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Abstract

This Bachelor thesis investigates the learning rules of the Hebbian, Oja and BCM neuron models
for their convergence to, and the stability of, the fixed points. Existing research is presented
in a structured manner using consistent notation. Hebbian learning is neither convergent nor
stable. Oja learning converges to a stable fixed point, which is the eigenvector corresponding
to the largest eigenvalue of the covariance matrix of the input data. BCM learning converges
to a fixed point which is stable, when assuming a discrete distribution of orthogonal inputs that
occur with equal probability. Hebbian learning can therefore not be used in further applications,
where convergence to a stable fixed point is required. Furthermore, this Bachelor thesis came
to the conclusion that determining the fixed points of the BCM learning rule explicitly involves
extensive calculation and other methods for verifying the stability of possible fixed points should
be considered.
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1 Introduction

A central problem in pattern recognition and artificial intelligence is how learning occurs.
When investigating this issue biological neurons are mathematically modeled. While
modeled neurons take the biological neurons in the brain as an inspiration, "they are
generally not designed to be realistic models of brain function." [5] However, the basic
principles of the biological neuron are used in artificial neurons. Biologically, a neuron
receives input signals from other neurons via dendrites. Depending on whether the
received signals are inhibitory or excitatory, and depending on the signal’s strength, the
neuron fires a signal towards the axon terminals or it does not. If the neuron fires, the
signal gets transmitted towards the axon terminal which is then connected to another
neuron’s dendrites where the same process repeats itself. This process is illustrated in
figure 1. [11]

In model neurons the learning is defined through the changing synaptic weights between
distinct neurons, according to their specific learning rules. How to change the weights
and thus defining a learning rule is the central problem of learning. The goal is to
extract sensible information and have the data organize itself. Moreover, the neuron
should function as a memory that remembers relevant information and forgets irrelevant
information. [12]

In unsupervised learning, the focus of this Bachelor thesis, the change of the synaptic
weights is solely based on the input to the neuron and the output of the neuron. New
inputs that are more strongly correlated with the information contained in the neuron,
cause larger output values than inputs that are weakly correlated. [12]

This Bachelor thesis creates a starting point to the hypothesis that the way the neuron
is mathematically modeled within the neuromorphic hardware can determine the speed
of the learning.

Neuromorphic hardware is a type of hardware that can be put in computer chips. The
hardware is made up of interconnected silicon neurons. In common neural network
models programmed to execute on a multi-use central processing unit (CPU), learning
is done by stacking in the random access memory (RAM) in the computer. This is usually
slow which is why graphic processing units with the possibility of parallelisation are used
more frequently when training neural network models. Neuromorphic hardware takes
this to another level. The learning is done through the neurons, physically contained in
the hardware, which makes the learning process comparatively fast. [2]

However, it creates many restrictions for the model that is to be programmed. For ex-
ample a chip with 256 interconnected neurons has a physically predefined number of
neurons, that cannot be changed through programming. Nonetheless, a neuromorphic
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Figure 1.1: The anatomy of a neuron and its postsynaptic neurons. Taken from [11].

chip with silicon neurons already contained within it, and a well programmed model
that fits this hardware is much more efficient than the usual way of programming on a
multi-use CPU. [2]

Within this thesis, three ways of modeling a neuron are considered and explained:
the neuron model according to the Hebbian principle, the Oja neuron model and the
Bienenstock-Cooper-Munro (BCM) neuron model. Each of the neuron models has an
associated learning rule. When wanting to implement a neuron model it is important to
know that the learning rule will converge to a fixed point and that this fixed point is stable.
This is why for each neuron model the convergence and stability are investigated. Both
Oja and BCM are based on and extend the Hebbian model of neuron learning, which is
why the Hebbian model will be discussed first.

1.1 Definitions and Notation

Throughout this Bachelor thesis a specific notation is used. This is done in order to
create a common baseline for all neuron models and learning rules. When a theory
describes the same parameter, it is immediately visible through the notation and termi-
nology and parameter representation. As an example, the (synaptic) weights w will be
referred to as such throughout the entire text and not as junction strengths ξ as they are
called in [10].

Furthermore, the following general mathematical notation is valid throughout,
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a scalar, unless specified otherwise
a vector, unless specified otherwise
A matrix, unless specified otherwise
0 null vector
〈a,b〉 scalar product between a and b
||a|| euclidean norm of a, unless specified otherwise
Rn real numbers, n-dimensional
EX [a] the expected value of a
∑ sum of the following parameters
aT AT transpose of the vector a / matrix A
F(. . .) vector-valued function
f (. . .) function

∀ a the following statement is valid for all a
∃ a for the following statement exists an a
a ∈ b a is an element of b
a� b a is much lower than b
a ≪ b a is very much lower than b
a→ b a tends to b
a 7→ b a maps to b
A⊂ B A is a subset of B
a =⇒ b a implies b

and the following notation records definitions of parameters specific to the topic of this
thesis.

xi ith input, presynaptic activity
x vectorized input, x = (x1,x2, . . . ,xn)

T

X random variable associated with x, not a matrix
wi ith synaptic weight
w vectorized synaptic weight, w = (w1,w2, . . . ,wn)

T

y output, postsynaptic activity
η learning rate
w(t) vector w at time step t
∂w
∂ t change of w from one time increment to another

I Identity matrix
C covariance matrix, if not specified otherwise
w∗ fixed point of the dynamical system
ei ith eigenvector, unless specified otherwise
λi ith eigenvalue, unless specified otherwise
θ modification threshold of BCM learning rule
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2 The Hebbian principle

The Hebbian principle was formulated by Hebb in 1949 to attempt to explain how learn-
ing occures within the brain. Hebb states that "when an axon of cell A is near enough to
excite cell B and repeatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A’s efficiency as one of
the cells firing B, is increased". [7] This leads to a dynamic strengthening or weakening
of synapses over time, according to the input received by neuron B and sent by neuron
A.

2.1 Simple neuron model

The signals that the neuron receives via the dendrites are modeled through an input
vector x(t)∈Rn that contains all inputs to the neuron at a specific time t. In the Hebbian
model it is assumed that xi > 0 ∀i, in order to remain biologically accurate. The output
of the cell is given by the value y ∈ R+. This is then passed on to the next neurons.
The artificial neuron’s output is determined by a weighted sum of the input signals. The
weights are contained in the weight vector w ∈ Rn

+. The following equation models the
Hebbian principle mathematically according to the definitions given above.

y(t) =
n

∑
i=1

wi(t)xi(t) (2.1)

where n is the number of inputs to the neuron. [10] For a visualization of the equation
see figure 2.1.

