Bl HOCHSCHULE
B MITTWEIDA

University of Applied Sciences

und Biowissenschaften

Angewandte Computer- . I

BACHELOR THESIS

Ms
Tabea Heusel

Neuron models: Convergence and
Stability Analyses of Hebb, Oja
and BCM learning rules

2022

Faculty of Applied Computer and Life Sciences

BACHELOR THESIS

Neuron models: Convergence and
Stability Analyses of Hebb, Oja
and BCM learning rules

Author:
Tabea Heusel

Study Programme:
Applied Mathematics

Seminar Group:
MA18w1-B

First Referee:
Prof. Dr. rer. nat. habil. Thomas Villmann

Second Referee:
Dr. rer. nat. David Nebel

Mittweida, August 2022

Bibliographic Information

Heusel, Tabea: Neuron models: Convergence and Stability Analyses of Hebb, Oja and BCM
learning rules, 45 pages, 3 figures, Hochschule Mittweida, University of Applied Sciences, Fac-
ulty of Applied Computer and Life Sciences

Bachelor Thesis, 2022

Abstract

This Bachelor thesis investigates the learning rules of the Hebbian, Oja and BCM neuron models
for their convergence to, and the stability of, the fixed points. Existing research is presented
in a structured manner using consistent notation. Hebbian learning is neither convergent nor
stable. Oja learning converges to a stable fixed point, which is the eigenvector corresponding
to the largest eigenvalue of the covariance matrix of the input data. BCM learning converges
to a fixed point which is stable, when assuming a discrete distribution of orthogonal inputs that
occur with equal probability. Hebbian learning can therefore not be used in further applications,
where convergence to a stable fixed point is required. Furthermore, this Bachelor thesis came
to the conclusion that determining the fixed points of the BCM learning rule explicitly involves
extensive calculation and other methods for verifying the stability of possible fixed points should
be considered.

. Contents

170 1 T o 1 I
LISt Of FIQUIES . . e e Il
LISt Of TabIES . et [l
=] 7= T v
1 INtrOAUCHION . o e 1
1.1 Definitions and NOtation ... 2
2 The Hebbian prinCiple e 5
2.1 SIMPle NEUION MOTEI 5
2.2 Hebbian Learninguuiiii i 6
2.3 The problem with Hebbian learning ... 6
3 The Oja neuron MOdel e 11
1 O O] = T =T U 11T 11
3.1.1 Convergence of Ojalearningouueereiiii e 11
3.1.2 Computationally efficient learning for parallel computers ..., 12
3.1.3 Stable fixed points of Oja’s learning rule........... oo 13
4 The BCM neuron model ... 17
O N 11V I =T T o o 17
4.2 BOM IBAIMING ...ttt ettt et et e 18
4.2.1 Issues with a fixed threshold 19
4.2.2 An appropriate choice of Qpeyy @nd O 19
4.2.3 The final learning equation i 20
4.3 Convergence and stability theorems and lemmas ..., 21
4.4 Fixed points of the learning rule. e 22
5 ST T 010 = 25
LG 0 T N =TT o T T T o = 25
5.2 LBaINING FUIES . . e e 25
5.3 Determining fixed points and their stabilityccooo 26

CONCIUSION ..o e e e e e e 27

B.1 OULIOOK ..o

A Calculation of fixed points of BCM learning forn=2cooiiiiiiiiiiinn..

Bibliography

Il. List of Figures

1.1 The anatomy of a neuron and its postsynaptic neurons. Taken from [11]. 2
2.1 The Hebbian principle modeled mathematically. In this neuron model m is the number
of inputs and n represents the parameter time step. Taken from [6]..................... 5

2.2 Function 2.9 for dim(W) = L. ... oo e 8

lll. List of Tables

IV. Preface

In order to successfully follow this Bachelor thesis basic knowledge of analysis, linear
algebra, stochastics, as well as dynamical systems is required and assumed.

| would like to thank Prof. Thomas Villmann for providing me with the challenging and
purposeful task of researching this topic and for the support and guidance during the
writing of this thesis.

| look forward to using the knowledge gained throughout my bachelor’s studies in my
master’s studies.

Chapter 1: Introduction 1

1 Introduction

A central problem in pattern recognition and artificial intelligence is how learning occurs.
When investigating this issue biological neurons are mathematically modeled. While
modeled neurons take the biological neurons in the brain as an inspiration, "they are
generally not designed to be realistic models of brain function." [5] However, the basic
principles of the biological neuron are used in artificial neurons. Biologically, a neuron
receives input signals from other neurons via dendrites. Depending on whether the
received signals are inhibitory or excitatory, and depending on the signal’s strength, the
neuron fires a signal towards the axon terminals or it does not. If the neuron fires, the
signal gets transmitted towards the axon terminal which is then connected to another
neuron’s dendrites where the same process repeats itself. This process is illustrated in
figure 1. [11]

In model neurons the learning is defined through the changing synaptic weights between
distinct neurons, according to their specific learning rules. How to change the weights
and thus defining a learning rule is the central problem of learning. The goal is to
extract sensible information and have the data organize itself. Moreover, the neuron
should function as a memory that remembers relevant information and forgets irrelevant
information. [12]

In unsupervised learning, the focus of this Bachelor thesis, the change of the synaptic
weights is solely based on the input to the neuron and the output of the neuron. New
inputs that are more strongly correlated with the information contained in the neuron,
cause larger output values than inputs that are weakly correlated. [12]

This Bachelor thesis creates a starting point to the hypothesis that the way the neuron
is mathematically modeled within the neuromorphic hardware can determine the speed
of the learning.

Neuromorphic hardware is a type of hardware that can be put in computer chips. The
hardware is made up of interconnected silicon neurons. In common neural network
models programmed to execute on a multi-use central processing unit (CPU), learning
is done by stacking in the random access memory (RAM) in the computer. This is usually
slow which is why graphic processing units with the possibility of parallelisation are used
more frequently when training neural network models. Neuromorphic hardware takes
this to another level. The learning is done through the neurons, physically contained in
the hardware, which makes the learning process comparatively fast. [2]

However, it creates many restrictions for the model that is to be programmed. For ex-
ample a chip with 256 interconnected neurons has a physically predefined number of
neurons, that cannot be changed through programming. Nonetheless, a neuromorphic

2 Chapter 1: Introduction

w\//

Dendrlles

Nucleus Inhlbllory axon terminal
/(Excitatory axon terminal

Soma Axon hillock

Axon — Ranvier node

Myelin sheath
Synaptlc cleft

“‘"(

Postsynaptic neurons
‘/WJ\\

Figure 1.1: The anatomy of a neuron and its postsynaptic neurons. Taken from [11].

chip with silicon neurons already contained within it, and a well programmed model
that fits this hardware is much more efficient than the usual way of programming on a
multi-use CPU. [2]

Within this thesis, three ways of modeling a neuron are considered and explained:
the neuron model according to the Hebbian principle, the Oja neuron model and the
Bienenstock-Cooper-Munro (BCM) neuron model. Each of the neuron models has an
associated learning rule. When wanting to implement a neuron model it is important to
know that the learning rule will converge to a fixed point and that this fixed point is stable.
This is why for each neuron model the convergence and stability are investigated. Both
Oja and BCM are based on and extend the Hebbian model of neuron learning, which is
why the Hebbian model will be discussed first.

1.1 Definitions and Notation

Throughout this Bachelor thesis a specific notation is used. This is done in order to
create a common baseline for all neuron models and learning rules. When a theory
describes the same parameter, it is immediately visible through the notation and termi-
nology and parameter representation. As an example, the (synaptic) weights w will be
referred to as such throughout the entire text and not as junction strengths & as they are
called in [10].

Furthermore, the following general mathematical notation is valid throughout,

Chapter 1: Introduction 3

ACB
a =

and the
thesis.

