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Abstract

Influenza A viruses are responsible for the outbreak of epidemics as well as pandemics world-
wide. The surface protein neuraminidase of this virus is responsible, among other things, for
the release of virions from the cell and is thus of interest in pharmacological research. The
aim of this work is to gain knowledge about evolutionary changes in sequences of influenza A
neuraminidase through different methods. First, EVcouplings is used with the goal of identifying
evolutionary couplings within the protein sequences, but this analysis was unsuccessful. This is
probably due to the great sequence length of neuraminidase. Second, the natural vector method
will be used for sequence embedding purposes, in hopes to visualize sequential progression of
the virus protein over time. Last, interpretable machine learning methods will be applied to ex-
amine if the data is classifiable by the different years and to gain information if the extracted
information conform to the results from the EVcouplings analysis. Additionally to using the class
label year, other labels such as groups or subtypes are used in classification with varying results.
For balanced classes the machine learning models performed adequately, but this was not the
case for imbalanced data. Groups and subtypes can be classified with a high accuracy, which
was not the case for the years, continents or hosts. To identify the minimal number of features
necessary for linear separation of neuraminidase group 1 subtypes, a logistic regression was
performed at last, resulting in the identification of 15 combinations of nine amino acid frequen-
cies. Since the sequence embedding as well as the machine learning methods did not show
neuraminidase evolution over time, further research is necessary, for example with focus on one
subtype with balanced data.



Kurzbeschreibung
Entwicklung eines Sequenz-Evolutionsmodells der Influenza A Neuraminidase auf Grundlage
von evolutionary couplings Analysen und interpretierbaren Modellen des maschinellen Lernens

Influenza A Viren sind weltweit für den Ausbruch von Epidemien und Pandemien verantwortlich.
Das Oberflächenprotein Neuraminidase dieses Virus ist u.A. für die Freisetzung der Virionen
aus der Zelle verantwortlich und somit Bestandteil pharmakologischer Forschungen. Ziel dieser
Arbeit ist es, durch verschiedene Methoden Erkenntnisse über evolutionäre Veränderungen
in Sequenzen der Influenza A Neuraminidase zu gewinnen. Zunächst wird EVcouplings mit
dem Ziel eingesetzt, evolutionary couplings innerhalb der Proteinsequenzen zu identifizieren,
jedoch war diese Analyse nicht erfolgreich. Dies ist wahrscheinlich auf die Sequenzlänge der
Neuraminidase zurückzuführen. Zweitens wird die natural vectors Methode auf die Proteinse-
quenzen angewendet, in der Hoffnung, die sequenzielle Entwicklung des Virusproteins im Laufe
der Zeit zu visualisieren. Schließlich werden interpretierbare Methoden des maschinellen Ler-
nens angewandt, um zu untersuchen, ob die Daten nach den verschiedenen Jahren klassifiziert
werden können und um Informationen darüber zu gewinnen, ob die extrahierten Informationen
mit den Ergebnissen der EVcouplings-Analyse übereinstimmen. Neben der Verwendung der
Jahre als Klassenlabel werden auch andere Labels wie Gruppen oder Subtypen bei der Klassi-
fizierung verwendet, mit unterschiedlichen Ergebnissen. Bei balancierten Klassen erzielten die
maschinellen Lernmodelle gute Ergebnisse, bei imbalancierten Daten war dies jedoch nicht der
Fall. Gruppen und Subtypen können mit einer hohen Genauigkeit klassifiziert werden, was bei
den Jahren, Kontinenten oder Wirten nicht zutraf. Um die minimale Anzahl von Merkmalen zu
ermitteln, die für eine lineare Trennung der Subtypen der Neuraminidasegruppe 1 erforderlich
sind, wurde anschließend eine logistische Regression durchgeführt, die zur Identifizierung von
15 Kombinationen aus neun Aminosäurehäufigkeiten führte. Da die Visualisierung der natural
vectors als auch die Methoden des maschinellen Lernens keine Evolution der Neuraminidase
im Laufe der Zeit aufzeigten, sind weitere Untersuchungen notwendig, zum Beispiel mit Fokus
auf einen Subtyp mit gleichgewichtetem Datensatz.
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Chapter 1: Biological Fundamentals 1

1 Biological Fundamentals

1.1 Motivation

On earth, there are an estimated 1031 viruses, which can be found in every part of the
natural world (Breitbart et al., 2005). Of those nonillions of viruses, humans are sus-
ceptible for approximately 200 virus species (Woolhouse et al., 2012), with the influenza
virus being one of those. Surface proteins of influenza A viruses, such as hemagglu-
tinin and neuraminidase, which make the first contact with the host cell, are subject to
frequent changes in their sequences. Those changes on biological sequences, called
mutations, can be observed over a period of time. Blackshields et al. (2010) devel-
oped a new way of guide tree generation for multiple sequence alignment and by doing
so, they visualized 3994 hemagglutinin H3 sequences over a period of 41 years. This
visualization (Fig. 1) represents the first three principal components of the embedded
vectors using principal component analysis, where the datapoints symbolize the protein
sequences, colored from 1967 (blue) to 2008 (red). Thus, the almost linear progression
of the protein through time is made visible.

Figure 1: Blackshields et al. (2010) visualization of progressive changes at the amino acid se-
quence level of 3994 sequences of the influenza A surface protein hemagglutinin from
1967 (blue) up to 2008 (red), with each dot representing a sequence colored by year
of isolation.

Based on this idea, this work will focus on the achievement of similar results using the
neuraminidase surface protein of influenza A. In a first step, it will be investigated, if
similar results can be achieved using the application EVcouplings with the goal of iden-
tifying evolutionary couplings within the protein sequences. These will provide insight
into evolutionary changes and conservation in the sequences over the last 100 years
and consequently demonstrate viral movement to facilitate the prediction of future epi-
demics or pandemics (Shortridge, 1995; Taubenberger, Morens, and Fauci, 2007).



2 Chapter 1: Biological Fundamentals

To substantiate the conclusions that emerge from this, the natural vector method will be
used for sequence embedding purposes. Similar to Blackshields et al., the multidimen-
sional vectors will be embedded in a low dimensional space using principal component
analysis to visualize sequential progression of the virus protein over time. Furthermore,
given that the biological sequences are transformed into numerical data, interpretable
machine learning methods will be applied. They will be used to examine if the data
is classifiable by the different years and to gain information if the extracted information
conform to the results from the EVcouplings analysis. In addition to the studies using
the years as class labels, it will be investigated, whether machine learning models can
accurately classify further characteristics of the neuraminidase, such as individual neu-
raminidase groups or subtypes. Hence, the different classification problems will be of
multi-class or binary nature.
Due to the nature of neuraminidase structure, it is assumed, that the dataset can be
classified by groups using machine learning approaches, and based on the specifics of
natural vectors, it may be possible that changes in the amino acid sequence stand out
in an embedded space or using the machine learning methods.
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1.2 Influenza A Virus

Influenza viruses of the family of Orthomyxoviridae are classified into four types A, B,
C and D. Influenza A viruses (IAVs) are mainly responsible for seasonal influenza epi-
demics as well as pandemics in humans. Some major human epidemics and pandemics
of the 20th century have been the Spanish Flu in 1918, the Asian Flu 1957 and the Hong
Kong Flu in 1968 (Ma et al., 2009). Between 1918 and 1920 the Spanish Flu caused
by H1N1 killed approx. 50 million people (Lina, 2008). The influenza A subtype re-
sponsible for this pandemic bears the name of mother of all pandemics, not necessarily
due to the extraordinary severity of the disease. Rather, the 1918 IAV appears to be
the possible genetic ancestor of various human and porcine influenza A subtype strains
(Taubenberger and Morens, 2006). It reappeared in the 21st century, in 2009–2010, as
H1N1pdm09, called Swine Flu, and was less virulent in regard to its overall morbidity
and mortality (Lycett et al., 2019).

1.2.1 IAV Subtypes

The influenza A virus (IAV) has its genetic code, eight different ribonucleic acid (RNA)
segments, enveloped by a membrane, and those RNA segments code for eleven viral
proteins essential for the structure and function of the virus. Figure 2 shows a schematic
representation of an influenza A virion. The segments encoding two specific surface pro-
teins are highlighted. These two proteins, hemagglutinin (HA) and neuraminidase (NA),
which make the first contact with the host cell, are used to distinguish the different in-
fluenza A subtypes. So far, 18 hemagglutinin subtypes (abbreviated H1-H18) have been
identified. For neuraminidase, a total of eleven subtypes (abbreviated N1-N11) have
been identified (Air, 2012; Q. Li et al., 2012; Zhu et al., 2012). The three influenza A
subtypes H1N1, H2N2 and H3N2 have persisted in the human population (Dou et al.,
2018) and a further two influenza A subtypes (H17N10 and H18N11) have only been
found in bats. These latter do not seem to be able to infect other animal species than
bats and therefore do not seem to pose a threat for epidemics or pandemics among
humans (Wu et al., 2014; Tong et al., 2012). Wild birds seem to be the predominant
hosts for all other IAV subtypes, especially Charadriiformes (gulls, terns, sandpipers)
and Anseriformes (ducks, geese, swans) the natural reservoir of IAV (Dou et al., 2018;
Lycett et al., 2019). Due to the nature of these waterfowl, they can spread the virus
along migratory flyways (Zhang et al., 2014; Olsen et al., 2006).
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1.2.2 Influenza A Neuraminidase

1.2.2.1 Structure and Function

Neuraminidase, as one of the major surface proteins of influenza virus, plays an im-
portant role during the release and spread of virions throughout the host, yet it is also
responsible for viral entry into the host cell. These functions make the protein one of
the main targets for vaccine development, as not only can infection of a host cell be
prevented, but also the spread of the virus in the already infected host organism (La-
bella et al., 2013). The protein consists of four identical polypeptides, which arrange
into a tetramer. Each monomer has a sequence length of approximately 470 amino
acids (Air, 2012) and can be divided into four domains: a cytoplasmic tail, a transmem-
brane region, a stem, and a head. The cytoplasmic tail is located within the virus and
is conserved across nearly 100% of all subtypes, since mutations of this region result
in altered virion morphology and reduced replication yields. The transmembrane region
is located in the virion membrane and is thought to be α-helical (McAuley et al., 2019).
The stem, which is located outside the virion, can vary in its number of amino acids.
The length of the stem is specific to the subtype and has significant implications for viral
properties. Commonly observed, for example, is a deletion of 20 amino acids in the
transmission of IAV from waterfowl to domestic poultry. That phenomenon is thought to
be a viral adaptation to the host being infected and thus species-specific (Y. Li, Chen, et
al., 2014). The neuraminidase monomer head sits at the end of the stem and consists of
in average 389 amino acids. It is described in its secondary structure as a six-stranded
propeller structure (McAuley et al., 2019), with each strand consisting of four antiparallel
β -strands connected by loops and stabilized by disulfide bridges.

Figure 3: Neuraminidase head region as a tetramer (generated with PyMol, PDB ID: 6hg5).
The single monomer is highlighted in green. Each monomer consists of six β -sheets,
each with four antiparallel β -strands. The arrangement resembles a propeller, hence
the term propeller structure (McAuley et al., 2019).
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At the head of the neuraminidase is the active site of the protein. It interacts with the
corresponding host cell during viral entry, precisely with terminal sialic acid residues of
glycoproteins. The sialidase function is crucial for neuraminidase, as it identifies the
correct receptor on the surface of the host cell (H. Wang, 2020). In Figure 3, the neu-
raminidase head is shown as a tetramer, with a single monomer highlighted in green.
The active site of a monomer consists of eight highly conserved functionally important
amino acids, which are Arginine (R/Arg), Aspartate (D/Asp), Glutamate (E/Glu) and
Tyrosine (T/Tyr) at the following protein sequence positions (indicated as residue + po-
sition by N2 numbering): Arg118, Asp151, Arg152, Arg224, Glu276, Arg292, Arg371,
and Tyr406. This ’inner shell’ is surrounded by amino acids, which stabilize the struc-
ture of the active site and are therefore defined as the ’outer shell’ resp. framework
residues. They are equally highly conversed and consist of Glutamate (E/Glu), Argi-
nine (R/Arg), Tryptophan (W/Trp), Serine (S/Ser), Aspartate (D/Asp), Isoleucine (I/Ile),
Asparagine (N/Asn) at following positions Glu119, Arg156, Trp178, Ser179, Asp198,
Ile222, Glu227, Glu277, Asn294, and Glu425 (McAuley et al., 2019). In Figure 4, the
functional and structural amino acids are illustrated, with functional residues shown in
orange (Fig. 4a) and structural residues in green (Fig. 4b).

(a) Functional residues in active site of
neuraminidase N8 (generated with Py-
Mol, PDB ID: 2ht5).

(b) Framework residues in active site of
neuraminidase N8 (generated with Py-
Mol, PDB ID: 2ht5).