Figure 2.1: The Hebbian principle modeled mathematically. In this neuron model m is the num-
ber of inputs and n represents the parameter time step. Taken from [6].
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2.2 Hebbian Learning

Given a steady stream of input vectors x ∈ Rn
+, where each input is received by the

neuron at a separate time t, the learning of the neuron is determined by the changing
weights w ∈ Rn

+. The neuron model can be rewritten in vectorized form as:

y(t) =< 〈w(t),x(t)〉= 〈x(t),w(t)〉 (2.2)

The final equality only holds if w and x are both real vectors. The Hebbian learning
principle is consequently parametrized as

∂w
∂ t

= ηyx(t) , t = 1, . . . ,m (2.3)

where ∂w
∂ t denotes the change of the weight w at time t and m is the maximum time

increment. The coefficient η is the learning rate, for which 0 < η� 1 applies. It may be
set as desired within these bounds, but it is typically chosen to be small or even decaying
with time. This way the learning occurs slowly and w(t) only changes incrementally at
one time t. The weight w is therefore determined by the equation

w(t +1) = w(t)+η x(t)φH(y,θ) = w(t)+ηyx(t) (2.4)

In this instance θ = 0 and φH(y,θ) = y meaning the function solely depends on y and
there is no modification threshold. Nonetheless, the notation was chosen to make the
Hebbian learning rule more easily comparable to the BCM learning rule presented in
chapter 4. [12] [6]

2.3 The problem with Hebbian learning

According to the Hebbian principle the changes of the vector w at each time increment
add up over time and settle on some values. [6] However, since the update will always
be positive due to

w(t +1) = w(t)+ηx(t)y = w(t)(1+ηx(t)x(t)T w(t)) (2.5)

where the vector w will increase in magnitude at every time step t. Therefore the weights
do not stabilize as t → ∞. [4] Especially for sequences of x(t), where x(t) = x,∀t it is
clear that ||w(t)|| →∞ for t→∞. [10] As there is no term that causes synaptic decrease
the synapses saturate leading to no information being stored in this neuron. [1]

To see that what is written above is indeed the case, the stability and convergence of
Hebbian learning rule must be asymptotically analyzed. The following definitions, as
presented in [6], are necessary for the analysis.
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Definition 2.1:
A constant vector w∗ ∈ Rn is said to be a fixed point of the autonomous dynamical
system d

dt w(t) = F(w) if
F(w∗) = 0

where 0 is the null vector and F : Rn 7→ Rn is a differentiable vector valued function.
The velocity vector dw

dt vanishes at the fixed point w∗ and therefore the constant function
w(t) = w∗ is a solution of d

dt w(t) = F(w).

Definition 2.2:
A fixed point w∗ of an autonomous dynamical system d

dt w(t) = F(w) is stable if

∀ε > 0 : ∃δ > 0 : ||w(0)−w∗||< δ =⇒ ||w(t)−w∗||< ε, ∀t > 0

Definition 2.3:
A fixed point w is convergent if

∃ δ > 0 : ||w(0)−w∗||< δ =⇒ w(t)→ w∗ for t→ ∞

Definition 2.4:
A fixed point w∗ is asymptotically stable if it is both stable and convergent. It is globally
asymptotically stable if it is stable and all possible sequences of w(t) converge to a
unique w∗ as t → ∞. The system will therefore ultimately settle down to the fixed point
w∗ for any choice of initial conditions.

Therefore, we look for those points for which holds that

∂w
∂ t

= 0 (2.6)

In order to asymptotically analyze the stochastic method 2.5, it is assumed that the
weights change significantly slower than new data is presented. [12] This is achieved
via a small constant learning rate η . Together with further reasonable conditions it can
be shown that the trajectories created in the stochastic method converge on compact
input sets in probability in the direction of the trajectories that are created in the averaged
dynamic. [8] [12]

Due to this, it is reasonable to average over the changes. Instead of calculating the new
weight w(t +1) at every step only the change of the weight is investigated at each time
step t. We examine the learning over a time average, such that

∂w
∂ t

= η ∑
i

wi jE[xix j] = ηCw (2.7)
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Figure 2.2: Function 2.9 for dim(w) = 1.

where C is the covariance matrix. Therefore, if this method had fixed points, then

∂w
∂ t

= ηCw = 0 = 0w (2.8)

would have to hold. Here w is an eigenvector of the matrix C with eigenvalue 0. The
above method can also be displayed as a gradient descent with function

F(w) =−1
2

wT Cw (2.9)

whose gradient is −Cw. [12] Figure 2.3 visualizes this equation for dim(w) = 1.

With the aid of the visualization, it is clear that 0 is not a stable fixed point but a local
maximum of the function to be minimized. Furthermore, it is visible that the correlation
of the input data is maximized in the direction w and these directions are possible fixed
points. Nonetheless, the length of w is not limited meaning the length of it tends to
infinity, because when

wT Cw > 1 , then (λw)T C(λw)> 0 for λ > 1

is even larger. Therefore, the Hebbian learning rule is unstable. [12]

Nonetheless, we may argue the following proposition, taken from [12]:

Proposition 1:
wT Cw is maximised by e1, as long as the vectors are of length 1. In the to e1 orthogonal
room e2 maximises wT Cw and in the to e2 orthogonal room e3 maximises wT Cw.

Proof: When w = ∑i aiei, then

wT Cw = (∑
i

aiei)
T C(∑

i
aiei) = (∑

i
aiei)

T (∑
i

λiaiei)
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= (a1eT
1 + . . .+aneT

n )(λ1a1e1 + . . .+λnanen)

since 〈ei,e j〉= 0 for i 6= j and 〈ei,e j〉= 1 for i = j, only the following terms remain

= λ1a2
1 + . . .+λna2

n

= ∑
i

λia2
i

if one assumes that λ1 > λ2 > .. . > λn > 0, and knowing that all but maximum one ai

are zero, because the coefficients of the eigenvectors are unique except for the sign,
since they form a basis, we get

≤∑
i

λ1a2
i = λ1

Via a similar calculation one can then prove that the maximum λi+1 can be reached
through ei+1.

To counteract the indefinite growth of vector w and the stability issues with the Hebbian
learning rule another formulation is needed.

Both Oja and Bienenstock et al. have developed a solution for this problem. [10] [1]
The Oja learning rule is presented in the next chapter and the BCM learning rule in the
chapter after that.
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3 The Oja neuron model

The Oja learning rule of a neuron was proposed by Oja in 1982. He used the simple
neuron model and Hebbian learning as a starting point for his theory and found a way
to prevent the previously described indefinite growth of the synaptic weights, as well as
making the learning rule parallelizable to ensure faster calculation of the weights. [10]

The Oja neuron is mathematically the same as Hebb’s neuron in Eq. 2.2 . [10] The input
data x is a realisation of a random vector and is independently and identically distributed,
according to some underlying probability P. It is assumed that EX [x] = 0. [6]

3.1 Oja learning

The Oja learning theory takes the Hebbian learning scheme in equation 2.4 as a starting
point. To prevent the indefinite growth of a synapse, the Hebbian learning scheme is
normalized. This normalized learning equation is expressed componentwise as

wi(t +1) =
wi(t)+ηy(t)xi(t)

(∑n
i=1[wi(t)+ηy(t)xi(t)]2)

1/2 (3.1)

whereas the vectorized notation is

w(t +1) =
w(t)+ηy(t)x(t)
||w(t)+ηy(t)x(t)||

(3.2)

where w(t) symbolizes a weight vector at time t. [10] The normalization ensures that
||w(t)||= 1, ∀t. Furthermore, x(t) ∈ Rn, and xi(t) ∈ R, meaning we drop the positivity
requirement stated in the previous section that xi > 0, ∀i. This learning does not attempt
to be biologically accurate anymore.