Xi
X

> >

scalar, unless specified otherwise
vector, unless specified otherwise
matrix, unless specified otherwise
null vector

scalar product between a and b
euclidean norm of a, unless specified otherwise
real numbers, n-dimensional

the expected value of a

sum of the following parameters
transpose of the vector a / matrix A
vector-valued function

function

the following statement is valid for all a
for the following statement exists an a
a is an element of b
a is much lower than b
a is very much lower than b
atendsto b
a maps to b
Ais a subset of B
b aimplies b

following notation records definitions of parameters specific to the topic of this

i"" input, presynaptic activity

vectorized input, X = (x1,x2,...,%,)7

random variable associated with x, not a matrix
i"" synaptic weight

vectorized synaptic weight, w = (wy,wa,...,w,)T
output, postsynaptic activity

learning rate

vector w at time step ¢

change of w from one time increment to another
Identity matrix

covariance matrix, if not specified otherwise
fixed point of the dynamical system

i"" eigenvector, unless specified otherwise

i'" eigenvalue, unless specified otherwise
modification threshold of BCM learning rule

Chapter 2: The Hebbian principle 5

2 The Hebbian principle

The Hebbian principle was formulated by Hebb in 1949 to attempt to explain how learn-
ing occures within the brain. Hebb states that "when an axon of cell A is near enough to
excite cell B and repeatedly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that A’s efficiency as one of
the cells firing B, is increased". [7] This leads to a dynamic strengthening or weakening
of synapses over time, according to the input received by neuron B and sent by neuron
A.

2.1 Simple neuron model

The signals that the neuron receives via the dendrites are modeled through an input
vector x(z) € R” that contains all inputs to the neuron at a specific time ¢. In the Hebbian
model it is assumed that x; > 0 Vi, in order to remain biologically accurate. The output
of the cell is given by the value y € R,. This is then passed on to the next neurons.
The artificial neuron’s output is determined by a weighted sum of the input signals. The
weights are contained in the weight vector w € R", . The following equation models the
Hebbian principle mathematically according to the definitions given above.

¥y = Y wilt)u(t) @.1)
i=1

where n is the number of inputs to the neuron. [10] For a visualization of the equation
see figure 2.1.

.\‘1(11)

X,(n) w,(n)

y(n)

xm(n)

Figure 2.1: The Hebbian principle modeled mathematically. In this neuron model m is the num-
ber of inputs and n represents the parameter time step. Taken from [6].

6 Chapter 2: The Hebbian principle

2.2 Hebbian Learning

Given a steady stream of input vectors x € R”, where each input is received by the
neuron at a separate time ¢, the learning of the neuron is determined by the changing
weights w € R”.. The neuron model can be rewritten in vectorized form as:

() =< (w(r),x(1)) = (x(¢), w(r)) (2.2)

The final equality only holds if w and x are both real vectors. The Hebbian learning
principle is consequently parametrized as

Iw
E:nyx(t) Jt=1,....m (2.3)

where %—Vtv denotes the change of the weight w at time ¢ and m is the maximum time
increment. The coefficient i is the learning rate, for which 0 < n < 1 applies. It may be
set as desired within these bounds, but it is typically chosen to be small or even decaying
with time. This way the learning occurs slowly and w(z) only changes incrementally at
one time t. The weight w is therefore determined by the equation

Wt +1) = w(t) +1X(1) 6,(2.8) = w(t) + yx(r) 2.4

In this instance 6 = 0 and ¢, (y,0) = y meaning the function solely depends on y and
there is no modification threshold. Nonetheless, the notation was chosen to make the
Hebbian learning rule more easily comparable to the BCM learning rule presented in
chapter 4. [12] [6]

2.3 The problem with Hebbian learning

According to the Hebbian principle the changes of the vector w at each time increment
add up over time and settle on some values. [6] However, since the update will always
be positive due to

w(t+1) =w(t) +nx(t)y = w(t) (1 + nx(2)x(r) w(t)) (2.5)

where the vector w will increase in magnitude at every time step t. Therefore the weights
do not stabilize as r — oo. [4] Especially for sequences of x(t), where x(z) = x,Vr it is
clear that ||w(z)|| — oo for t — oo. [10] As there is no term that causes synaptic decrease
the synapses saturate leading to no information being stored in this neuron. [1]

To see that what is written above is indeed the case, the stability and convergence of
Hebbian learning rule must be asymptotically analyzed. The following definitions, as
presented in [6], are necessary for the analysis.

Chapter 2: The Hebbian principle 7

Definition 2.1:
A constant vector w* € R” is said to be a fixed point of the autonomous dynamical
system Lw(r) = F(w) if

F(w*)=0

where 0 is the null vector and F : R"” — R" is a differentiable vector valued function.
The velocity vector ‘g—vtv vanishes at the fixed point w* and therefore the constant function
w(t) = w* is a solution of Zw(t) = F(w).

Definition 2.2:
A fixed point w* of an autonomous dynamical system %w(t) =F(w) is stable if

Ve>0:36>0:||w(0)—w||<d = ||w(t)—w||<e, Vi>0

Definition 2.3:
A fixed point w is convergent if

36>0: ||w(0)—w'||<d = w(t) > wfort — oo

Definition 2.4:

A fixed point w* is asymptotically stable if it is both stable and convergent. It is globally
asymptotically stable if it is stable and all possible sequences of w(¢) converge to a
unique w* as t — oo. The system will therefore ultimately settle down to the fixed point
w* for any choice of initial conditions.

Therefore, we look for those points for which holds that

ow

= =0 (2.6)

In order to asymptotically analyze the stochastic method 2.5, it is assumed that the
weights change significantly slower than new data is presented. [12] This is achieved
via a small constant learning rate 1. Together with further reasonable conditions it can
be shown that the trajectories created in the stochastic method converge on compact
input sets in probability in the direction of the trajectories that are created in the averaged
dynamic. [8] [12]

Due to this, it is reasonable to average over the changes. Instead of calculating the new
weight w(z + 1) at every step only the change of the weight is investigated at each time
step r. We examine the learning over a time average, such that

ow
W =N ;W,'J'E[xix]'] = T]CW (2.7)

8 Chapter 2: The Hebbian principle

N
N
20 \
\
\
\
N\

-40 + /
/

-60 - / \
80f / \

100/

-120

5 0 5

Figure 2.2: Function 2.9 for dim(w) = 1.

where C is the covariance matrix. Therefore, if this method had fixed points, then

%—Vtv:nCw:O:OW (2.8)

would have to hold. Here w is an eigenvector of the matrix C with eigenvalue 0. The
above method can also be displayed as a gradient descent with function

F(w) = —%WTCW (2.9)

whose gradient is —Cw. [12] Figure 2.3 visualizes this equation for dim(w) = 1.

With the aid of the visualization, it is clear that 0 is not a stable fixed point but a local
maximum of the function to be minimized. Furthermore, it is visible that the correlation
of the input data is maximized in the direction w and these directions are possible fixed
points. Nonetheless, the length of w is not limited meaning the length of it tends to
infinity, because when

w/ Cw > 1,then (Aw)"C(Aw) >0for A > 1

is even larger. Therefore, the Hebbian learning rule is unstable. [12]

Nonetheless, we may argue the following proposition, taken from [12]:

Proposition 1:
w! Cw is maximised by e, as long as the vectors are of length 1. In the to e; orthogonal
room e, maximises w! Cw and in the to e, orthogonal room e3 maximises wlCw.

Proof: When w =) ;a;e;, then

w! Cw = (Zaiei)TC(Zaiei) = (Zaiei)T(Zliaiei)

Chapter 2: The Hebbian principle 9

= (alelT +... +ane,{)()qa1e1 +... +7Lnanen)

since (e;,e;) =0 fori# j and (e;,e;) = 1 for i = j, only the following terms remain
=har+...+Aa>

= Z lia,-z

if one assumes that A; > 4, > ... > A4, > 0, and knowing that all but maximum one q;
are zero, because the coefficients of the eigenvectors are unique except for the sign,
since they form a basis, we get
< leaiz =A
1

Via a similar calculation one can then prove that the maximum A;,; can be reached
through e; 1. O

To counteract the indefinite growth of vector w and the stability issues with the Hebbian
learning rule another formulation is needed.

Both Oja and Bienenstock et al. have developed a solution for this problem. [10] [1]
The Oja learning rule is presented in the next chapter and the BCM learning rule in the
chapter after that.