Figure 4: Functional (orange) and framework (green) residues in active site of neuraminidase
N8 (generated with PyMol, PDB ID: 2ht5).
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1.3 Outline of this Work

The following chapter “2 Applied Methods” is devoted to the methods used in this the-
sis. First, evolutionary couplings are described in more detail as well as the software
programs EVcouplings and plmc are presented. Then, the supervised and unsuper-
vised machine learning algorithms are discussed. Among those, Neural Gas (NG) is
applied for unsupervised vector quantization, and its application for dataset balancing
is described in Chapter 3. Hereafter, different variants of Learning Vector Quantization
(LVQ) as supervised machine learning algorithms are discussed with the purpose to
give an overview of the applied methods and to lead to the interpretability of the LVQ
variant Generalized Matrix LVQ (GMLVQ), resp. the Λ matrix of GMLVQ. Furthermore,
the classification validation is presented, as well as the transformation from biological
sequences into vectors via the natural vector method. All analyzed protein sequences
are represented by their respective natural vector for the aforementioned machine learn-
ing methods. Chapter “3 Data Acquisition” describes in detail, how the neuraminidase
protein sequences are acquired. Here, the sequences are downloaded from the Pro-
tein Data Bank (PDB) an the National Center for Biotechnology Information (NCBI). All
proteins acquired from the PDB are structurally resolved and therefore can give an in-
sight into the neuraminidase structure and structural peculiarities. Regardless of the
database, nearly all sequences are annotated with additional information regarding the
NA group and NA subtype membership, as well as year, place and organism of isola-
tion, sequence length and more. Furthermore, dataset balancing and filtering will be
discussed in this chapter, where data filtering is described with emphasis on filtering
redundant sequences out of the dataset. In the next chapter “4 EVcouplings Analysis”,
the evolutionary couplings analysis is performed with the software EVcouplings. The
mode of operation/functionality of EVcouplings and the data necessary should clarify
the coupling results later generated. The chapter “5 Neuraminidase Natural Vector Em-
bedding” deals with the transformation of biological sequences into vectors for machine
learning analyses. The natural vectors are then visualized by showing the first two or
first three principal components after a principal component analysis (PCA) and the dat-
apoints are colored by different labels (e.g. by NA group membership or host). This is
followed by the chapter “6 Classification using the GMLVQ approach” dedicated to the
analysis of the data using the GMLVQ method. There, the GMLVQ model is verified with
5-fold cross validation. The natural vectors of the NA sequences are defined as input
and the class labels are set to different additional information concerning the sequences
such as the NA group, NA subtype, year of isolation, virus host or continent of isolation.
The results are discussed by the interpretation of the output Λ matrix. To interpret this
matrix further, the subsequent chapter “7 Logistic Regression Modeling for GMLVQ in-
terpretation” takes a closer look on the important features for the classification decision
of GMLVQ. There, the NA subtypes of every NA group 1 are tested against the others
from the same group for identification of important features to the classification.
Finally, in the last chapter a summary and conclusions as well as remarks to future
works with neuraminidase sequences are provided.
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2 Applied Methods

2.1 EVcouplings Analysis

For the identification of neuraminidase evolution over the last 100 years, the individual
amino acids following evolutionary constraint need to be identified. To achieve this, EV-
couplings (EVC) is used to determine evolutionary couplings. This chapter is based
on the work of Marks, Colwell, et al. (2011), Marks, Hopf, et al. (2012), Ekeberg et al.
(2013), Hopf, Schärfe, et al. (2014), and Hopf, Ingraham, et al. (2017). It gives an
overview of the functionality of the EVcouplings program as described in Hopf, Green,
et al. (2018). More detailed descriptions can be found in the aforementioned publica-
tions.

2.1.1 Evolutionary Couplings

The information about the structure and function of biomolecules such as proteins is
contained in their sequence, but evolutionary pressure can lead to changes on se-
quence level. These can lead to improved or reduced functionality of a protein due to
conformational alterations in the protein structure (Hopf and Marks, 2017). Since a re-
duced functionality of a protein would be unfavorable for the persistence of an organism,
evolutionary constraint leads to the preservation of the necessary interactions between
amino acids, which are indispensable for the formation of stable and functional proteins.
This in turn leads to coevolution of interacting amino acids, hence called evolutionary
couplings (Marks, Colwell, et al., 2011; Hopf, Ingraham, et al., 2017; Hopf and Marks,
2017). Figure 6 illustrates those couplings, where two interacting residues are struc-
turally close to each other. The interaction can occur, for example, through a hydrogen
bridge, a disulfide bond or other. In Fig. 6 (A) the two interacting amino acid residues
are shown as blue and green circle, and the fold of the protein is visualized as curved
line. To maintain this contact, either one of those residues must coevolve with the other
or both must remain conserved to sustain functionality of the protein. In Fig. 6 (B) this
coevolution in related protein sequences is illustrated schematically, with the sequences
from time 1918–2000 in a multiple sequence alignment represented as horizontal lines
and the respective residues as aforementioned circles (Marks, Hopf, et al., 2012). A
closer look at the MSA reveals the coevolved amino acids, as seen in Fig. 6 (C), so that
a correlation between one amino acid to another can be suggested.
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Figure 6: Residues required for the structural stability of a protein are in close 3D proximity to
one another and form a residue contact (A). This contact provides a record of residue
covariation based on the evolution in the protein sequences of one family (B), where
the individual amino acid pair can be identified (C). Therefore, they are also called evo-
lutionary couplings (adapted from Hopf and Marks (2017) and Ekeberg et al. (2013)).

2.1.2 EVcouplings

EVcouplings is an open source, integrated pipeline used for predicting structure, func-
tion and mutations in protein sequences by means of evolutionary sequence covariation.
It was developed in the laboratories of Debora Marks and Chris Sander at Harvard Med-
ical School, with Thomas Hopf as the development lead. EVC is available either on the
EVcouplings Website1 or as command-line application respectively as Python package.
An essential feature of EVC is the identification of evolutionary contacts, also called
evolutionary couplings (ECs), in proteins. With those ECs, e.g. residue contacts, mu-
tational effects and 3D structures of proteins can be predicted. To achieve this, EVC
uses external software tools such as plmc (Hopf, Ingraham, et al., 2017) and HHsuite
(Steinegger et al., 2019) among others, and previously published methods like EVfold
(Marks, Colwell, et al., 2011), EVmutation (Hopf, Ingraham, et al., 2017) and EVcom-
plex (Hopf, Schärfe, et al., 2014).
The complete EVcouplings pipeline is divided into five stages: First, a sequence align-
ment is either generated from unaligned sequences or an existing alignment loaded.
This only applies for the application EVcouplings running on a computer. Using the Web-
site of EVC, one sequence or Uniprot ID needs to be provided. This target sequence is
then used to search a redundancy reduced database (e.g. UniRef90) for homologs. The
alignment stage also preprocesses the alignment for the following couplings calculation.
Secondly, referred to as the couplings stage, the evolutionary couplings are calculated
via plmc. The output is subsequently processed to achieve the correct numbering of the
amino acids and a statistical scoring model is fitted to the ECs. Plmc, written by John
Ingraham in the laboratory of Debora Marks, is a tool for the deduction of undirected
statistical models to describe coevolution and covariation in biological sequence fami-

1 https://evcouplings.org/
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with j = 2, ...,na (Y. Wang et al., 2019). In practical applications, the minimum order
of normalized central moments to be calculated is fixed to jmax such, that the data
dimension (or length of natural vector l) becomes l = 20 · ( jmax + 1) for comparability.
Frequently, jmax = 2 is chosen (Y. Li, Tian, et al., 2016). Therefore, the shape of a
60 dimensional natural vector with j = 2 is as follows:

x = (nA,nC, . . . ,nY ,µA,µC, . . . ,µY ,DA
2 ,D

C
2 , . . . ,D

Y
2 ) (2.2)

This method is chosen due to the advantages described by Deng et al., 2011, and Y.
Wang et al., 2019. The embedding of the vectors into a high-dimensional space can
be used to measure protein similarity using Euclidean distances in that space instead
of using common alignment methods. Furthermore, generating natural vectors is faster
than computing a multiple sequence alignment and if sequence data is added, there is
no need for a realignment of the sequences. Other vector methods like Bag of Words
(Blaisdell, 1989) are not considered due to the large alphabet of 20 amino acids, which
on the one hand is computationally intensive and on the other hand would reduce the
interpretability of GMLVQ results.
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2.3 Machine Learning Algorithms

Machine Learning (ML), as part of artificial intelligence, refers to mathematical meth-
ods for the acquisition of knowledge. ML provides algorithms capable of self-learning
from input data, which is therefore called the training dataset. The trained model is
then tested on a testing dataset, which is unknown to the model. The learning itself
can be differentiated between supervised learning and unsupervised learning. In su-
pervised learning, the data in the training dataset is labeled and the algorithm analyzes
the dataset that it is able to apply the gained knowledge to solve the specific learning
task. These learning tasks can be classification or regression, which predict the label or
class of unlabeled and unseen data (Choi et al., 2020; Srinivasa et al., 2020).
Unlike supervised learning, the data in unsupervised learning does not have label in-
formation and therefore is usually used to recognize patterns and structures in the data
(Choi et al., 2020).
Hence, ML approaches can be used in bioinformatics for prediction of biological data,
discrimination and classification of biological sequences or feature selections, as afore-
mentioned biological data are generally multidimensional (Srinivasa et al., 2020).
This chapter is based on the work of Martinetz et al. (1993), Kohonen (1986), Sato
et al. (1996), and Geweniger (2012) and gives an overview of the functionality of ML
algorithms. Further details and mathematical derivations can be found in the original
literature.

2.3.1 Neural Gas for Unsupervised Vector Quantization

One possibility for representing multidimensional data is Vector Quantization (VQ), with
Neural Gas (NG) being one possible approach. To achieve this, the Neural Gas algo-
rithm by Martinetz et al. (1993) initializes a set of prototypes W = {wi} ∈ Rd,

i = 1, . . . ,nw (with nw being the number of prototypes) randomly in the data space Rd .
This initialization is based on the basic idea of particles propagating in a medium, more
precisely on Brownian motion, where the prototypes represent the datapoints x ∈Rd as
best as possible. For this reason, it will be used for dataset balancing purposes.
The cost function of NG is given as

ENG =
1

C(σ)

np

∑
i=1

∫
hσ (ki(x,W )) ·d(x,wi)P(X)dx (2.3)

Then, stochastic gradient descent (SGD) is performed, which manifests in the random
selection of one datapoint xi. From this datapoint, NG considers the neighborhood of the
prototypes by introducing a rank function (see eq. (2.4)). In this function, the distances
between all prototypes wi and the datapoint x are calculated and sorted.
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ki(x,W ) = |{wk|d(x,wk)< d(x,wi)}| (2.4)

Next, the prototypes are updated according to

wi(t +1) = wi(t)+ ε ·hσ (ki(x,W )) · ∂ d(x,wi(t))
∂ wi(t)

(2.5)

with ε being the learning rate and hσ (t) the neighborhood function, which increases for
decreasing values of ki(x,W ) and returning a maximum value for ki(x,W ) = 0.
The steps of choosing a random datapoint to updating all prototypes are repeated until
the algorithm converges or it is manually stopped (Geweniger, 2012; Martinetz et al.,
1993).

2.3.2 Supervised Machine Learning Methods

2.3.2.1 Logistic Regression for Linear Classification

Logistic regression is a regression method used for predicting an outcome based on
previous observations in data, meaning predicting one variable (the response or depen-
dent variable Y ) based on one or more other variables (the predictors or independent
variables X ) (Peng et al., 2002). It is an effective classification algorithm applied on cate-
gorical or binary data and can solve binary classification problems, where the probability
of a specific event or class occurring is modeled on the basis of the logistic function

y =
1

1+ e−x . (2.6)

The underlying mathematical concept is the natural logarithm of an odds ratio, where the
probability of the event occurring is divided by the probability of the event not occurring.
Generally, the occurrence of the event is coded as 1 and its absence as 0. Assume
p being the probability of the occurrence of the event (the response) taking the value
of 1, then the odds of this event happening is defined as p/(1− p) and therefore, the
logarithm of the odds is ln(p/(1− p)). For logistic regression with multiple predictors,
this results in

logit(Y ) = ln
(

p
1− p

)
= α +β1X1 +β2X2 + . . .+βkXk (2.7)
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where it predicts the logit of Y from X with α is the Y intercept and βi the regression co-
efficients. It can be derived from the equation above, that the probability is as follows

P(Y = 1|X1 = x1,X2 = x2, . . . ,Xk = xk) =
eα+β1X1+β2X2+...+βkXk

1+ eα+β1X1+β2X2+...+βkXk
(2.8)

with e the base of the natural logarithm, α the Y intercept, and βi the regression coef-
ficients, which denotes the direction of the relationship between X and Y (Peng et al.,
2002). Logistic regression is used in this thesis to extrapolate the features, in this case
the amino acids, important for classification.

2.3.2.2 Generalized Matrix Learning Vector Quantization

Generalized Matrix Learning Vector Quantization (GMLVQ), as a type of relevance learn-
ing, has its origin in Learning Vector Quantization (LVQ) (P. Schneider et al., 2009). This
chapter briefly describes the path from LVQ to GMLVQ.

Learning Vector Quantization according to Kohonen

First introduced by Kohonen (1986), LVQ is a distance- and prototype-based classifi-
cation model. It is a heuristic approach which aims to spread the prototypes in a data
space by minimizing datapoint misclassification of underlying training data. Each data-
point and each prototype belong to only one class.