3.1.1 Convergence of Oja learning

The following propostition is taken from [12].

Proposition 2:
Equation 3.1 and equivalently 3.2 converges in the mean to e1 or −e1.

Proof: The expression eT
i w(t +1), where w(t +1) is the averaged vector is calculated

as:

eT
i w(t +1) = eT

i
w(t)+ηCw(t)
||w(t)+ηCw(t)||

= eT
i w(t)

1+ηλi

||w(t)+ηCw(t)||



12 Chapter 3: The Oja neuron model

≤ eT
i w(t)

1+ηλi

||w(t)|| ||1+ηλ1||
= eT

i w(t)
1+ηλi

1+ηλ1

The last equation holds since ||w(t)||= 1 and λ1 > λ2 > .. . > λn > 0.

The coefficients of the vector w are given by eT
i w regarding the basis e1,e2, . . . ,en.

Therewith, the coordinates of w regarding the basis are given by(
w(t)1,w(t)2

1+ηλ2

1+ηλ1
, . . . ,w(t)n

1+ηλn

1+ηλ1

)T

(3.3)

where w(t)i are the old coefficients regarding the basis.

The second 0 < 1+ηλi
1+ηλ1

≤ 1 decreases as i increases. Therefore the coefficient in the
direction of e1 is comparatively large. At every time step t the coefficients in the other
directions decay while the one in the direction of e1 becomes larger in comparison.

There is a special case, when the coefficient in the direction of e1 is initialized as 0.
Then equation 3.3 would converge to 0. If w(0) is initialized randomly, the probability of
this event is 0.

While this algorithm to determine w is convergent, it is also numerically unstable and
not parallelizable. [12] Therefore another form must be found, which is the main result
presented in [10].

3.1.2 Computationally efficient learning for parallel computers

Equation 3.1, and therewith also equation 2.2, requires global information to perform cal-
culations, meaning all weights wi(t) are necessary to change a single weight wi(t +1).
[12] Therefore, equation 3.2 is expanded as a power series at η0 = 0. Oja learning
reasonably assumes that the learning rate η is small which leads to the second and all
higher powers of η being vanishing such that they can be neglected. [10]
We use y = wT x in the stochastic equation 3.2, such that

f (η) =
w+ηwT xx
||w+ηwT xx||

(3.4)

and approximate this with the first 2 terms of the Taylor series:

f (η0 = 0)≈ w
||w||

+(η−η0)

(
w+ηwT xx
||w+ηwT xx||

)′
(η0 = 0) (3.5)



Chapter 3: The Oja neuron model 13

In the next step, η0 = 0 is substituted and the quotient rule ( f
g )
′= ( f ′g−g′ f )

g2 and the chain

rule ( f (g(x))′ = f ′(g(x))g′(x) are used.

=
w
||w||

+η

wT xx ||w+ηwT xx||− (w+ηwT xx) (w+ηwT xx)T (wT xx)
||w+ηwT xx||

||w+ηwT xx||2

(η0 = 0) (3.6)

=
w
||w||

+η

(
wT xx
||w||

− wwT wT xx
||w||3

)
(3.7)

When considering ||w|| ≈ 1, we can simplify eq. 3.7 to

w(t +1) = w(t)+η(w(t)T xx− (w(t)T x)2w(t)) (3.8)

which is the stochastic version of the Oja rule. [12] It is a nonlinear stochastic difference
equation. [10] Here the term w(t)T xx represents the usual Hebbian synaptic modifica-
tion and −(w(t)T x)2w(t) signifies the forgetting of the neuron. [6] When averaging over
the inputs, the stochastic version above can be turned into the averaged version of the
learning rule such that

w(t +1) = w(t)+η(Cw(t)− (w(t)T Cw(t))w(t)) (3.9)

applies. [12]

3.1.3 Stable fixed points of Oja’s learning rule

The averaged learning rule is now investigated for stability, knowing that convergence
is verified by proposition 2. This can be done via the Jacobian matrix, as stated in the
following theorem that will be left without proof, taken from [13].

Theorem 3.1:
Let U ⊂ Rn, F ∈ C1(U,Rn) and w∗ ∈U fulfills the fixed point equation F(w∗) = 0. If
all eigenvalues of the Jacobian Matrix ∂F

∂w(w
∗) have a negative real part, then the fixed

point w∗ is asymptotically stable.

The following proposition follows the one presented in [12]:

Proposition 3:
Fixed points of the averaged Oja learning rule are the principal conponents, and the zero
vector. The only stable fixed points are the vectors e1 and −e1, which are the principal
components with the largest eigenvalue.

Proof: As the starting point we take the averaged learning rule 3.9 and recall that for
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fixed points we have that:

∂w
∂ t

= 0 =⇒ η(Cw− (wT Cw)w) = 0 =⇒ Cw = (wT Cw)w

since η 6= 0. Therefore, w is the eigenvector of C with the eigenvalue λ = wT Cw or
w = 0. When w 6= 0, then we can say that w = αei with α 6= 0. Here, all ei form a basis
and ei represents an arbitrary basis vector within this basis. Then:

λw = λiαei = Cαei = Cw = (wT Cw)w = (αei)
T C(αei)αei = α

3
λiei =⇒ α =±1

Therefore, only the vectors ei, −ei and the zero vector are fixed points of the averaged
learning rule.

The stability of the fixed points can be investigated via the Jacobian matrix of the function
w 7→ −(Cw− (wT Cw)w). If the Jacobian matrix

J(w) =−C+(wT Cw)I+2wwT C

is positive definite at the fixed point the learning rule is stable. This is due to the fact that
we are not looking for a local minimum but a maximum, as explained after equation 2.9
and visualized in figure 2.3. Therefore, we check if

eT
j J(ei)ek = eT

j (−C+(eT
i Cei)I +2eieT

i C)ek > 0

since Cek = λkek and eT
i Cei = λi we get:

=−λkeT
j ek +λieT

j ek +2eT
j eiλkeT

i ek =


0 j 6= k

2λi i = k = j

λi−λ j i 6= j = k

Investigating the first case, it is immediately visible that for the eigenvalue 0 and there-
with w = 0 the Jacobian matrix is −C, so negative definite, implying that the fixed point
0 is unstable.

