
MASTER THESIS

Mr.
Muhammad Usman Khan

Embeddings for Product Data

2022

Faculty of Applied Computer and Life Sciences

MASTER THESIS

Embeddings for Product Data

Author:
Muhammad Usman Khan

Study Programme:
Applied Mathematics in Networks and Data Science

Seminar Group:
MA19w2-M

First Referee:
Prof. Dr. Thomas Villmann

Second Referee:
Dr. Rudolf Sailer

Mittweida, August 2022

Bibliographic Information

Khan, Muhammad Usman: Embeddings for Product Data, 79 pages, 20 figures, Hochschule
Mittweida, University of Applied Sciences, Faculty of Applied Computer and Life Sciences

Master thesis, 2022

This document is copyright protected

Abstract

The E-commerce industry has grown exponentially in the last decade, with giants like Amazon,
eBay, Aliexpress, and Walmart selling billions of products. Machine learning techniques can be
used within the e-commerce domain to improve the overall customer journey on a platform and
increase sales. Product data, in specific, can be used for various applications, such as product
similarity, clustering, recommendation, and price estimation. For data from these products to be
used for such applications, we have to perform feature engineering. The idea is to transform
these products into feature vectors before training a machine learning model on them. In this
thesis, we propose an approach to create representations for heterogeneous product data from
Unite’s platform in the form of structured tabular records. These tables consist of attributes
having different information ranging from product-ids to long descriptions. Our model combines
popular deep learning approaches used in natural language processing to create numerical
representations, which contain mostly non-zeros elements in an array or matrix called as dense
representation for all products. To evaluate the quality of these feature vectors, we validate
how well the similarities between products are captured by these dense representations. The
evaluations are further divided into two categories. The first category directly compares the
similarities between individual products. On the other hand, the second category uses these
dense vectors in any of the above-mentioned applications as inputs. It then evaluates the quality
of these dense representation vectors based on the accuracy or performance of the defined
application. As result, we explain the impact of different steps within our model on the quality of
these learned representations.

I

I. Contents

Contents . I

List of Figures . II

List of Tables . III

Preface . IV

1 Introduction . 1

1.1 Motivation . 1

1.2 Representation Learning . 2

1.3 Embeddings . 3

1.4 Related Work. 4

1.5 Our Goals . 5

1.6 Structure of Thesis . 5

2 Preliminaries . 7

2.1 Similarity Measures . 7

2.2 Clustering . 8

2.3 Visualization Techniques . 11

2.4 Cluster Metrics . 13

3 Text Embeddings. 17

3.1 One-Hot Encoding . 18

3.2 Term Frequency - Inverse Document Frequency . 18

3.3 Word2Vec . 20

3.4 Doc2Vec . 26

4 Embedding Product Data . 31

4.1 Embedding Techniques for Structured Data . 32

4.2 Triplet Loss on Embedding Vectors . 36

4.3 Meta-Embedding . 37

4.4 Architecture Of Embedding Model . 39

5 Experimental Setup and Evaluations . 41

5.1 Data . 41

I

5.2 Evaluations . 43

5.3 Results . 55

5.4 Implementation Details . 56

6 Conclusion and Future Work . 59

Bibliography . 61

Appendices . 69

A Record Similarity Without Triplet Loss . 71

B Embedding Visualization Without Triplet Loss . 73

II

II. List of Figures

3.1 Example to represent the one-hot encoding of a sentence . 18

3.2 Word2vec model architecture with inputs as one-hot vectors of given words 20

3.3 CBOW sequence of words . 21

3.4 It shows the CBOW architecture that uses context words to predict the current or target

word. This figure is taken from [46] . 22

3.5 Skip-gram sequence of words . 24

3.6 The Skip-gram architecture uses one target word to predict context words as shown

in [46] . 25

3.7 A framework for learning word vectors. The context of three words (“the,” “cat,” and

“sat”) is used to predict the fourth word (“on”). This figure and explanation are given

in [41]. 27

3.8 This architecture is called as Distributed Bag of Words version of paragraph vectors

which uses the paragraph id or document id to predict the context words. This figure

is also taken from [41]. 29

4.1 Explanation of generating meta-embeddings by concatenating source embeddings 38

4.2 Explanation of generating meta-embeddings by averaging source embeddings 39

4.3 Architecture of our embedding model with every step . 40

5.1 Showing missing values in a matrix where whites represent missing values in each

attribute . 42

5.2 Visualization of Manufacturer Name from concatenated meta-embeddings using t-sne 48

5.3 Visualization of Product Name from concatenated meta-embeddings using t-sne 49

5.4 Visualization of Manufacturer Name from averaged meta-embeddings using t-sne 50

5.5 Visualization of Product Name from averaged meta-embeddings using t-sne 51

B.1 Visualization of Manufacturer Name from concatenated meta-embeddings without

triplet loss using t-sne . 74

B.2 Visualization of Product Name from concatenated meta-embeddings without triplet

loss using t-sne . 75

II

B.3 Visualization of Manufacturer Name from averaged meta-embeddings without triplet

loss using t-sne . 76

B.4 Visualization of Product Name from averaged meta-embeddings without triplet loss

using t-sne . 77

III

III. List of Tables

5.1 Top 10 Similar products to a given product by using cosine similarity on Averaged

meta-embeddings . 45

5.2 Top 10 Similar products to a given product by using cosine similarity on Concatenated

meta-embeddings . 45

5.3 Top 10 Similar products to a given product by using euclidean distance on Averaged

meta-embeddings . 46

5.4 Top 10 Similar products to a given product by using euclidean distance on Concate-

nated meta-embeddings . 46

5.5 Evaluating cluster metrics on record embeddings generated without triplet loss clus-

tered by using k-means . 53

5.6 Evaluating cluster metrics on record embeddings generated with triplet loss clustered

by using k-means . 53

5.7 Evaluating cluster metrics on record embeddings generated without triplet loss clus-

tered by using BIRCH . 54

5.8 Evaluating cluster metrics on record embeddings generated with triplet loss clustered

by using BIRCH . 54

A.1 Top 10 Similar products to a given product by using cosine similarity on Averaged

meta-embeddings wihtout triplet loss . 71

A.2 Top 10 Similar products to a given product by using cosine similarity on Concatenated

meta-embeddings without triplet loss . 71

A.3 Top 10 Similar products to a given product by using euclidean distance on Averaged

meta-embeddings without triplet loss . 72

A.4 Top 10 Similar products to a given product by using euclidean similarity on Concate-

nated meta-embeddings without triplet loss . 72

IV

IV. Preface

This thesis was written as a part of a master’s degree at Hochschule Mittwedia Univer-
sity of Applied Sciences. The research topic was suggested by Dr. Rudolf Sailer and Dr.
Martin Kleinsteuber together with Prof.Thomas Villmann. I wish to express my sincere
appreciation to Dr. Sailer, who gave me an opportunity to work on such an exciting,
yet challenging topic and the freedom of selecting research direction according to my
personal preferences and strengths.

Many thanks go to Mr. Edward Owen Wall for taking the time to give me valuable
insights into the topic from his perspective and fields of expertise. His and Dr. Sailer’s
continuous guidance and support helped me complete this thesis on time. They were
always willing to facilitate me through out the whole research and analysis.

The research conducted at Unite Network SE is presented in this thesis. From Hochschule
Mittweida, I would like to thank Dr. Marika Kaden and my first supervisor Prof.Thomas
Villmann for proofreading the text and giving timely and excellent feedback. I am sin-
cerely grateful to Unite Network SE for giving me the opportunity to work on this topic.

Over the past two and a half years, I had a great time in Unite Network SE. I would
like to thank every one in the department of Analytics for putting trust in my skills and
showing great interest in this work and giving helpful suggestions. Here, I found myself
next to true experts in an environment full of freedom and friendliness, while I received
all the resources and support necessary for accomplishing the thesis.

I would like to give a special thanks to my mother for supporting and motivating me since
the beginning of this journey.

Muhammad Usman Khan - Mittweida, August 2022

Chapter 1: Introduction 1

1 Introduction

1.1 Motivation

With the adaptation of e-commerce and e-business services in recent years, the data
generated from these e-channels have grown exponentially [5]. The number of sales
for the e-commerce market was recorded at an extraordinary scale as trillions of dollars
were spent globally in online retail last year [13]. Despite the growing popularity of e-
commerce, customer face numerous issues when it comes to product search and finding
the best prices for the same product offered by multiple e-shops. Some companies offer
product aggregators for consumers to compare and categorize products across different
websites and merchants. However, organizing and navigating products across multiple
sources is not a trivial task [66].

The advancements in technology have paved the way to address this issue. Among the
intensively studied approaches is to create a system that automatically discovers the
representations needed for feature identification or classification from raw data [35]. The
performance of machine learning algorithms relies majorly on the underlying features or
data representation to which they are applied. These information processing tasks can
be termed as easy or difficult depending on how the information is represented. Such
feature engineering is important but labor-intensive and sheds light on the weakness of
different algorithms, i.e., their limitations in extracting and organizing the discriminative
information from the data [12].

Feature learning aims to build spaces of representations either from distance constraints
or by decomposing samples from complete space into smaller instances. A popular
approach nowadays to learn meaningful representations from data is by using Deep
Metric Learning (DML) [33] which harmoniously combines deep neural networks with
distance metric learning. DML employs neural networks to create dense feature vectors
and then uses a distance metric to compute similarities within these vectors [86].

For learning features from data, models based on neural network architecture are pre-
ferred over other approaches because of their computational competency and capabili-
ties with other model architectures [17]. Creating numerical representations for product
data is heavily discussed these days as they serve as a building block for machine
learning algorithms in e-commerce. They can be trained by renowned techniques built
using the neural network which results in dense numerical representations of products
in real-valued vectors [83].

2 Chapter 1: Introduction

1.2 Representation Learning

Real-world datasets suffers from noise or corruption, which effects the output of a ma-
chine learning model [50]. To combat this problem, robust representations that mini-
mizes noise can be generated from given data [42]. Due to this, we theorize that the
performance of machine learning algorithms depends on different representations as
they could capture more or less different features and variations in the data. Use-
ful and problem-specific representations can be generated by having specific domain
knowledge. Learning these representations of data is, as the name implies, called rep-
resentation learning. This approach makes it easier to extract useful information when
building classifiers or other predictors [12].

Conventional machine learning algorithm mostly focuses on solving problems like clas-
sification or regression with manually engineered features from raw data [60]. On the
other hand, representation learning emphasizes the challenge of obtaining representa-
tions for inputs as a first step, such that these representations could be used to easily
solve prior tasks [12]. There are different ways of learning representations, and here we
will discuss algorithms based on deep learning methods.

Deep learning methods generally work on the idea of finding parameters that yield the
best result for a given problem. This exercise is done by an optimization process, where
the algorithm compares the input to the true label and updates its parameters based on
the mismatch [9]. On the contrary, in representation learning, these algorithms focus on
representations learned by the layers of the neural network. With the goal of learning
representations without having any true labels, the algorithm focuses less on the error
minimization [3].