Given is a training dataset T =
{(

xi,c(xi)
)
∈ X ×C, i = 1, . . . ,nx

}
, where X ⊂Rd is the

set of training vectors with class labels c(xi) ∈C and C is the set of classes.
As first step, a set of prototypes W =

{(
wi,c(wi)

)
∈W ×C, i = 1, . . . ,nw

}
, where W ⊂

Rd is the set of prototypes with class labels c(wi) ∈ C, is initialized randomly. Then a
labeled datapoint xi is presented and its closest prototype ws(xi) is determined by

s(xi) = argmin
j

∥∥xi −w j
∥∥2 (2.9)

with
∥∥xi −w j

∥∥2 being the squared Euclidean distance d(xi,wi) (Geweniger, 2012).

In the following update step, this winning prototype ws(xi) is either moved closer to or
farther away from the datapoint, depending on the class label of both prototype and
datapoint. If the prototype’s class is the same as the chosen datapoint’s, the prototype
is moved closer to the datapoint. If the prototype and the datapoint differ in their class
labels, the prototype is moved further away from the datapoint. According to (Kohonen,
1997), this is called the Attraction Repulsion Scheme (ARS) can be formulated for every
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time step t as follows

ws(xi)(t +1) = ws(xi)(t)+

{
−ε · (xi −ws(xi)(t)) i f c(xi) = c(ws(xi))

ε · (xi −ws(xi)(t)) i f c(xi) ̸= c(ws(xi))
. (2.10)

where 0 < ε ≪ 1 is the learning rate.

The steps of choosing a random datapoint to updating all prototypes are repeated until
the algorithm converges or it is manually stopped (Geweniger, 2012; Kohonen, 1997).

Generalized Learning Vector Quantization according to Sato & Yamada

A new variant of the LVQ, the Generalized LVQ (GLVQ) was introduced by Sato et al.
(1996), where a differentiable cost function is introduced. It approximates the classifi-
cation error, while keeping the ARS principle during learning. This cost function is as
follows

EGLV Q(X ,W ) =
1
2

nx

∑
i=1

f (µ(xi)) (2.11)

with nx being the number of datapoints, f a monotonous increasing function, and

µ(xi) =
di+ −di−

di+ +di−
. (2.12)

Here, di+ and di− designate the distances between a datapoint xi and two specific pro-
totypes wi+ ∈ W+ ⊂ W and wi− ∈ W− ⊂ W . The prototype wi+ denotes the winning
prototype with the same class label and wi− the winning prototype with a different class
label as the datapoint. The squared Euclidean distance can be used as distance mea-
sure for GLVQ.
After the random initialization of the prototypes wi ∈ W with W ⊆ Rd , the cost function
is optimized with the SGD approach. Consequently, ws+(xi) and ws−(xi) are updated and
the ARS is realized following the update rule

∆wj± ∝ ε · f (µ(xi))

∂wj±
(2.13)

for the prototypes for a randomly chosen training data point xi and ε being the learning
rate. The steps of choosing a random datapoint to updating all prototypes are repeated
until the algorithm converges or it is manually stopped.
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Generalized Matrix Learning Vector Quantization

Generalized Matrix Learning Vector Quantization (GMLVQ) is an extension of GLVQ,
where a matrix is adjusted by SGD, besides the prototype adaptation. The GMLVQ cost
function is as follows

EGMLV Q = ∑
i

f (µ(xi,W,Ω)) (2.14)

with f an sigmoid function, µ(x) as in eq. (2.12) and Ω ∈ Rm×n a matrix, with which
the data space is mapped to an embedded data space, before applying the squared
Euclidean metric in the mapping space Rm. The matrix Λ of size n× n is calculated
by

Λ = Ω
T

Ω (2.15)

The Λ matrix, or classification correlation matrix, denotes feature correlations, which are
significant for the classification (Villmann et al., 2017). Positive or negative correlation
values of two features imply a positive or negative correlation important to differentiate
classes, whereas the relevance values on the main diagonal provide insight into the im-
portance of each feature on its own for the distinction of the classes (Bittrich et al., 2019).
Visualizing the Λ matrix contributes to a faster perception of the classification impacting
features and leads to a better model interpretability, which increases the reliability of the
prediction, but alas, is not a given aspect of unsupervised ML method (Lisboa et al.,
2021). This interpretability is needed to draw conclusions about the biological data.
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2.4 Classification Validation

In the case of classification tasks, there exist several measures for evaluating the classi-
fication of the model. The classification accuracy (Acc) is such a measure, that denotes
the ratio between correctly classified datapoints to the total number of datapoints. It is
therefore the probability of the model prediction being correct (Powers, 2020; Grandini
et al., 2020).
The accuracy and further classification validation measures (or confusion metrics) can
be calculated with the values of a confusion matrix, as seen in Table 1.

Table 1: Confusion matrix of binary classification problem
Predicted Class

Classes Positives Negatives
Actual
Class

Positives True Positives False Negatives
Negatives False Positives True Negatives

The confusion matrix for multi-class classification problems can be seen in Table 2.

Table 2: Confusion matrix of multiple classification problem with class 2 as reference with its
True Positive highlighted in green. The False Positives are in the same column,
whereas False Negatives are located in the same row as the True Positive. All other
cells contain the True Negatives.

Predicted Class
Classes 1 2 3 4

Actual
Class

1 True Negatives False Positives True Negatives True Negatives
2 False Negatives True Positives False Negatives False Negatives
3 True Negatives False Positives True Negatives True Negatives
4 True Negatives False Positives True Negatives True Negatives

with class 2 as reference (Grandini et al., 2020).

These confusion matrices include the occurrences of True Positives (TP), True Nega-
tives (TN), False Positives (FP), and False Negatives (FN), with TP and TN the two types
of correctly classified datapoints, and FP and FN the two types of wrongly classified dat-
apoints (Powers, 2020).

TP = ∑
x∈X

xi with class c(xi) correctly classified into class c(xi) (2.16)

TN = ∑
x∈X

xj with class c(x j) correctly classified into class c(x j) (2.17)

FP = ∑
x∈X

xj with class c(x j) incorrectly classified into class c(xi) (2.18)

FN = ∑
x∈X

xi with class c(xi) incorrectly classified into class c(x j) . (2.19)
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Accordingly, the accuracy is calculated as follows:

Acc =
number of correct predictions

total number of predictions
=

T P+T N
T P+T N +FP+FN

(2.20)

For imbalanced data, one possible classification validation measure is the balanced
accuracy. It is more suitable, since otherwise classification errors may occur for classes
with fewer datapoints, as these are less relevant compared to classes with numerous
datapoints (Grandini et al., 2020).

Accbalanced =

T Pc1
∑c1

+
T Pc2
∑c2

+ . . .+
T Pcn
∑cn

|C|
(2.21)

with |C| for the number of classes and ∑ci for all datapoints of class i.

To evaluate the validity of the model further, additional confusion metrics beside the ac-
curacy can be calculated. The following work will focus on Precision, Sensitivity, Speci-
ficity and Matthews Correlation Coefficient (MCC). Precision expresses the amount of
datapoints of class c(xi) correctly classified as true positives. It is therefore an indica-
tion of the degree to which the model can be trusted when it predicts a datapoint to be
positive (Grandini et al., 2020).

Precision =
T P

T P+FP
(2.22)

Sensibility measures the probability that a datapoint of class c(xi) will be correctly clas-
sified as class c(xi) (Positive) and therefore captures the prediction accuracy of the
model for a positive class (Grandini et al., 2020).

Sensitivity =
T P

T P+FN
(2.23)

In contrast, specificity is the probability of a datapoint of class c(x j) being correctly
classified as class c(x j) (Negative) (Swift et al., 2019).

Specificity =
T N

T N +FP
(2.24)

Calculations of the above mentioned confusion metrics are adapted for multi-class clas-
sification to each class accordingly (Grandini et al., 2020).
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Moreover, the Matthews Correlation Coefficient can be used in case of imbalanced data
(Chicco et al., 2020). It is calculated as follows

MCC =
T P ·T N −FP ·FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(2.25)

with MCC ∈ [−1,1]. MCC values of 1 indicate perfect classification, whereas values
of −1 indicate perfect misclassification. The value 0 denotes coincident classification
(Chicco et al., 2020).
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3 Data Acquisition

The dataset consists of neuraminidase sequences, which were acquired through the
Protein Data Bank (PDB) and through the National Center for Biotechnology Informa-
tion (NCBI) Influenza Virus Database. After collecting and preprocessing both sub-
datasets and balancing the subdataset acquired through the NCBI, they are merged
into one dataset and identical sequences are removed.
The dataset used for this analysis finally contains 1506 sequences (60 from the PDB
and 1446 from the NCBI) ranging from the years 1918 to 2019 and which are isolated
from eight different taxa of seven different continents. The neuraminidase proteins were
extracted from 89 different influenza subtypes, of which six have an unknown hemag-
glutinin subtype. In this chapter, the data acquisition, the data balancing as well as the
data filtering will be specified.

3.1 Data acquisition from the PDB

The sequences from the PDB are defined as amino acid sequences extracted directly
from the .pdb-files instead of selecting the annotated sequences. Since .pdb-files con-
tain the coordinates or location of each atom of a protein sequence in a 3D space
including the respective amino acid, this procedure has the advantage of getting the ex-
act amino acids from the experimentally resolved protein structure. These can deviate
from the annotated amino acids both in length and in individual amino acids since other
experimental methods may have been used for amino acid identification. Thus, only
the domain relevant to this analysis is considered. The PDB sequences have a median
length of 389 amino acids.
To acquire all NA data from the PDB, the PDB identifiers (IDs) are obtained via the Pro-
tein Families Database (PFAM). Under the Protein Family Glycoside hydrolase family 34
(PF000642), the PDB identifiers for almost every structurally resolved neuraminidase
protein are listed and can thus be downloaded from PDB3. Only the structures for N10
and N11 have not been added at the time to the PFAM, and due to insufficient data
concerning N10 and N11, those NA subtypes are not included in the dataset. The low
quantity of sequences may be explained by the recent discovery of the organism of
isolation. So far, N10 and N11, isolated from H17N10 and H18N11, have only been de-
tected in New World bats of South America. Furthermore, H17N10 and H18N11 have
not yet been able to propagate in cell cultures, which hinders further research (Q. Li
et al., 2012; Wu et al., 2014).
In total, 228 PDB IDs are acquired as of 5 May 2021. Identifiers and protein chains not
belonging to the influenza A neuraminidase head domain are discarded, e.g. influenza B

2 https://pfam.xfam.org/family/PF00064
3 https://www.rcsb.org/downloads
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NA or ligands and antibodies bound to NA. After this preprocessing, 184 structures re-
main in the dataset, from which the sequences are extracted as described.
The 184 sequences are from 23 influenza A subtypes (including five with unknown
hemagglutinin subtypes) from 1918 to 2015. These neuraminidase proteins were iso-
lated from 12 distinct hosts of human, avian, porcine, canine, phocid and cetacean
origin from five different continents (see Table A.23 in Appendix). Of this initial dataset,
a total of 58 sequences belong to neuraminidase group 1 and 126 to group 2. The
great number of group 2 data is striking. This group consists, among others, of the
neuraminidase subtypes N2 and N9, which were isolated from influenza A subtypes
responsible for some human and avian pandemics of the 20th and 21st century (Kil-
bourne, 2006; Morens et al., 2009; Al Hajjar et al., 2010; Flaherty, 2012). As observed
in Table A.23, most N9 data is from 1975. It is to be assumed that in the early 1970’s
new avian influenza A strains were discovered, therefore being a surplus of isolated
neuraminidase from Australia’s tern population of that time (Webster, Isachenko, et al.,
1974). The oldest sequences of the dataset date back to 1918 and come from the in-
fluenza A subtype H1N1. In 2009, H1N1 reemerged as the strain H1N1pdm09, which
was responsible for the swine flu pandemic of that year (Taubenberger and Morens,
2010). In total, there are 24 H1N1 sequences in the PDB dataset.
Furthermore, there are five sequences to which the influenza A subtype could not be
identified and 14 sequences where only the neuraminidase subtype is known but not
the hemagglutinin subtype. Therefore, there is no information on the place of origin, but
through literature research the hosts could mostly be identified.
Of the initial PDB dataset containing 184 sequences, sequences with a sequence iden-
tity of 100% were removed, leaving 62 sequences. This subset of sequences will be
referred to as the PDB sequences.

3.2 Data acquisition from the NCBI

To obtain a dataset, which can be used for scientific purposes, additional neuraminidase
sequences from the NCBI Influenza Virus Database were downloaded on 20 April 2021.
As keyword influenza was chosen as well as Type A, any host, any country/region, pro-
tein NA, with the influenza subtype any H and subtype any N. As collection date, all
sequences from 01 January 1918 to 31 December 2020 were chosen. This query led
to 96.897 sequences.
From these sequences, those with unknown or ambiguous amino acids, sequence
length of under 100 amino acids or a wrong subtype were discarded, leaving 91.758 se-
quences. Subsequently, after removing all identical sequences, 38.215 sequences re-
mained, referred to as the NCBI sequences. These sequences have a median length
of 469 amino acids. This length indicates that the NA sequences are mostly whole pro-
tein sequences.
The NCBI sequences are from 129 influenza subtypes. Of those 38.215 sequences,
11.180 sequences are from the influenza subtypes H1N1 and 10.590 from H3N2. All
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other influenza subtypes have less than 3.000 sequences (see Table A.24). Con-
sequently, the NA subtypes N1 and N2 are the subtypes with the most sequences
(N1: 14784 sequences, N2: 17976 sequences), while all other NA subtypes contain
less than 1500 sequences (see Table A.25). Furthermore, the NA proteins were isolated
from a wide range of hosts of mammalian and avian origin from six different continents,
with most sequences originating in Asia and North America. Aside from the sequences
with additional information to their influenza or neuraminidase subtypes, the dataset also
contains seven sequences with unknown influenza subtype and nine influenza subtypes
with unknown hemagglutinin subtype. No specific host could be identified in 21 cases
and no specific continent in eight cases. The isolation years range from 1918 to 2020,
with most sequences coming from 2009 when H1N1 was pandemic.