Looking at the third case we assume that j = k 6= i leading to λi−λ j > 0 ∀ j 6= i if i = 1.
This means that e1 or the negative, the eigenvectors of the eigenvalue λ1, is a stable
fixed point. Investigating the general case we look at whether any point converges to e1

or the negative via:

(∑
k

αkek)
T J(ei)(∑

k
αkek) =

n

∑
k=1

α
2
k eT

k J(ei)ek =
n

∑
k=1

eT
k J(ei)ek

Any point therefore converges to the stable fixed point e1 or −e1.
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The directions ei with i 6= 1 are unstable when they are approached from directions e j

where j > i. Otherwise they are stable.
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4 The BCM neuron model

The third neuron model to be analyzed is the Bienenstock-Cooper-Munro (BCM) neuron
model. It constructs a model neuron model whose goal it is to maximize selectivity in
this neuron. The BCM learning rule extends the Hebbian learning rule by finding a way
to cause synaptic decrease. Whether the neuron inhibits or promotes an input pattern
depends on whether the output exceeds a variable threshold. [1]

4.1 BCM neuron

The BCM neuron is similar to the simple neuron model based on the Hebbian principle.
The Hebbian model assumes an input vector at a certain time t. All presynaptic signals
from this vector arrive at the postsynaptic neuron at this time t. While the BCM neuron
functions the same way after all assumptions have been made, their model describes a
different way of how the inputs x come about. They assume that incoming spikes occur
on each of incoming synapses. The input vector x(t) is then determined by averaging
over the instantaneous inputs over a period τ which takes place between t − 1 and
t. [1]

The neuron takes the inputs and weights at time t and performs integration to deter-
mine the output at time t. The model is then simplified further by assuming that the
integrative power of the neuron is a linear function. Then the neuron model can be
parametrized just like the neruon in equation 2.2. In which exact way the neuron per-
forms the integration may be changed. The "results remain unchanged if, for instance,
[y(t) = S(〈w(t),x(t)〉], with S being a positive-valued sigmoid shaped function". [1]

As mentioned before the neuron attempts to maximize selectivity. How to determine the
selectivity is given by:

SelX(N) = 1− mean response of N with respect to X
maximum response of N with respect to X

(4.1)

where N is the neuron and X is an Rn-valued random variable associated with the in-
puts x. It represents a stationary stochastic process. At a time t a random input is
given according to the time-invariant probability distribution of the random variable. The
selectivity always lies between 0 and 1. When the selectivity of the neuron is high then
SelX(N) is close to 1 and vice versa. Applying these definitions to the neuron in state
w, we get

SelX(w) = 1− EX [〈w,X〉]
ess sup[〈w,X〉]

(4.2)

when parametrized. [1]
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Due to the linearity of the expectation operator E we may transform this definition to
read:

= 1− 〈w,x〉
max(〈w,X〉)

= 1− y
max(y)

where y = EX [y], x = EX [x].
The max(y) is not the same as ess sup(y) but "is equivalent [. . . ] in most common
applications". [1]

The average x, and therewith also y, is determined over a time period T , preceding
t. It is determined over a much larger time period than the moving time averages are
determined, such that τ � T . The time step t is increased by one and the weights are
recalculated each time a time period τ passes, and a time average of the input spikes
has been determined. This causes y(t) to change at a much slower rate than y(t). [1]

4.2 BCM learning

The following is the basic equation of learning proposed in [1]:

∂wi(t)
∂ t

= ηwφBCM(y(t),θ)xi(t)−η0wi(t) (4.3)

where φBCM(y(t),θ) is a scalar function of postsynaptic activity that changes sign at a
value θ , called the modification threshold.

φBCM(y(t),θ)< 0 for y < θ (4.4)

φBCM(y(t),θ)> 0 for y > θ

This learning equation is only dependent on the input to and the output out of the neuron,
as is the case for unsupervised learning rules. The term −η0wi(t) causes a uniform
decay of the weights. Due to 0 < η0 ≪ 1, this does not affect the behavior of the
neuron and therewith the dynamical system. This is why it is neglected form here on.
The learning rate ηw is 0 < ηw� 1. [1]

The vector w develops in the direction of X if the output is larger than the threshold θ

and in the opposite direction of X if the output is smaller than θ . This is analogous to the
Hebbian principle, where when x ∈ Rn,with xi > 0 ∀i and the output y is large enough,
the weight w increases. However, BCM learning features synaptic decrease through
the function φ and when when x ∈ Rn,with xi < 0 ∀i and the output y is not sufficiently
large, the weight w decreases. This can be regarded as a form of competition between
input patterns x. [1]
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4.2.1 Issues with a fixed threshold

The idea of the modification threshold in a learning scheme was introduced in [3] using a
constant threshold. The definition of the threshold θ fundamentally influences the func-
tion of the neuron and must be chosen in such a way that the learning rule converges
to a fixed point and is stable.

The constant threshold was proposed as a function that takes the output y as an input.
The function modifies the output according to a postsynaptic firing threshold θ and the
saturation limit of the neuron µ .

P(y) =


µ y > µ

y θ ≤ y < µ

θ y < θ

(4.5)

However, this "resulted in a certain lack of robustness of the system". [1]

Their mathematical results only showed weak asymptotic convergence of the weight
vector. The limit of the expected value of the weight vector w is "only an average limit
in a large number of similar cells." When the learning rate is small the "actual limits
tend to be close to w", however, the" non-zero variance in w [causes] variations in
asymptotic tuning in individual cells". Sometimes the "model neuron might even change
its preferred pattern." [3]

While it shows only weak convergence and is unstable, it already displays properties
that are important for modeling the biological neuron accurately. Given patterned input
the response of the neuron increases in specificity, while when given noise-like input
the neurons response decreases in specificity. Furthermore, if specificity was lost due
to noise-like input, it can be regained through patterned input. "Even with relatively high
noise levels, with signal to noise ratios considerably smaller than one," the neuron is still
able to extract the patterned input and does this qualitatively similar to when there is no
noise. Therefore, the learning algorithm already has good averaging properties. [3]

4.2.2 An appropriate choice of φBCM and θ

Due to the issues with the fixed threshold described above, a better choice for φ and θ

must be found that ensures the learning algorithm converges and is stable. For this the
threshold θ is made a function of time θ(t) and is modified at every time increment. The
average output y is introduced to the function φBCM(y(t),θ) that takes the output at time
step t and the average output up until time step t into account. The use of y here ensures
the "boundedness of the state and efficient threshold modification". Furthermore, stable
fixed points exists, if they are of high selectivity. This is easy to see at a fixed point with
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zero selectivity. Any input would drive it away from its current state to a state of higher
selectivity. [1]
Including this and neglecting the uniform decay, Eq. 4.3 can be modified to read:

∂w
∂ t

= ηwφBCM(y(t),θ)x(t) (4.6)

The function φBCM(y(t),θ) changes sign depending on the crucial point θ according to
4.4. A simple choice of θ would be y, the average postsynaptic activity. However,
while this does provide the desired property of instability of low selectivity points, it is
not bounded from the origin and infinity. [1] Hence, the final choice for φBCM(y,θ) is this
nonlinear function that provides both desired properties:

signφBCM(y,y) = sign y
(

y−
(

y
y(0)

)p

y
)

for y > 0 (4.7)

φBCM(0,y) = 0 for all y

where y(0) and p are distinct fixed positive constants. This means that the final choice
for θ is:

θ =

(
y

y(0)

)p

y

Any function φBCM that fulfills these conditions is satisfactory and may be chosen instead
of the one written here. Factors such as the maximal response of the neuron and the
convergence speed depend on the the numerical values of y(0) and p. [1]
In the following y(0) and p are chosen to be y(0) = p = 1, making θ = y 2.