10

Chapter 3: The Oja neuron model 11

3 The Oja neuron model

The Oja learning rule of a neuron was proposed by Oja in 1982. He used the simple
neuron model and Hebbian learning as a starting point for his theory and found a way
to prevent the previously described indefinite growth of the synaptic weights, as well as
making the learning rule parallelizable to ensure faster calculation of the weights. [10]

The Oja neuron is mathematically the same as Hebb’s neuron in Eqg. 2.2 . [10] The input
data x is a realisation of a random vector and is independently and identically distributed,
according to some underlying probability P. It is assumed that Ex [x] = 0. [6]

3.1 Oja learning

The Oja learning theory takes the Hebbian learning scheme in equation 2.4 as a starting
point. To prevent the indefinite growth of a synapse, the Hebbian learning scheme is
normalized. This normalized learning equation is expressed componentwise as

wi(t) +ny(0)xi(r)
(?:I[Wi(f)—|—ny(t)xi(t)]2)1/2

Wi(t—i—l): (3.1)

whereas the vectorized notation is

W)+ my)x()
VD=) T ox0)] 82)

where w(z) symbolizes a weight vector at time z. [10] The normalization ensures that
||lw(t)|| =1, Vt. Furthermore, x(¢) € R", and x;(¢) € R, meaning we drop the positivity
requirement stated in the previous section that x; > 0, Vi. This learning does not attempt
to be biologically accurate anymore.

3.1.1 Convergence of Oja learning

The following propostition is taken from [12].

Proposition 2:
Equation 3.1 and equivalently 3.2 converges in the mean to e; or —e;.

Proof: The expression e/ w(t + 1), where w(t + 1) is the averaged vector is calculated

as:
1—1—171,'

[lw(2) +nCw()]

B w(t)+nCw(t) B
WD) = e ncwon -~ 9 0

12 Chapter 3: The Oja neuron model

:el-W t
W@ [1+nA4] ()1+nM

The last equation holds since ||w(7)||=1and A; > A, > ... > 4, > 0.

<e; w(r)

The coefficients of the vector w are given by el-Tw regarding the basis ej,es,...,e,.
Therewith, the coordinates of w regarding the basis are given by

1+nX 1+n2,\"
(W(I)I,W(I)ZT%,.. .,W(l)nm

where w(z); are the old coefficients regarding the basis.

(3.3)

The second 0 < llig%i < 1 decreases as i increases. Therefore the coefficient in the

direction of e is comparatively large. At every time step ¢ the coefficients in the other
directions decay while the one in the direction of e; becomes larger in comparison.

There is a special case, when the coefficient in the direction of e; is initialized as 0.
Then equation 3.3 would converge to 0. If w(0) is initialized randomly, the probability of
this event is 0. O

While this algorithm to determine w is convergent, it is also numerically unstable and
not parallelizable. [12] Therefore another form must be found, which is the main result
presented in [10].

3.1.2 Computationally efficient learning for parallel computers

Equation 3.1, and therewith also equation 2.2, requires global information to perform cal-
culations, meaning all weights w;(¢) are necessary to change a single weight w;(r + 1).
[12] Therefore, equation 3.2 is expanded as a power series at 19 = 0. Oja learning
reasonably assumes that the learning rate n is small which leads to the second and all
higher powers of 1) being vanishing such that they can be neglected. [10]

We use y = w’ x in the stochastic equation 3.2, such that

W+ T[WTXX
S 3.4
and approximate this with the first 2 terms of the Taylor series:
w wHnwixx \’
fMo=0)~ —+M—"o (—) (10 =0) (3.5)
o =00 g 012100 { o we]

Chapter 3: The Oja neuron model 13

In the next step, 19 = 0 is substituted and the quotient rule (§>/ = (f@eg;zg’f) and the chain
rule (f(g(x))" = f'(g(x))g'(x) are used.

T T (wT
wo (i = (v g T (0 =0) (3.6)
[Iwli [lw+nw!xx||?
W (WTXX wawax) @.7)
[Iwl| [[wl] [[wlf? '
When considering ||w|| ~ 1, we can simplify eq. 3.7 to
w(t+1) =w(t)+n(wt) xx— (w(t) x)*w(t)) (3.8)

which is the stochastic version of the Oja rule. [12] It is a nonlinear stochastic difference
equation. [10] Here the term w(t)Txx represents the usual Hebbian synaptic modifica-
tion and —(w(z)7x)?w(t) signifies the forgetting of the neuron. [6] When averaging over
the inputs, the stochastic version above can be turned into the averaged version of the
learning rule such that

w(t+1) =w()+n(Cw(r) — (W) Cw(r))w(r)) (3.9)

applies. [12]

3.1.3 Stable fixed points of Oja’s learning rule

The averaged learning rule is now investigated for stability, knowing that convergence
is verified by proposition 2. This can be done via the Jacobian matrix, as stated in the
following theorem that will be left without proof, taken from [13].

Theorem 3.1:

LetU C R", F € C'(U,R") and w* € U fulfills the fixed point equation F(w*) = 0. If
all eigenvalues of the Jacobian Matrix 3—5(W*) have a negative real part, then the fixed
point w* is asymptotically stable.

The following proposition follows the one presented in [12]:

Proposition 3:

Fixed points of the averaged Oja learning rule are the principal conponents, and the zero
vector. The only stable fixed points are the vectors e and —e, which are the principal
components with the largest eigenvalue.

Proof: As the starting point we take the averaged learning rule 3.9 and recall that for

14 Chapter 3: The Oja neuron model

fixed points we have that:

aa—v: =0 = n(Cw—(wTCw)w) =0 = Cw= (WTCW)W

since 1 # 0. Therefore, w is the eigenvector of C with the eigenvalue A = w/ Cw or
w = 0. When w # 0, then we can say that w = ae; with a # 0. Here, all ¢; form a basis
and e; represents an arbitrary basis vector within this basis. Then:

Aw = Aae;=Cae; = Cw = (WTCW)W = (oce,-)TC(Ocei)aei =ale — o =+1

Therefore, only the vectors e;, —e; and the zero vector are fixed points of the averaged
learning rule.

The stability of the fixed points can be investigated via the Jacobian matrix of the function
w i —(Cw — (w/ Cw)w). If the Jacobian matrix

J(w) = —C+ (w/ Cw)I+2ww!C

is positive definite at the fixed point the learning rule is stable. This is due to the fact that
we are not looking for a local minimum but a maximum, as explained after equation 2.9
and visualized in figure 2.3. Therefore, we check if

eJT-J(ei)ek = e]T(—C + (el Ce;)I +2e;ef C)ex > 0

since Ce; = Ae; and ef Ce; = A; we get:

0 jF£k
= —/lkejrek + QtiejT-ek + Ze;ei/lkeiTek =24 i=k=j
Ai—A; i#j=k

Investigating the first case, it is immediately visible that for the eigenvalue 0 and there-
with w = 0 the Jacobian matrix is —C, so negative definite, implying that the fixed point
0 is unstable.

Looking at the third case we assume that j =k #ileadingto A, —A; >0 Vj#i if i=1.
This means that e; or the negative, the eigenvectors of the eigenvalue A, is a stable
fixed point. Investigating the general case we look at whether any point converges to e;
or the negative via:

(Y ouer) I (&) (Y oner) = i ozer J(ei)e, = i e, J(e;)ex
k % k=1 k=1

Any point therefore converges to the stable fixed point e; or —e;.

Chapter 3: The Oja neuron model 15

The directions e; with i # 1 are unstable when they are approached from directions e;
wherej > i. Otherwise they are stable. O

16

Chapter 4: The BCM neuron model 17

4 The BCM neuron model

The third neuron model to be analyzed is the Bienenstock-Cooper-Munro (BCM) neuron
model. It constructs a model neuron model whose goal it is to maximize selectivity in
this neuron. The BCM learning rule extends the Hebbian learning rule by finding a way
to cause synaptic decrease. Whether the neuron inhibits or promotes an input pattern
depends on whether the output exceeds a variable threshold. [1]

4.1 BCM neuron

The BCM neuron is similar to the simple neuron model based on the Hebbian principle.
The Hebbian model assumes an input vector at a certain time ¢. All presynaptic signals
from this vector arrive at the postsynaptic neuron at this time . While the BCM neuron
functions the same way after all assumptions have been made, their model describes a
different way of how the inputs x come about. They assume that incoming spikes occur
on each of incoming synapses. The input vector x(¢) is then determined by averaging
over the instantaneous inputs over a period T which takes place between ¢t — 1 and
t.[1]

The neuron takes the inputs and weights at time ¢ and performs integration to deter-
mine the output at time 7. The model is then simplified further by assuming that the
integrative power of the neuron is a linear function. Then the neuron model can be
parametrized just like the neruon in equation 2.2. In which exact way the neuron per-
forms the integration may be changed. The "results remain unchanged if, for instance,
y(t) = S({w(t),x(z))], with S being a positive-valued sigmoid shaped function". [1]