3.3 Dataset Balancing

As neuraminidase subtypes N1 and N2 are overrepresented in the NCBI sequences, the
dataset needed to be balanced. The NCBI sequences were split into nine subdatasets
according to their neuraminidase subtypes. The balancing was done as described in
Chapter 2.3.1 after converting the amino acid sequences into natural vectors as speci-
fied in Chapter 2.2.
Neural Gas was applied to every NA subtype subdataset with prototype initialization
k = 200 and neighborhood range λ = 20. For further parameter settings, see Ta-
ble A.26. After running Neural Gas, the nearest datapoint of a prototype was deter-
mined via Euclidean distance with the aim of providing a dataset of 200 datapoints for
each NA subtype. It became apparent when reviewing the resulting data that some
datapoints were assigned multiple prototypes. For example, the datapoint AAA43363
is simultaneously the nearest datapoint to prototype Pt_186 and to prototype Pt_102.
To avoid duplications, all datapoints that occur twice or more have been reduced so
that they are only present once in the dataset. Hereby, each NA subtype had between
124 and 200 entries (see table 3), which was considered a balanced dataset.

Table 3: Overview of number of sequences for each NA subtype in dataset NCBI sequences
after balancing.

NA subtype N1 N2 N3 N4 N5 N6 N7 N8 N9

number of
sequences

199 200 170 148 124 167 159 176 143

Finally, the balanced NCBI sequence dataset and the PDB sequence dataset were
merged together. To avoid identical entries/sequences, redundant sequences were dis-
carded, resulting in a working dataset of 1506 sequences.
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3.4 Redundancy Filtering

The majority of the NCBI sequences is much longer than the PDB sequences, due to
them being sequences of the whole NA protein, whereas the PDB sequences are mostly
the NA head domain. A multiple sequence alignment therefore was carried out for two
reasons: first, to identify the NA head in the NCBI sequences (described in detail in
Ch. 5) and secondly to determine the sequence identity and similarity of the sequences.
For those reasons, a structural alignment of the PDB sequences was conducted using
Tree-based consistency objective function for alignment evaluation (T-Coffee) Expresso
(Notredame et al., 2000). With this specific type of alignment, the amino acid sequences
are aligned using information about their secondary structure. Two representative neu-
raminidases were selected for the secondary structure information, each of which can
be assigned to one of two NA group. These are listed in Table 4.

Table 4: Secondary structure representatives of each subdataset for the structural alignment
with T-Coffee Expresso.

Dataset NA group NA subtype PDB-ID Year of Isolation

PDB sequences
group 1 N1 3NSS 2009

group 2 N9 2B8H 1984

Hereinafter, the NCBI sequences were aligned to the PDB sequence alignment. This
multiple sequence alignment was accomplished using the profile alignment method of
the Clustal software version ClustalX (Larkin et al., 2007). ClustalX has a graphical
user interface, where the structurally aligned PDB sequences were uploaded as the first
profile and the unaligned NCBI sequences as the second profile. A profile alignment
was then conducted. This MSA of both sequence datasets was used to discard of any
sequence sections not belonging to the NA head domain. To determine where this do-
main starts, the PDB sequences were used as reference and the NCBI sequences were
truncated at this position.
Sequence identity and similarity was subsequently calculated using the web based ap-
plication Sequence Identity And Similarity (SIAS), (Reche, 2021)). The percentage val-
ues of identity and similarity, as measures of dis-/similarities, can be used to determine
to which degree sequences might be related, and especially the sequence identity can
be used for protein classification or modeling (May, 2004). The percentage value of
sequence identity or sequence similarity is calculated as follows

ID|SIM% = 100∗ Identical | SimilarResidues
Sequence Length

(3.1)

where identical residues are the number of exactly matching residues, and similar residues
are the number of residues matching considering their physio-chemical properties (Reche,
2021). For the latter, those were customized to aromatic (F, Y, W, H), aliphatic (V, I, L),
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Table 5: Overview of NA sequences per group and subtype in the dataset

NA groups group 1 group 2
NA subtypes N1 N4 N5 N8 N2 N3 N6 N7 N9
number of sequences 211 112 123 185 213 172 169 160 161
in total 631 875

charged positive (R, K), charged negative (D, E), small (S, T, A, G), polar (N, Q) and hy-
drophobic (V, I, L, M, F, W) after Betts et al. (2003). Furthermore, the sequence length
is selectable. In this analysis, as sequence length the length of the multiple sequence
alignment was chosen, considering that gaps and the number thereof play an important
role in multiple sequence alignments (May, 2004). Additionally to the identity and simi-
larity, SIAS calculates a normalized similarity score S for every pair of aligned sequences
that penalizes the presence of gaps as follows

S =
(∑Mi j)+oPo + ePe

∑Mii
(3.2)

where Mi j are the similarity scores obtained from the BLOSUM62 substitution matrix
for the amino acids i and j, o is the number of gaps, e the total extension of the gaps.
Likewise, Po is the penalty for opening a gap (set at 10) and Pe the penalty for extending
a gap (set at 0.5).

3.5 Overview of Working Dataset

The dataset consists of neuraminidase sequences, which were acquired through the
PDB and through the NCBI Influenza Virus Database. After collecting and preprocess-
ing both subdatasets and balancing the subdataset acquired through the NCBI, they
were merged into one dataset and identical sequences are removed.
The dataset used for this analysis finally contains 1506 sequences (60 from the PDB
and 1446 from the NCBI) ranging from the years 1918 to 2019 and which are isolated
from eight different taxa of seven different continents. The neuraminidase proteins were
extracted from 89 different influenza subtypes, of which six have an unknown hemagglu-
tinin subtype. The following chapter gives an overview over the neuraminidase dataset
which is used in further analyses.
Overall, there are 631 NA sequences belonging to neuraminidase group 1 and 875 NA se-
quences in group 2. Due to IAV subtypes that have led to human epidemics in recent
decades or are endemic in the human population, more data are available in group 2.
These IAV subtypes include, for instance, H2N2 (1957, Asian Flu), H3N2 (1968, Hong
Kong Flu) or H7N9 (2013). The dataset, balanced in regard of neuraminidase subtype,
has between 112–213 sequences in the respective subtypes. Table 5 gives an overview
of the number of sequences in NA subtype per group.
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Moreover, IAV has been isolated on every continent. In Figure 8, the amount of se-
quences per continent are illustrated, with the amount of sequences from Africa colored
in pink, those from Antarctica in orange, from Asia in light blue, from Australia in green,
from Europe in yellow, from North America in dark blue and those from South Amer-
ica in red. North America is the continent with most sequences with 613 sequences.
511 sequences belong to Asia and 281 to Europe.
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Figure 8: Overview of NA sequences per continent in the dataset

The predominant hosts of IAV are avian hosts, which is mirrored in the amount of avian
data in the dataset. In total, 1140 avian NA sequences, 202 human NA sequences and
93 porcine NA sequences are represented in the dataset. All other hosts have less than
40 sequences, with only 2 neuraminidases extracted from musteline hosts (see Fig. 9).
Among avian hosts are different species of poultry (e.g. chickens) and wild bird such
as waterfowl (e.g ducks, mallards). Albeit cetaceans include all whales, such as hump-
back whales or sperm whales, and canines include dogs, wolves etc., no exact species
information were available in the case of these two hosts. Neuraminidase sequences
extracted from IAV collected from the environment was included in the dataset as a host,
as the samples are from host excretions or from aquatic environment. As no specific
host or species could be identified, the sequences remained labeled as environment.
For NA sequences labeled as coming from equine host, no species was specified, but it
is assumed these sequences were isolated from horses, as multiple epidemics among
working horses or racehorses (in 1979 and 2003) are documented in literature (New-
ton et al., 2006). For the musteline host, IAV was isolated from the species ferret and
weasel, and for phocids, the virus was sampled from seals, like the harbor seal. Lastly,



Chapter 3: Data Acquisition 27

the porcine NA were collected from swine and wild boar.
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Figure 9: Overview of NA sequences per host in the dataset
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4 EVcouplings Analysis

The EVcouplings pipeline, as described in chapter 2.1.2, was used as command-line
application as well as online on the EVcouplings server. Furthermore, plmc was exe-
cuted individually, with the goal of identifying evolutionary couplings.
In the following chapter, the execution and the results4 of the evolutionary couplings
analysis are discussed in more detail. All parameter settings can be found in Ap-
pendix A.4.

4.1 EVcouplings as command-line application

For using EVcouplings as command-line application, EVcouplings and additional exter-
nal software tools were downloaded following the instructions in the EVcouplings GitHub
repository. Next, the configuration file was adapted to fit the requirements for this anal-
ysis. The configuration and additional information regarding the device used for the
EVcouplings analysis can be found in the Appendix A.3.
The existing MSA (described in Ch. 3.4) was provided as input, the NA sequence with
the PDB-ID 6D96 was set as target sequence, and all pipeline stages not required for
the identification of evolutionary couplings were disabled. Those stages included the
compare, mutate and fold stage. Running EVcouplings then took 184.1 seconds.
In total, 28 files in two folders were generated as output. The first folder contains the
results from the align stage, including MSA statistics, sequence identities and position
frequencies.
The statistics-file contains information on the alignment properties, such as the mini-
mum column coverage (set at 0.7), the number of sequences in the alignment (1506 se-
quences), the length of the target sequence 6D96 (387 amino acids), the number of
uppercase columns in the final alignment (382 columns) or percentage of coverage
(98.7%). The latter is calculated by dividing the number of uppercase columns in the
alignment by the length of the target sequence.
In the sequence-identities-file all sequence identities of the MSA sequences to the tar-
get sequence can be found. For example, all sequences with the same NA subtype N1
as 6D96 have a sequence identity of approx. 70%− 95% in contrast to less than 50%
sequence identity for NA subtypes of NA group 2 e.g. N2.
The frequencies-file contains the frequency of each amino acid character at each align-
ment position according to the target sequence. The column conservation indicates the
conservation of each amino acid in 6D96 with a value of 1 indicating perfect conserva-
tion and a value of 0 very little to no conservation at that specific sequence position.
Only two amino acids reach perfect conservation: Threonine (T) at target sequence

4 All documents mentioned are available at https://github.com/Lreuss/NA_MA after being granted
access by the author.
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4.2 EVcouplings Website

EVcouplings analysis was also performed via the EVC website. For this purpose, no
predefined alignment could be entered, instead only a UniProt-ID or a protein sequence
in fasta-format could be specified. For the sake of comparability, the sequence of 6D96
was chosen and EVC workflow was then performed on this sequence. The set default
parameters are mentioned in Table A.28. The resulting files are the same as with the
command-line application, but with additional visualizations. Due to the calculations be-
ing executed for every bitscore and throughout the whole pipeline, the calculation time
amounted to 36 hours. The bitscore (Fig. 11 (1)) denotes deeper to shallower evolution-
ary depth. The resulting outcome is assessed by EVcouplings (see Fig. 11) as a quality
score from 0−10 with values 0−3 demonstrating low quality results, 4−7 medium qual-
ity results and 8−10 high quality results. As illustrated, none of the results are satisfying,
as the result quality is of 0 for every bitscore (Fig. 11 (5)). Moreover, the alignment does
not seem to cover the whole target sequence, as seen by the deep blue bars in contrast
to the light blue bar (Fig. 11 (2)). As no alignment could be input, EVC generated an
alignment. The number of sequences used can be seen in Fig. 11 (3). These align-
ments are of low quantity compared to the neuraminidase dataset of 1506 sequences
analyzed in this thesis. It is doubtful, that changes in the neuraminidase sequence over
an extended period of time, such as 100 years, are computed reliably with less than
40 sequences.

1 2 3 4 5

Figure 11: Overview of results from EVcouplings Website with neuraminidase N1

Changing the target sequence or parameters did not produce better results for both
EVcouplings analysis methods, and thus will not be discussed further. To ensure no
mistakes were made in the handling and parameter setting of EVcouplings, the program
was run with the protein ribonuclease A (RNase A, Uniprot ID: Q9BEC3). RNase A has
a sequence length of 142 amino acids and is thus significantly shorter than the NA se-
quences. This did reduce the execution time and produce better results, as the quality
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score for bitscore 0.1 was 10, with 22.016 sequences in the alignment. Furthermore,
the probabilities for significant couplings were not 0, but contained much more reliable
values. These will not be discussed further, but it is assumed, that EVcouplings is more
suitable for shorter protein sequences.