4.2.3 The final learning equation

BCM learning is proposed as follows:

∂w
∂ t

= ηwxφBCM(y,θ) = ηwxy(y−θ) (4.8)

with θ being a sliding threshold that changes over time just like w. The function

φBCM = y(y−θ)

takes the output y of the neuron and θ = EX [y2] as an input and determines whether y
is large enough to promote a future signal transferred inward via the ith synapse or to
inhibit it. The change over time of the threshold θ is proposed as:

∂θ

∂ t
= ηθ (y2−θ) (4.9)
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Originally it was assumed that θ = E2
X [y]. It has been shown that this can be well

approximated by θ = EX [y2]. As this includes the variance of y it will always be positive.
This change "ensures stability even when the average of the inputs is zero". [9]

4.3 Convergence and stability theorems and lemmas

The random variable X influences the behavior of the dynamical system. 4.8 In this
thesis only discrete distributions are considered and the K possible inputs x1, . . . ,xn ∈
Rn are assumed to have the same probability 1

K . The stochastic process X is a jump
process that randomly chooses an input at each time t. [1]

The following lemmas and theorems are stated in [1] and describe why the BCM learning
rule converges and is stable. They are quoted using the notation defined in 1.1.

Lemma 4.1:
Let x1 and x2 be linearly independent and X satisfy P[X = x1] = P[X = x2] =

1
2 . Then for

any value of φBCM satisfying 4.7, 4.6 admits exactly four fixed points, w0,w1,w2andw1,2

with: SelX(w0) = SelX(w1,2) = 0 and SelX(w1) = SelX(w2) = 1
2 . (Here the superscripts

indicate which of the xi are not orthogonal to w. (w0 is the origin.) Thus, for instance,
〈w1,x1〉> 0, 〈w1,x2〉= 0.)

Theorem 4.2:
Assume that in addition to the conditions of lemma 4.1, cos(x1,x2) ≥ 0. Then w0 and
w1,2 are unstable, w1 and w2 are stable, and whatever its initial value, the state of the
system converges almost surely (i.e., with probability 1) either to w1 or w2.

Theorem 4.3:
Under the same conditions as in theorem 4.2, there exists around m1(m2) a region
F1(F2) such that, once the state enters F1(F2), it converges almost surely to m1(m2).

Lemma 4.4:
Let x1,x2, . . . ,xn be linearly independent and X satisfy P[X = x1] = · · ·= P[X = xn] = 1

n .
Then, for any function φ satisfying equation 4.7, 4.6 admits exactly 2n fixed points with
selectivities 0, 1

n ,
2
n , . . . ,

n−1
n . There are n fixed points w1,w2, . . . ,wn of selectivity n−1

n .

Theorem 4.5:
Assume, in addition to the conditions of lemma 4.4, that x1,x2, . . . ,xn are all mutually
orthogonal or close to orthogonal. Then the n fixed points of maximum selectivity are
stable, and whatever its initial value, the state of the system converges to one of them.

While this is valid according to [1], we may also investigate this learning rule in the same
manner as the stability analysis in section 3.1.3.
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4.4 Fixed points of the learning rule

The learning rule is analysed as noted in 4.8. The fixed points can be determined by
setting the learning equation to zero, as stated in 2.1, such that

0 = ηwxφBCM(y,θ)

The learning rate ηw is never 0, meaning we are only left with

0 = xφBCM(y,θ)

We rewrite the learning rule as
∂w
∂ t

= PCΦ (4.10)

where C ∈ Rn×n is the covariance matrix of the input vectors x and P ∈ Rn×n contains
the probabilities pi of an input xi occurring on the main diagonal and is otherwise 0. The
vector Φ ∈ Rn is made up of the function φi, i = 1, . . . ,n, which returns a scalar when
evaluated.

When we want that PCΦ = 0 and PC is not regular then Φ is in the kernel of it. To
avoid this, we assume that C is regular and that it has eigenvectors ei ∈Rn. Any input x
can then be represented by x = ∑

n
k=1 αkek. We will only consider the eigenvectors ei as

inputs. This ensures that the we have a finite number of mutually orthogonal vectors.

Therefore, all possible outputs are

yi = wT ei =
n

∑
j=1

w jei j (4.11)

and
θ = EX [y2] = ∑

i
pi(wT ei)

2 = ∑
i

pi ∑
j
(wT

j ei j)
2 (4.12)

We assume that pi > 0, ∀i.

Using the information above, we attempt to find the fixed points of φ(y,θ) = 0.

First, we take n = 1. This way we get from 4.11 that y1 = we1 and from 4.12 that
θ = p1(we1)

2. When substituting this into φ(y,θ) = y1(y1−θ) and setting it to zero to
find the fixed points we get:

we1(we1− p1(we1)
2) = 0

1− p1we1 = 0
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1 = p1we1

=⇒ w∗ =
1

p1e1

For n = 2, we have

y1 = wT e1 = w1e11 +w2e12, y2 = wT e2 = w1e21 +w2e22

and
φ(y,y)1 = y1(y1−θ), φ(y,y)2 = y2(y2−θ)

where θ = p1(wT e1)
2 + p2(wT e2)

2 and e1 = (e11,e12)
T and e2 = (e21,e22)

T .

We substitute this into

φ1 = y1(y1−θ) = 0 and φ2 = y2(y2−θ) = 0

and then first calculate w1 and then w2. The exact calculations are added in annex A.
Here we just state the result.

w11,12 =−(e11− p12w2e11e12−2p2w2e21e22)

±

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2(−p1e 2
11− p2e 2

21)

where a 6= 0. w11 is the expression with a plus before the square root and w12 is the
expression with a minus before the square root. For w11 the two possible second coor-
dinates are:

w21,22 =
−y±

√
y2−4xz

2x
The exact for values of x, y and z can be found at the end of annex A. A similar calcu-
lation can be conducted in order to identify the second coordinates for the fixed points
with w12 as the first coordinate.

We have therefore identified 4 possible fixed points. This is how many should exist
according to 4.1 and 4.4. As the determination of the Jacobian matrix J(w∗) requires
extensive calculation, it can be questioned, how sensible it is to determine fixed points
in this manner to evaluate their stability, especially when n > 2.
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5 Summary

After introducing three neuron models and their learning rules, as well as analyzing
them with respect to their convergence and stable fixed points, we now compare how
they model a neuron and determine a learning rule. Furthermore, how to determine
fixed points and evaluate their stability is outlined to apply to other neuron models and
learning rules.

5.1 Neuron models

The neuron model of the three models is the same in the sense that it can be noted by
equation 2.2.

However, Hebb restricts the parameters biologically to be positive. [10]

Oja removes the positivity requirement and defines x to be a realization of a random
vector that is independently and identically distributed according to an underlying prob-
ability. Furthermore, EX [x] = 0. [10] [12]

BCM treats x at time t as an instantaneous variable, just like Oja and Hebb. However,
how x is determined differs. It is an average taken over all input spikes in a time period
τ lasting from t − 1 to t. For the analysis later on, it is assumed that there is a finite
amount of possible time averages x1, . . . ,xk ∈ Rn that occur at a time t with the same
probability 1

k . [1]

5.2 Learning rules

The three learning rules are:

Hebb: ∂w
∂ t = η x(t)φH(y,θ) = w(t)+ηyx(t)

Oja: ∂w
∂ t = η(xy− y2w(t))

BCM: ∂w
∂ t = ηwxφBCM(y,θ) = ηwxy(y−θ) , θ = EX [y2].

