like
manufacturing sites or trains it is very hard to select the
right entity that should hold the role of such a trust an-
chor. The IoT devices in this system have been manufac-
tured by different vendors. Those are seeking not to re-
veal anything about their devices. Determining who
should provide the trust anchor may easily result in long
discussions and strict regulations. Even during opera-
tion, no one can be really sure that the trust anchor does
not misuse its role.

2.2 Self-Sovereign Identity (SSI)

The goal of SSI is to eliminate the need for a trust anchor
and give entities the opportunity to regain control over
their data. In addition, entities should be able to decide
on their own, if a piece of information should be trusted,
whom to show selected information and whom to issue
a certificate under certain conditions. In an SSI system
the check for authenticity of information provided as a
certificate is not carried out by a third party, but by the
entities themselves, using information in a distributed,
publicly available data storage [3], [5], [20], and [21]. Fur-
thermore, no information associated with the entity
should be made publicly available without the permis-
sion of the entity in question.

The identification of entities should also take place with-
out a third party. When receiving information as well as
when checking and presenting it to other entities, only
two parties at most should be involved in these pro-
cesses [2], [3], [14], and [22]. Attempts to realize SSI sys-
tems are using the W3C standards Decentralized Identi-
fiers (DIDs) and Verifiable Credentials (VCs) together with
the Blockchain technology [2], [3], [14], and [22].

A DID is a pseudonymized and portable representative
of an identity, not disclosing any information about the
entity behind it. It is associated with a DID document
which provides publicly available information. This infor-
mation can be used to contact the entity behind the DID.
Furthermore, it contains public keys owned by that iden-
tity for the establishment of a secure communication
channel. This DID with the associated DID document can
be securely made persistent on a distributed data stor-
age like a blockchain [3], [20], [23], and [24].

Verifiable Credentials represent the digital counterpart
to signed certificates from the physical world. A VC can
be used to issue information about a device or a person.
Using the issuer’s signature, each entity can check by
whom a Verifiable Credential was issued and whether its
contents are authentic. For this purpose, Verifiable Cre-
dentials are signed by the issuer and a corresponding
entry is written to a distributed data storage like a block-
chain. On this storage the entry itself however contains
no information about the contents of the VC or the re-
ceiver of it [3], [20], [24], and [25]. So there are three
roles involved (according to [24]): the issuer issues the
credential and hands it to the holder, often on his re-
quest. The holder keeps all his credentials in a wallet.

The verifier requests proof from the holder, e.g., about
authenticity. The holder presents the proof using its sig-
nature which the verifier in turn may check. All these ac-
tions are based on DIDs that are stored in a public block-
chain or another DID network.

2.3 Hyperledger Indy and Hyperledger Aries

A possible option for such a blockchain is a combination
of the Hyperledger Indy and Aries [26], [27]. Both are
open-source projects founded by the Linux Foundation
to establish SSI systems providing the necessary infra-
structure. Hyperledger Indy provides tools and libraries
to establish the infrastructure for an SSI system. It pro-
vides a blockchain solution to store DIDs and infor-
mation to verify VCs. It also provides an implementation
of the W3C standards DID and VCs. It offers a digital
identity wallet called Indy-wallet to store those creden-
tials and DIDs [20], [26].

The provided data storage and infrastructure in Hy-
perledger Indy is a distributed and public permissioned
blockchain. Each entity can read its contents, while writ-
ing to it is only allowed for entities with the roles trustee,
steward, or endorser. In context of this paper, those
roles will be summarized as the role “endorser” or “is-
suer”. The blockchain provided by Indy is not controlled
by one entity but distributed across the so-called valida-
tor pool. Each member of this pool holds a copy of the
blockchain. To write a new entry into the blockchain one
member executes a write request from an endorser and
broadcasts its result to the other members. After each
member has received a certain number of identical an-

swers, related to a write request, the system finds a con-
sensus and this result will be written to each copy of the
blockchain [26], [28], and [29].

Only publicly available information will be stored on a
Hyperledger Indy blockchain. The blockchain consists of
information like DIDs, DID documents and the used pub-
lic key as well as algorithms etc. to verify an issued digital
credential [26], [28], and [29].