Typically, deep learning algorithms consist of multiple non-linear transformations for
learning representations of data. However, a representation learning algorithm tradi-
tionally consists of a shallow model that focuses on learning transformations such that
essential features within the data are preserved [3]. Deep neural network based repre-
sentation learning has gained popularity in natural language processing (NLP), image
processing, and computer vision applications [60]. Representation learning has be-
come a highly sought-after approach in the machine learning community, with regular
workshops conducted at most of the leading conferences [12].

Learning useful representations from untagged data is still a challenging task, but im-
provements made over pre-existing algorithms could result in wide-reaching benefits.
Recently, there has been continuous development in un/self-supervised representation
learning, with significant improvement in results on text processing and visual tasks.
When developing an unsupervised learning method, the objective is to develop a gen-
erator that represents useful information about the data making it possible to solve the
problem at hand. These are usually made possible by exploiting prior knowledge about

Chapter 1: Introduction 3

structures in the data, rather than from the predefined labels [8].

1.3 Embeddings

An embedding can be defined as the process of transforming one thing into another. In
mathematics, embedding refers to a transformation function f that maps objects from
space A to an euclidean space Rn given as f : A −→ Rn. The mapping from this em-
bedding function f is both injective and structure-preserving. Here, injective means
different elements from space A are always mapped to different elements of Rn or for
every a1,a2 ∈ A, f (a1) ̸= f (a2). Structure-preserving, on the other hand, means if
some property holds for a1,a2, ..,am where m represents the number of elements in A,
the same property holds for f (a1), f (a2), ..., f (am). For example, if embeddings pre-
serve distance given by d between elements in A and Rn, then for every a1,a2 ∈ A,
d(a1,a2)≈ d(f (a1), f (a2)).

Working with real-world non-numeric data like text, images, or graphs is challenging
as machine learning expects its input to be a numerical value. Generally, data mining
algorithms rely on computing the distances between the elements in a euclidean space,
which forces us to map the original, raw data into such space [64]. Embeddings are
an important development in the field of machine learning and are formally defined as
a dense numerical representation vector, i.e., of real-valued that encodes information
from the original real-world data [76].

Embeddings make it possible to mathematically process real-world inputs like text and
images. For example, in the context of machine learning embeddings generated by an
artificial neural network map objects such as images, text, audio, etc., from an object
space U into an n-dimensional euclidean vector space Rn. These embeddings are
produced in a way such that f (U) is similarity preserving and has the same structure
as U . Similarity preserving means the elements similar to each other in U are similar in
euclidean space as well. For illustration, we suppose vi as embeddings for ui ∈U , then
some similarity measure S between embeddings S(vi,v j) reflect the similarity between
objects ui and u j [73].

Embeddings or neural embeddings offer a unique and impressive solution in machine
learning to solve a variety of problems. It is a dense representation of high-dimensional
data that ideally preserves essential information in the data while changing dimensional-
ity. An embedding is always learned and can also be reused across models. Performing
machine learning tasks on large sparse input vectors can be made easier with em-
beddings. They can encode versatile relationships between those structures and have
become a core ingredient in modern machine learning [40]. Embedding provides task-
specific dictionaries that encode variables into machine learning model-specific input.
Embeddings have interpenetrated the data scientist’s toolkit and significantly changed

4 Chapter 1: Introduction

how computer vision and NLP work

Other than deep neural networks, there are simpler methods for generating embeddings
as well, and the methodology to be used depends on the problem. One of the popular
approaches is having simple encoding per category, but this would only work well for
a small number of categories (for example, cities or industry). A disadvantage of using
embeddings is that it reduces the model’s interpretability. An ideal embedding would try
to capture most of the input’s semantics by clustering semantically similar inputs in the
embedding space. In this thesis, we will create embeddings for both categorical and
descriptive text fields.

1.4 Related Work

Various text encoding techniques that create dense representations for words and docu-
ments have gained popularity in the NLP context over the past few years. Some of these
techniques have been used to create embeddings for data generated from e-commerce
websites. One is based on using Bidirectional Encoder Representations from Trans-
formers BERT model [22], which works by pre-training deep bi-directional representa-
tions from untagged data. ProBERT [85] is a product classification model that uses
BERT to predict the category of a product based on product titles and descriptions.

Meta-Prod2Vec [77] is another product embedding algorithm that is used to recommend
similar items to a customer with applications like web search, ad targeting etc. It is based
on the word2Vec [76] family of model architectures which is one of the prominent en-
coding techniques used in NLP tasks. Word2vec is based on the distributional hypothe-
sis [26], which states that words similar would be closer in the real-valued space.

Some extensions of word2vec, like The Global Vectors for Word Representation or
GloVe algorithm [58], are also used in product embedding tasks. They work by cre-
ating a word co-occurrence matrix that calculates statistics across the entire corpus,
thereby adding global statistics to the task to generate dense vectors. This model ig-
nores the morphology of these words by having a numerical vector for each word. To
solve this, FastText (developed by Facebook) gives a vector representation associated
with each character; words being represented as the sum of these representations [15].
This method allows training models on a large corpus quickly and can compute repre-
sentations for rare words.

Another study used Autoencoder-based learning for disciplining representations in un-
supervised and semi-supervised settings. Autoencoders are a kind of neural network
used for encoding unlabeled data or dimensionality reduction. Autoencoders are de-
signed in a way such that hidden layers create a bottleneck with a lesser number of
neurons than the input layer, which results in the compressed representation of the in-

Chapter 1: Introduction 5

put. Target-embedding autoencoders can be used in prediction for supervised data,
learning transitional latent representations mutually optimized to be both predictable
from features as well as predictive of targets-encoding [36].

1.5 Our Goals

In this master’s thesis, we propose a method to learn dense representations of text from
eCommerce product data that establishes a mapping between heterogeneous product
data and embedding space. These embeddings preserve the relationships between the
products in the embedding space. Feature learning problems in the e-commerce setting
often rely on domain-specific properties having a specific goal in mind. Our goal is to
design a domain-independent and generalized algorithm that efficiently learns dense
vectors of words for product queries.

We use a neural network model of architecture for creating representations, which is a
word2vec [76] model and an extension of the word2vec model doc2Vec [41], used in
combination with different attributes. The performance measure is assessed by the
alignment between the product’s similarity and its representations. This thesis also
includes exploratory experiments that support our insights for product embeddings.

Products in the latent space are represented by using vectorized article data which
includes descriptive and categorical attributes. The textual information in these articles
consists of names, descriptions, IDs, manufacturers, etc. However, this algorithm can
be easily extended to include other textual information. Due to the heterogeneity of
our data, embeddings can get challenging as categorical attributes accept too many
values. A primary challenge for our model is that these numerical feature vectors should
effectively capture structural, syntactic, and semantic information.

1.6 Structure of Thesis

This section summarizes the whole structure of the thesis and it is organized as fol-
lows:

In chapter 2, we define and explain in detail the preliminary concepts used throughout
this thesis.

In Chapter 3, we describe the theory of text embeddings, their applications, and different
algorithms for creating word and document embeddings.

In chapter 4, we presented our approach for embedding heterogeneous product data
for an unsupervised problem.

6 Chapter 1: Introduction

In Chapter 5, we give insights on our data set, discuss important data pre-processing
steps, and evaluate the embedding technique described in the previous chapter on
our dataset. Furthermore, we also provide the implementation details related to our
model.

In chapter 6, we discuss the conclusion and future work that could further enhance our
model.

Chapter 2: Preliminaries 7

2 Preliminaries

In this section, we introduce definitions and preliminary concepts that are considered in
the model proposed within this thesis.

2.1 Similarity Measures

In the context of data science, the term similarity measure refers to calculating how data
points in space are similar to each other. The similarity measure between dimensions
representing features of objects is a numerical value that describes how close or dis-
tant objects are from each other. In text analysis, both distances and similarities are
used interchangeably, whereas distances are dissimilarity measures. Similarities can
be derived from distances by applying a monotonically decreasing function.

In this thesis, the similarity value which is also commonly referred to as the similarity
score is normalized in the range of 0 and 1. We bound these similarities into a positive
space where the highest similarity between two elements could be 1, representing the
two elements are exactly similar. Higher similarity scores represent high similarity be-
tween two data points while low values represent the two data points are dissimilar. This
helps to keep the interpretation of similarity scores generated by different similarity mea-
sures consistent. A similarity measure S given a set of objects P with S : P×P −→ [0,1]
where [0,1] ∈ R satisfies the following properties:

• Non-negativity: S(p,q)≥ 0 ∀p,q ∈ P

• Maximum dominance principle: S(p, p)≥ S(q, p) and S(p, p)≥ S(p,q) ∀p,q∈
P

We will discuss a few similarity measures here which are used in this thesis to calculate
similarities between the embeddings.

2.1.1 Euclidean similarity

The euclidean similarity is calculated by modifying euclidean distance which is one of
the most commonly used distance metrics. Euclidean distance computes the distance
between data points by measuring the length of the segment connecting two data points.
Euclidean distance is also known as the L2-norm of a vector. Mathematically, it is cal-
culated as the square root of the sum of the squared distance between two vectors. For
two data vectors X =(x1,x2, ..,xn) and Y =(y1,y2, ...yn) of same length n∈N, euclidean
distance is calculated by the formula given in equation 2.1:

8 Chapter 2: Preliminaries

deu(X ,Y) =

√
n

∑
i=1

(xi − yi)2 (2.1)

Distance values are higher when data points are far apart from each other and lower
when data points are closer to each other. Whereas, similarity values are higher for
similar elements and vice versa. The relation between similarity and distance is that
one decreases when the other increases. To convert the euclidean distance into a
similarity measure, we use the formula given in equation 2.2 which takes the reciprocal
of distance. In denominator, 1 is added to bound the value of highest similarity at 1.

Seu =
1

1+deu
(2.2)

2.1.2 Cosine Similarity

Cosine similarity is a measure that computes the similarity between data vectors based
on the differences between their angles. In mathematical terms, this similarity calcu-
lates the cosine of the angle between two vectors in the euclidean space. It helps cal-
culate the similarity between vectors of different sizes as vectors considered far apart
by euclidean distance due to their sizes can have a smaller angle between their orien-
tations. Cosine similarity is higher for smaller angles between data vectors and smaller
for higher angles. Cosine similarity between two data vectors X = (x1,x2, ..,xn) and
Y = (y1,y2, ...yn) of same length n ∈ N is given as:

Cos(θ) =
∑

n
1 xiyi√

∑
n
1 x2

i

√
∑

n
1 y2

i

(2.3)

2.2 Clustering

Clustering is an important technique to get meaningful insights from unsupervised data
based on the notion of distance or dissimilarity. In a given set of data points, a clustering
algorithm would assign them into different groups such that data points within a single
group have similar features and data points in different groups have highly dissimilar
properties. In other words, it tries to collect or segregate similar bunch of elements
and assign them into clusters. Here, we will discuss two common but different types of
clustering algorithms that are used in this thesis to cluster embeddings.