As mentioned before the neuron attempts to maximize selectivity. How to determine the
selectivity is given by:
mean response of N with respect to X

Sely(N)=1-— 4.1
elx(N) maximum response of N with respect to X 1)

where N is the neuron and X is an R"-valued random variable associated with the in-
puts x. It represents a stationary stochastic process. At a time ¢ a random input is
given according to the time-invariant probability distribution of the random variable. The
selectivity always lies between 0 and 1. When the selectivity of the neuron is high then
Selx (N) is close to 1 and vice versa. Applying these definitions to the neuron in state

w, we get
Ex [(w,X)]

ess sup[(w,X)]

Selx(w)=1— (4.2)

when parametrized. [1]

18 Chapter 4: The BCM neuron model

Due to the linearity of the expectation operator [E we may transform this definition to

read:
(W,X)

<

—1— —1—

max({w,X)) max(y)

where y = Ex [y], X = Ex[x].
The max(y) is not the same as ess sup(y) but "is equivalent [...] in most common
applications”. [1]

The average X, and therewith also y, is determined over a time period 7', preceding
t. It is determined over a much larger time period than the moving time averages are
determined, such that T < T'. The time step ¢ is increased by one and the weights are
recalculated each time a time period 7 passes, and a time average of the input spikes
has been determined. This causes y(¢) to change at a much slower rate than y(z). [1]

4.2 BCM learning

The following is the basic equation of learning proposed in [1]:

avgt(t) = N Pacu (¥ (1), 0)xi(2) — Nowi(t) (49

where ¢,.,(y(2),0) is a scalar function of postsynaptic activity that changes sign at a
value 0, called the modification threshold.

Oscn (¥(2),0) <Ofory< 6 (4.4)
Osen(¥(1),0) >0fory > 6

This learning equation is only dependent on the input to and the output out of the neuron,
as is the case for unsupervised learning rules. The term —now;(¢) causes a uniform
decay of the weights. Due to 0 < 1y << 1, this does not affect the behavior of the
neuron and therewith the dynamical system. This is why it is neglected form here on.
The learning rate n,, is 0 < n,, < 1. [1]

The vector w develops in the direction of X if the output is larger than the threshold 6
and in the opposite direction of X if the output is smaller than 6. This is analogous to the
Hebbian principle, where when x € R",with x; > 0 Vi and the output y is large enough,
the weight w increases. However, BCM learning features synaptic decrease through
the function ¢ and when when x € R",with x; < 0 Vi and the output y is not sufficiently
large, the weight w decreases. This can be regarded as a form of competition between
input patterns x. [1]

Chapter 4: The BCM neuron model 19

4.2.1 Issues with a fixed threshold

The idea of the modification threshold in a learning scheme was introduced in [3] using a
constant threshold. The definition of the threshold 6 fundamentally influences the func-
tion of the neuron and must be chosen in such a way that the learning rule converges
to a fixed point and is stable.

The constant threshold was proposed as a function that takes the output y as an input.
The function modifies the output according to a postsynaptic firing threshold 6 and the
saturation limit of the neuron p.

woy>p
P(y)=<Ry 6<y<u (4.5)
0 y<o

However, this "resulted in a certain lack of robustness of the system". [1]

Their mathematical results only showed weak asymptotic convergence of the weight
vector. The limit of the expected value of the weight vector w is "only an average limit
in a large number of similar cells." When the learning rate is small the "actual limits
tend to be close to w", however, the" non-zero variance in w [causes] variations in
asymptotic tuning in individual cells". Sometimes the "model neuron might even change
its preferred pattern." [3]

While it shows only weak convergence and is unstable, it already displays properties
that are important for modeling the biological neuron accurately. Given patterned input
the response of the neuron increases in specificity, while when given noise-like input
the neurons response decreases in specificity. Furthermore, if specificity was lost due
to noise-like input, it can be regained through patterned input. "Even with relatively high
noise levels, with signal to noise ratios considerably smaller than one," the neuron is still
able to extract the patterned input and does this qualitatively similar to when there is no
noise. Therefore, the learning algorithm already has good averaging properties. [3]

4.2.2 An appropriate choice of ¢,., and 6

Due to the issues with the fixed threshold described above, a better choice for ¢ and 6
must be found that ensures the learning algorithm converges and is stable. For this the
threshold 6 is made a function of time 6(¢) and is modified at every time increment. The
average output y is introduced to the function ¢,.,(y(2), 0) that takes the output at time
step ¢ and the average output up until time step ¢ into account. The use of y here ensures
the "boundedness of the state and efficient threshold modification". Furthermore, stable
fixed points exists, if they are of high selectivity. This is easy to see at a fixed point with

20 Chapter 4: The BCM neuron model

zero selectivity. Any input would drive it away from its current state to a state of higher
selectivity. [1]
Including this and neglecting the uniform decay, Eqg. 4.3 can be modified to read:

)
S = M (¥(0), O)x(1) (4.6)

The function ¢, (v(¢),6) changes sign depending on the crucial point 8 according to
4.4. A simple choice of 8 would be y, the average postsynaptic activity. However,
while this does provide the desired property of instability of low selectivity points, it is
not bounded from the origin and infinity. [1] Hence, the final choice for @, (y, 0) is this
nonlinear function that provides both desired properties:

>)4
SIgNPyey (,y) = sign y (y - <y(y—0>> i) for y>0 (4.7)
Osen(0,y) =0 forall y

where y(0) and p are distinct fixed positive constants. This means that the final choice
for O is: .
y —
0=|—=] Y
(y(O))

Any function ¢, that fulfills these conditions is satisfactory and may be chosen instead
of the one written here. Factors such as the maximal response of the neuron and the
convergence speed depend on the the numerical values of y(0) and p. [1]
In the following y(0) and p are chosen to be y(0) = p = 1, making 6 = y2.

4.2.3 The final learning equation

BCM learning is proposed as follows:

0
a_\;V = NwXPsen (¥, 0) = NuwXy(y — 0) (4.8)

with 0 being a sliding threshold that changes over time just like w. The function
(pBCM = y<y - 9)

takes the output y of the neuron and 6 = Ey [yz] as an input and determines whether y
is large enough to promote a future signal transferred inward via the i’ synapse or to
inhibit it. The change over time of the threshold 6 is proposed as:

=5 = Ne(»* —6) (4.9)

Chapter 4: The BCM neuron model 21

Originally it was assumed that 8 = E%[y]. It has been shown that this can be well
approximated by 6 = Ey [yz]. As this includes the variance of y it will always be positive.
This change "ensures stability even when the average of the inputs is zero". [9]

4.3 Convergence and stability theorems and lemmas

The random variable X influences the behavior of the dynamical system. 4.8 In this
thesis only discrete distributions are considered and the K possible inputs xi,...,x, €
R" are assumed to have the same probability % The stochastic process X is a jump
process that randomly chooses an input at each time ¢. [1]

The following lemmas and theorems are stated in [1] and describe why the BCM learning
rule converges and is stable. They are quoted using the notation defined in 1.1.

Lemma 4.1:

Letx; andx; be linearly independent and X satisfy P[X = x;] = P[X = x| = %. Then for
any value of ¢, satisfying 4.7, 4.6 admits exactly four fixed points, w°, w!, w?andw'?
with: Sely (w°) = Sely (w!?) = 0 and Sely (w') = Selx(w?) = 1. (Here the superscripts
indicate which of the x; are not orthogonal to w. (w° is the origin.) Thus, for instance,
<W1,X1> >0, <W1,X2> =0.)

Theorem 4.2:

Assume that in addition to the conditions of lemma 4.1, cos(x',x*) > 0. Then w° and
w!? are unstable, w' and w? are stable, and whatever its initial value, the state of the
system converges almost surely (i.e., with probability 1) either to w' or w?.

Theorem 4.3:

Under the same conditions as in theorem 4.2, there exists around m'(m?) a region
F'(F?) such that, once the state enters F'(F?), it converges almost surely to m' (m?).