Hyperledger Aries emphasis lies on how entities using a
Hyperledger Indy SSI system can interact and communi-
cate with each other in a peer-to-peer and secure way.
To achieve this, it provides several protocols like DID
Communication, Issue Credential, Connection and Basic
Message [29], [27]. Other open-source projects, like Aries
Cloud Agent Python (ACA-PY), are establishing some kind
of framework, implementing the defined protocols in
Hyperledger Aries. In particular, Aries Cloud Agent Py-
thon (ACA-PY) is recommended to be used by the Aries
group [29].

ACA-PY provides a so-called agent as a webservice, offer-
ing a REST interface to enable the usage of the Aries pro-
tocols. The agent needs a controller for managing the
agent, which must be implemented individually for each
use case. The controller tells the agent what to do, for
example, to issue a new VC, establish a new DID commu-
nication connection using the connection protocol, or to
send messages with the basic message protocol. The
agent also informs its controller via webhooks about
events like receiving a new VC from an issuer.

Fig. 1: Overview of the authentication and authorization concept Idea

One major protocol defined by Hyperledger Aries is DID
communication. With it, two entities can encrypt their
messages independent of the used transport protocol
like HTTP or MQTT. To ensure this, both entities must
exchange their DID and DID document, containing a
public key. This can be done by using the connection
protocol of Aries. To transmit encrypted messages or
verifiable credentials the protocols basic message and is-
sue credential can be used.

3. Conceptual Approach

We propose to make use of DID Communication and
basic message to establish an authentication and au-
thorization system using Verifiable Credentials and JSON
Web Tokens (JWT). For the communication between en-
tities, we defined message protocol called Commands.
With this message protocol, entities may transfer tasks
or solutions with basic message to each other, such as
asking for authentication. Before that, a connection be-
tween the entities must be established using, for exam-
ple, the connection protocol.

Using Commands, entities can transmit asymmetric en-
crypted requests and answers independent of any mes-
sage transport protocol like HTTP or MQTT. This is real-
ized by the Aries protocol DID communication. In this
work, the Commands message protocol was used for the
message exchange during the authentication and au-
thorization process between two entities. This design
was chosen to rely only on the security mechanism pro-
vided by DID Communication.

To authorize transmitted commands an authentication
is needed first. After success, the IoT device can decide
whether to execute the command or to decline it. For
this, it will check the role of the authenticated entity. In-
formation about which entity has which role is saved by
means of a certificate in the IoT device. Therefore, a VC
called Authorization Credential, or AuthS-VC for short,

was defined. It contains the role and public key of an en-
tity and is stored on an IoT device. Fig. 1 gives an over-
view of the described concept.

The device will accept this VC if it has originated from a
credential issuer it trusts. If the device has an owner con-
figured, it will ask this entity whether to accept or decline
the VC instead.

The IoT device has a role-based access system that al-
lows the requested execution of certain commands, like
changing the owner, only to entities with certain roles.
To authenticate and authorize an entity for such a com-
mand, a JWT holding the role of the entity is used com-
bined with a challenge-response mechanism.

To authenticate, the requesting entity presents its public
key to the device. The device is then able to check
whether the presented key is known or unknown by re-
trieving VCs. If known, the device can find the corre-
sponding VC with the provided public key, containing the
role of the requesting entity. Then, the device uses its
own secret key to create a JWT. After the JWT has been
created, a challenge is constructed by encrypting the JWT
using the public key of the requesting entity found in the
VC. If the entity can decrypt this JWT with its secret pri-
vate key, it has proven its authenticity. By attaching the
JWT in future requests, the entity can authorize.

While the public key and role of this entity is saved as a
VC, the device can check at any time on its own if this
information was somehow altered. Fig. 2 shows the de-
scribed flow.

Storing information about its owner on a IoT device pro-
vides full control over this data by the device itself. Mis-
use of this information by others is prevented. By hold-
ing this information as a Verifiable Credential, the device
can even use this information in other domains, because

Fig 2: Proposed authentication and authorization system. Messages are delivered using the Aries basic message protocol.

there is no dependency to a trust anchor. Only a connec-
tion to the Hyperledger Indy blockchain, holding the cor-
responding verification information to this VC, is needed
when the device wants to check its own VCs even in an-
other domain.