4.3 Plmc Analysis

Plmc was executed individually and the results were visualized in MATLAB5. The first
run was executed with the following parameters: strong L2 regularization for the ECs
λe = 16.0, weak L2 regularization for the fields λn = 0.01 and maximum number of
iterations -m was set to 100. Furthermore, the target sequence (here focus or -f) was
set to 6D96 and the option gapignore (-g) was activated. These parameters were
selected on the basis of the specified parameters for an exemplary protein in the plmc
GitHub repository. The parameters were adapted for further runs, as seen in table 7
below.

Table 7: Plmc parameter settings

plmc runs

run 1 run 2 run3 run 4 run 5 run 6
run 7

group 1 group 2

parameter
settings

λe 16.0 16.0 16.0 16.0 32.0 32.0 16.0 16.0
λn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
-m 100 - - - - - - -
-f 6D96 - 6D96 - 6D96 - - -
-g

runtime
(in sec)

778.2 1870.9 1736.0 1453.2 2016.7 2203.8 1398.8 1628.2

It was analyzed how the parameters -m, -f, and -g affect the results (run 2 - run 4) and
these were visualized. Plmc offers scripts for visualization of the coupling values in MAT-
LAB. The generated Figures 12-14 are representations of the coupling strengths be-
tween the positions in an alignment or target sequence, with negative coupling strength
values in deep blue up to positive coupling strength values in dark pink. The diagonal
line running from upper left to lower right corner is similar to the diagonal in contact
maps, which portrays the backbone of the protein. No coupling strength value is cal-
culated for a residue to itself and is therefore of value 0. The upper and lower trian-
gular matrices are symmetrical. Figure 12 shows the plotted coupling strengths, which
should visualize the strong-coupled pairs/evolutionary couplings in a pink shade. As
observable, run 1 appears to consist only of random noise. No significant EC can be
detected, as most probably a premature termination of the EC calculations led to these

5 MATLAB-scripts were provided by plmc
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results. Therefore, the maximum iterations -m were no longer specified. Then, the im-
pact of specifying a target sequence or activating the gapignore option was observed.
Run 2 and run 3 are almost identical. It can be deduced, that specifying an aligned
target sequence or setting the gapignore option for this dataset seem to have a similar
impact on the calculated couplings. For the fourth run, no parameter, except from λe

and λn were specified. Even though the visualized couplings plot looks slightly different,
the couplings strength values lie between 0.135 and −0.021 with a median coupling
strength at −0.001, and hence, the values are the same as for run 2 and run 3. From
the output couplings file, it could be observed that almost every strong coupling score
calculated was between adjacent positions in the target sequence. This means, that
amino acids in direct sequential neighborhood share a strong bond. While this is cer-
tainly true (Bruice, 2004), it was not an expected outcome and for further research, this
information is obsolete.

(a) run 1 (b) run 2

(c) run 3 (d) run 4

Figure 12: Plmc results from run 1–4
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Next, the effect of the strong L2 regularization for the ECs λe on the results was tested.
Therefore, λe was set to 32.0 and two runs were executed, run 5 with a target se-
quence (6D96) and run 6 without. No maximum iterations were set due to the afore-
mentioned reasons, neither was the gapignore option set. The results are visualized
in figure 13.

(a) run 5

(b) run 6

Figure 13: Plmc results run 5 and run 6

Increasing λe did not improve the results. As already noted for run 2-4, the highest
coupling scores are between neighboring amino acids. For both runs, run 5 and 6, the
coupling score values lie between 0.082 and −0.017 with a median of −0.001.
As a last attempt, the dataset was separated according to the neuraminidase groups,
with the same parameter settings as run 4. Although this has also not led to the desired
results, it became apparent that the couplings of group 1 and group 2 seem to differ.
While group 1 seems to have strong coupled pairs of amino acids at the beginning of
the protein sequence, group 2 seems to have those at the end of the protein sequence
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(see Fig. 14).

(a) run 7: NA group 1

(b) run 7: NA group 2

Figure 14: Plmc results run 7

This leads to the assumptions, that neuraminidase is probably either too long for an
analysis with plmc or EVcouplings, or that the parameters need to be fine-tuned for
interpretable results. Moreover, it can be deduced from Fig. 14 that the neuraminidase
could eventually be classified by NA group due to the nature of the different couplings
positions, even though the results from plmc cannot be used in further investigations.
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5 Natural Vectors for Sequence Embedding

After the unsuccessful analysis using EVcouplings, the next step is the preparation to
vectorize the sequences for subsequent machine learning methods, because especially
distance-based machine learning methods require a transformation into vectors, more
precisely into numerical data (Bohnsack et al., 2022). This chapter is devoted to the fea-
ture generation with the NV method, which encodes the neuraminidase sequences into
60-dimensional vectors as described in chapter 2.2. Thereafter, the vectors were sub-
jected to Principle Components Analysis (PCA) and the first principal components (PC)
are used to visualize the protein sequences in 2D space.

5.1 Application of the Natural Vector Method

Based on the visualization of sequence embedding from Blackshields et al. (2010), an
embedding of 1506 neuraminidase sequences was performed.
After generating natural vectors, PCA was performed and the first two principal com-
ponents were visualized. To get a general overview of the data, the datapoints were
colored by the years of isolation of their respective protein sequence (see figure 15).
Since these cover a time period of 100 years, the years are defined as intervals ranging
from 1918–1959, from 1960–1999, from 2000–2005, from 2006–2010, from 2011–2015
and from 2015–2019, with most IAV neuramindases being isolated between 2006 and
2010 due to the H1N1pdm09 pandemic of 2009.

The datapoints in Figure 15 are colored from the oldest sequences (1918) in blue,
changing progressively to red for the most recent sequences from 2019. Alas, the vi-
sualization as seen in Blackshields et al. (2010) does not seem to be reproducible with
neuraminidase natural vectors. The reasons for this are manifold. Firstly, Blackshields
et al. were looking at hemagglutinin subtype H3, instead of all neuraminidase subtypes.
Secondly, they examined roughly 2.5 times more sequences from a smaller time range.
Lastly, the probably most striking contrast in the workflow is due to the different vectors
that were used. Blackshields et al. generated 121 dimensional vectors with mBed in
contrast to 20 dimensional neuraminidase natural vectors.
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PCA Visualization of NA sequences colored by sequence length

Figure 17: Visualization of 1506 neuraminidase sequences colored by sequence length rang-
ing from red for shorter sequences to blue for longer sequences. The amino acid
sequences were processed according to the natural vector method by Y. Wang et
al. (2019). The figure represents the two first principal components of the principal
component analysis.

Due to this, a multiple sequence alignment was performed as described in Chapter 3.4.
Once the MSA contained only the NA head domain of every sequence, the sequences
were once again transformed into natural vectors and PCA was again performed to
visualize the first two principal components (see Fig. 18). Now, the majority of NCBI se-
quences has approximately the same sequence length as the PDB sequences. The
work was continued with this updated dataset, meaning the natural vectors of the trun-
cated sequences were used for methods needing numerical data and for the following
PCA visualizations of the natural vectors colored by other labels, such as NA groups,
NA subtypes, hosts and continents.
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5.2 Comparison between BLAST and Natural Vector
Distance

After generating a working dataset, the 1506 sequences were divided by PDB se-
quences and NCBI sequences, so that there are 60 PDB sequences and 1446 NCBI se-
quences. For readability, the 60 PDB sequences will be referred to as subdataset-
PBD (SDS-PDB) and the 1446 NCBI sequences as subdataset-NCBI (SDS-NCBI).
The two were then used in the basic local alignment search tool (BLAST). With BLAST,
a biological sequence can be compared to a database to identify those sequences in
the database, that correspond to the input sequence based on sequence identity.
In this thesis, SDS-PDB sequences were used as the database against which the SDS-
NCBI sequences were run. Due to the objective being the comparison of BLAST results
to an alignment free method, BLAST will not be discussed in detail. For information on
BLAST, please consider Altschul et al. (1990). BLAST was executed via the R-Package
rBLAST after downloading and installing the BLAST software separately. The sequence
data needs to be in fasta-format and the type of the database was set to “protein” as well
as the blast-type to “blastp” and the algorithm took 58 seconds. The percentage iden-
tity of all SDS-NCBI sequences to the SDS-PBB sequence is in median 48.69%. The
minimum sequence identity is of 18.37% for an avian N8 NA (ID: 5HUN) and a canine
N8 NA (ID: ABA46974). The maximum percentage identity is of 100.00%, for example
for two sequences of same subtype, same host and same year of isolation.
As the natural vector method can be used as an alignment free method for sequence
comparison (Bohnsack et al., 2022), the Euclidean distances between the NV from
SDS-NCBI to SDS-PDB were calculated. This took only a fraction of a second and is
much faster than the BLAST algorithm. As a result, the median Euclidian distance was
of 131.59, with a minimum distance of 10.65 and a maximum distance of 412.41.
The results from BLAST and from vector distance calculation were then compared.
Therefore, both were ranked: BLAST from highest percentage identity to lowest and
similar NV distances from closest to farthest distance. It is expected that sequences
with high percentage identity also have a close NV distance and therefore have the
same ranking score, but the juxtaposition of the ranking scores yielded some interesting
results.
Some BLAST results match with the NV distance results, which means that the se-
quences most similar according to BLAST are also the respective natural vectors with
the closest distance to each other. Interestingly, there were also discrepancies be-
tween both methods, which were categorized into four types. The first type describes
the first two highest ranking sequence pair in BLAST being inverted in the NV distance
ranking, meaning the sequences with BLAST rank 1 have NV rank 2 and the entry at
BLAST rank 2 has NV rank 1. Therefore, this conspicuity will be called inversion. In
the second type of discrepancies, the two highest matching sequences in BLAST are
crossed over in the two closest natural vectors. In detail, this means, that the two closest
natural vectors are a combination of one sequence from the highest ranking BLAST pair
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Figure 22: Comparison of BLAST and NV distance results, ranked from most similar (BLAST) or
closest distance (NV) to least similar/farthest distance. Four types of discrepancies
between BLAST and NV ranking are identified: Inversion, Crossed, Ranking and No
match. The colors indicate a sequence or NV pair in the ranking.

with one of the second highest ranking BLAST pair. Figure 22 illustrates this type as
crossed type. Furthermore, as seen in the figure, two additional types were identified.
The third, called ranking, indicates that the ranking of BLAST and NV differ from each
other. It could only differ in some minor ranking scores, but did appear to differ greatly
in five cases. The last type deals with no match at all between the individual compared
sequences (see Figure 22, no match).
Overall, the embedded vector distances closely approximate the sequence distances
only in a few cases and it could not be determined, which method rather reflects the
reality. At this point, further studies are needed to analyze why these discrepancies
occur.
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6 Classification using GMLVQ

Since EVcouplings did not provide satisfactory results in this particular case and the task
is interpreted as a classification problem given that label information is provided, GM-
LVQ was used for classification. The class labels depend on the additional information to
each neuraminidase sequence and were chosen to be years, group, NA subtype, con-
tinent and host. Since vectors of numerical data are required, especially for distance-
based machine learning methods, the amino acid sequences were transformed into vec-
tors. This was accomplished using the natural vector method as described in Ch. 2.2,
which resulted in vectors of equal length of 60 dimensions. These vectors were used
as input for the GMLVQ. The GMLVQ model code used in this thesis was acquired
through SICIM’s GitHub and adapted for the specific classification task.
For every class, one prototype was initialized and the learning rate of the prototypes was
set to 0.01, as well as the maximum epochs to 1000. Further parameter settings are
listed in the Appendix Table A.27. The GMLVQ model is verified with 5-fold cross valida-
tion. Based on the values of the confusion matrices (see Tables 8-12), various confusion
metrics have been calculated for each class according to the equations in Chapter 2.4.
The classification validation measures accuracy (Eq. 2.20), precision (Eq. 2.22), sensi-
tivity (Eq. 2.23) and specificity (Eq. 2.24) are listed in Tables 9, 11 and 13. In addition,
the most important features for the classification were discovered with the generated
Λ matrix.

6.1 Classification by NA years

As Fig. 15 showed no indication of sequence evolution over time, GMLVQ was per-
formed and the year intervals were used as the class labels as listed in Chapter 5. Year
intervals were chosen instead of the year of isolation itself as this would have led to
63 classes, some with only one or two datapoints. This would otherwise have resulted
in a severely imbalanced dataset and in a decreased model performance (Gupta et al.,
2014). The intervals were chosen to include data points corresponding to sequences
from epidemic or pandemic periods. These are described to some extent in Chapter 1.
Additionally, as of the year 2000, the intervals are of size between 4-5 years, due to the
amount of data from these time periods in the dataset. The mean accuracy of the GM-
LVQ model verified with 5-fold cross validation is 18.39%, which amounts to 277 out of
1506 correctly classified datapoints. The accuracies of each fold did not differ much from
this value and therefore will not be discussed in detail, but can be found in Table A.29.
As the dataset is imbalanced, the balanced accuracy was calculated by Eq. 2.21 and
is 16.39%. Both the accuracy and balanced accuracy are so low that it cannot be as-
sumed that the model has performed adequately.
This can also be deduced from Table 8. There, the true positives are highlighted in
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green and the sum of all datapoints in blue. The relative frequencies of TP range from
7.05% for the years 2011–2015 to 26.70% for the years 2006–2010. Only a fraction of
each class is classified correctly as TP by the model. The significant number of 409 FP
datapoints in class 1918–1959 could indicate relatedness between the sequences, es-
pecially since all influenza A subtypes are speculated to be related to 1918 influenza A
H1N1 (Taubenberger and Morens, 2006). It could equally be that IAV subtypes from
before 1960 reemerged in the following years, therefore being classified as class 1918–
1959.