Lemma 4.4:

Letx',x?,...,x" be linearly independent and X satisfy PIX =x'|=---=PX =x"] = 1.
Then, for any function ¢ satisfying equation 4.7, 4.6 admits exactly 2" fixed points with
selectivities 0,1, 2, ... "=1_ There are n fixed points w',w?,...,.w" of selectivity 1.
Theorem 4.5:

Assume, in addition to the conditions of lemma 4.4, that x',x?,...,x" are all mutually
orthogonal or close to orthogonal. Then the n fixed points of maximum selectivity are
stable, and whatever its initial value, the state of the system converges to one of them.

While this is valid according to [1], we may also investigate this learning rule in the same
manner as the stability analysis in section 3.1.3.

22 Chapter 4: The BCM neuron model

4.4 Fixed points of the learning rule

The learning rule is analysed as noted in 4.8. The fixed points can be determined by
setting the learning equation to zero, as stated in 2.1, such that

0 = 1, X¢pcr (v, 0)

The learning rate n,, is never 0, meaning we are only left with

0 = X@pcn (1, 0)

We rewrite the learning rule as

ow
5 = PCO (4.10)

where C € R"*" is the covariance matrix of the input vectors x and P € R"*" contains
the probabilities p; of an input x; occurring on the main diagonal and is otherwise 0. The
vector @ € R" is made up of the function ¢;, i = 1,...,n, which returns a scalar when
evaluated.

When we want that PC® = 0 and PC is not regular then & is in the kernel of it. To
avoid this, we assume that C is regular and that it has eigenvectors e; € R”. Any input x
can then be represented by x =)}, oiex. We will only consider the eigenvectors e; as
inputs. This ensures that the we have a finite number of mutually orthogonal vectors.

Therefore, all possible outputs are
n
y,-:WTe,-: ijeij (4.11)
j=1

and

0 =Ex[y*] = z:;),~(wTe,-)2 = ZpiZ(w]Teij)z (4.12)
i i

We assume that p; > 0, Vi.
Using the information above, we attempt to find the fixed points of ¢(y,6) = 0.

First, we take n = 1. This way we get from 4.11 that y; = we; and from 4.12 that
0 = p1(we;)?. When substituting this into ¢(y,0) = y;(y; — 0) and setting it to zero to
find the fixed points we get:

wey(weq —pl(wel)z) =0

I—piwe; =0

Chapter 4: The BCM neuron model 23

For n =2, we have
T T,
YI =W el =wier] +waez, y2 =W € =Wwiex] +waexn

and
O»¥)1=y1(01—6), ¢(»¥)2=y2002—10)

where 6 = p1(w'e;)? + py(w'e;)? and e; = (e11,e12)” and e, = (e21,e2)" .
We substitute this into
01 =y1(y1—0)=0 and ¢pr=y(y2—6)=0

and then first calculate w; and then w,. The exact calculations are added in annex A.
Here we just state the result.

wit,12 = —(e11 — p12waerierr — 2pawaerien)

2

N \/(611 — p12waeriern —2pawaerien)? —4(—pie] — paeyt)(—pawgeys +waen — piwie3)

2(—pief] — paeyi)

where a # 0. wy is the expression with a plus before the square root and w; is the
expression with a minus before the square root. For wy; the two possible second coor-

dinates are:
—y+ /v —4xz
2x

The exact for values of x, y and z can be found at the end of annex A. A similar calcu-
lation can be conducted in order to identify the second coordinates for the fixed points
with w1, as the first coordinate.

w2122 =

We have therefore identified 4 possible fixed points. This is how many should exist
according to 4.1 and 4.4. As the determination of the Jacobian matrix J(w*) requires
extensive calculation, it can be questioned, how sensible it is to determine fixed points
in this manner to evaluate their stability, especially when n > 2.

24

Chapter 5: Summary 25

5 Summary

After introducing three neuron models and their learning rules, as well as analyzing
them with respect to their convergence and stable fixed points, we now compare how
they model a neuron and determine a learning rule. Furthermore, how to determine
fixed points and evaluate their stability is outlined to apply to other neuron models and
learning rules.

5.1 Neuron models

The neuron model of the three models is the same in the sense that it can be noted by
equation 2.2.

However, Hebb restricts the parameters biologically to be positive. [10]

Oja removes the positivity requirement and defines x to be a realization of a random
vector that is independently and identically distributed according to an underlying prob-
ability. Furthermore, Ex[x] = 0. [10] [12]

BCM treats x at time ¢ as an instantaneous variable, just like Oja and Hebb. However,
how x is determined differs. It is an average taken over all input spikes in a time period
T lasting from ¢t — 1 to ¢. For the analysis later on, it is assumed that there is a finite
amount of possible time averages xi,...,x; € R"” that occur at a time ¢ with the same
probability ;. [1]

5.2 Learning rules

The three learning rules are:

Hebb: N = nx(t) 9, (y, 0) = w(t) +nyx(t)
Oja: W = n(xy—y>w(t))
BCM: W — DX (1,0) = NuXy(y—) , 8 =Ex[y?].

Hebbian learning does not have a way of causing synaptic decrease, leading to it not
converging. It has no stable fixed points. [12]

Oja learning normalizes Hebbian learning and the learning equation written above has a
specific term that causes the synaptic decrease. The stable fixed point of Oja’s learning
rule is an eigenvector of the covariance matrix. [10]

26 Chapter 5: Summary

The BCM learning rule is characterized and stands out in comparison to the other rules
by the fact that it has a threshold for determining when output signas are large enough
to be excitory or when they should be inhibitory. This threshold ensure the stability and
boundedness of the possible states w. The learning rule has stable fixed points, that
it converges to, when assuming that the inputs are mutually orthogonal, occur with the
same probability, and are of maximal selectivity. [1]

5.3 Determining fixed points and their stability

The fixed points of a learning equation that fulfills the conditions listed in 2.1 can be
determined via
F(w")=0

Whether the determined fixed point(s) are stable can then be determined according to
3.1. To check this the Jacobian matrix J(w*) of the fixed point is determined. Afterwards
the eigenvalues of this matrix are determined, which must be lower than zero.

To make the generalization to n dimensions easier, one can start withn =1 and n =2,
to see if the general case becomes clear this way.

Chapter 6: Conclusion 27

6 Conclusion

Three neuron models were presented with consistent notation and explained. For each
neuron model’'s learning rule the convergence to a fixed point and the stability thereof
were analyzed.

As a result it is clear that the simple neuron model and therewith the learning rule ac-
cording to the Hebbian principle must not be considered in further research, and can
only be used as a starting point to understanding other learning rules. It is an intrinsi-
cally unstable algorithm that does not converge to a fixed point.

The Oja learning rule, which extracts the first principle component, is both convergent
and has stable fixed points. Furthermore, the learning rule has already been optimized
to be numerically stable and parallelizable. Therefore, further research may be con-
ducted into how it can be efficiently implemented on different types of hardware.

The BCM learning rule attempts to maximize selectivity towards incoming signals. The
learning rule is both convergent and has stable fixed points. These stable fixed points
necessarily have a high selectivity. The stable fixed points cannot be efficiently deter-
mined using the method in this thesis. Further research may be conducted to determine
if there exists a different approach. It should be researched further, too, to determine its
use in neuromorphic hardware.

6.1 Outlook

The stable and convergent models presented in this thesis can be extended to networks
of interacting neurons. Investigating the properties of the neuron model in a network of
neurons ensures that the model will function the same way in a network as in isolation.
Furthermore, it can be investigated how fast a network of interacting neurons converges
to its final state. 1 The Oja learning rule has been extended by Sanger (Sanger, 1989)
to a learning rule called generalized Hebbian algorithm which not only extracts the first
principle component but all of them. This may or may not be necessary to research for
networks of interacting neurons.

In terms of the BCM learning rule, ways to improve the learning rule have been sug-
gested (Intrator& Cooper,1992; Law& Cooper,1994) since the original paper by Bienen-
stock et al([1]). These should be investigated for their convergence and the stability of
their fixed points.

Another concept and way to model a neuron that should be looked into is spike-timing-
dependent plasticity (STDP) and further its connection to BCM (Izhikevich et al., 2003).

28 Chapter 6: Conclusion

Moreover, a method of maximization of information transmission for spiking neurons
using a generalized BCM rule was developed (Toyoizumi et al., 2005), that should be
considered when researching STDP in connection with BCM.

Lastly, there have been a multitude of papers on the topic of neuron models for neu-
romorphic hardware. Their aid in the verification of the hypothesis stated in chapter 1
should be investigated.