New roles are easily defined. An entity with the role
maintainer for example could be configured by issuing a
corresponding VC to the device. By defining a public key
to the role, the VC would identify an entity with the role
maintainer. Corresponding access rights to certain com-
mands for this role would be defined in the device itself.
Because the VC is verifiable, this information can even
stay valid if the device changes its domain or is trans-
ferred to a new owner. Therefore, the same authentica-
tion and authorization system is appliable over the en-
tire lifecycle of an IoT device across company bounda-
ries.

4. Related Work

4.1 RBAC-SC

Cruz et al. propose a distributed role based access con-
trol system called RBAC-SC using blockchain technology
[16]. The goal is to use a role of an entity, like a student
at University X, across company boundaries.

An instance that wants to assign roles to entities defines
a smart contract on the Ethereum blockchain. For exam-
ple, if a university wants to assign its students the role of
X student, the smart contract is used and assigns this
role to an address on the blockchain. This address is
owned by an entity.

Later, this address will be used to check whether the en-
tity has the role of X student. Before that, the smart con-
tract is checked. Next, a challenge is used to evaluate
whether the entity has access to the address in question
to which the student role of university X has been as-
signed. To do this, the entity must sign information from
the public address block with its private key. The associ-
ated public key is also stored on the Ethereum block-
chain.

4.2 SSIBAC

The core idea of SSIBAC from Belchior et al. in [15] is to
map Verifiable Credentials presented by entities to ac-
cess rules. To use a resource, an entity first sends a re-
quest to the system. The system checks the defined rules
for the requested access, in which the necessary attrib-
utes or roles are specified. On this basis, the requesting
entity is checked by means of a challenge, by using veri-
fiable credentials to generate a verifiable presentation
(VP) that proves the required attributes or role of the re-
questing entity in a VC. If the entity responds with a VP,
this is first validated and passed on to an access control
engine, if the VP is valid. The engine then uses the infor-
mation from the VP to calculate whether the access re-
quest is to be granted or denied. The authors used Hy-
perledger Indy for the necessary infrastructure of their
system.

5. Reference Implementation

To implement the system proposed above, we used Hy-
perledger Indy as SSI infrastructure and Hyperledger Ar-
ies framework to implement our process. As mentioned
before, we defined a message protocol called Commands
to exchange commands like an authentication and au-
thorization request. Also, we defined a Verifiable Cre-
dential called AuthS-VC. Its schema is written to a block-
chain based on Hyperledger Indy. To exchange mes-
sages with basic message, structured using the Com-
mands protocol, a controller was implemented with Py-
thon web framework Flask [30]. The controller receives
notifications as webhooks from the agent. The agent in-
forms the controller, when, for example, a new basic
message has been received. The controller also contains
an implementation of the Commands protocol to send
and interpret messages using it. It also possesses the
logic to get an AuthS-VC using a public key and to create
and send a JWT challenge over the Commands protocol.
To achieve this, the controller uses the ACA-PY agents
REST interface to send basic messages.

The system consists of two major components: a web
portal that sends a request with the Commands message
protocol and a device that receives and processes such
a request. To be able to authenticate, the device holds
an AuthS-VC about the owner in its wallet. Fig. 3 shows
the issued AuthS-VC with role owner in the wallet of the
device. The cred_def_id field provides the information
who has signed this VC and where to look at in the block-
chain to verify the authenticity of this VC.

Fig. 3: Owner stored as VC in the wallet of the device

Using the basic message protocol, the web portal sends
a Commands formed request to authenticate to the de-
vice with its public key. Fig. 4 shows the authentication
request sent by the web portal to a device using basic
message and Commands.

Fig. 4. Authentication request from the web portal, sent to the
device. This request is transmitted using the Aries basic mes-
sage protocol and formatted using the Commands protocol.
This string is the content of the basic message to be sent using
ACA-PY.

The device checks if the presented public key is saved as
an AuthS-VC. If so, a JWT is created using the information
public key and role inside the VC. Subsequently, the JWT

is encrypted using the public key and sent back to the
web portal as challenge. This is shown in Fig. 5.