Hebbian learning does not have a way of causing synaptic decrease, leading to it not
converging. It has no stable fixed points. [12]

Oja learning normalizes Hebbian learning and the learning equation written above has a
specific term that causes the synaptic decrease. The stable fixed point of Oja’s learning
rule is an eigenvector of the covariance matrix. [10]
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The BCM learning rule is characterized and stands out in comparison to the other rules
by the fact that it has a threshold for determining when output signas are large enough
to be excitory or when they should be inhibitory. This threshold ensure the stability and
boundedness of the possible states w. The learning rule has stable fixed points, that
it converges to, when assuming that the inputs are mutually orthogonal, occur with the
same probability, and are of maximal selectivity. [1]

5.3 Determining fixed points and their stability

The fixed points of a learning equation that fulfills the conditions listed in 2.1 can be
determined via

F(w∗) = 0

Whether the determined fixed point(s) are stable can then be determined according to
3.1. To check this the Jacobian matrix J(w∗) of the fixed point is determined. Afterwards
the eigenvalues of this matrix are determined, which must be lower than zero.

To make the generalization to n dimensions easier, one can start with n = 1 and n = 2,
to see if the general case becomes clear this way.
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6 Conclusion

Three neuron models were presented with consistent notation and explained. For each
neuron model’s learning rule the convergence to a fixed point and the stability thereof
were analyzed.

As a result it is clear that the simple neuron model and therewith the learning rule ac-
cording to the Hebbian principle must not be considered in further research, and can
only be used as a starting point to understanding other learning rules. It is an intrinsi-
cally unstable algorithm that does not converge to a fixed point.

The Oja learning rule, which extracts the first principle component, is both convergent
and has stable fixed points. Furthermore, the learning rule has already been optimized
to be numerically stable and parallelizable. Therefore, further research may be con-
ducted into how it can be efficiently implemented on different types of hardware.

The BCM learning rule attempts to maximize selectivity towards incoming signals. The
learning rule is both convergent and has stable fixed points. These stable fixed points
necessarily have a high selectivity. The stable fixed points cannot be efficiently deter-
mined using the method in this thesis. Further research may be conducted to determine
if there exists a different approach. It should be researched further, too, to determine its
use in neuromorphic hardware.

6.1 Outlook

The stable and convergent models presented in this thesis can be extended to networks
of interacting neurons. Investigating the properties of the neuron model in a network of
neurons ensures that the model will function the same way in a network as in isolation.
Furthermore, it can be investigated how fast a network of interacting neurons converges
to its final state. 1 The Oja learning rule has been extended by Sanger (Sanger, 1989)
to a learning rule called generalized Hebbian algorithm which not only extracts the first
principle component but all of them. This may or may not be necessary to research for
networks of interacting neurons.

In terms of the BCM learning rule, ways to improve the learning rule have been sug-
gested (Intrator& Cooper,1992; Law& Cooper,1994) since the original paper by Bienen-
stock et al( [1]). These should be investigated for their convergence and the stability of
their fixed points.

Another concept and way to model a neuron that should be looked into is spike-timing-
dependent plasticity (STDP) and further its connection to BCM (Izhikevich et al., 2003).
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Moreover, a method of maximization of information transmission for spiking neurons
using a generalized BCM rule was developed (Toyoizumi et al., 2005), that should be
considered when researching STDP in connection with BCM.

Lastly, there have been a multitude of papers on the topic of neuron models for neu-
romorphic hardware. Their aid in the verification of the hypothesis stated in chapter 1
should be investigated.

Moreover, while the concepts mentioned in this thesis are mathematically sound, it is
not to say that they will indeed be computationally efficient. Only when knowledge about
this has been gained, will the theoretical knowledge of the neuron model help with larger
scale computations. The first implementations may be verified on a CPU. While this will
help get a better understanding of how well each neuron model performs, as explained
before, a CPU is not very efficient in its way of computing a result. Therefore, the
different models should be implemented to be run on a GPU and further, if possible, on
a quantum computer or neuromorphic hardware.
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Appendix A: Calculation of fixed points of
BCM learning for n=2

After substitution the calculation goes as follows:

φ1 = 0

y1−θ = 0

φ1 = w1e11 +w2e12− (p1(wT e1)
2 + p2(wT e2)

2) = 0

w1e11 +w2e12− (p1(w1e11 +w2e12)
2 + p2(w1e21 +w2e22)

2) = 0

w1e11 +w2e12− p1w 2
1 e 2

11− p12w1w2e11e12

−p1w 2
2 e 2

12− p2w 2
1 e 2

21−2p2w1w2e21e22− p2w 2
2 e 2

22 = 0

−p1w 2
1 e 2

11− p2w 2
1 e 2

21 +w1e11− p12w1w2e11e12

−2p2w1w2e21e22− p2w 2
2 e 2

22 +w2e12− p1w 2
2 e 2

12 = 0

w 2
1 (−p1e 2

11− p2e 2
21)︸ ︷︷ ︸

a

+w1 (e11− p12w2e11e12−2p2w2e21e22)︸ ︷︷ ︸
b

−p2w 2
2 e 2

22 +w2e12− p1w 2
2 e 2

12︸ ︷︷ ︸
c

= 0

We can solve this quadratic equation via the quadratic formula, by assuming a 6= 0:

w11,12 =
−b
√

b2−4ac
2a

=−(e11− p12w2e11e12−2p2w2e21e22)

±

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2(−p1e 2
11− p2e 2

21)

w11 is the solution using the plus sign, and w12 is the solution using the minus sign.

Now we prepare y2−θ = 0:
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w1e21 +w2e22− (p1(wT e1)
2 + p2(wT e2)

2) = 0

w1e21 +w2e22− (p1(w1e11 +w2e12)
2 + p2(w1e21 +w2e22)

2) = 0

w1e21 +w2e22− p1w 2
1 e 2

11− p12w1w2e11e12− p1w 2
2 e 2

12− p2w 2
1 e 2

21−2p2w1w2e21e22− p2w 2
2 e 2

22 = 0

−p1w 2
1 e 2

11− p2w 2
1 e 2

21 +w1e21− p12w1w2e11e12−2p2w1w2e21e22 +w2e22− p1w 2
2 e 2

12− p2w 2
2 e 2

22 = 0

w 2
1 (−p1e 2

11− p2e 2
21)+w1(e21− p12w2e11e12−2p2w2e21e22)+w2e22− p1w 2

2 e 2
12− p2w 2

2 e 2
22 = 0

Here we substitute w1 = w11:

−(e11− p12w2e11e12−2p2w2e21e22)

2(−p1e 2
11− p2e 2

21)

+

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2(−p1e 2
11− p2e 2

21)

· (e21− p12w2e11e12−2p2w2e21e22)

+

(
−(e11− p12w2e11e12−2p2w2e21e22)

2(−p1e 2
11− p2e 2

21)

+

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2(−p1e 2
11− p2e 2

21)

)2

· (−p1e 2
11− p2e 2

21)

+w2e22− p1w 2
2 e 2

12− p2w 2
2 e 2

22 = 0

First, we attempt to solve the first 2 terms of the array:

−(e11− p12w2e11e12−2p2w2e21e22)