Moreover, while the concepts mentioned in this thesis are mathematically sound, it is
not to say that they will indeed be computationally efficient. Only when knowledge about
this has been gained, will the theoretical knowledge of the neuron model help with larger
scale computations. The first implementations may be verified on a CPU. While this will
help get a better understanding of how well each neuron model performs, as explained
before, a CPU is not very efficient in its way of computing a result. Therefore, the
different models should be implemented to be run on a GPU and further, if possible, on
a quantum computer or neuromorphic hardware.

Appendix A: Calculation of fixed points of BCM learning for n=2 29

Appendix A: Calculation of fixed points of
BCM learning for n=2

After substitution the calculation goes as follows:

¢ =

yi—60 =

¢1 =wier +waern — (p1(whe)? + pa(w'er)?)

wierr +waera — (p1(wienn +waen)? + pa(wieas +waen)?) =
wier +waeir — piwie — p12wiwseriern

—piwses — pawPey] — 2pawiwaerien — pawieys =
—lelzel% —P2W12€z% +wier — pi2wiwzerienn
—2pawiwaerien — pawiess +waenn — piwies =

2 2 2 2 2 2 2
wi S_plell —P2€21)J+W1 (611 — p12waeqienn —2P2W2€213222jP2W2 ey +woep —piwye; =

-~ -~ -~

a b c

We can solve this quadratic equation via the quadratic formula, by assuming a # 0:

—bVb? —4dac

2a = —(e11 — p12waeriern — 2pawrerienn)

WiL,12 =

\/(611 — pi2waeriern — 2pawrerien)? —4(—pie}t — paes7)(—pawie,s +waern — piwie,3)

2(—pier — prer])

w11 is the solution using the plus sign, and wy; is the solution using the minus sign.

Now we prepare y, — 6 = 0:

oS o o O

30 Appendix A: Calculation of fixed points of BCM learning for n=2

wiear +waen — (p1(whep)? + pa(wler)?)

wiez +waexn — (pr(wier +waern)? + pa(wiear +waen)?)

wiez1 +waexn — piwie] — pi2wiwaeien — piwsers — pawPey — 2pawiwaerien — pawiess
—P1W126’1% - P2W1262% +wiex1 — pi2wiwserierr — 2pawiwaerien +waexn — P1W22€1% - P2W22€2%

2 2 2 2 2 2 2
wi (_Plen - P2€21) +wi (621 — p12waeqiern — 2P2W2621€22) +waexy — prwye; — pawsexn

Here we substitute w; = wyy:

—(e11 — p12waeriern — 2pawserienn)
2(—Ple1% _PZez%)

\/(811 — p12waerien — 2pawaerien)? —4(—pie,] — paeyt) (—pawiess +waein — piwie,3)

+
2(—17161% _PZez%)
-(e21 — p12waerie1n — 2pawaenienn)
—(e11 — p12waerie1n —2pawarenienr)
+ p p
2(—1’91611 _PZezl)
2

. \/(6’11 — p12waeriern — 2pawaeaiens)? — 4(—piet — paeyd)(—pawie +waenn — P1W22€1%)>

2(—Ple121 _PZez%)
'(_plel% _P2€221)

2 2 2 2
+waexn — piwye;; — pawyey; =0

First, we attempt to solve the first 2 terms of the array:

—(e11 — p12waeriern — 2pawrerienn)
2(—P1€121 _P2ez%)

\/(611 — p12waeriern — 2pawrerien)? — 4(—piet — prey]) (—pawges +waein — piwie3)
2 2
2(—pie;] — p2ey7)
- (€21 — p12waerierr — 2pawaerien)

+

o O O O O

Appendix A: Calculation of fixed points of BCM learning for n=2 31

_ —(e11 — p12waeriern — 2pawrerienn)(e2r — p12waeriern — 2pawerien)
= 2 2
2(_p1611 —P2€21)

2

2 2 2,2 2,2
\/(611 — p12waeriery —2pawaenien)? —4(—pire| — paey1)(—pawseys +waep — piwse ;)

|

2(—pie — paer)
-(e21 — p12waerie1n — 2pawrerienr)
2(—17161% _PZez%)

Now we focus on the first term of the equation above:

—(e11 — p12waeriern — 2pawaerienn)(ea) — p12waeriern — 2pawaerienr)
2 2
2(_}?16’11 —p2€21)

_ (—e11+ p12waeriein + 2pawarenien) (e — pi2waeriern — 2pawaenienr)
2(—pies — paes?)

_ —eyi(ear — p12waeriern — 2pawaenien)

2a
N 2piwaerierz(ear — p12waeriern —2pawsenien)
2a
N 2palwaerien(ea) — pi2waerierr —2pawserienr)
2a
— 2woe 2 2
ej1ex1 | pi1iwaejjern eri2pawoenien
= + +
2a 2a 2a
2 4 2.2.2_2 4 2
€212pP1wW2€11€12 PiWy€11€12 P1p2wWy €11€12€21€22
+ — —
2a 2a 2a
2 4 2 4 2.2 2 72
pawae21€22€3] P1P2wWy e11€12€21€22 Dy Wy €y1€y5
+ — —
2a 2a 2a

Next, we rejoin all the resulting terms of the first 2 terms, which are:

32 Appendix A: Calculation of fixed points of BCM learning for n=2

2 2.2.2,2
—ej1ez] +P12W2€11€12+2€11P2W2€21€22+2€21P1W2€11€12_4P1 wiejie);

2a 2a 2a 2a 2a
2 2 222 2
_4pipawyerienerien n 2pawrerienerr Apipawserienezien 4p;wyey ey
2a 2a 2a 2a

\/(6’11 — p12waeriern — 2pawrerien)? —4(—pie}T — paes7)(—pawie,s +waern — piwie,3)

+

2a
(€21 — p12waerie1n —2pawaerienn)
2a

As the next step we solve the third and fourth terms. For this we use the notation from
when we found w12 to keep a better overview:

a2b2 —2bVb? — dac — dac

4a?

1
- 2—(b2—b b%* —4ac —2ac)
a

Here we resubstitute the terms a, b, c:

1
= (e11 — p12waerie1n — 2pawaerien)?
2(=piej] — p2ey}) (

— (e11 — p12waeriern — 2pawaenienn)

: \/(811 — p12waeriern — 2pawrerien)? —4(—piejt — paes7)(—pawie,s +waern — piwie,3)

2 2 2 2 2 2
- 2(—171611 _pZeZI)(_pZWZ €y); +waepp — p1w; e12)>

Since a does not contain the term w,, we will continue using it throughout for simplic-
ity:

Appendix A: Calculation of fixed points of BCM learning for n=2 33

2
(e11 — p12waeriern —2pawrerienr)

2a
_ (e11 — p12waernern — 2pawzesien)
2a
2 2,2 2,2
\/(en — pi2waeriern — 2pawrerien)? —4(—piet — paest)(—pawie, +woern — piwie,3)
2a
2,2 2,2
_ 2a(—pawjeys +waenn — piwse;)
2a
2
_ (e11 —p12waeqrern —2pawaerien)
2a
_ (e11 = p12waeriern —2pawrerien)
2a
2 2,2 2,2
\/(611 — p12waerienn = 2pawsenien)? —4(—piej] — paeyt) (—pawieys +waerr — piwye3)
2a

2 2 2 2
+ pawyex; —waen +piwser;

Again, we first focus on the first term and solve it:

(e11 — p12waeriern — 2pawrerienn)(er1 — p12waerierz — 2pawrenienr)
2a

1
= 5(611 (e11 — p12waeriern — 2pawrerienn)
—p12waeriern(ern — pi2woerierr —2pawaenien)

—2pawaeaien(ern — pi2waerierr —2pawaenien))

2 2
el 2piwrejiens 2pywrerierien
a 2a 2a
2 2.2 2 2 2
2piwaejiery | 4piwyeie)s | 4pipawjerienezien
- + +
2a 2a 2a
2 4 2 Ap2wlel 2
pawreriezien 4pipawserieinerieny 4pywsesiess
2a 2a 2a

34 Appendix A: Calculation of fixed points of BCM learning for n=2

Here, we rejoin all resulting terms of the third and fourth terms:

2 2
e;] 2piwaejjenn 2pywrerierien
a 2a 2a
2 2.2 2 2 2
2piwaejieny | 4piwyeie)s Apipawyeriernerien
- + +
2a 2a 2a
2 4 2 4 2..,2,.2 2
pawaer1ez1€22 P1P2wWy€11€12€21€22 Py Wy €71€95
- + +
2a 2a 2a
(e11 — p12waeriern —2pawaerienr)
2a

2 2 2,2 2,2
\/(611 — p12waeriern —2pawaenienn)? —4(—piejs — paeyt) (—pawseys +waers — piwses)
2a

2 2 2 2
+ pawyex; —waen +piwsers

Lastly, we rejoin all terms resulting from the equation substituted on page 30:

2 2
e;] 2piwaejjern 2pywrerierien
a 2a 2a
2 2.2.2 2 2
_2P1W2611€12+4P1 ernen+4P1P2W2€11€12€21€22
2a 2a 2a
2 4 2 4 2..2,.2 2
_ p2W2611€21622+ Puvzwz€11€12€21622+ Py Wy €71€95
2a 2a 2a
2
er1e21 p12waejjerr | 2ejipawzenien
— + +
2a 2a 2a
2 4 2..2.2_2 4 2
e piwaerien PiWr€11€12 P1p2wyer1€12e21€22
| i —
2a 2a 2a
2 4 2 4 2.2, 2, 2
pawsenrenen] P1D2wWy€e11€12€21€22 Pr Wy €r1€5)
+ —_ —
2a 2a 2a
(e11 — p12waeriern —2pawaerienr)
2a

\/(611 — p12waeriern —2pawaerien)? —4(—pie] — paeyt)(—pawgeys +waern — piwie)
. 2a
\/(611 — p12waeriern — 2pawrerien)? —4(—piet — paest)(—pawie, +woern — piwie;
2a
(e21 — p12waeriern —2pawaerien)
2a
+ pawseys —waenn + piwiers

+

2 2 2 2
+woexn — piwje; — pawsies; =0

Appendix A: Calculation of fixed points of BCM learning for n=2 35

In the next step, we removed terms that cancel out in the previous equation, to get:

2 2
ej _enex 2piwrejienn N 2piwaerierner

2a 2a 2a 2a
2pawreriezies | 2pawaeriennern
— + —wrer2 +woenn
2a 2a
_ (e11 = p12waerern —2pawrerien)
2a
2 2,2 2,2
\/(611 — pi2waeriern — 2pawrerien)? —4(—piet — prest)(—pawie,; +woern — piwie,3)
2a
2 2,2 2,2
\/(611 — p12waeriern — 2pawrerien)? —4(—piet — prey]) (—pawges +waein — piwie
|
2a
(€21 — p12waeriern —2pawneriens) 0
2a N

To minimize the the number of times that 2a is in the equation, we multiply everything
by 2a.

Furthermore, we join the last two terms by factoring out the square root term.

woerp woen)
2a 2a

2 2
e;1—er1ea1 —2piwaeiern+2piwaeriener; —2pawrerieziexn +2pawreriexnerr —

+ \/(611 — p12waeriern — 2pawaeriens)? —4(—pied — paer])(—pawie +waein — piwie 3)

-((e21 — p12waeriern —2pawnerien) — (e11 — pi2waeriern —2pawaerien)) =0

We solve the third line of the previous equation

waei2 Wwaen
2a 2a

2 2
ej1—er1ex1 —2piwaeiern+2piwoerieiner; —2pawoerieriexn +2pawaeriener) —

+ \/(611 — p12waeriern — 2P2W2€21€22)2 - 4(—1916121 - pzeﬁ)(—pzwzzeé +woerx — pi szeé)

(e21—e11) =0

Moreover, we take the square root term to the other side of the equation:

36 Appendix A: Calculation of fixed points of BCM learning for n=2

2 2

ej] —er1ex1 — 2piwae ern +2piwaererzen)

woely waenn
2a 2a

- 2p2W2611321322 + 2p2W2621322321 -

(e11 — p12waeyie1n — 2pawaenienn)? —da(—pawie +woern — prwie,3)
€95 2 €13

-(e11 —ea1)

We then square both sides to get rid of the square root:

2
(e11 — p12waeriern — 2pawrerienr)

- 40(—P2W22€2% +woegr — lezzeé) (611 — e)2

2 2

(e11 —e11e21 —2p1waeijern +2piwaererner)

waejp waexn
2a 2a

)2

—2pawseriezien +2pawarerienerr —

We first solve the left side of the equation in isolation

2 2 2 2 2 2
(e11 — p12waerierr —2pawserien)” —4a(—paws eys +waein — piwsers) (e —ean)

2 2 2 2.2 2 2

= e|] —2p1waejie12 — 2pawaerierieny —2piwaeiern +4piwi e ie)s
2 2 222 2
+4pi1pawserierneriernr —2pawaerieriexn +4pipaws erierneriexn +4p; wses exn

— (4ap2w22e2% +4awyeip — 4ap1W22€1%)(€1% —2eq1€21 + 62%)
To keep the overview we now solve the third line of the previous equation in isolation
4apywier; (e —2enen +erf)

2 2
- 4aW2612(611 —2e11€21 —|—621)

2,202 2
+4apiwyep(eg] —2enez +esi)

Appendix A: Calculation of fixed points of BCM learning for n=2 37

2,2,2 2 2 2,2,2 2
=4daprws e 1es; —8aprws erexiey; —4apaws er1er; —4aware el

2 2 2 2 2 2 2 2 2
+ 8awperierner; —4awrernes] +4apiwsejier; —8apiws erreze21 +4apiwseses]

Then we rejoin all the terms of the left side of the equation:

2 2 2 2.2 2 2
e1] —2piwzejieir —2pawaerieziens — 2piwaeriein +4piwseiers
2 2 222 2
+4pi1pawserernerienr — 2pawaerieziexn +4pipawserierneriexn +4p;wses e
2 2 2 2 2 2 2 2 2
+4apows e ier; —8apaws errexrer; —4apaws eriers —4aware el

2 2.2 2 2 2 2.2 2
+ 8awseqierner; —4awrerney| +4apiwy e je; —8apiwsere|zexr +4apiwsejses]

38 Appendix A: Calculation of fixed points of BCM learning for n=2

Now we move on to solve the right side of the equation:

waei2 W2€22)2

2 2
(611 —eriezl —2p1W2€11€12+2p1W2€] 1€12€21 —2P2W2€1 1621622+2P2W2€21€22€21 - 2 2

2, 2 2
=ei(e;] —er1ea1 —2piwaeiiern +2piwaerierner)

waeln erzz)
2a 2a

—2powaeqierien +2pawareniener; —

2 2
—e11€21 (611 —er1e21 — 2p1W2€11€]2 +2PIW2611612€21
wae12 W2€22)
2a 2a

—2pawaeriex1e +2pawaeriener) —

2 2 2

—2piweriern(e;] —eriear —2piwaeriern +2piwoeriernes;

waei erzz)
2a 2a

—2pawaeqier1e +2pawaeriener) —

2 2
+2piwaerrerneni(e] —er1e1 — 2piwaeriern +2piwaerierzer)
waei erzz)

2a 2a

—2pawseriezien +2pawreniener) —

2 2
—2powgeriezien(e|] —eriea —2piwaerierr +2piwaererzens
woer2 W2€22)

2a 2a

—2pawserierien +2pawaerienerr —

2 2
+2powserieneri(e] —er1ex1 —2piwaeern +2piwaerierzer)
waeqn erzz)

2a 2a

- 2172"‘}2€11€21€22 + 2p2W2€21€22621 -

waen2
2a

- 2172"‘)2811321322 + 2p2W2€21€22621 -

2 2
(e;1—er1ea1 —2piwaerierr +2piwaeriernen)

woely waep)
2a 2a

w27
2a

2 2
(e11 —er1ea1 —2piwareiern +2piwaeriernen)

waeéi2 W2622)

—2pawaerierrex +2pawaerienerr —
2a 2a

Appendix A: Calculation of fixed points of BCM learning for n=2 39

4 3 4 3 3
=e|] —ej1e21 —2piwoejiein +2piwoeiener —2powaeierien

erl%elz n erl%ezz
2a 2a
— 8218131 + 612162% + 2p1W2€131€12621 — 2p1W2€1%612€2%
woé11€12€21 _ woeéi1€21€22
2a 2a
—2piwaefienn +2pimaeriennear +4piwseieszers —Apiwyerieen