Fig. 5: Response from the device, after it receives an AUTH re-
quest with a known public key.

With the JWT, the web portal can authenticate itself to
the device, in this case as its owner. The JWT is also used
as a proof of authorization for certain actions. In case the
presented public key is not saved in an AuthS-VC, the de-
vice responds with an error message shown in Fig. 6.

Fig. 6: Error response when the provided public key is un-
known.

6. Evaluation

For evaluation, we defined a function called Change
Owner that changes the owner of a device. If an entity
could authenticate as the owner, this function can be ex-
ecuted. To be able to transfer the ownership to a new
entity, the device holds two AuthS-VCs. They represent
the current owner and the new owner.

During the change owner process, the device will con-
nect to the new owner and test if he is able to authenti-
cate and authorize. After all steps have succeeded, the
device deletes the VC corresponding to the current
owner, leaving only the new owner’s VC in the wallet. Af-
ter that, the previous owner is not able to gain access
anymore. All previous JWTs, which are still valid, become
automatically useless, because the device always checks
if the public key in the JWT corresponds to a public key
stored as a VC.

To execute Change Owner, the owner has first to obtain
a JWT. This is done by setting up a connection to the de-
vice using the connection protocol of Hyperledger Aries.
After a connection has been established, a connection ID
is returned. This can then be used to send an authenti-
cation request as basic message with the Commands
protocol to the device.

For this, we implemented a function called Ask for new
Access Token shown in Fig. 7 for the web portal.

Fig. 7: Ask for new access token function on the web portal

By presenting the connection ID and the own public key,
the request to a specific device can be constructed by
the application. After clicking the submit button, the soft-
ware prepares an authentication request to the device.
The request received from the device is shown in Fig. 8.

Fig. 2. The device controller receives an Auth request.

After the request, the device checks if the provided pub-
lic key is known. If the key is stored in an AuthS-VC, it
responds with an encrypted JWT. The web portal re-
ceives this challenge and tries to solve it by using its own
private key. This is shown in Fig. 9.

Fig. 9. Console output of the web portal controller, after receiv-
ing a challenge as a response to the previous AUTH request.

After the challenge has been mastered, the web portal
obtains a new JWT and stores it. The user of the web por-
tal will see this on his screen as shown in Fig. 10.

Fig. 10: Response of the web portal after successful authenti-
cation

Now, with the newly obtained JWT, the entity can author-
ize to let the device execute the process of changing its
owner. For this, the user calls the “change owner” func-
tion and provides all necessary information for this pro-
cess as shown in Fig. 11.

Fig. 11: Change Owner function on the web portal.

The controller of the web portal constructs a Command
representation of this request by adding the obtained
JWT for authentication and authorization.

If the owner could authenticate and authorize correctly,
the device responds to the WebPortal with the message
that the Change Owner process has been completed. Af-
ter that, the entity sending the Change Owner command
is not able to receive a new JWT or use its old JWT to au-
thenticate and authorize. Attempting to do this will re-
sult in an error message, informing that the provided
public key is unknown.

Fig. 12: Response, when old owner tries to authenticate itself
to the device after Change Owner completed successfully

7. Conclusion

In this paper a possible solution has been introduced
how to design and implement an authentication and au-
thorization system, needed for the tracking and man-
agement of the lifecycle of IoT devices, using Verifiable
Credentials and DIDs. A concept and an implementation
of it could be provided and presented in a demonstra-
tion. The proposed system responds with an encrypted
JWT as a challenge to an authentication request. The
challenge will be constructed by only using public infor-
mation from an entity stored as a VC on the device itself.
The entity requesting an authentication can only solve
the challenge when it possesses the right private key to
the public key of an entity with a certain role.

Using a message format on top of Hyperledger Aries
basic message protocol, the partners can communicate
securely using asymmetric encryption for their mes-
sages. This is handled via DID communication. The only
requirement is the ability to send and receive DID com-
munication based basic messages. This can be achieved
by using an ACA-PY agent.

Using Verifiable Credentials to store information, the
proposed system becomes easily portable into other en-
vironments. In those, the VCs can be verified, when a
connection to the corresponding Hyperledger Indy
blockchain can be established. Those VCs can be used to
configure any entity to a certain role even across com-
pany boundaries.