Table 8: Confusion matrix of GMLVQ with class label years. The classes in the classification
tasks represent the year intervals of virus isolation. In addition to Positives and Nega-
tives, the sums of the predicted positives (∑ predicted) and the datapoints of each class
(∑ true) are listed. True positives are highlighted in green and the sum of all datapoints
in blue.

Predicted
1918–1959 1960–1999 2000–2005 2006–2010 2011–2015 2016–2019 ∑ true

Tr
ue

1918–1959 2 12 1 1 0 1 17
1960–1999 72 61 33 40 19 23 248
2000–2005 62 38 22 50 12 35 219
2006–2010 156 132 30 153 27 75 573
2011–2015 104 94 35 65 27 58 383
2016–2019 15 16 7 15 1 12 66
∑ predicted 411 353 128 324 86 204 1506

Based on the values in this confusion matrix, precision, sensitivity and specificity have
been calculated for each class. They are listed in Table 9.

Table 9: Confusion Metrics Precision, Sensitivity and Specificity of every class in neuraminidase
years in percent

Precision Sensitivity Specificity

1918–1959 0.49% 11.76% 72.53%
1960–1999 17.28% 24.60% 76.79%
2000–2005 17.19% 10.05% 91.76%
2006–2010 47.22% 26.70% 81.67%
2011–2015 31.40% 7.05% 94.75%
2016–2019 5.88% 18.18% 86.67%

The specificity being relatively high in contrast to the other classification validation mea-
sures means that the model can, to a certain degree, correctly classify datapoints not
belonging to the respective class (TN). Further, the precision of every class is less than
50%. The lowest precision overall is 0.49% for the class 1918–1959. This means that
a maximum of 0.49% of positive datapoints of this class are correctly classified as true
positives. It should be noted that only 17 out of 1506 or 1.13% of the dataset belongs to
class 1918–1959, which means that this class is strongly underrepresented.
The sensitivity is lowest for class 2011–2015 with only 7.05% and highest for class
2006–2010 with 26.70%. These values show, that the model is not capable to correctly
identify TP. Since these results do not suffice in showing evolutionary correlation, the
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classification task will be expanded to other class labels, such as groups, subtypes,
hosts and continents.

6.2 Classification by NA Groups

Considering the PCA results of Figure 19, it was determined, that the dataset could be
classified into NA groups. This leads to a binary classification problem with the class
labels being group 1 and group 2. The parameter settings for this classification task
were the same as in Ch. 6.1 and the GMLVQ model achieved a mean accuracy of
99.73%. Figure 23 shows the datapoints in the latent dimension space of the model.
The groups seem to be linear separable. Datapoints of class group 1 are represented as
blue circles and datapoints of class group 2 in green circles. The respective prototypes
are illustrated as diamonds. The visualization was attained at the end of the model
training.

Table 10: Confusion matrix of GMLVQ with class label groups. True positives are highlighted in
green and the sum of all datapoints in blue.

Predicted
NA Group 1 NA Group 2 ∑ true

Tr
ue

NA
Group 1

630 1 631

NA
Group 2

3 872 875

∑ predicted 633 873 1506

The confusion matrix (Table 10) shows that the GMLVQ is well trained for this binary
classification problem. Almost all datapoints of both classes were correctly classified.
Out of 631 datapoints in class group 1, 630 are correctly classified, and out of 875 dat-
apoints in class group 2, 872 are correctly classified. The TP are highlighted in green,
while the sum of all datapoints is emphasized in blue. Based on this confusion matrix,
the classification validation measures precision, sensitivity and specificity were calcu-
lated and are listed in Table 11.

Table 11: The Confusion Metrics Precision, Sensitivity and Specificity of every class in neu-
raminidase groups in percent

Precision Sensitivity Specificity

99.53% 99.84% 99.66%
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importance for the classification. This means, that the quantity of cysteines (C) in the
neuraminidase sequences plays an important role in the classification decision. This is
also denoted by the correlation from nC to other features. Nevertheless, the combination
of all features is important for classification, even though only the most important ones
will be further investigated. The biological explanation will be given in Ch. 6.6. All
following Λ matrices can be interpreted following the described procedure above. Other
classifications with class labels NA subtypes and moreover class labels NA subtypes
divided in their respective group will be investigated in the following chapters.
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Figure 24: Visualization of first 20 dimensions of Λ Matrix after classification by groups. The
color gradient from blue to red indicates negative to positive values. Blue values
denote negative correlation, while red values denote positive correlation.
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Table 12: Confusion matrix of GMLVQ with class label subtypes
Predicted

N1 N2 N3 N4 N5 N6 N7 N8 N9 ∑ true
Tr

ue

N1 210 0 0 0 0 0 0 0 1 211
N2 0 212 0 1 0 0 0 0 0 213
N3 0 0 170 2 0 0 0 0 0 172
N4 1 0 0 110 0 0 0 0 1 112
N5 0 0 0 0 123 0 0 0 0 123
N6 0 0 0 0 0 168 0 1 0 169
N7 0 0 0 0 0 1 159 0 0 160
N8 1 0 0 0 0 0 0 184 0 185
N9 2 0 0 0 0 0 0 0 159 161

∑ predicted 214 212 170 113 123 169 159 185 161 1506

correctly identified (TN). Even though the model is slightly better at identifying TN, sen-
sitivity and specificity suggest that the model can differentiate all classes well from one
another. For determination of the important features for the classification, the Λ matrix
is described and interpreted in the following.

Table 13: The Confusion Metrics Precision, Sensitivity and Specificity of every class in neu-
raminidase subtypes in percent

Class Precision Sensitivity Specificity

N1 98.13% 99.53% 99.69%
N2 100.00% 99.53% 100.00%
N3 100.00% 98.84% 100.00%
N4 97.35% 98.21% 99.78%
N5 100.00% 100.00% 100.00%
N6 99.41% 99.41% 99.93%
N7 100.00% 99.38% 100.00%
N8 99.46% 99.46% 99.92%
N9 98.77% 98.77% 99.85%

The Λ matrix, as shown in Fig. 26, represents the first 20 dimensions of the Λ matrix,
as only these seem to be important for the classification task. For a 60 dimensional
visualization, see Fig. A.35. nW and nC are negative correlated. The quantities of the
amino acid phenylalanine (F) as well as proline (P), glutamine (Q) and tryptophan (W)
play a small role. Similar to the classification by NA groups, nC colored in dark red
shows a strong positive correlation and it can therefore be assumed, that cysteine plays
a major role in differentiating the classes N1–N9.
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Figure 26: Visualization of first 20 dimensions of Λ Matrix after classification by subtypes. The
color gradient from blue to red indicates negative to positive values. Blue values
denote negative correlation, while red values denote positive correlation.

6.4 Classification by NA Subtypes divided in their
respective Group

Although classification occurs through the interaction of various features, the strong
positive correlation of cysteine is remarkable. The dataset is divided into corresponding
groups in this chapter, to see whether the subtypes in their respective groups are also
classifiable almost exclusively by nC. GMLVQ was executed for each group individu-
ally as described before with the same parameters and prototype initialization. Further
parameter settings are listed in Table A.27. For group 1, the class labels were set to
the different subtypes of this group N1, N4, N5 and N8. The accuracy of the model is
99.68%. For NA subtypes in group 2 N2, N3, N6, N7 and N9 the accuracy is 99.89%.
This comes to no surprise, as the previous GMLVQ model could classify all NA subtypes
with an accuracy of 99.23%.
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Table 14: Confusion matrix of GMLVQ with class labels NA subtype in both group 1 and group 2
Predicted

N1 N4 N5 N8 ∑ true

Tr
ue

N1 211 0 0 0 211
N4 2 110 0 0 112
N5 0 0 123 0 123
N8 0 0 0 185 185

∑ predicted 213 110 123 185 631
(a) Confusion matrix of GMLVQ with class label sub-

type in group 1

Predicted
N2 N3 N6 N7 N9 ∑ true

Tr
ue

N2 213 0 0 0 0 213
N3 0 172 0 0 0 172
N6 0 0 169 0 0 169
N7 0 0 0 160 0 160
N9 1 0 0 0 160 161

∑ predicted 214 172 169 160 160 875
(b) Confusion matrix of GMLVQ with class label sub-

type in group 2

Based on the values in both confusion matrices, the aforementioned classification vali-
dation measures were calculated. They are listed in Table A.30. The results of all three
metrics for both cases display values of 99% or higher. Both GMLVQ models can accu-
rately classify the NA subtypes of each individual group.
The visualization in Figure 28 displays the first 20 dimensions of the Λ matrices of the
NA subtypes of group 1 (Fig. 28a) and of the NA subtypes of group 2 (Fig. 28b). The
complete Λ matrices are illustrated in Fig. A.36 and Fig. A.37.
In Fig. 28a, once again the absolute frequency of cysteine (dark red) stands out. Ad-
ditionally, nQ seems to be important for classification and it is positive correlated to nC,
whereas nQ and nF , and nQ and nL are negative correlated. Furthermore, nC and nF

are in positive correlation to each other.
Surprisingly, in Fig. 28b, cysteine is not important for the classification, but rather the
frequencies of tryptophan nW and tyrosine nY , as seen by their darker shades of red in
the main diagonal. In addition, nY and nF are negative correlated as well as nH and nF .
In conclusion, the NA subtypes of group 1 are differentiable in particular by the ab-
solute frequency of cysteines in the protein sequences, in contrast to NA subtypes of
group 2, which are notably distinguishable by the absolute frequency of tryptophans and
tyrosines in their respective protein sequences. Further interpretation of these results is
discussed in Chapter 6.6.
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(a) Visualization of first 20 dimensions of Λ Matrix after classification by subtypes of group 1.
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(b) Visualization of first 20 dimensions of Λ Matrix after classification by subtypes of group 2.

Figure 28: Visualization of first 20 dimensions of Λ Matrix after classification by subtypes of
group 1 and group 2. The color gradient from blue to red indicates negative to positive
values. Blue values denote negative correlation, while red values denote positive
correlation.
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6.5 Problematic with Classifications by Hosts and by
Continent

Classifications by hosts and by continents were performed, but poor results were ob-
tained due to imbalanced class representation. The hosts are limited to eight taxa plus
“environment”. For the latter, the organism of isolation cannot be determined beyond
doubt, as the samples were extracted from aquatic environments or similar. Moreover,
there are 1140 sequences (75.7%) in the dataset that were isolated from avian hosts.
The accuracy of the model is 69.63%, with the accuracies of the five folds varying from
3.31% - 91.36% (see Table 15).

Table 15: Fold accuracy of classification by host

folds fold 1 fold 2 fold 3 fold 4 fold 5
accuracy 3.31% 80.06% 90.70% 91.36% 82.72%

Even though the majority of accuracies is over 80% (apart from fold 1 accuracy), it
cannot be trusted to reflect a well trained model. This is because not all classes were
represented in all folds, resulting in incomplete confusion matrices, which in turn leads
to the inability to calculate confusion metrics like precision, sensitivity and specificity.
The dataset is strongly imbalanced in favor of the class avian, thus that accuracies of
over 90% denote rather a coincidence of classifying a datapoint correctly.
Similar is the case for classification by continent. Asia and North America are overrep-
resented. Both account for 74.63% of the dataset with a total of 1124 sequences. Here
again, not all classes were represented in all fold stages, so that no confusion matrix
could be generated. The accuracies of each fold range from 1.99% - 58.47% (see Ta-
ble 16).

Table 16: Fold accuracy of classification by continent

folds fold 1 fold 2 fold 3 fold 4 fold 5

accuracy 1.99% 46.18% 58.47% 42.19% 46.84%

The models not being able to classify the dataset according to the organism or conti-
nent of origin is not surprising, as the dataset is imbalanced in both cases. Furthermore,
most sequences were isolated from birds, which are the predominant host for IAV. Those
sequences came from domesticated poultry and also wild waterfowl and other migratory
birds. Figure 29 illustrates the eight flyways of wild birds in the world. These routes trend
in a north-south direction. Especially waterfowl travels wide distances yearly, cross-
ing multiple continents and thus spreading the influenza virus along migratory routes
(Zhang et al., 2014; Olsen et al., 2006). Those are, as illustrated, the Pacific Americas
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6.6 Interpretability of Λ Matrices

Based on the results, the question now arises how the positive correlated features of the
Λ matrices diagonal can be explained biologically. In the following chapter, the focus will
be limited to the analysis on the results from Chapter 6.2, Chapter 6.3 and Chapter 6.4,
since the models show the best classification results for these two classification tasks.

6.6.1 Analysis of Cysteine Occurrence and Disulfide Bridges in
Neuraminidase

Based on the results of the GMLVQ models discussed in Chapter 6.2 and Chapter 6.3,
the cysteine occurrences per NA group and per NA subtype were extracted from the
resp. natural vectors and analyzed in more detail. The amino acid cysteine has a sulfur
atom located in its side chain, which is responsible for the formation of disulfide bridges
(DSB) between two cysteines (Basler et al., 1999). The median absolute frequency
of this amino acid in the whole dataset is 18 cysteines per sequences, which is ap-
prox. 4.47% of amino acids per sequence. These cysteines were located by generating
a sequence logo using WebLogo (Crooks et al., 2004), which is a graphical representa-
tion of consensus sequences (T. D. Schneider et al., 1990). The sequence logo of the
neuraminidase sequences is visualized in Figure 30, with the cysteines (C) highlighted
in orange (see Figure A.38 for larger visualization).