2
+2powse ieriexner —

2 2 2
+2powseieyiern — 2pawaeriesienerr +

2.2 2 2.2
piejiWy€p Piwyer1€i2en
a
3 2 2 2.2 3 2 2.2.2 2 2
+2p1waeienear —2piwaeiernes] —4piwyeiezear +4piwsieiiernes;

2 3 2 2 2
+4p1pawseiernerienr —4p1pawsejernes e +

2 2 2
piwyer1ezenl n piwserienerienn
a a

2 2 2 2 3
—4p1pawsejiernesien +4pipawserieneyjexn —

3 2 2 2 3 2 2 2
—2pawserierien +2pawaeieyien +4pipawseienerieny —4pipawseienesien
2 2 2
2wy einezien pawyerie1€;)
a a
) 2 5 3,4) 2 4 2 3
+2powreiierienner; —2pawaerie;iexn —4pipaws e ierneyjen +4pipawserienesien

222 2 2 2.2 3
+4pswyefiesien —2pywiere;en+

2 2 2. 2.2
2.2 3 2 2.2 4 2 Pawpeizey € Paw, €16y
—4pywierieyiesn +4pywiesen; — p + p
2 2 2.2 2 2
waei€i2 | wWaeiieinér | PiWy€q1€1; P1Wh¢€11€13€21
2a 2a a a
2 2 2 2.2 2
pawsré11€12€21€22 Paw,y€12€,71€22 Wh€er Wy €12€22
T N a2 2
a a 4a 4a
2 2.2 2
wae e woerieziexy piw;eq1€12€22 | P1W;€e11€12€21€22
+ — — +
2a 2a a a
2 2 2.2 2 2 2.2
B + B 7+ 2
a a 4a 4a

40 Appendix A: Calculation of fixed points of BCM learning for n=2

We join the right and left sides of the equation, such that

er] —2piwaeSern — 2pawaerieriens — 2piwaerienn +apiwie ie
+4pipawieriennerien — 2pawaerierien +4pipawierienerien +4piwiesiess
+ 461])2W22€1%62% — 861]92W22€11€21€2% — 4ap2w22e2%e2% — 4awzeﬁe12
+ 8awyeqierrer) — 4aW2612€221 +4ap1w2261%e1% — 8ap1W22€11€1%€21 + 4ap1W2261%€221

4 3 4 3
ej] —ej1e21 — 2piwaeqiern +2piwaeierern

erlzlelz 4 erl%e’zz
2a 2a
— ezleﬁ + el%eﬁ + 2p1wzeﬁelzezl — 2p1wzel%elzeﬁ
waé11€12€21 . waé11€21€22
2a 2a
—2piwae fern+2piwaerienner +4piwseiezel] —4piwyieiesen

3 2
- 2p2W2611621622 + 2p2W2€] 1€21€22€21 —

2 2 2
+2powneies1ean — 2pawaerieyienerr +

2.2.2 2,2
PieyiWa€n P1W;€11€12€22
a a

3 2 2 2.2.3 2 2.2.2 2 2
+2piwaeierneal —2piwaeierney] —4piwyeriezear +4piwyeiernes

2 3 2 2 2
+4p1pawseiernerienr —4p1pawsejeines e +

2 2 2
Piwy er1es3enn n piwserie1ezien
a a
p) 3 P 2 2 4 2 3 4 2 2 2
—2powneie1ex +2pawoe ey e +4apipaws egieiaeriey —4pipaws e|1e12e,1€22

2 2 2 2 3
—4p1pawsejiernes en +4pipawserierneyiexn —

2 2 2
pawseiiezien paw,ei1€21€;5)
a a

222 2 2 2 23
+4pswyefies ez —2pywieriezien +

2 3 2 2 2 2 3
+2pawseierienner; —2pawaerie;ien —4pipawselierneyien +4pipawserieneyien
2 2 2.2.2
2 2 3 2 2.2 4 2 Pawyennéy e paw,€,1€y
—4pywyerieyiesn +4pywyerienn — p + P
2 2.2.2 2 2
wae1€12 waeli€12€21 Piwsré1€p Piws€l1€13€21
2a 2a a a
2 2 2 2.2 2
pP2wyer1€12€21€22 pPaw,€12€,1€22 Whrey, W,€12€22
T N 2 2
a a 4a 4q
2 2.2 2
n woe1€22 Wwaeliez1€ Piw,€11€12€22 n pi1wyéejierner1enn

2a 2a a a

2 2 2,2 ,2 2 2,2

a a 4a? 4a?

Appendix A: Calculation of fixed points of BCM learning for n=2 41

Moving all terms to one side, factoring out wz2 and w, and simplifying, we get

2 2 4 2 2.3 2 3 2 2
0=w,"(4pie|ie;s —8pierieser +8piprerienerien, — 16p i preieines en

2,2 2
pPieji€1; P1€11€i2€22

222 2 3
+2 , +4piefiefres1 +4pi1p2eriernesyjen
2pieqie Ze eriepnere
12€21 pieiieinezien 22 2 2 2 3
— . +2 +4psefiesiesn —2psere; en
2
paeiiexier 2prerieies 3 2 3,2
+ ; = +4piprerienneyien —4pserieres
prennedienn . paeriers . preiieineien
+4pFesiey —2 I
a a
2 2 2
eiy 2epexn piejjenen | ep _4ple e
40> 4a? a 4a? PR

2.2 2 2 2 2
—38pip2eriennerien; —4psesiesn —4apre ier; +8aprerieriey;
2 2 2 2 2 2 2
+4apreyiey); —4aprerie); +8apierrezea; —4apieses)
2 2
611612+611822

a
€11€12€21 . €11€21€22

a

4 3 3 2
+wo(—4pie|jern+2piegennear —2paejieriear +2preiierienerr —

3 2 2 2 2 2
+2piejienerr —2prejierney] +6prejieien —2porerieyjener +

3 2 2 3 3
+4piejjernear —2prejieines] —2porejiezien —2parejiez exn
2 2 2
+2prejiein+4parerierienn +2prejern +4ae jern — 8aeyererr)

3) 4 2
—2ep1e11 tejjer] He] —eg]

Lastly we may use the quadratic formula to solve this equation as well, assuming that
x # 0, such that

—y+/y? —4xz
2x

w2122 =

Here x is what is in brackets after w7, y is what is in brackets after w, and z are the
leftover terms.

42

Bibliography 43

Bibliography

[1] Elie L. Bienenstock, Leon N. Cooper, and Paul W. Munro. Theory for the Develop-
ment of Neuron Selectivity: Orientation Specificity and Binocular Interaction in the
Visual Cortex. The Journal of Neuroscience, 2(1):32—48, 1982.

[2] Dr.-Ing. Marco Breiling. Neuromorphic Hardware, 2022.

[3] Leon N. Cooper, Fishel Liberman, and Erkki Oja. A Theory for the Acquisition and
Loss of Neuron Specificity in Visual Cortex. Biological Cybernetics, 33:9-28, 1979.

[4] Neil R. Euliano. Neural and Adaptive Systems: Fundamentals Through Simula-
tions. Wiley, 2 edition, December 1999.

[5] lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, volume 1.
Massachusetts Institute of Technology, 2016.

[6] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 2.
edition, 1998.

[7] D.O. Hebb. The Organization of Behaviour. New York: Wiley & Sons, 1949.

[8] Kurt Hornik. Approximation Capabilities of Multilayer Feedforward Networks. Neu-
ral Networks, 4:251-257, 1991.

[9] Nathan Intrator. Feature Extraction Using an Unsupervised Neural Network. Neural
Computation, 4:98—-107, 1992.

[10] Erkki Oja. A simplified Neuron Model as a Principal Component Analyzer. Journal
of Mathematical Biology, 15(3):267—273, 1982.

[11] Thomas P. Trappenberg. Fundamentals of Computational Neuroscience. OUP
Oxford, 2. edition, 2009.

[12] Thomas Villmann. Computational Intelligence | - Neural Computation.

[13] Thomas Villmann. Mathematik fuer Molekulare Biotechnologie/Bioinformatik. 3.02
edition, 2020.

44

Erklarung 45

Erklarung

Hiermit erklare ich, dass ich meine Arbeit selbststandig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig flr
Prifungszwecke vorgelegt habe.

Stellen, die wortlich oder sinngeman aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, 03.08.2022