2(−p1e 2
11− p2e 2

21)

+

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2(−p1e 2
11− p2e 2

21)

· (e21− p12w2e11e12−2p2w2e21e22)
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=
−(e11− p12w2e11e12−2p2w2e21e22)(e21− p12w2e11e12−2p2w2e21e22)

2(−p1e 2
11− p2e 2

21)

+

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2(−p1e 2
11− p2e 2

21)

·(e21− p12w2e11e12−2p2w2e21e22)

2(−p1e 2
11− p2e 2

21)

Now we focus on the first term of the equation above:

−(e11− p12w2e11e12−2p2w2e21e22)(e21− p12w2e11e12−2p2w2e21e22)

2(−p1e 2
11− p2e 2

21)

=
(−e11 + p12w2e11e12 +2p2w2e21e22)(e21− p12w2e11e12−2p2w2e21e22)

2(−p1e 2
11− p2e 2

21)

=
−e11(e21− p12w2e11e12−2p2w2e21e22)

2a

+
2p1w2e11e12(e21− p12w2e11e12−2p2w2e21e22)

2a

+
2p21w2e21e22(e21− p12w2e11e12−2p2w2e21e22)

2a

=
−e11e21

2a
+

p12w2e 2
11e12

2a
+

e112p2w2e21e22

2a

+
e212p1w2e11e12

2a
−

4p 2
1 w 2

2 e 2
11e 2

12
2a

−
4p1 p2w 2

2 e11e12e21e22

2a

+
2p2w2e21e22e21

2a
−

4p1 p2w 2
2 e11e12e21e22

2a
−

4p 2
2 w 2

2 e 2
21e 2

22
2a

Next, we rejoin all the resulting terms of the first 2 terms, which are:
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−e11e21

2a
+

p12w2e 2
11e12

2a
+

2e11 p2w2e21e22

2a
+

2e21 p1w2e11e12

2a
−

4p 2
1 w 2

2 e 2
11e 2

12
2a

−
4p1 p2w 2

2 e11e12e21e22

2a
+

2p2w2e21e22e21

2a
−

4p1 p2w 2
2 e11e12e21e22

2a
−

4p 2
2 w 2

2 e 2
21e 2

22
2a

+

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2a

· (e21− p12w2e11e12−2p2w2e21e22)

2a

As the next step we solve the third and fourth terms. For this we use the notation from
when we found w11,12 to keep a better overview:

a
2b2−2b

√
b2−4ac−4ac
4a2

=
1

2a
(b2−b

√
b2−4ac−2ac)

Here we resubstitute the terms a, b, c:

=
1

2(−p1e 2
11− p2e 2

21)

(
(e11− p12w2e11e12−2p2w2e21e22)

2

− (e11− p12w2e11e12−2p2w2e21e22)

·
√

(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2
11− p2e 2

21)(−p2w 2
2 e 2

22 +w2e12− p1w 2
2 e 2

12)

−2(−p1e 2
11− p2e 2

21)(−p2w 2
2 e 2

22 +w2e12− p1w 2
2 e 2

12)

)

Since a does not contain the term w2, we will continue using it throughout for simplic-
ity:
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=
(e11− p12w2e11e12−2p2w2e21e22)

2

2a

− (e11− p12w2e11e12−2p2w2e21e22)

2a

·

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2a

−
2a(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2a

=
(e11− p12w2e11e12−2p2w2e21e22)

2

2a

− (e11− p12w2e11e12−2p2w2e21e22)

2a

·

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2a
+ p2w 2

2 e 2
22−w2e12 + p1w 2

2 e 2
12

Again, we first focus on the first term and solve it:

(e11− p12w2e11e12−2p2w2e21e22)(e11− p12w2e11e12−2p2w2e21e22)

2a

=
1

2a
(e11(e11− p12w2e11e12−2p2w2e21e22)

− p12w2e11e12(e11− p12w2e11e12−2p2w2e21e22)

−2p2w2e21e22(e11− p12w2e11e12−2p2w2e21e22))

=
e 2

11
2a
−

2p1w2e 2
11e12

2a
− 2p2w2e11e21e22

2a

−
2p1w2e 2

11e12

2a
+

4p 2
1 w 2

2 e 2
11e 2

12
2a

+
4p1 p2w 2

2 e11e12e21e22

2a

− 2p2w2e11e21e22

2a
+

4p1 p2w 2
2 e11e12e21e22

2a
+

4p 2
2 w 2

2 e 2
21e 2

22
2a
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Here, we rejoin all resulting terms of the third and fourth terms:

e 2
11

2a
−

2p1w2e 2
11e12

2a
− 2p2w2e11e21e22

2a

−
2p1w2e 2

11e12

2a
+

4p 2
1 w 2

2 e 2
11e 2

12
2a

+
4p1 p2w 2

2 e11e12e21e22

2a

− 2p2w2e11e21e22

2a
+

4p1 p2w 2
2 e11e12e21e22

2a
+

4p 2
2 w 2

2 e 2
21e 2

22
2a

− (e11− p12w2e11e12−2p2w2e21e22)

2a

·

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2a
+ p2w 2

2 e 2
22−w2e12 + p1w 2

2 e 2
12

Lastly, we rejoin all terms resulting from the equation substituted on page 30:

e 2
11

2a
−

2p1w2e 2
11e12

2a
− 2p2w2e11e21e22

2a

−
2p1w2e 2

11e12

2a
+

4p 2
1 w 2

2 e 2
11e 2

12
2a

+
4p1 p2w 2

2 e11e12e21e22

2a

− 2p2w2e11e21e22

2a
+

4p1 p2w 2
2 e11e12e21e22

2a
+

4p 2
2 w 2

2 e 2
21e 2

22
2a

− e11e21

2a
+

p12w2e 2
11e12

2a
+

2e11 p2w2e21e22

2a

+
2e21 p1w2e11e12

2a
−

4p 2
1 w 2

2 e 2
11e 2

12
2a

−
4p1 p2w 2

2 e11e12e21e22

2a

+
2p2w2e21e22e21

2a
−

4p1 p2w 2
2 e11e12e21e22

2a
−

4p 2
2 w 2

2 e 2
21e 2

22
2a

− (e11− p12w2e11e12−2p2w2e21e22)

2a

·

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2a

+

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12

2a

· (e21− p12w2e11e12−2p2w2e21e22)

2a
+ p2w 2

2 e 2
22−w2e12 + p1w 2

2 e 2
12

+w2e22− p1w 2
2 e 2

12− p2w 2
2 e 2

22 = 0
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In the next step, we removed terms that cancel out in the previous equation, to get:

e 2
11

2a
− e11e21

2a
−

2p1w2e 2
11e12

2a
+

2p1w2e11e12e21

2a

− 2p2w2e11e21e22

2a
+

2p2w2e21e22e21

2a
−w2e12 +w2e22

− (e11− p12w2e11e12−2p2w2e21e22)

2a

·

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)

2a

+

√
(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2

11− p2e 2
21)(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12

2a

· (e21− p12w2e11e12−2p2w2e21e22)

2a
= 0

To minimize the the number of times that 2a is in the equation, we multiply everything
by 2a.