Figure 30: Sequence logo of neuraminidase dataset, with cysteine residues highlighted in or-
ange.
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In total, 16 cysteines are highly conserved, which is represented by the height of C. Two
additional cysteines at alignment positions 100 and 118 are not as highly conserved
throughout the NA sequences. Table 17 provides an explanation for the latter two C.
It shows the average occurrences of cysteine residues per group and per subtype. In
median, group 2 has one to two cysteines more than group 1. The number of cysteines
may consequently play a major role in differentiating the neuraminidase groups from
one another, which subsequently could be the decisive feature for the classifier in this
classification task.

Table 17: Absolute frequencies of cysteines in neuraminidase sequences per NA group and per
NA subtype

group 1 group 2
N1 N4 N5 N8 N2 N3 N6 N7 N9

median
cysteine
occurrence

17 17 16 16 18 18 18 18 18

max. cysteine
occurrence

18 18 17 17 19 20 19 20 20

min. cysteine
occurrence

13 14 13 13 11 15 13 15 15

Since cysteines are known to form disulfide bridges and those bonds are fundamental
components for the molecular structure of proteins (Wiedemann et al., 2020), the fre-
quency of DSB in NA was also examined. For this purpose, all DSB annotations were
loaded according to the European Molecular Biology Laboratory–European Bioinformat-
ics Institute (EMBL-EBI) Protein API page for searching protein sequence features of a
type DISULFID in UniProt. For all neuraminidase UniProt accession IDs, the annotated
information to DSB and position in the respective sequence was downloaded.

Table 18: Absolute and relative frequencies of cysteines in neuraminidase sequences per
NA group and per NA subtype

DSB annotation no DSB annotation
in total

per group per subtype per group per subtype

group 1
377

59.8%

N1 115
254

40.2%

N1 96
631

100%
N4 72 N4 40
N5 73 N5 50
N8 117 N8 68

group 2
532

60.8%

N2 138

343
39.2%

N2 75

875
100%

N3 120 N3 52
N6 106 N6 63
N7 81 N7 79
N9 87 N9 74

in total
909

60.4%
597

39.4%
1506
100%
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Information on DSB positions in neuraminidase sequences was not available for all
sequences of the dataset, so only those for which this was the case are considered
here. As seen in Table 18, information on DSB is available for a total of 909 se-
quences of the dataset (as of January 2022), which is approx. 60.4% of the dataset.
Of all group 1 neuraminidase sequences, 377 sequences (59.8%) and of all group 2
neuraminidase sequences, 532 sequences (60.8%) have annotation to their DSB. For
597 NA sequences (39.6%) (254 group 1 neuraminidases (40.2%) and 343 group 2
neuraminidases (39.2%)) no information on the DSB positions could be acquired. The
number of DSB varies greatly in the dataset, but it is suspected that this is not due to
a different quantity in neuraminidase in general, but rather due to the conducted ex-
periments for identification of disulfide bridges. Mostly, chemical and crystallographic
analyses are used to extract information on DSB, which is always dependent on the
experiment and the scientific question (Colman, Varghese, et al., 1983; Krug, 1989).
Unfortunately, this is why class affiliation cannot be deduced from the frequencies of
disulfide bridges. Thus, the number of DSB varies from one to nine disulfide bridges per
sequence for this dataset, as seen in Table 19.

Table 19: Number of disulfide bridges per sequence

number of DSB 1 2 3 4 5 6 7 8 9 in total

number of sequences 1 2 114 2 312 230 79 128 41 909

According to literature, neuraminidase possesses eight conserved DSB and one addi-
tional in the NA subtypes N2, N7 and N9 (Krug, 1989). Moreover, Asian IAV N2 neu-
raminidases possess 19 cysteines in the NA head domain alone. This can be confirmed
by the number of cysteines in group 2 neuraminidases, as they possess in median one
more cysteine for DSB formation (see Table 17). Figure 31 illustrates the DSB of N2 neu-
raminidase, with the propeller structure of the protein being shown in blue, the protein
sequence in black and the disulfide bridges as orange lines. The respective cysteines
are shown as orange dots with their sequence position in N2 indicated. Of these posi-
tions, the DSB regions 230–237 and 278–291 are close to functional residues (Colman
and Ward, 1985), which shows the importance of those DSB. Mutations of the cysteines
would result in altered or lost protein structure and/or function (Basler et al., 1999).
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whole dataset is 12 tryptophans per sequences, which accounts for approx. 3.09% of
amino acids per sequence. It should be noted, that the dataset in use is composed of
only the head domain sequence of the NA protein, and therefore these values are only
valid for this specific sequence length.
The tryptophans were located by generating a sequence logo using WebLogo (Crooks
et al., 2004). The sequence logo of the neuraminidase sequences is visualized in Fig-
ure 32, with the tryptophan (T) highlighted in orange (see Figure A.39 for larger visual-
ization).

Figure 32: Sequence logo of neuraminidase dataset, with tryptophan residues highlighted in
orange.

In total, six tryptophans are highly conserved, which is represented by the height of T.
Further six are moderately conserved throughout the NA sequences and no conserva-
tion of tryptophan can be seen at 14 positions. In total, 12 tryptophans per sequence
occurred in 627 out of 1506 sequences, which is approximately 41.63% of the dataset.
Table 20 shows the absolute frequencies of tryptophan in sequences of group 2 sub-
types. In median, this amino acid occurs 14 times in a neuraminidase N9 sequence, but
only 12 times in N2, N3 and N6 sequences. N7 is the subtype with the least abundance
of tryptophan per sequence, with in median only nine of this residue.

Since these findings are not sufficient to say unequivocally that the individual group 2
subtypes can be classified on the basis of tryptophan frequency alone, further features
must be considered. Especially N2, N3 and N6 can hardly be differentiated solely based
on the median frequency of tryptophan. The consideration of tyrosine, for example, is
suitable for this purpose. In the Λ matrix in Figure 28b, tyrosine has a particularly high
relevance compared to the other features, except tryptophan. In this case, both features
might be decisive in the classification process without any feature, but the automation of
every possible feature combination facilitates this task. Therefore, to identify the most
important residues in classification of each NA subtype in the respective group, a logistic
regression could be applied as described in Chapter 7 in future.
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Table 20: Absolute frequencies of tryptophan in neuraminidase sequences per NA group and
per NA subtype

group 2
N2 N3 N6 N7 N9

median tryptophan
occurrence

12 12 12 9 14

max. tryptophan
occurrence

13 13 12 10 15

min. tryptophan
occurrence

6 8 6 5 8

6.7 Final Thoughts and Discussion

Concluding, the individual GMLVQ models showed that it is crucial for a well performing
model to have a balanced dataset according to the classification task. In three cases
the dataset was very imbalanced leading to poor accuracies or, even worse, no inter-
pretable Λ matrix at all. To circumvent this problematic, it might be necessary to either
duplicate data in the training or to reduce classes with lots of datapoints. In four other
cases the GMLVQ models performed adequately due to balanced class representation
according to the individual classification task. For classification by groups, subtypes and
by the subtypes in group 1, one of the decisive features is the frequency of the amino
acid cysteine. This was validated by analysis of the cysteine occurrences, with on aver-
age one or two cysteines more in group 2 than in group 1. Cysteines are responsible for
the formation of disulfide bridges, which stabilize the overall protein structure (Wiede-
mann et al., 2020). However, for the classification by subtypes in group 2, the absolute
frequency of tryptophan was one of the decisive features. This specific residue is one of
the framework residues and occurs relatively often and conserved in the neuraminidase
dataset, although it is the rarest and largest amino acid (Barik, 2020). Both residues are
fairly important for protein structure stabilization and moreover, for the structure of the
active site. Interestingly the classification shows that their frequencies are one of the
decisive features for class separation. To identify all relevant feature combinations for
group 1 subtype separation, a logistic regression was subsequently applied.
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7 Logistic Regression Modelling for GMLVQ
Model Interpretation

As the GMLVQ Λ matrix showed strong positive correlations for the frequencies of the
respective amino acids, only the first 20 dimensions of the natural vectors containing
those were used in the logistic regression analysis. For this purpose, every NA subtype
of group 1 gets discriminated against all other NA subtypes of this NA group. The
results were then analyzed to identify the amino acids relevant for classification of each
subtype.
At first, a logistic regression was performed with labeled data. For group 1, four logistic
regression models were trained, and to obtain binary classification models, the labels
were set according to the classification task. For example, the first task was the logistic
regression of N1 and all other NA subtypes of group 1, so the class labels were set to is
N1 and not N1. The NA subtype labels were changed for every other classification task
accordingly. All group 1 subtypes seem to be linear separable, as seen in the confusion
matrices in Table 21. Furthermore, the logistic regression algorithm did not converge, as
adjusted probabilities with numerical value 0 or 1 occurred. In the following, the logistic
regression approach is exemplified by N1 classification.

Table 21: Confusion matrix of logistic regression results of group 1 NA subtypes
is N1 not N1 ∑ true

is N1 211 0 211
not N1 0 420 420
∑ predicted 211 420 631

(a) Confusion matrix of classes is
N1 and not N1

is N4 not N4 ∑ true
is N4 111 1 112
not N4 0 519 519
∑ predicted 111 520 631

(b) Confusion matrix of classes is
N4 and not N4

is N5 not N5 ∑ true
is N5 123 0 123
not N5 0 508 508
∑ predicted 123 508 631

(c) Confusion matrix of classes is
N5 and not N5

is N8 not N8 ∑ true
is N8 185 0 185
not N8 0 446 446
∑ predicted 185 446 631

(d) Confusion matrix classes is
N8 and not N8

To determine the minimal feature combination for linear separability, the data was la-
beled according to group affiliation, with natural vectors belonging to N1 subtype labeled
as is N1 and all others as not N1. With a total of 20 amino acids, 220 possible feature
combinations of amino acid frequencies were tested. This was done by iterating over all
feature combination possibilities. For each combination, the amino acid frequencies are
procured, a logistic regression model computed and the MCC calculated, with a com-
putation time of approx. four hours. The combination with the least number of features
and with the MCC equal of 1 was then determined.
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The goal was to determine, which amino acid frequencies or combinations thereof en-
able linear separability. As seen in the Λ matrices, cysteines play an important role, but
only the combination of multiple features enables class separability. In total, 15 possible
combinations of nine amino acid frequencies for linear separability were identified, and
none of the 15 combination possibilities is better than the others. All combinations are
listed in Table 22.

Table 22: Determination of amino acid combinations for linear separability of N1 to other group 1
NA subtypes. The combinations are numbered consecutively, the amino acids are
written in single letter abbreviation.

Combination Amino Acids

Combination 1 C E G H L Q T V Y
Combination 2 D G H L Q R S T V
Combination 3 G H K L P Q S T V
Combination 4 E G H K L Q S T V
Combination 5 D G H K L Q S T V
Combination 6 C G H K L Q S T V
Combination 7 C G H I L Q R T V
Combination 8 C E G H L Q R T V
Combination 9 C D F H L Q R T V
Combination 10 C F G H K L Q T V
Combination 11 C E G H K L Q T V
Combination 12 C D F H L Q R S V
Combination 13 E G H K L P Q S V
Combination 14 C G H K L P Q S V
Combination 15 D F H K L N Q S V

As discussed in Ch. 6.4, one of the discriminant features for classification of NA sub-
types in group 1 is the frequency of cysteines. These are also found in the possible
combinations of nine amino acids imperative for linear separation. Cysteine (C) is rep-
resented in nine out of 15 combinations. The amino acids hystidine (H), leucine (L),
glutamine (Q) and valine (V) are found in every one of the 15 combinations, followed by
glycine (G) in 12 and threonine (T) in 11 combinations. Isoleucine (I) is only represented
in combination 7, asparagine (N) in combination 15 and tyrosine (Y) in combination 1.
Further, in the Λ matrix Fig. 28a, the frequency of amino acid Q, nQ, seems also to
weigh into the classification decision. The amino acid Q is also represented in every
possible combination. The amino acids alanine, methionine and tryptophan are not rep-
resented at all in the possible feature combinations. However, it should be noted that the
presence of a single amino acid in the 15 combinations is not necessarily evidence of
its relevance. Only in combination with other amino acids, they support the separation
task.
In conclusion, this analysis illustrates that not all 60 dimensions of natural vectors are
needed to achieve linear class separability.
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8 Conclusion and Outlook