Future work is still necessary to analyze how to check if
a trusted endorser or any credential issuer can be
trusted to be allowed to issue certain credentials. For ex-
ample, there should be research about how to verify that
entity A is allowed to issue certificates of type X. One so-
lution could be to ask for signed VCs proving this ability.
Then of course the question pops up recursively, how to

verify that the issuer of those VC is also allowed to do
that. There should be research about this topic, concern-
ing how to break this circle.

Acknowledgements

This work was supported by funding of German Federal
Ministry for Digital and Transport (BMDV) and Federal
Ministry for Economic Affairs and Climate Actions
(BMWK) in the projects “RailChain” and “IDunion”.

References

[1] IDunion - A Public Utility for Verification of Identity
Data in Finance. [Online Video]. Available:
https://www.youtube.com/watch?v=CT0MrxRJXno

[2] Linux Foundation, “Introducing the Trust Over IP
Foundation.” Accessed: Dec. 07, 2021. [Online].
Available: https://trustoverip.org/wp-content/uplo-
ads/2020/05/toip_introduction_050520.pdf

[3] G. Fedrecheski, J. M. Rabaey, L. C. P. Costa, P. C. Cal-
cina Ccori, W. T. Pereira, and M. K. Zuffo, “Self-So-
vereign Identity for IoT environments: A Perspec-
tive,” in 2020 Global Internet of Things Summit (GI-
oTS), Jun. 2020, pp. 1–6. doi: 10.1109/GI-
OTS49054.2020.9119664.

[4] B. Singhal, G. Dhameja, and P. S. Panda, Beginning
Blockchain: A Beginner’s guide to building Blockchain
solutions. Springer, 2018.

[5] Q. Stokkink and J. Pouwelse, “Deployment of a
Blockchain-Based Self-Sovereign Identity,” Ar-
Xiv180601926 Cs, Jun. 2018, Accessed: Dec. 07,
2021. [Online]. Available: http://ar-
xiv.org/abs/1806.01926

[6] N. Naik and P. Jenkins, “Self-Sovereign Identity Spe-
cifications: Govern Your Identity Through Your Di-
gital Wallet using Blockchain Technology,” in 2020
8th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud),
Aug. 2020, pp. 90–95. doi: 10.1109/Mobil-
eCloud48802.2020.00021.

[7] A. S. Wazan, R. Laborde, D. W. Chadwick, F. Barrere,
and A. Benzekri, “How Can I Trust an X.509 Certifi-
cate? An Analysis of the Existing Trust Approaches,”
in 2016 IEEE 41st Conference on Local Computer Net-
works (LCN), Dubai, Nov. 2016, pp. 531–534. doi:
10.1109/LCN.2016.85.

[8] F. Wortmann and K. Flüchter, “Internet of Things:
Technology and Value Added,” Bus. Inf. Syst. Eng.,
vol. 57, no. 3, pp. 221–224, Jun. 2015, doi:
10.1007/s12599-015-0383-3.

[9] S. Dramé-Maigné, M. Laurent, L. Castillo, and H. Ga-
nem, “Augmented Chain of Ownership: Configu-
ring IoT Devices with the Help of the Blockchain,”
Singapore, Aug. 2018, vol. Part I, pp. 53–68. doi:
10.1007/978-3-030-01701-9_4.

[10] M. A. Khan and K. Salah, “IoT security: Review,
blockchain solutions, and open challenges,” Future
Gener. Comput. Syst., vol. 82, pp. 395–411, May
2018, doi: 10.1016/j.future.2017.11.022.

[11] L. F. Rahman, T. Ozcelebi, and J. Lukkien, “Under-
standing IoT Systems: A Life Cycle Approach,” Pro-
cedia Comput. Sci., vol. 130, pp. 1057–1062, 2018,
doi: 10.1016/j.procs.2018.04.148.

[12] N. Yousefnezhad, A. Malhi, and K. Främling,
“Security in product lifecycle of IoT devices: A sur-
vey,” J. Netw. Comput. Appl., vol. 171, p. 102779, Dec.
2020, doi: 10.1016/j.jnca.2020.102779.