Chapter 2: Preliminaries 9

2.2.1 K-means Clustering

K-means [44] is a popular and simple clustering algorithm used for clustering data points
in euclidean space, as it averages data points. Therefore, this averaging in k-means
requires performing vector operations and we always don’t have the exact vector repre-
sentation for data points in non-euclidean spaces [75]. This algorithm uses euclidean
distance as the measure to compute dissimilarity between data points [18]. K-means
belongs to the family of partition-based clustering algorithms that splits the dataset into
disjoint partitions or clusters [37]. This algorithm divides the dataset A with m data points
(a1,a2, ...,am) into k clusters B = (b1,b2, ..,bk), where k is given as input and k ≤ n.

In the first step, the algorithm selects k data points randomly as centroids also called
prototypes. There are other methods suggested for selecting initial centroids and one
of them is described in [29], whereas the standard k-means given in [44] selects initial
centroids randomly. K-means is an iterative algorithm and the step-by-step working of
the k-means algorithm is given as follows:

1. As we mentioned above, given a set of data points A = {a1,a2, ...,am} belonging
to a m dimensional space Rn, and given number of clusters k, it randomly selects
k initial centroids as w1,w2, ...,wk.

2. Based on initial centroids, it assigns each data point ai to its closest prototype wl

i.e, with the smallest euclidean distance (2.1) between prototype wl and ai. Each
data point belongs to one cluster only and the data set is partitioned in k clusters
given as B = (b1,b2, ...,bk).

3. Centroids or prototypes in each iteration t are re-computed from each cluster by
taking the mean of all data points in a cluster given as:

w(t+1)
l =

1

|B(t)
l |

∑
ai∈B(t)

l

ai (2.4)

4. Keep repeating steps 2 and 3 until assignments of data points do not change or
for a given number of iterations (if pre-defined).

Following these steps results in the data points being partitioned into a given number of
clusters k. The cost function for k-means algorithm is given in equation 2.5:

L =
n

∑
i=1

k

∑
l=1

uil||ai −wl||2 (2.5)

where, uil = 1 if xi belongs to cluster l and 0 otherwise, wl as given in 2.4 is the mean of

10 Chapter 2: Preliminaries

data points in each cluster bl for l = (1, ..,k). For all data points lying close to the cluster
centers l, the value of uil is 1 and the cost function is then optimized only for computing
the cluster centroids wl . As we emphasized on creating embeddings in this thesis, we
implemented k-means clustering which is the simplest algorithm used for clustering data
in euclidean space. K-means algorithm also intelligently adpats to new observations.

The k-means algorithm has a few shortcomings as it requires the k to be chosen manu-
ally and given as an input. The initialization of clusters affects overall clustering results
as different initializations do not produce the same results and are also sensitive to out-
liers. This method is an NP-hard problem, which means it is computationally difficult for
k-means to find the optimal clustering in polynomial time [25].

2.2.2 Balanced Iterative Reducing and Clustering using
Hierarchies

Clustering algorithms like K-means clustering is an iterative algorithm that runs multiple
iterations over a dataset to group the data points into clusters. This makes it difficult
for k-means to scale with regard to processing time and quality as the size of dataset
increases [29]. Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
[87] is a scalable clustering algorithm based on hierarchical clustering which creates a
tree of clusters organized in a dendrogram. It only scans the dataset once making it a
better choice for performing clustering on large datasets.

BIRCH clusters large datasets by first creating smaller summaries preserving as much
information as possible and then these summaries get clustered instead of clustering
a large amount of data. It transforms data into a tree-like structure where leaves from
this tree represents centroids. BIRCH is based on two important concepts Clustering
Feature (CF) and CF - Tree Clustering Feature.

It summarizes large datasets into smaller subgroups called Clustering Feature (CF)
entries which is a three-dimensional vector representing the information contained within
those subgroups. The CF for cluster points ai is represented as:

CF = (n,LS,SS) (2.6)

where n is the number of datapoints in the cluster, LS is the linear sum of n points ∑
n
i=1 ai

and SS is the squared sum of all data points within the cluster ∑
n
i=1 ai

2. It is possible for
CF entries to overlap with other entries.

A CF tree is a height-balanced tree that saves sub-clusters within its leaf nodes. Every
non-leaf node in a tree has descendants and these non-leaf nodes are made up of

Chapter 2: Preliminaries 11

entries of CF of their children. Therefore, these non-leaf node summarizes the clustering
information about their descendants.

The size of a CF tree is defined by two parameters, which are threshold, T., and branch-
ing factor, B. The maximum number of entries a CF tree can have within each of its
leaf nodes is called a threshold. The branching factor defines the maximum number of
sub-clusters or children per non-leaf node.

2.3 Visualization Techniques

Embeddings generated from neural networks project real-world data into an n-dimensional
euclidean space where n could be in 100s. While it is easier to explore and visualize em-
beddings in two or three-dimensional spaces by presenting them in a scatter plot, it gets
harder or more complicated to visualize for higher dimensional spaces. Dimensionality
reduction techniques are used to map higher dimensional vectors to lower-dimensional
vectors while preserving as much meaningful information as possible, so these vectors
with reduced dimensions could be visualized more easily. To visualize the embeddings
created from our approach in a 2-dimensional space, we will discuss a popular visualiza-
tion technique that uses the concept of dimensionality reduction to effectively visualize
higher dimensional data:

t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-sne) [45] is a widely used technique
that applies a non-linear transformation to map higher dimensional data vectors into
lower-dimension vectors while preserving structures and neighborhoods from higher
dimensional space [14]. t-sne follows a procedure in which a dimension agnostic prob-
ability distribution is constructed over the high-dimensional vectors. It finds a lower-
dimensional approximation, such that vectors closer to each other in the high-dimensional
space are more like to be selected than the vectors distant from each other. In mathe-
matical form, given a higher dimensional dataset X = xi

m
i=1 where xi ∈ Rn, t-sne finds a

lower dimensional representation for it given as Y = yi
m
i=1 where yi ∈ Rs and s << n.

At first, this algorithm finds the points near each other in the higher dimensional space
by calculating the euclidean distances between all pairs. Then these distances are
transformed into conditional probabilities which represent distances between every pair
of points. As it captures the underlying structures, the probability distribution for each
datapoint x j being closer to other points xi is given by Gaussian:

12 Chapter 2: Preliminaries

pi| j :=
exp(−||xi − x j||2/2σ2)

∑k ̸= j exp(−|xk − x j|2/2σ2)
(2.7)

The above equation is divided by the sum of all other points close to the gaussian
center xi to deal with the possibility of having clusters with different densities. Here σ j

(variance) is a parameter given as an input to the model and the value for it is specified
by the expected number of neighbors, called as perplexity. High dimensional data is
represented by probability distribution P where the probability is symmetrized (pi| j = p j|i
to make the optimization easier.

P = (pi j)
m
i, j=1, pi j =

pi| j + p j|i
2m

(2.8)

In the second step, t-SNE creates another probability distribution over the low dimen-
sional vectors and this distribution is represented by Q whereas the data points in low
dimensional space are yi.

Q = (qi j)
m
i, j=1, qi j =

(1+ ||yi − y j||2)−1

∑k ̸= j(1+ |yk − yl|2)−1 (2.9)

In equation 2.9 it uses t-distribution instead of the gaussian distribution which was
used for original high dimensional data. It is because the t-distribution avoids crowd-
ing of points in the lower dimensional space by increasing the distance between spaces
when mapped from high dimensional space. The ’t’ in the name of t-sne is from this
t-distribution used. The goal is to modify these vectors to minimize the variances be-
tween the two distributions. In other words, yi are optimized such that P and Q are close
to each other as possible and this is expressed by Kullback-Leibner divergence defined
as:

KL(P|Q) =
m

∑
i=1

m

∑
j=1

pi jlog(
pi j

qi j
) (2.10)

As this is now an optimization problem which is defined as finding the best values of
parameters that minimizes the error by training the model iteratively. It finds optimum
parameters by using the gradient descent algorithm which finds the minimum or max-
imum from a given cost function by calculating the derivative of this function at every
point.

Chapter 2: Preliminaries 13

∂KL(P|Q)

∂yi
= 4

m

∑
j=1

(pi j −qi j)(yi − y j)(1+ ||yi − y j||2)−1 (2.11)

By following the optimization process above, low dimensional vector space is aligned
with the high-dimensional vector space.

2.4 Cluster Metrics

Assessing the outcome of a clustering algorithm is a very important segment of clus-
tering data and, therefore, numerous evaluation metrics are suggested to evaluate the
quality of clustering algorithms [6,55]. These evaluation metrics are also categorized as
internal and external, where internal metrics evaluate the quality of clusters only from
the given unlabeled data. Whereas, external metrics require ground truth labels to com-
pare the results of clustering algorithms [65]. The evaluation from these external cluster
metrics is not as simple as counting the number of errors; rather, it compares the struc-
ture and separation of data between the predicted clusters and the given (true) set of
clusters.

In this thesis, we discussed a few external metrics belonging to the family of extrinsic
measures that can quantify the quality of clusters generated by different methods on our
embeddings. The explanations for these metrics are given as follows:

2.4.1 Adjusted Rand Index

Rand Index (RI) [61] is based on the standard idea of comparing the result of the clas-
sification scheme to the correct classification. It is one of the most commonly used
evaluation metrics for evaluating cluster quality [78]. It computes the similarity between
two clusters by counting all unordered pairs of samples which have been assigned to
the same or different clusters in class or true labels and predicted clusters. The formula
of the Rand Index is:

RI =
Count of Pairs in Agreement

Total Number of Pairs
(2.12)

The RI value ranges from 0 to 1 with 1 being a perfect match. It suffers from the draw-
back of yielding a high value for pair of partitions of given samples when the number of
clusters is high. To overcome this problem, the Adjusted Rank Index (ARI) is introduced
which adjusts the raw RI score by introducing the concept of ’adjusted for a chance’ in
the RI scheme.

14 Chapter 2: Preliminaries

ARI =
RI - Expected RI

Max(RI) - Expected RI
(2.13)

2.4.2 Fowlkes-Mallows scores

Fowlkes-Mallows scores or Fowlkes-Mallows Index (FMI) [52] is another evaluation met-
ric used to compare the clustering results from two different algorithms. The score given
by FMI is based on the similarity between two clustering outcomes, where it considers
one as ground truth and the other as predicted clusters. It gives a value between 0 and
1, where 1 means complete similarity between two clustering results and 0 indicates no
similarity. The formula for FMI between two clustering results F1 (ground truth) and F2

(predicted clusters) is given in equation 2.14:

FMI =
T P√

(T P+FN)(T P+FP)
(2.14)

here, T P means true positive which shows the number of data points that belongs to the
same clusters in both F1 and F2. FP refers to false positive which counts the number
of data points belonging to the same cluster in F1 and different in F2. FN refers to false
negatives and is the count of data points that are in the same cluster in F2 and different
clusters in ground truth F1. The advantages of using FMI is that it doesn’t make any
assumptions about cluster structures and can compare clusters with different structures.
FMI is a preferable evaluation metric for comparing two unrelated datasets.