Influenza A viruses have been and still are responsible for seasonal outbreaks and
pandemics among humans and different species of animals. The surface protein neu-
raminidase of this virus is responsible, among other things, for the release of virions
from the cell (Air, 2012; McAuley et al., 2019). Neuraminidase is subject to mutation in
its sequences, which can facilitate the adaptation to specific hosts, enhance viral repli-
cation, or reduce the effects of vaccination. Thus, it is of interest in pharmacological
research (Wohlbold et al., 2014; Krammer et al., 2019; Creytens et al., 2021). Due to
these sequence variations, the aim of this work was to gain knowledge about evolu-
tionary changes in sequences of influenza A neuraminidase through different methods.
Firstly, EVcouplings is used with the goal of identifying evolutionary couplings within
the protein sequences, but this analysis was unsuccessful. The evolutionary couplings
would have given insights into coevolving amino acids in neuraminidase over a certain
period of time (Hopf, Green, et al., 2018). It is probable, that the alignment length is too
great for coupling score calculations.
Secondly, the natural vector method is used for sequence embedding purposes to visu-
alize sequential progression and relationships between sequences of the virus protein
over time. While the embedded sequences could not illustrate the evolution of all neu-
raminidase subtypes in the visualizations, they showed that separability per NA group
or NA subtype could be possible. Lastly, interpretable machine learning methods are
applied to examine if the data is nevertheless classifiable by the different years. Addi-
tionally to using the class label year and as result from sequence embedding visualiza-
tions, other labels such as groups or subtypes are used in classification with varying
outcomes. For a balanced dataset, the classes seem to be well separable, but this was
not the case for imbalanced data. Groups and subtypes can be classified with a high
accuracy, which was not the case for the years, continents or hosts.
To explain the high accuracy, the visualized Λ matrices are used to determine the de-
cisive features of the classifications. Interestingly, only the first 20 dimensions of the
natural vectors seem to be important. As these represent the absolute frequencies of
the amino acids in the protein sequences, it was concluded that firstly, in the case of NA
these features are the only ones needed to successfully accomplish the classification
task. Secondly, the frequency of cysteines (or in one case tryptophan) per sequence
plays an important role. To biologically explain these results, the amino acids and their
particularities were examined more closely. This lead to the discovery, that group 1 se-
quences have in median one to two cysteines less than group 2 sequences. Cysteines
play an important role in the stability of neuraminidase (Basler et al., 1999) and there-
fore, they are highly conserved over all NA subtypes, with differences in the quantity of
cysteines over the individual NA groups. The absolute frequency of cysteines seemed
to be an important feature for achieving class separability in three cases, while the GM-
LVQ model trained with data of class label group 2 subtypes showed that the quantity of
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tryptophan is important. Tryptophan, the least abundant and largest of the amino acids
(Bruice, 2004; Barik, 2020), occurs 3x more often in the neuraminidase head domain
than usually on average in other proteins. Interestingly, in median 12 tryptophan per
sequence were identified, with six of those being highly conserved. The NA subtype N7
has the lowest and N9 the highest quantity of the residue in median, but N2, N3 and N6
cannot be discriminated only by their frequency of tryptophan. This illustrates, that for
the classification more than one feature is needed, which in this case could be also the
frequency of the amino acid tyrosine.
To identify the minimal number of features necessary for linear separation (in this case
of neuraminidase group 1 subtypes), a logistic regression was performed with 20 dimen-
sional natural vectors. Fascinatingly, only nine features are necessary to achieve linear
separation of the NA subtypes in group 1, showing that, similar to the GMLVQ results,
not all 60 dimensions are necessary for class separation. In total, 15 combinations were
identified. Overall, using the natural vectors as feature vectors in ML methods has the
advantage of very interpretable results. ML models give an insight into the most relevant
amino acids to differentiate between protein sequences, which characteristics can then
be analyzed in more detail.
Since the sequence embedding as well as the machine learning methods did not show
neuraminidase evolution over time, further research is necessary, for example with focus
on one subtype with balanced data. Notably, interpretable ML approaches require a bal-
anced dataset for efficient training and reliable results. Especially the hosts can probably
be classified, if the dataset is balanced. This could be achieved by reducing the high
quantity of avian sequences. Moreover, only the avian sequences could be classified
by continent of origin, if only North America, Asia and eventually Europe are considered
as class labels. These three classes are those with the most sequences in the dataset
and moreover, are the continents through which migratory flyways pass. Results could
give insight into the spreading of IAV globally across bird species, and if the years are
taken into account, knowledge could be gained of the viral mutations or reemerging
IAV subtypes. Even though the identification of neuraminidase evolution was not suc-
cessful, neither by sequence embedding nor by ML methods, this was probably due to
class imbalance. It could be analyzed, if splitting the dataset into the individual groups
or subtypes, and classifying these by years does generate better and interpretable re-
sults. Likewise, in addition to year label, the NA subtypes could be stated as additional
feature, in hopes of classification success. Overall, the classification performance may
be improved by using additional features, but it is assumed that improving the central
moments of natural vector does not, as only the first 20 dimensions seemed relevant in
classification and linear separation was achievable with only nine features. Additionally,
the complete neuraminidase protein should be investigated, because species specific
adaptations and mutation can occur for example also in the stalk domain (Y. Li, Chen, et
al., 2014). Moreover, the whole protein sequence characterizes the NA subtypes more
distinctively. The other domains of the protein may have additional characteristics that
were not considered here, but may be specific of a particular subtype to individual years.
Transforming neuraminidases of nearly the same length of 469 amino acids has the ad-



Chapter 8: Conclusion and Outlook 71

vantage, that the natural vectors extracted through the NV methods are more reliable.
If other feature generation methods like Bag of Words are considered, it is advisable to
consider the neuraminidase genome instead of proteome. This could also give insight
into mutations on genome level, which might not affect the phenotype.
Concluding, linear separation of neuraminidase sequences is possible for balanced
data. Through the visualization capabilities of GMLVQ Λ matrix paired with natural
vectors, the results can be easily grasped, analyzed and interpreted by a wide range
of scientists. Even though the viral progression over time could not be analyzed and
made visible, it could be possible to achieve this by elaborate class balancing. At last,
the trained GMLVQ models can be used to identify the groups or subtypes of neu-
raminidases of unknown origin.
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Appendix A: Appendix

A.1 Overview od preprocessed Dataset

Table A.23: Overview initial PDB dataset

year
number of
sequences

Influenza A
subtype

continent host

unknown 5 - - -
1918 4 H1N1 North America human

1956 8
5
3

H1N6
H11N6

Europe duck

1957 10
9
1

H2N2
North America
Asia

human

1963 12 H3N8 Europe duck

1967 12
9
3

H2N2
HxN2

Asia human

1975 40
33

4
3

H11N9
H1N9
HxN9

Australia tern

1976 4 H12N5 North America mallard

1984 3
2
1

H13N9
H1N9

North America whale

1996 2 H10N7 Europe mallard

1998 12
10

2
H1N9
H3N2

Australia
North America

tern
human

2000 2 H3N6 Asia chicken
2004 3 H5N1 Asia human

2006 14

6
5
2
1

H2N3
HxN8
HxN1
HxN4

North America
unknown
unknown
unknown

pig

2009 19
17

2
H1N1
H3N2

North America
human
human

2010 11
8
3

H3N2
H1N1

Africa, North America
Europe

human
human

2011 3 H3N8 North America harbor seal
2013 15 H7N9 Asia human

2014 4

1
1
1
1

H5N1
H5N2
H5N8
H5N6

North America
North America
North America
Asia

green-winged teal
pintail duck
gyrfalcon
chicken

2015 1 H3N2 North America canine
in total 184 23 5 12
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Table A.24: Overview initial NCBI dataset
influenza
subtype

number of
sequences

influenza
subtype

number of
sequences

influenza
subtype

number of
sequences

influenza
subtype

number of
sequences

H1N1 11180 H13N2 61 H13N9 14 H2N6 4
H3N2 10590 HXN1 58 H11N6 13 H5N4 4
H5N1 2764 HXN2 58 H4N9 13 H6N7 4
H1N2 2731 H10N8 55 H11N8 12 H7N5 4
H9N2 2541 H6N5 55 H1N5 12 H9N6 4
H3N8 904 H10N1 44 H2N8 11 H9N8 4
H4N6 676 H1N3 41 H11N7 10 H13N3 3
H5N2 673 H10N4 38 H4N7 10 H14N5 3
H6N2 597 H2N9 38 H5N7 10 H14N6 3
H6N1 383 H11N1 36 HXN6 10 HXN4 3
H10N7 359 H10N2 35 H3N7 9 H12N9 2
H7N3 290 H11N3 34 H4N4 9 H14N7 2
H7N2 272 H2N1 32 H6N9 9 H14N8 2
H11N9 263 H10N6 27 H12N4 8 H15N8 2
H7N9 261 H7N6 27 H6N4 8 H17N10 2
H7N7 240 H13N8 24 H9N5 8 H18N11 2
H6N6 208 H7N4 23 H9N7 8 H3N4 2
H2N2 168 H4N3 22 unknown 7 H8N8 2
H3N6 167 H9N1 22 H3N9 7 H9N4 2
H6N8 147 H1N9 21 H9N9 7 HXN7 2
H2N3 145 H2N7 21 H12N2 6 HXN9 2
H4N8 140 H3N3 21 H1N7 6 H11N4 1
H7N1 130 H1N8 19 H6N3 6 H13N1 1
H4N2 124 H5N9 18 H9N3 6 H14N2 1
H11N2 118 H7N8 18 HXN8 6 H14N4 1
H5N6 118 H10N9 17 H11N5 5 H15N7 1
H12N5 110 H4N5 17 H12N7 5 H16N9 1
H5N3 103 H5N5 17 H12N8 5 H8N1 1
H3N1 101 H12N1 16 H1N4 5 H8N2 1
H5N8 88 H1N6 16 H12N3 4 H8N3 1
H8N4 84 H2N5 16 H12N6 4 H8N5 1
H16N3 71 H3N5 16 H14N3 4 H8N7 1
H13N6 70 H4N1 16 H15N9 4 HXN3 1
H10N3 69 H10N5 15 H2N4 4 HXN5 1

Table A.25: Number of sequences per neuraminidase subtypes in NCBI sequences
NA
Subtypes

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

number of
sequences

14784 17976 821 192 280 1347 688 1439 677 2 2



Appendix A: Appendix 75

A.2 PDB IDs of PDB sequences

1A14, 1ING, 1INY, 1L7G, 1L7H, 1NCA, 1NCB, 1NCC, 1NCD, 1NMA, 1NMB, 1NNA,
1V0Z, 2AEP, 2B8H, 2BAT, 2HT5, 3CKZ, 3CL2, 3NSS, 3SAL, 3TIA, 4B7J, 4B7Q, 4D8S,
4GZO, 4GZS, 4H53, 4HZV, 4HZY, 4HZZ, 4K1J, 4KS1, 4M3M, 4MJU, 4MJV, 4MWJ,
4MWL, 4NN9, 4QN3, 4QN4, 4WA3, 4WA4, 5HUG, 5HUK, 5HUM, 5HUN, 5NN9, 5NWE,
5NZ4, 5NZE, 5NZF, 5NZN, 6BR5, 6CRD, 6D96, 6N4D, 6N6B, 6NN9, 6Q20
It was renounced to enumerate all 1446 IDs of NCBI sequences.

A.3 General System Information and Performance
Specifications

For EVcouplings and plmc:
Desktop-PC with Linux Mint 20.1
Intel Core i7-3770 CPU @ 3.40 GHz
16 GB RAM

For GMLVQ and general data analysis:
Desktop-PC with Microsoft Windows 10 Pro
Intel Core i5-4670 CPU @ 3.40 GHz
8 GB RAM

A.4 Parameter Settings

Table A.26: Neural Gas parameter settings

name of hyperparameter setting

prototype initialization 200
neighborhood range 20
neighborhood range reduction 0.5
learn rate 0.1
maximum iteration number of rows of each subdataset · 1000
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Table A.27: GMLVQ parameter settings

name of hyperparameter setting

input dimension 60
number of folds 5
prototype per class 1
prototype initializer SMCI
prototype learn rate 0.01
matrix learn rate 0.001
stochastic optimization Adam
latent dimension 2
maximum epochs 1000

Table A.28: EVcouplings Website parameter settings
Evcoupling Stages

Alignment Evolutionary
couplings

Folding
Result

evaluation
Homology search

Sequence and
position filters

P
ar

am
et

er
s Alignment threshold type:

Bitscore
Position filter:
70%

Statistical inference
method:
Pseudo-likelihood
maximization

3D structure prediction
from ECs:
Enabled

Contact distance cutoff:
5.0Å

Search iterations:
5

Removing similar
sequences:
90%

Number of
generated models:
10

PDB structure
search method:
Conservative

Sequence database:
UniRef90

Downweighting similar
sequences:
80%

A.5 EVcouplings additional result

Figure A.33: Overview of results from EVcouplings Website with RNase A.
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A.6 GMLVQ additional results

Table A.29: Fold accuracy of classification by host

folds fold 1 fold 2 fold 3 fold 4 fold 5

accuracy 7.28% 26.58% 26.25% 19.93% 11.96%

Table A.30: The Confusion Metrics Precision, Sensitivity and Specificity of every class in neu-
raminidase groups in percent

Class Precision Sensitivity Specificity

N1 99.53% 100.00% 99.85%
N4 100.00% 100.00% 100.00%
N5 100.00% 100.00% 100.00%
N8 100.00% 100.00% 100.00%

(a) Confusion Metrics of NA subtype in group 1

Class Precision Sensitivity Specificity

N2 99.53% 100.00% 99.85%
N3 100.00% 100.00% 100.00%
N6 100.00% 100.00% 100.00%
N7 100.00% 100.00% 100.00%
N9 100.00% 99.38% 100.00%

(b) Confusion Metrics of NA subtype in group 2
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A.6.1 Lambda Matrices
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A.6.2 Sequence Logos

Figure
A

.38:
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