[13] S. Fatima, S. Ahmad, and S. Siddiqui, “X. 509 and
PGP Public Key Infrastructure methods: A critical
review,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol.
Vol. 15, no. 5, pp. 55–59, 2015.

[14] G. Goodell and T. Aste, “A Decentralised Digital
Identity Architecture,” Front. Blockchain, vol. 2, p.
17, Nov. 2019, doi: 10.3389/fbloc.2019.00017.

[15] R. Belchior, B. Putz, G. Pernul, M. Correia, A. Vas-
concelos, and S. Guerreiro, “SSIBAC: Self-Sovereign
Identity Based Access Control,” in 2020 IEEE 19th In-
ternational Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), Dec.
2020, pp. 1935–1943. doi: 10.1109/Trust-
Com50675.2020.00264.

[16] J. P. Cruz, Y. Kaji, and N. Yanai, “RBAC-SC: Role-Ba-
sed Access Control Using Smart Contract,” IEEE Ac-
cess, vol. 6, pp. 12240–12251, 2018, doi:
10.1109/ACCESS.2018.2812844.

[17] J. Lee, B. Bagheri, and H.-A. Kao, “A Cyber-Physical
Systems architecture for Industry 4.0-based manu-
facturing systems,” SME Manuf. Lett., vol. 3, Dec.
2014, doi: 10.1016/j.mfglet.2014.12.001.

[18] L. Monostori et al., “Cyber-physical systems in ma-
nufacturing,” CIRP Ann., vol. 65, no. 2, pp. 621–641,
2016, doi: 10.1016/j.cirp.2016.06.005.

[19] ITU-T Recommendation, “X.509 Information Tech-
nology - Open Systems Interconnection - The Direc-
tory: Authentication Framework.” ITU, Jun. 1997.
[Online]. Available: https://www.itu.int/rec/T-REC-
X.509

[20] P. C. Bartolomeu, E. Vieira, S. M. Hosseini, and J.
Ferreira, “Self-Sovereign Identity: Use-cases, Tech-
nologies, and Challenges for Industrial IoT,” in 2019
24th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), Sep. 2019,
pp. 1173–1180. doi: 10.1109/ETFA.2019.8869262.

[21] Y. Liu, Q. Lu, H.-Y. Paik, X. Xu, S. Chen, and L. Zhu,
“Design Pattern as a Service for Blockchain-Based
Self-Sovereign Identity,” IEEE Softw., vol. 37, no. 5,
pp. 30–36, Sep. 2020, doi:
10.1109/MS.2020.2992783.

[22] M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In
Search of Self-Sovereign Identity Leveraging Block-
chain Technology,” IEEE Access, vol. 7, pp. 103059–
103079, 2019, doi: 10.1109/ACCESS.2019.2931173.

[23] Sporny, Manu, Longley, Dave, Sabadello, Markus,
Reed, Drummond, Steele, Orie, and Allen, Chris-
topher, “Decentralized Identifiers (DIDs) v1.0 - Core
architecture, data model, and representations,”
W3C Proposed Recommendation, Aug. 2021. [On-
line]. Available: https://www.w3.org/TR/did-core/

[24] A. Preukschat and D. Reed, Self-sovereign identity:
decentralized digital identity and verifiable creden-
tials. Shelter Island: Manning, 2021.

[25] M. Sporny, D. Longley, and D. Chadwick, “Verifiable
Credentials Data Model v1.1 - Expressing verifiable
information on the Web,” Nov. 2021. [Online].
Available: https://www.w3.org/TR/vc-data-model/

[26] Hyperledger Revision, “Hyperledger Indy SDK.”
[Online]. Available: https://hyperledger-
indy.readthedocs.io/projects/sdk/en/latest/docs/

[27] “Hyperledger Aries.” [Online]. Available:
https://github.com/hyperledger/aries

[28] “Hyperledger Indy Node.” [Online]. Available:
https://github.com/hyperledger/indy-node

[29] “Hyperledger Aries Cloudagent Python.” [Online].
Available: https://github.com/hyperledger/aries-
cloudagent-pythonrabak

[30] “Flask documentation.” [Online]. Available:
https://flask.palletsprojects.com/en/2.0.x/