2.4.3 V-measure

V-measure [68] is another external cluster metric that quantifies the quality of clustering
results based on conditional entropy analysis [28]. V-measure is computed as the com-
bination of homogeneity and completeness score which is similar to how precision and
recall are combined in a popular classification metric F-measure [74].

Given a dataset with N data points which has ground truth cluster labels given as A =
{ai|i = 1, ..., p} and our resulting set of clusters B = {bi|i = 1, ...,m}. Let C be a matrix
that represents the clustering solution on given dataset such that C = {ci j}, where ci j

represents data points that are member of ground truth cluster ai and an element of
cluster b j. The homogeneity and completeness are defined as:

Chapter 2: Preliminaries 15

Homogeneity score

A homogeneity score is defined as a measure that calculates how many of the elements
within the cluster are similar or belong to the same ground truth cluster. The formula
for homogeneity score is given in equation 2.15, which is calculated as the conditional
entropy of ground truth clusters given our clustering outcomes.

h = 1− H(A|B)
H(A)

(2.15)

To satisfy homogeneity criteria, the clustering algorithm must assign all the data points
from a ground truth cluster to a single cluster. In this perfect case, the value of H(A|B)
is equal to 0. These conditional entropies from the homogeneity score formula are given
as:

H(A|B) =−
|B|

∑
b=1

|A|

∑
a=1

cab

N
log(

cab

∑
|A|
a=1 cab

) (2.16)

H(A) =−
|A|

∑
a=1

∑
|B|
b=1 cab

p
log(

∑
|B|
b=1 cab

p
) (2.17)

Completeness score

A completeness score is defined as a measure that calculates how many of the elements
in each true cluster are also elements of a single predicted cluster. Completeness is
considered as symmetrical to homogeneity [68]. The formula for homogeneity score
is given in equation 2.15, which is calculated as the conditional entropy of predicted
clusters given ground truth clusters.

c = 1− H(B|A)
H(B)

(2.18)

To satisfy completeness criteria, the clustering algorithm must assign all the data points
from a ground truth cluster to a single cluster. In this perfect case, the value of H(B|A)
is equal to 0.

H(B|A) =−
|A|

∑
a=1

|B|

∑
b=1

cab

N
log(

cab

∑
|B|
b=1 cab

) (2.19)

16 Chapter 2: Preliminaries

H(B) =−
|B|

∑
b=1

∑
|A|
a=1 cab

p
log(

∑
|A|
a=1 cab

p
) (2.20)

Using these homogeneity and completeness scores the formula for V-measure is given
as:

V −measure =
(1+β)(Homogeneity∗ completeness)
(β ∗Homogeneity∗ completeness

(2.21)

The default value for β is 1 and we used this value of β in our thesis to evaluate the
clustering results on embeddings. For the default value of β , v-measure is equivalent
to another cluster evaluation metric normalised mutual information [32]. β value other
than 1 is used when we assign different weights to homogeneity and completeness.

Chapter 3: Text Embeddings 17

3 Text Embeddings

Text data carries more information and has more chances of exploring valuable insights
as compared to quantitative data. To make use of this information, NLP algorithms aim
to gain a human-like understanding of the text. This helps to inspect the vast amount of
text and gather relevant insights from it. These algorithms generate text embeddings,
which are a type of embeddings that represents textual data in a euclidean space of
n dimensions. These embeddings from the euclidean space can then be used to for-
mulate numerous models for the classification of structured and unstructured textual
data [48].

Formally, text embedding is defined as representing words as dense numerical vectors
that capture the actual and semantic meaning of the words [47]. These are calculated
by capturing the relatedness between individual words in a corpus and preserving them
in the embedding space [31]. That is, words that appear in a similar context or the words
that appear frequently together tend to have similar meanings and therefore they should
have similar representations.

For example, text embedding help represent the words in a sentence such as Profession
or title by a dense vector that is comparatively smaller. Each cell within this dense vector
represents a different characteristic of the word and contains a value between 0 and 1.
These values are then used to compare the syntactic and semantic similarities between
different words in the input sentence. The embeddings of a given profession or title are
closer to the embedding of a similar one in the embedding space and these similarities
are calculated by distances or angles.

Recent developments in language modeling which uses neural networks have made
it possible to model language as distributions over words. By learning to predict the
next word based on previous words, these models have been shown to automatically
internalize linguistic concepts such as sentences, subclauses, and even sentiment [4].

Previously, word embeddings were trained on use cases with defined training objectives
and model architecture. These embeddings were used in applications like language
translations or recommender systems [51]. In this thesis, we generate embeddings in
an unsupervised manner intending to preserve relationships and similarities from input
text. We provide a theoretical understanding of text (word and document) embeddings
along with their dimensionality and also our model achieves state-of-the-art results.

There are multiple ways of projecting words into a multidimensional vector space. They
all share the common goal of capturing as much semantic and contextual information in
the text as possible. There are several different methods of formulating embedding
for words from simple one-hot encoding to calculating word count or co-occurrence

18 Chapter 3: Text Embeddings

matrix to using deep neural network architectures. A few of the well-known methods
are discussed in the following subsections:

3.1 One-Hot Encoding

One-Hot Encoding [21] is one of the simplest concepts for vector representation in Natu-
ral Language Processing. It is useful for representing categorical variables as numerical
vectors. Each cell is represented as a binary vector that has only the index of the inte-
ger marked as one and all zeros. It is easier to compute and fast but does not capture
the real semantic value of a word in a sentence. An example of one-hot encoding a
sentence is given in 3.1:

Figure 3.1: Example to represent the one-hot encoding of a sentence

Here this sentence has a vocabulary size of 5 with one word "data" being repeated.
However, in practical applications of word embeddings, the vocabulary from text or doc-
uments is rather huge. Each sentence within these documents is of variable length
and each word has a different frequency in the corpus. Consequently, if we represent
such data by applying one-hot encoding, then the resulting embeddings are sparse
and would have an unmanageable number of dimensions. This phenomenon is also
known as the Curse of Dimensionality [11]. As simplicity comes with drawbacks, one-
hot encoding does not capture semantic information and only tends to work well with
categorical data.

3.2 Term Frequency - Inverse Document Frequency

Term Frequency - Inverse Document Frequency (TF-IDF) [70] is a count based tech-
nique of embedding that determines the importance of individual terms in a sentence
or document. Whereas, a document could have multiple sentences in it. The encoding
process is similar to One-Hot Encoding. Alternatively, it is a statistical measure that
assigns a count value to each term instead of a 1. In our explanations below, the target
term which could be a word or multiple words like "New York" is referred as t, a single
document as d, and the set of all documents as D. The TF-IDF value is a multiplication

Chapter 3: Text Embeddings 19

of Term frequency and Inverse document frequency values which are described in the
next part:

3.2.1 Term Frequency

Term frequency (TF) [70] count the occurence of a word or a particular term in a doc-
ument out of all words. It is calculated as the ratio of the number of particular term or
target term in the document to the total number of terms in the document. Count of
target terms in the given document d is represented as ft,d in equation 3.1.

t f (t,d) =
ft,d

∑t ′∈d ft ′ ,d
(3.1)

3.2.2 Inverse Document Frequency

Inverse document frequency (IDF) [70] compares the occurrence of target words among
other words in a document. IDF value is calculated between the total number of doc-
uments and the total number of document in which the target term appears. At this
point, the algorithm is not effected by the number of times the target term appears in the
document.

id f (t,D) = log(
|D|

count(d∈D; t∈d)
) (3.2)

This shows that the key idea for TF-IDF is the importance of a term is inversely related
to the term’s frequency across all documents. By multiplying the results from t f (i,d)
and id f (t,D) above, we can get our final TF-IDF value.

t f id f (t,d,D) = t f (t,d) · id f (t,D) (3.3)

TF-IDF score for a term shows its relevancy, as more important terms will have a higher
score and a score approaching 0 shows the term is less relevant. TF-IDF has the
advantage of being simpler to compute and computationally cheap. But, it also suffers
from the curse of dimensionality as TF-IDF vector sizes can get huge. Also, this method
doesn’t capture the semantic meaning of the words. It does consider the importance of
words by their occurrence, but still cannot understand the context of it.

20 Chapter 3: Text Embeddings

3.3 Word2Vec

Word2Vec [46] is a neural network based word embedding technique developed at
Google, which is one of the integral techniques for solving many NLP problems. It is a
shallow neural network that uses a single hidden layer to create embeddings of words.
It takes a large corpus of words as input and produces an embedding space, comprising
several hundred dimensions, such that each unique word in the corpus is assigned a
corresponding vector in the space. The size or dimension of these embedding vectors
is defined as part of the model. Input words are mapped or positioned in the embedding
space such that syntactically and semantically similar words in the corpus are located
in close proximity to one another in the embedding space.

The architecture of word2vec is similar to an autoencoder’s, as it takes a large input
vector, and encodes it to smaller dense vectors using a hidden layer which is a standard
fully connected (Dense) layer. Then instead of decoding it back to the original input
vector, it gives output probabilities of target words. The weights of the hidden layer
are used as a proxy presentation for input words. These weights are calculated by
taking the product of input words. As we cannot feed a word directly as a string into
a neural network, alternatively, we convert string words into one-hot vectors, which we
have already described above.

Figure 3.2: Word2vec model architecture with inputs as one-hot vectors of given words

The architecture of a simple word2vec model is given in Figure 3.2 above, where R16 in

Chapter 3: Text Embeddings 21

the input and output layer means it has 16 neurons (dimension), while R10 shows that
the hidden layer has a dimension of 10. The output layer in this architecture is also a
dense layer with a softmax activation, where this activation function transforms the real
number vectors from the output layer into probabilistic vectors [53]. It yields a probability
vector of the same embedding size defined in the model for each word in the input.
This probability indicates the similarity between the target word and other words in the
corpus. These vectors can also be used to group similar words based on their distances
which is also the key effectiveness of word2vec.

As Word2Vec is based on the idea of the Distributional Hypothesis [69]: the word em-
beddings generated by it are estimated based on their occurrences in the text. Words
like “man” and “woman” would have very similar embedding to each other. Arithmetic
operations can be performed on these embedding vectors which gives close approxi-
mates of the resulting embedding. For example, embedding vector of "man" subtracted
by embedding vector of "woman" and added by "boy" would yield an embedding very
close to the vector of "girl".

Word2Vec is a particularly computationally-efficient predictive model for learning word
embeddings from raw text [76]. Word2Vec itself is not a deep neural network, but the em-
beddings created by Word2Vec can be understood by deep neural networks. Word2vec
representation is created using two different variants: the Continuous Bag-of-Words
model (CBOW) and the Skip-Gram model.

3.3.1 Continuous Bag-of-Words Model

The first proposed architecture is a feedforward neural network where the projection
layer is shared among all words. This architecture is called a bag-of-words model as it
does not maintain the history of the order of words for projection. Moreover, it not only
uses words before the target word but also words after the target word; this helps obtain
the best performance on the task of predicting the current (middle) word by building a
log-linear classifier with F future and F history words [46].