Furthermore, we join the last two terms by factoring out the square root term.

e 2
11−e11e21−2p1w2e 2

11e12+2p1w2e11e12e21−2p2w2e11e21e22+2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a

+
√

(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2
11− p2e 2

21)(−p2w 2
2 e 2

22 +w2e12− p1w 2
2 e 2

12)

· ((e21− p12w2e11e12−2p2w2e21e22)− (e11− p12w2e11e12−2p2w2e21e22)) = 0

We solve the third line of the previous equation

e 2
11−e11e21−2p1w2e 2

11e12+2p1w2e11e12e21−2p2w2e11e21e22+2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a

+
√

(e11− p12w2e11e12−2p2w2e21e22)2−4(−p1e 2
11− p2e 2

21)(−p2w 2
2 e 2

22 +w2e12− p1w 2
2 e 2

12)

· (e21− e11) = 0

Moreover, we take the square root term to the other side of the equation:
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e 2
11− e11e21−2p1w2e 2

11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
=√

(e11− p12w2e11e12−2p2w2e21e22)2−4a(−p2w 2
2 e 2

22 +w2e12− p1w 2
2 e 2

12)

· (e11− e21)

We then square both sides to get rid of the square root:

(e11− p12w2e11e12−2p2w2e21e22)
2

−4a(−p2w 2
2 e 2

22 +w2e12− p1w 2
2 e 2

12)(e11− e21)
2

=

(e 2
11− e11e21−2p1w2e 2

11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)2

We first solve the left side of the equation in isolation

(e11− p12w2e11e12−2p2w2e21e22)
2−4a(−p2w 2

2 e 2
22 +w2e12− p1w 2

2 e 2
12)(e11− e21)

2

= e 2
11−2p1w2e 2

11e12−2p2w2e11e21e22−2p1w2e 2
11e12 +4p 2

1 w 2
2 e 2

11e 2
12

+4p1 p2w 2
2 e11e12e21e22−2p2w2e11e21e22 +4p1 p2w 2

2 e11e12e21e22 +4p 2
2 w 2

2 e 2
21e 2

22

− (4ap2w 2
2 e 2

22 +4aw2e12−4ap1w 2
2 e 2

12)(e
2

11−2e11e21 + e 2
21)

To keep the overview we now solve the third line of the previous equation in isolation

4ap2w 2
2 e 2

22(e
2

11−2e11e21 + e 2
21)

−4aw2e12(e 2
11−2e11e21 + e 2

21)

+4ap1w 2
2 e 2

12(e
2

11−2e11e21 + e 2
21)
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= 4ap2w 2
2 e 2

11e 2
22−8ap2w 2

2 e11e21e 2
22−4ap2w 2

2 e 2
21e 2

22−4aw2e 2
11e12

+8aw2e11e12e21−4aw2e12e 2
21 +4ap1w 2

2 e 2
11e 2

12−8ap1w 2
2 e11e 2

12e21 +4ap1w 2
2 e 2

12e 2
21

Then we rejoin all the terms of the left side of the equation:

e 2
11−2p1w2e 2

11e12−2p2w2e11e21e22−2p1w2e 2
11e12 +4p 2

1 w 2
2 e 2

11e 2
12

+4p1 p2w 2
2 e11e12e21e22−2p2w2e11e21e22 +4p1 p2w 2

2 e11e12e21e22 +4p 2
2 w 2

2 e 2
21e 2

22

+4ap2w 2
2 e 2

11e 2
22−8ap2w 2

2 e11e21e 2
22−4ap2w 2

2 e 2
21e 2

22−4aw2e 2
11e12

+8aw2e11e12e21−4aw2e12e 2
21 +4ap1w 2

2 e 2
11e 2

12−8ap1w 2
2 e11e 2

12e21 +4ap1w 2
2 e 2

12e 2
21
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Now we move on to solve the right side of the equation:

(e 2
11−e11e21−2p1w2e 2

11e12+2p1w2e11e12e21−2p2w2e11e21e22+2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)2

= e 2
11(e

2
11− e11e21−2p1w2e 2

11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)

− e11e21(e 2
11− e11e21−2p1w2e 2

11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)

−2p1w2e 2
11e12(e 2

11− e11e21−2p1w2e 2
11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)

+2p1w2e11e12e21(e 2
11− e11e21−2p1w2e 2

11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)

−2p2w2e11e21e22(e 2
11− e11e21−2p1w2e 2

11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)

+2p2w2e21e22e21(e 2
11− e11e21−2p1w2e 2

11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)

− w2e12

2a
(e 2

11− e11e21−2p1w2e 2
11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)

+
w2e22

2a
(e 2

11− e11e21−2p1w2e 2
11e12 +2p1w2e11e12e21

−2p2w2e11e21e22 +2p2w2e21e22e21−
w2e12

2a
+

w2e22

2a
)
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= e 4
11− e3

11e21−2p1w2e 4
11e12 +2p1w2e 3

11e12e21−2p2w2e 3
11e21e22

+2p2w2e 2
11e21e22e21−

w2e 2
11e12

2a
+

w2e 2
11e22

2a
− e21e 3

11 + e 2
11e 2

21 +2p1w2e 3
11e12e21−2p1w2e 2

11e12e 2
21

+2p2w2e 2
11e 2

21e22−2p2w2e11e 2
21e22e21 +

w2e11e12e21

2a
− w2e11e21e22

2a
−2p1w2e 4

11e12 +2p1w2e 3
11e12e21 +4p 2

1 w 2
2 e 2

11e 2
12e 2

11−4p 2
1 w 2

2 e 3
11e 2

12e21

+4p1 p2w 2
2 e 3

11e12e21e22−4p1 p2w 2
2 e 2

11e12e 2
21e22 +

p1e 2
11w 2

2 e 2
12

a
−

p1w 2
2 e 2

11e12e22

a
+2p1w2e 3

11e12e21−2p1w2e 2
11e12e 2

21−4p 2
1 w 2

2 e 3
11e 2

12e21 +4p 2
1 w 2

2 e 2
11e2

12e 2
21

−4p1 p2w 2
2 e 2

11e12e 2
21e22 +4p1 p2w 2

2 e11e12e 3
21e22−

p1w 2
2 e11e 2

12e21

a
+

p1w2
2e11e12e21e22

a
−2p2w2e 3

11e21e22 +2p2w2e 2
11e 2

21e22 +4p1 p2w 2
2 e 3

11e12e21e22−4p1 p2w 2
2 e 2

11e12e 2
21e22

+4p 2
2 w 2

2 e 2
11e 2

21e 2
22−2p 2

2 w 2
2 e11e 3

21e22 +
p2w 2

2 e11e21e22

a
−

p2w 2
2 e11e21e 2

22
a

+2p2w2e 2
11e21e22e21−2p2w2e11e 3
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We join the right and left sides of the equation, such that
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Moving all terms to one side, factoring out w 2
2 and w2 and simplifying, we get
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Lastly we may use the quadratic formula to solve this equation as well, assuming that
x 6= 0, such that

w21,22 =
−y±

√
y2−4xz

2x

Here x is what is in brackets after w 2
2 , y is what is in brackets after w2 and z are the

leftover terms.
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