Wt−3 Wt−2 Wt−1 Wi Wt+1 Wt+2 Wt+3

Le f t Context Target Word Right Context

Figure 3.3: CBOW sequence of words

22 Chapter 3: Text Embeddings

Here F is defined as the half size of the context window. The objective of the Continuous
Bag-of-Words (CBOW) model [76] is given a list of context words (surrounding words)
in a sentence, the network will predict the probability for each word in the vocabulary to
predict the target word ŷ. The idea behind this model is given as considering the phrase
"This is my thesis", we will choose our target word to be "is" and our context words to
be ["This", "my", "thesis"]. This model will take the embeddings of the context words to
try and predict the target word.

Figure 3.4: It shows the CBOW architecture that uses context words to predict the current or
target word. This figure is taken from [46]

In the CBOW neural network architecture given in figure 3.3.1, the hidden layer has
a linear activation function and the activation function for the output layer is softmax.
Inputs are one-hot encoded vectors of words from the corpus of dimension M, where M
is the size of the vocabulary. The hidden layer generates vectors of dimension N which
is the embedding size of the model. The values of the hidden layer given an input data
x having C context words is:

h =
1
C

W T
C

∑
c=1

xc (3.4)

The output layer also generates a vector of dimension M. The weights between the input
and the hidden layer are given by matrix W which has dimensions M x N. Similarly, the
weights between the hidden layer and the output layer are represented by W

′
and are

of dimension N x M. The value of the output layer is given as u in equation 3.5.

Chapter 3: Text Embeddings 23

u =W ′T h

u =
1
C

W ′TW T
C

∑
c=1

xc (3.5)

u is defined as the value of the output layer before applying the softmax activation func-
tion. After applying the softmax activation function on the value above in the output layer
we get the probabilistic vector y.

y = So f tmax(u)

y = So f tmax(
1
C

W ′TW T
C

∑
c=1

xc) (3.6)

Like all other neural networks, it has weights and during the training, its goal is to adjust
those weights to optimize a loss function. However, in the case of word2vec, these
weights, in the end, are used as the word embedding vectors. As we want to compare
two probabilistic vectors we will use a popular information theory measure i.e, cross-
entropy to compare the distances between two vectors. Cross-entropy in this case is
derived from the formulation of the loss function and is given in 3.7:

H(ŷ,y) =−
|M|

∑
j−1

y jlog(ŷ j) (3.7)

In our specific case, the given target word y is a one-hot vector, which has value 1 at
index j∗ (and value 0 at all other positions). Then the cross-entropy loss function defined
in equation 3.7 simplifies to:

H(ŷ,y) =−y j∗log(ŷ j∗) (3.8)

As we train our model against the context-target word windows which is the conditional
probability of predicting the target word w0 given C context words given as P(w0|wc,1,wc,2, ...,wc,C).
The loss function to be optimized is defined in equation 3.9:

24 Chapter 3: Text Embeddings

L =−log(P(w0|wc,1,wc,2, ...,wc,C))

L =−log(y j∗)

L =−log[So f tmax(u j∗)]

L =−log(
exp(u j∗)

∑i exp(ui)
)

L =−u j∗ + log∑
i

exp(ui) (3.9)

Here u j∗ is defined as the value of the output layer before applying the softmax activation
function, and C is the number of context words. To minimize this loss function the model
learns the optimal values for weight matrix W and W ′. In the neural network domain,
this optimization is done using the concept of backpropagation and gradient descent.

3.3.2 Continuous Skip-Gram Model

The continuous skip-gram model [76] can be imagined as the opposite of the CBOW
model. In this architecture, it takes the current word (which is the target word in CBOW)
as an input to the log-linear classifier with the continuous projection layer. It then tries
to accurately predict the words before and after this current word which were context
words in CBOW. In simple terms, this model essentially tries to learn and predict the
context words around the specified input word.

Wt−3 Wt−2 Wt−1 Wi Wt+1 Wt+2 Wt+3

Le f t Target Context Word Right Target

Figure 3.5: Skip-gram sequence of words

Based on experiments assessing the accuracy of this model it was found that increasing
the context window range improves the prediction quality given a large range of word

Chapter 3: Text Embeddings 25

vectors, however, it also increases the computational complexity. Since the more distant
words are usually less related to the current word than those close to it, we give less
weight to the distant words by sampling less from those words in our training examples
[46].

In Skip-gram also F is defined as the half size of the context window. Given a context
word, the skip-gram model will predict C target words. The idea behind this model is
given as considering the phrase "This is my thesis", we will choose our context word to
be "is" and our target words to be ["This", "my", "thesis"].

Figure 3.6: The Skip-gram architecture uses one target word to predict context words as shown
in [46]

The architecture of skip-gram is given in figure 3.3.2 and is similar to the CBOW model
with one hidden layer. As it is the opposite of CBOW, the architecture for it is also
an inverse, where it takes one word as a one-hot encoded vector for input and the
output layer gives probabilistic vectors for multiple target words. Because of similar
architecture, the hidden layer values in skip-gram are calculated similarly as given in the
CBOW model with it having one context word only.

h =W T x (3.10)

Output layer in skip-gram predicts C context words and the value for it is referred as uc,
and is given in equation 3.11:

26 Chapter 3: Text Embeddings

uc =W ′TW T h c = 1, ..,C (3.11)

The values of the output layer after applying the softmax function are again probabilistic
vectors yc in this variant as well.

yc = So f tmax(W ′TW T h) c = 1, ..,C (3.12)

The loss function of the Skip-gram model is also trained against the context-target
word pairs where C is the number of target words to be predicted and M is the size
of the vocabulary. In mathematical terms, it is defined as the conditional probability
P(wc,1,wc,2, ...,wc,C|w0). The loss function to be optimized for skip-gram is given in the
equation 3.13:

L =−log(P(wc,1,wc,2, ...,wc,C|w0))

L =−log(
C

∏
c=1

P(wc,i|w0))

L =−log(
C

∏
c=1

exp(uc, j∗)

∑
|M|
j=1exp(uc, j)

)

L =−
C

∑
c=1

uc, j∗ +
C

∑
c=1

log
|M|

∑
j=1

exp(uc, j) (3.13)

Similar to CBOW, this loss function can also be minimized by using backpropagation
and gradient descent.

3.4 Doc2Vec

Following the success of word2vec, the same group of researchers who developed
word2vec [76] came up with this approach doc2vec [41], which extends the idea of cre-
ating vector representations of more than single words. Doc2Vec [41] creates numeric
representations of a document where a document could have multiple sentences (list of
words). To create the representation for documents, doc2vec introduces the concept of
a paragraph vector.

As the name paragraph suggests, these documents do not have any defined length or
logical structures like words and can be of any length. They propose a Paragraph Vector

Chapter 3: Text Embeddings 27

that learns fixed-length feature representations for each given document from different
inputs of variable lengths ranging from the phrase, or sentence to a paragraph, or a
large document.

The architecture of doc2vec is similar to word2vec with an extra unique paragraph vector
(or paragraph id) per document given as input. As the doc2vec model creates represen-
tations for documents, it requires a set of documents as a corpus. For each given word,
a word vector Z is generated and for each document, a document id D is generated.
This model trains weights for the hidden layer given as W and for the output layer given
as W ′. Word vectors are one-hot vectors with a dimension of 1xM where M is the size
of the word vocabulary. The document Id vector has a dimension of 1xB, where B is
the number of total documents. The weight matrix from the hidden layer has dimen-
sions MxN for word vectors and BxN for document vectors where N is the embedding
dimension.

Analogous to word2vec, there are two ways to create document representations in the
doc2vec model: Paragraph Vector Distributed Memory (PV-DM) and Paragraph Vector
Distributed Bag-of-Words (PV-DBOW).

3.4.1 Paragraph Vector: A Distributed Memory Model

PV-DM [41] approach for learning paragraph vectors is similar to the CBOW approach in
word2vec for learning word vectors. As in the CBOW context, multiple words are used
to predict a target word which captures the semantic similarity between all the words
in a sentence. We will make use of this approach in our paragraph vectors in a similar
manner. Given many context words taken from the document, the paragraph vector can
be used to predict the next words within the document.

Figure 3.7: A framework for learning word vectors. The context of three words (“the,” “cat,” and
“sat”) is used to predict the fourth word (“on”). This figure and explanation are given
in [41].

In the figure 3.4.1, it feels familiar with the architecture of CBOW in fig 3.3.1 with the

28 Chapter 3: Text Embeddings

extension of having paragraph id. Every word is mapped to a unique word vector
represented by a column in matrix Z and a unique paragraph id is assigned for each
paragraph or document represented by a column in matrix D. PV-DM model concate-
nates or averages the paragraph vector and word vectors in context. These concate-
nated/averaged vectors are then used by the classifier to predict the next word in a
paragraph.

We define contexts as a fixed number of words to be sampled by a sliding window over
the paragraph. All context windows from the same paragraph have access to the same
paragraph vector but not across paragraphs. The word vector matrix Z, however, is
shared across paragraphs. I.e., the vector for the word “king” is the same across all
paragraphs. This paragraph id token can be thought of as another word. This id acts
as a memory that remembers what is missing from the current context or sequence
of words. For this reason, we often call this model the Distributed Memory Model of
Paragraph Vectors (PV-DM).

As the architecture for doc2vec is also a neural network, values of hidden layer and
output are similar as CBOW model given in equation 3.4, 3.5 and 3.6. The only change
is in the hidden layer weights where D is also added. A sample of fixed length is drawn
randomly as a context window from the paragraph and at each step of training that
sample is used to update the weights of the model.

The total number of parameters to be learned within the model are given as N x p
+ M x q. Here, N is the embedding dimension, B is defined as the total number of
paragraphs/documents in the corpus, and M is the complete word vocabulary across
all paragraphs. p and q are the mapped dimension for paragraph vector and words
respectively. The loss function of the PV-DM model is also trained against the context-
target word pairs with the paragraph id D being part of the context.

L =−log(P(w0|wc,1,wc,2, ...,wc,C,D)) (3.14)

Similar to other word embedding algorithms, after training these paragraph embedding
vectors can be used for different machine learning applications such as clustering algo-
rithms or regression, etc. The biggest advantage of the PV-DM approach is that they
maintain or consider the word order which helps to preserve a lot of semantic informa-
tion for different words within the paragraph [41].

3.4.2 Paragraph Vector Distributed Bag of Words (PV-DBOW)

PV-DBOW [41] is another variant of doc2vec that doesn’t concatenate or averages the
paragraph vector with the word vectors to predict the target word or next word within

Chapter 3: Text Embeddings 29

the sample window like PV-DM. This method suggests ignoring the context words in the
input but forcing the model to predict words randomly sampled from the paragraph in
the output.

Figure 3.8: This architecture is called as Distributed Bag of Words version of paragraph vectors
which uses the paragraph id or document id to predict the context words. This figure
is also taken from [41].

The architecture of PV-DBOW is shown in figure 3.4.2 where it samples a fixed context
window and a random word within that context window which forms a classification task
given the paragraph vector in each iteration. This model does not maintain or use any
ordering of the words or context for prediction. It also refers to the paragraph id as D and
other nomenclature used for it is the same PV-DM model defined above. The training
procedure is also similar with the hidden layer weights W only having D as input and the
output layer predicts probability vectors for all target words.

This approach is similar to the skip-gram model in Word2vec as it uses the target word to
approximate the context words. The loss function for this model is similar to word2vec
skip-gram defined in equation 3.13. The primacy of this model is that it stores less
information as word vector weights are not stored in this like PV-DM. It only stores the
softmax weights from each iteration. This algorithm is faster as there is no need to save
the word vectors but has a lower performance than the PV-DM model [41].

30

Chapter 4: Embedding Product Data 31

4 Embedding Product Data

Traditional methods to classify or cluster similar products use the manual assignment
of categories or tags based on categorical or descriptive attributes like brand, size,
etc. These categories or tags are then used to recommend similar products in an e-
commerce shop. However, this method is limited and not scalable to a large amount of
data and this is where the concept of product embeddings is useful.

Embeddings in e-commerce for product data can be defined as a machine learning
procedure in which we learn dense numerical representations for products. These rep-
resentations of products are generated by mapping products in euclidean space and
are called product vectors. These embeddings are assigned positions in the embedding
space such that, similar products are closer to each other while different products are far
from each other. Product knowledge has significant importance in the rapidly evolving e-
commerce world and these product vectors show the relation between products. [82].

As the product data from e-commerce portals is in text format, we can use any of the
existing NLP algorithms capable of creating embeddings from the text. In our approach,
we implemented a mixture of two commonly talked-about NLP algorithms word2vec [76]
and its extension doc2vec [41]. Our approach for creating product embeddings is trained
without having an NLP-specific goal like language translation or word recommendations.
It rather serves as an embedding generator for product data.

Techniques used for embedding products usually have a specific goal such as product
recommendation, collaborative filtering, or content-based filtering. Item2vec [10] is a
collaborative filtering algorithm that analyzes item similarities based on item relations
and uses it for product recommendations. Product2vec [19] and Meta-prod2vec [27] are
other algorithms that create embeddings to be used for product recommendations. They
use content-based filtering where item similarities are captured based on user sessions
and their interactions with different items in a single session.

Our goal is therefore to create a representation for products in the euclidean space, such
that the similarities between products are preserved in the embedding space. These
embeddings can then be used for numerous downstream tasks instead of having only
one of the above-mentioned goals. Therefore, the proposed algorithm only requires
information describing the product and, we do not need any labeled data for training. It
is an unsupervised product embedding framework that can be used on different datasets
from various domains. As the foundation of our approach is based on word2vec, it is
both fast and scalable. It can handle all types of attributes: descriptive text, categorical,
ordinal, single word/token, and even numerical. These generated product embeddings
can then be used for detecting duplicate products. We can also cluster products using
their representations and this helps categorize all product data from Unite’s platform into

32 Chapter 4: Embedding Product Data

different categories and create taxonomies.

4.1 Embedding Techniques for Structured Data

There have been many attempts in different machine learning fields to construct nu-
merical vectorial representations for structured data. Performing machine learning on
structured textual data in form of sequences, trees, graphs, or tables having well-defined
schemas is complex as such data does not have a vectorial form [16]. Therefore, many
techniques have emerged to construct vectorial representations of structured data, from
kernel and distance approaches to the recurrent, recursive, and convolutional neural
networks [54]. In this thesis, we worked with a state-of-the-art approach in representa-
tion learning to create useful representations for such data.

In our approach, we create embeddings for product data which is in the form of struc-
tured tabular records. These structured records have a fixed number of attributes per
record. We used a text embedding framework for attribute encodings, which allows us
to draw analogies between documents and structured records. Text documents consist
of paragraphs, sentences, and words whereas structured records maintain a hierarchy
of records, attributes, and words.

Unlike sentences within a document, records do not have a defined sequence or follow
any meaningful ordering. There are no relationships between sentences across docu-
ments, but attributes within records can be strongly related [16]. Each attribute within
a structured record presents different information ranging from categories to descriptive
texts. It is also possible for some attributes within a record to be empty.

In this thesis, we introduced a method that leverages all these properties of structured
records to train embeddings by implementing word2vec [76] and doc2vec [41] frame-
works simultaneously for encoding individual attributes within a record. These embed-
dings capture the similarities, and relationships between products.

4.1.1 Attribute Embeddings

The foundation of our algorithm is based on the idea of creating individual embeddings
for each attribute within the record separately based on the information they contain.
Then these individual attribute embeddings can be combined to generate record em-
beddings. This means in our embedding model, every attribute has its own vocabulary
and has embeddings of dimension Di where i defines the i(th) attribute within the record
r. We divided the records within an e-commerce dataset into categorical and descriptive
attributes and the embeddings for them are generated as follows:

Chapter 4: Embedding Product Data 33

Categorical attributes

Categorical attributes consist of information that can be categorized or divided into
groups such as IDs, company or manufacturer names, etc. They can only take a limited
number of possible values. In our data, we have categorical columns like catalog_id,
set_id, ean, manu f actuter_id and manu f acturer_name. The embeddings for all these
attributes are created by using the skip-gram word2vec explained above.

The word2vec [76] model on these categorical attributes is trained separately for each
attribute by using vocabulary Vi from attribute i, having an embedding dimension of 300
for each categorical attribute. The embedding dimension N in the word2vec model has
a similar tuning mechanism as the number of hidden layers in the deep neural network.
We get the best results having the size of embedding dimension at 300. The context
window is set to 10.

Going through the skip-gram training procedure, it takes input as |Vi| dimensional one-
hot vector, which is mapped into a vector v of dimension 300 via an embedding lookup
matrix U of size (|V |, N), which gives us the hidden layer of the model. This hidden
layer vector v is then mapped by another context embedding matrix V to a final |V |-dim
vector. In our specific problem, we are interested in the hidden layer weights as they
represent the embeddings for given input words.

Subsequently, a softmax activation function is applied to normalize the layer to a prob-
ability distribution. It uses a cross-entropy loss function to compare the probability dis-
tribution of the final layer vector with input vectors. Optimization is performed by back-
propagating the error and word embeddings are updated via gradient descent. The loss
function from 3.13 with the parameters from our dataset is given in equation 4.1:

L =−log(P(wc−10,wc−9, ..,wc−1, ...,wc+10|wc))

L =−log(
20

∏
j=0, j ̸=10

P(wc−10+ j|wc))

L =−log(
20

∏
j=0, j ̸=10

P(uc−10+ j|vc))

L =−log(
20

∏
j=0, j ̸=10

exp(uT
c−10+ jvc)

∑
|V |
k=1 exp(uT

k vc)
)

L =−
20

∑
j=0, j ̸=10

uT
c−10+ j +20log

|V |

∑
k=1

exp(uT
k vc) (4.1)

34 Chapter 4: Embedding Product Data

Descriptive attributes

Columns or attributes such as product_name and product_description have long tex-
tual information, and therefore, are considered descriptive attributes. They are com-
posed of a different combinations of words and sentences. Descriptive attributes present
discrete data and are difficult to classify into groups. For creating embeddings of such
long sentences or paragraphs, we use the PV-DM approach of doc2vec [41].

As we explained above, the architecture for doc2vec is similar to word2vec with it having
an extra unique document id for representing each document. In the PV-DM approach
of doc2vec, this document id referred to as d remembers what is missing from the
context or it acts as a memory. In these descriptive attributes, we pre-process the long
string texts (explained in the next section) and tokenize them. In our implementation, we
assign a unique tag to each record l within a descriptive attribute to be used as d.

The PV-DM doc2vec model also is trained by using vocabulary Vi from each attribute
i, having an embedding dimension of 600. As the embeddings in doc2vec carry infor-
mation from the whole sentence or paragraph, the embedding dimension for it is more
than word2vec. The embedding dimension in doc2vec is also a self-defined parameter
and we set it at 600 to effectively capture the relationship between different descriptive
attributes. The context window size for it is also 10.

The training for doc2vec is similar to Word2vec, with just an additional document vector
or id d which is also taken as a member of the context set. The optimization process
is similar to the one defined above for word2vec. At the end of the training process,
document embeddings are taken from hidden layer weights. The objective function for
PV-DM doc2vec which is similar to cbow word2vec, for our specific parameters is given
as:

L =−log(P(w0|wc,1,wc,2, ...,wc,10,dl)) (4.2)

4.1.2 Skip Gram Negative sampling

Both word2vec and doc2vec algorithms compute the similarity between context words
and target words and assign vector representations to them based on their similarities.
This is achieved by using the objective function as defined in 4.1. The numerator in
this objection function computes the similarity between the target word and the context
word. While denominator is a normalizing factor, which computes the similarity between
all other context words (entire vocabulary) and the target word. As the size of vocabulary
can be huge with the possibility of having millions of words, the computation gets really
slow and unmanageable [72].

Chapter 4: Embedding Product Data 35

To overcome this issue, the concept of negative sampling is being introduced [47]. Neg-
ative sampling maximizes the similarity of words in similar context and minimizes it for
words occuring in a different context, by defining a new objective function. In simpler
terms, instead of looping over the whole vocabulary, it randomly selects some k words
other than context words and uses them for the optimization of the objective function.
The objective function using negative sampling by Mikolov in his paper [47] is given
as:

log(σ(v
′
wi

T
vwI))+

k

∑
i=1

Ewi∼Pn(w)[log(σ(−v
′
wc

T
vwI))] (4.3)

The value for k as given in equation 4.3 can be between 1 < k < 20 depending on the
size of the dataset. In our model we set the value of k at 5, which means 5 negative
samples are selected using a “unigram distribution” given in 4.3 as Pn(w). By using
this distribution, frequent words in the corpus are more likely to be selected as negative
samples. Given a list of words, the probability of word wi being selected as a nega-
tive sample using a unigram distribution is calculated as the total number of times wi

appeared in the corpus, divided by the total number of words in the sample.

P(wi) =
f (wi)

∑
n
j=0(f (w j))

(4.4)

The authors claimed in their paper [47] that they tried different variations in the above
formula and raising the power of word count to 3/4 resulted in the best performance.
This change tends to increase the probability for less frequent words to be sampled as
well.

P(wi) =
f (wi)

3/4

∑
n
j=0(f (w j))

3/4 (4.5)

To derive the objective function given in 4.3, we assume that (w,c) is a word and context
pair in the training data. We can denote this by P(Z = 1|w,c), which gives the probability
that this pair belongs to training data. Similarly, the probability of word context pair not
belonging to training data is given as P(Z = 0|w,c) = 1−P(Z = 1|w,c). In this probability
distribution, we denote the trainable parameters as θ and out of training data words as
Z′ and the function to be optimized for skip-gram negative sampling is given as:

argmaxθ ∏
(w,c)∈Z

P(Z = 1|w,c,θ) ∏
(w,c)∈Z′

P(Z = 0|w,c,θ) (4.6)

36 Chapter 4: Embedding Product Data

Here, we convert the maximum of products to the maximum for sum of logarithms and
substitute P(Z = 0|w,c) with 1−P(Z = 1|w,c)

argmaxθ ∑
(w,c)∈Z

log(P(Z = 1|w,c,θ))+ ∑
(w,c)∈Z′

log(1−P(Z = 1|w,c,θ)) (4.7)

P(Z = 1|w,c) is computed using the sigmoid function which is given as:

P(Z = 1|w,c;θ) = σ(vc.vw) =
1

1+ e−vc.vw
(4.8)

the above equation represents context words as vc and target words as vw and the final
objective function can be written as

argmaxθ ∑
(w,c)∈Z

log(σ(vc.vw))+ ∑
(w,c)∈Z′

log(σ(−vc.vw)) (4.9)

The above equation is similar to the objective function 4.3 given in [47] summed over
the entire vocabulary.

4.2 Triplet Loss on Embedding Vectors

After generating embeddings for both categorical attributes and descriptive attributes
using skip-gram negative sampling, we use a triplet loss function on each individual
embedding to improve them as defined in this paper [16]. To implement this triplet loss,
we iterate over embeddings of all records within all attributes separately. Each iteration
in the training of this loss consists of selecting a triplet (anchor, positive target, negative
target).

Here, a positive target is defined as the embedding of a single record for the i− th
attribute in the current iteration over all records given as e(r)i . A negative sample, given

as e(¬r)
i in each iteration is selected randomly from the set of records within the attribute

embedding. We further define a constraint that e(r)i = e(¬r)
i which means the embedding

for positive target should not be similar to a negative target. The anchor is calculated
as the sum of all the remaining attributes omitting the positive target. The formula for
calculation of anchor for an attribute i is given as:

anchor(r)i =
Nt

∑
j=1. j ̸=i

1
Nt

e(rt)
j (4.10)

Chapter 4: Embedding Product Data 37

where e(rt)
i represents embeddings for all records N within an attribute i. After calcu-

lating anchor, positive target, and negative target, we use the triplet loss function [80]
to make sure the loss function train embeddings with similar context (identical to the
target) and negative samples are separated by margin α [60]. The loss function to be
minimized for all records Nrec within an attribute is given as:

Loss =
Nrec

∑
r=1

Nneg

∑
n=1

max(0,d(anchorr,e(r),ern ̸=r)) (4.11)

where d(anchorr,e(r),e(rn ̸=r)) is a function calculating the difference between anchor,
positive target and negative target. For a single record within an attribute considering
margin as α , anchor as a, positive target as p, and negative target as n, this difference
can be calculated as:

d(a, p,n) =CosineDistance(a, p)−CosineDistance(a,n)+α (4.12)

We train this loss function on each attribute individually for all the records within an
attribute for 500 epochs. Margin is set at 0.5 and the loss is optimized using Adam
optimizer [39] with a learning rate of 0.001.

4.3 Meta-Embedding

Meta-embedding is defined as the process that tries to learn more accurate embeddings
by combining different individual embeddings given as input. An important step in NLP
is to select which pre-trained word embeddings to use for a given task. Thus, combin-
ing multiple pre-trained embeddings to solve different tasks has become a viable option
for more complex tasks like text similarity, classification, semantic relatedness, etc [59].
Meta-embedding has gained popularity among NLP practitioners because of its capabil-
ity of combining semantics from different embeddings into one [20]. These embeddings
have two advantages: first, they perform better than individual embeddings. Second,
they include more words than a single embedding [81].

In this thesis, we have separate embeddings for different categorical and descriptive at-
tributes trained using word2vec [76] and doc2vec [41] in an unsupervised manner. Each
of these embeddings is trained by a different neural network on a different vocabulary
and these diverse embeddings can be combined to learn better performing record em-
beddings. We will discuss and implement two simple and popular techniques based on
concatenation and linear transformation to combine different source embeddings.

38 Chapter 4: Embedding Product Data

4.3.1 Concatenating Source Word Embeddings

The simplest approach for creating meta-embeddings from different embedding sets is
to concatenate these embedding sets [81]. Although concatenation looks naive, but it
has been proven to be a good baseline of performance for meta-embeddings [38]. In
concatenation, the meta-embedding S is generated by concatenating individual attribute
embeddings, one each from the pool of n different attributes.

Concatenated meta-embeddings do not require the transformation of individual meta-
embeddings to bring them into the same dimensional space before combining. They
can be combined directly, and the dimensionality of the concatenated meta-embedding
is given as the sum of the dimensionality of all the individual embeddings. In our exam-
ple, categorical and descriptive embeddings have different sizes and we concatenate
them to get record embeddings. The disadvantage with simple concatenation is that the
resulting meta-embedding would have a very high dimension, which results in a great
increase in training parameters.

The figure below gives an example of concatenating 4 different source embeddings with
different embedding dimensions.

Figure 4.1: Explanation of generating meta-embeddings by concatenating source embeddings

4.3.2 Averaging Source Word Embeddings

As simple concatenation of embeddings results in a higher number of dimensions, a
method has been proposed to get a meta-embedding by averaging all source embed-
dings [38]. This approach might not seem intuitive and evident, as differently trained
source embeddings might not have any correlation. Also, it is not straightforward to take
an average of individual embeddings having a different number of dimensions.

Despite these problems, averaging can still provide good baseline performance for

Chapter 4: Embedding Product Data 39

meta-embeddings without increasing the dimensions of the embeddings [38]. This aver-
aging first requires a local transformation step where all source embeddings are trans-
formed into higher space if they have different dimensions. This is done by padding
individual embeddings with zeros at the end such that the dimensions of each embed-
ding are equal to the one with the highest dimensionality.

Suppose we have embeddings with dimension 300 referred as S1 and S2, S3 with em-
bedding dimension 400, and one with dimension 600 referred to as S4. We did not
make any assumption that these source embeddings are trained in the same setting
or method. The S1 and S2 with dimension 300 will be right padded with 300 zeros and
S3 is padded with 200 zeros so that all source embeddings are in the same space. As
the dimensions for all embeddings are the same, we can directly compute the averaged
meta-embedding for all padded source embeddings S1, S2, S3, and S4.

Figure 4.2: Explanation of generating meta-embeddings by averaging source embeddings

4.4 Architecture Of Embedding Model

Figure 4.3 gives a pictorial representation of step by step process of our approach used
for creating embeddings of product data in the form of structured tabular records. Each
record is separated into categorical and descriptive attributes where total categorical
attributes are referred to as M and descriptive attributes are referred to as L. Skip-gram
variant of the word2vec model is trained on all M attributes individually having a different
vocabulary and the embedding dimension is set at 300. Similarly, embeddings for L
descriptive attributes are trained using PV-DM doc2vec, and the resulting embedding
dimension is 600.

All of these attribute embeddings having N records are trained with a triplet loss that
iterates over all records and assigns anchor, positive and negative samples from all
records within an attribute. This loss function then uses cosine distance to modify at-
tribute embeddings such that similar attributes have similar embeddings while preserv-

40 Chapter 4: Embedding Product Data

ing the embedding dimension for the different types of attributes. After training triplet
loss these embeddings are combined by concatenating or averaging individual attribute
embeddings as described above to create record embeddings. These record meta-
embeddings represent the final embedding for the given product data.

Figure 4.3: Architecture of our embedding model with every step

Chapter 5: Experimental Setup and Evaluations 41

5 Experimental Setup and Evaluations

In this chapter, we will apply and evaluate the embedding model explained above on
Unite’s product data. This chapter is further divided into four sections. The first section
describes the dataset in detail and explains our pre-processing steps on the data before
applying the model. In the second section, we evaluate the performance of our model
on the dataset defined in the previous section using different evaluation techniques.
The third section summarizes the result from our embedding model. The last section
explains the python implementation of our approach.

5.1 Data

5.1.1 Data Description

The dataset we used for our experiment is an article or product data gathered from
Unite’s e-commerce platform. It has different attributes describing the product details.
Out of those attributes, we have trained our model on 7 relevant attributes for creat-
ing product embedding, which are product name, description, ean (international article
number), catalog id, set id, manu f acturer id and manu f acturer name. To evaluate
our model, we have learned embeddings by using 10,000 records from this dataset.
As product name best describes an individual product, some of our evaluations on this
dataset are only visualized using product name.

5.1.2 Data Pre-processing

In most cases, text data generated from different streams are not entirely clean and
require some pre-processing. Here, we explain a few vital pre-processing steps before
creating representations for the given data. These pre-processing steps help transform
or shape data to be best understood by our model. They play an important role in
improving the overall performance of the algorithm.

Unlike many other datasets, where the correctness of a data value can be reasoned
with its occurrences, quantitative statistics of article data do not necessarily imply cor-
rectness. That is to say, the fact that a certain manufacturer occurs less than the others
must not indicate an error, but it can be due to uneven numbers of existing manufactur-
ers on the market.

42 Chapter 5: Experimental Setup and Evaluations

Cleaning Null Values

In the first step, from our dataset gathered from Unite’s e-commerce platform, we will
omit all records in which the attribute product name is empty. Null values in product name
usually occur due to a problem with the source system that captures the product data.
As most of our visualization is based on product name and we also analyze the simi-
larity of the product embeddings based on their names. It is, therefore, important not to
have null values in product name.

In all other attributes, we replace the null or empty attribute with the word ’None’ to
have a consistent token representing all the empty values within all attributes. We also
lowercase all the words from all attributes before training the model. Missing values in
our data, before replacing them with None for all attributes other than product_name
are shown in figure 5.1. White lines in this mentioned figure on the y-axis represent the
number of missing values or Nan in each column.

Figure 5.1: Showing missing values in a matrix where whites represent missing values in each
attribute

Chapter 5: Experimental Setup and Evaluations 43

Removing Punctuations and Special Characters

In text processing tasks, the first pre-processing step is to eliminate any special char-
acters in the input dataset. Word2vec and doc2vec algorithms described above work
on capturing similarities between words, and punctuations do not have any semantic
similarity with other words. Therefore, we remove punctuations and special characters
from both our categorical and descriptive attributes.

Removing White Spaces

In our categorical attributes, we want the values to be processed as single words. At-
tributes like manu f acturer name can consist of multiple words. For these attributes to
be processed by word2vec as single words we replace the white spaces with hyphens
(-). Removing spaces made capturing the similarity between different values within the
attribute easier. For example, a manufacturer name like under armour would be trans-
formed into under-armour.

Tokenizing words

Tokenizing words is defined as the process of transforming the descriptive columns
such that each word is isolated. It divides each string text into lists of substrings. We
tokenize our descriptive attributes such that each sentence after the removal of punc-
tuation and stop words consist of individual tokens. After tokenizing it, they are tagged
with a paragraph-id for each sentence.

5.2 Evaluations

Word embedding models are extensively been used in different NLP tasks that require
capturing maximum semantic information [49]. Various techniques have been sug-
gested in the literature to evaluate the quality of word embeddings [79]. Despite the
omnipresence of word embeddings in NLP, there is still an ongoing debate about the
capability of different methods for evaluating word embeddings. To date, there is no
consensus on one single approach that best evaluates these models [24].

In this section, we will discuss different techniques that can comprehensively evaluate
embeddings of products generated from structured data. Here, We will go through some
of the widely-used and popular evaluation techniques. These evaluation techniques are
divided into two categories: intrinsic evaluations and extrinsic evaluations.

44 Chapter 5: Experimental Setup and Evaluations

5.2.1 Intrinsic Evaluations

Intrinsic evaluations are used to check the quality of an embedding irrespective of any
defined natural language processing tasks. [79]. In text analytics, these evaluation meth-
ods directly test the quality of the embeddings by checking syntactic and semantic sim-
ilarities between individual words or phrases. These intrinsic evaluation methods are
further divided into absolute intrinsic and comparative intrinsic evaluation.

Intrinsic evaluations are defined as experiments in which relations in word embed-
dings are evaluated individually and results are based on the comparisons between
those evaluations [79]. Comparative evaluations are based on human judgment where
given different embeddings from various models, an assessor evaluates or judges which
method performs the best [7]. Here, we will discuss only the absolute intrinsic evaluation
methods as comparative intrinsic evaluators require additional resources.

Record Similarity

Record similarity is defined as the method that checks the distance between similar
records in the embedding space. Also referred to as ’semantic relatedness’, it mea-
sures the extent to which a record shares similarities with other records in the corpus.
These semantic similarity or semantic relatedness tasks rate semantic proximities be-
tween pairs of words using different similarity measures [67]. These method is usually
evaluated by maintaining a list of pairs of words along with their similarity values [71].

In our example, we will evaluate and show the top 10 similar products to a randomly
chosen product embedding (mentioned on top of the table) using cosine similarity and
euclidean similarity. These similar articles will then be used to gauge the performance
of the model’s performance. Its interpretability will be assessed by exercising human
judgment. We will evaluate the record similarity from embeddings created by using both
explained meta-embedding techniques. The tables below show the similarity between
product embeddings using product name only. Some of these product names are sim-
ilar as other attributes like ean, catalog id, or manu f acturer name within this record
embedding are different.

Chapter 5: Experimental Setup and Evaluations 45

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA
Product Name Similarity

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.8916
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.8914
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.881
tesa Folienband extra Power Universal, 50 mm x 10 m, schwarz
(8756348)

0.8875

tesa Reparaturband extra Power, schwarz, 10m x 50mm 0.8863
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.8838
tesa Reparaturband schwarz 10mx50mm Power Perfect, extra Power 0.8832
Gewebeband ext.Power 56348 schwarz L.10m B.48mm Rl.TESA 0.8831
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.8830
Tesa Extra Power Universal schwarz 48 mm x 10 m Gewebeklebeband 0.8826

Table 5.1: Top 10 Similar products to a given product by using cosine similarity on Averaged
meta-embeddings

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA
Product Name Similarity

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.7374
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.7351
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.7343
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.7286
Gewebeband ext.Power 56348 schwarz L.10m B.48mm Rl.TESA 0.7280
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.7262
tesa Folienband extra Power Universal, 50 mm x 10 m, schwarz
(8756348)

0.7236

Tesa Extra Power Universal schwarz 48 mm x 10 m Gewebeklebeband 0.7151
tesa Reparaturband extra Power, schwarz, 10m x 50mm 0.7150
tesa extra Power Universal 10m 50mm schwarz 0.7144

Table 5.2: Top 10 Similar products to a given product by using cosine similarity on Concatenated
meta-embeddings

46 Chapter 5: Experimental Setup and Evaluations

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA
Product Name Similarity

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6652
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6649
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6607
tesa Folienband extra Power Universal, 50 mm x 10 m, schwarz
(8756348)

0.6594

Tesa Extra Power Universal schwarz 48 mm x 10 m Gewebeklebeband 0.6574
Gewebeband ext.Power 56348 schwarz L.10m B.48mm Rl.TESA 0.6573
tesa Reparaturband schwarz 10mx50mm Power Perfect, extra Power 0.6572
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6567
tesa Reparaturband extra Power, schwarz, 10m x 50mm 0.6561
tesa extra Power Universal 10m 50mm schwarz 0.6554

Table 5.3: Top 10 Similar products to a given product by using euclidean distance on Averaged
meta-embeddings

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA
Product Name Similarity

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6578
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6573
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6563
Gewebeband ext.Power 56348 schwarz L.10m B.48mm Rl.TESA 0.6549
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6533
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6532
tesa Folienband extra Power Universal, 50 mm x 10 m, schwarz
(8756348)

0.6518

Tesa Extra Power Universal schwarz 48 mm x 10 m Gewebeklebeband 0.6491
tesa extra Power Universal 10m 50mm schwarz 0.6481
tesa extra Power Universal 10m 50mm schwarz 0.6480

Table 5.4: Top 10 Similar products to a given product by using euclidean distance on Concate-
nated meta-embeddings

Chapter 5: Experimental Setup and Evaluations 47

We calculated the top 10 most similar articles in terms of similarity to the embedding
of a given article where higher values represent high similarity. The tables above show
that both concatenated and averaged record embeddings effectively preserve the simi-
larities between object space and the embedding space. The effect of different similarity
measures on calculating the nearest neighbors has been studied by using two different
measures. As the top 10 articles computed by cosine similarity are similar to euclidean
distance, it is safe to conclude that embeddings robustly capture the structure from ob-
ject space.

The similarity value for concatenated embeddings using cosine distance is less than
that of averaged embeddings. It is because the embedding dimension for concatenated
meta-embeddings is higher, as it captures more information from a record and results
in more dissimilarity between two articles. Value for euclidean similarity is derived from
euclidean distance by normalizing and updating it as explained in preliminaries, resulting
in both averaged and concatenated embeddings scaled at 0.6.

Visualizing Embeddings

Another technique to evaluate these record embeddings is to visualize them in a 2-
dimensional space. In this visualization, records similar to each other would be closer
while dissimilar products. As described in our model, these product embeddings usually
have very high dimensions, which means it is difficult to visualize these products in a
2-dimensional space. To overcome this problem, we implemented the t-sne technique
defined above, which reduced the dimensionality of these embeddings to 2.

After reducing dimensions using t-sne, we visualized these record embeddings from
both concatenated and averaged meta-embeddings using manufacturer names and
product names. The product names are long strings and difficult to interpret in a static
figure. Within these figures, product names are limited to 100, and manufacturer names
are limited to 250 for better visibility in a scatter plot.

48 Chapter 5: Experimental Setup and Evaluations

Figure 5.2: Visualization of Manufacturer Name from concatenated meta-embeddings using t-
sne

Chapter 5: Experimental Setup and Evaluations 49

Figure 5.3: Visualization of Product Name from concatenated meta-embeddings using t-sne

50 Chapter 5: Experimental Setup and Evaluations

Figure 5.4: Visualization of Manufacturer Name from averaged meta-embeddings using t-sne

Chapter 5: Experimental Setup and Evaluations 51

Figure 5.5: Visualization of Product Name from averaged meta-embeddings using t-sne

52 Chapter 5: Experimental Setup and Evaluations

These visualizations show that same manufacturers are closer to each other in the
embedding space while different manufacturers are far apart. From figures 5.2 and
5.4, we can claim that our embeddings also capture the semantic similarity between
these records as manufacturers like "cederroth" and "holth ausmedical", which are both
pharmaceuticals-related companies, are very close. On the other hand companies like
”varta”, a battery manufacturer, are far apart from the pharmaceuticals cluster. Also, in
figure 5.2, clusters from the similar category of manufacturers are closer.

From figures visualizing embeddings using the product name, we can interpret again
that similar products are very close to each other in the embedding space and different
products are far apart. Clusters for similar kinds of products like mice and batteries that
both belong to electronics are closer than others. In these visualizations, both concate-
nated and averaged meta-embeddings seems to have similar quality of embeddings as
they plot records in the more or less same manner.

5.2.2 Extrinsic Evaluations

Extrinsic evaluations are based on the ability to use embeddings as input features for
performing different tasks like classification, clustering, etc. They use these record em-
beddings as feature vectors for supervised machine learning tasks [7]. For example, in
an NLP context, these extrinsic evaluations could be used for tasks like part-of-speech
tagging [43], named-entity recognition [84], language translation [23] and sentiment
analysis [62]. Nevertheless, by the above explanation of extrinsic evaluations, we hy-
pothesize that the performance of an embedding model can be evaluated using any
downstream task.

In our example, we used these record embeddings for clustering tasks. As defined in
the dataset, we have 10,000 records, and we used clustering results from a hierarchical
clustering performed on Unite’s dataset, which served as a benchmark. To compare
these pre-existing clustering results, we clustered our record embeddings by using K-
means 2.2.1 and BIRCH 2.2.2. In both of these algorithms, the number of clusters is set
equal to the number of clusters in pre-existing clustering. Afterward, these clustering
results were compared and evaluated using different external cluster metrics like ARI
2.4.1, FMI 2.4.2, and v-measure 2.21, where we also show the homogeneity 2.15 and
completeness 2.18 scores used for calculating v-measure. Cluster metrics evaluated on
clusters formed by two different clustering techniques are given as follows:

K-means Clustering

For k-means clustering on these record embeddings, the k (number of clusters) is taken
as 278. This is the number of clusters we have from another clustering algorithm on
source data and it runs for 10 iterations. We will also evaluate the impact of the triplet

Chapter 5: Experimental Setup and Evaluations 53

loss function by evaluating cluster metrics on these meta-embeddings trained both with
and without triplet loss.

Cluster Metric Avergaed Meta-Embedding Concatenated Meta-Embedding

ARI 0.109 0.119
FMI 0.117 0.125

Homogeneity 0.570 0.576
Completeness 0.595 0.598

V-measure 0.582 0.586

Table 5.5: Evaluating cluster metrics on record embeddings generated without triplet loss clus-
tered by using k-means

Cluster Metric Avergaed Meta-Embedding Concatenated Meta-Embedding

ARI 0.592 0.728
FMI 0.60 0.727

Homogeneity 0.870 0.903
Completeness 0.901 0.921

V-measure 0.885 0.912

Table 5.6: Evaluating cluster metrics on record embeddings generated with triplet loss clustered
by using k-means

All of these cluster metrics are evaluated between 0 and 1, where 1 represents the
highest or exact similarity between two different clustering outcomes. In table 5.5, we
can see that meta-embeddings generated from attributes not trained with triplet loss give
values close to 0 for ARI and FMI in both concatenated and averaged meta-embeddings.
These values from these metrics represent that the clustering result has significantly
less or no similarity to the ground truth clustering we are comparing it with. V-measure
along with homogeneity and completeness score values are close to 0.5, which also
means there is a low correlation between the two clustering results.

On the other hand, when we compare the v-measure score from table 5.6, which are
triplet loss trained embeddings, the value is close to 1 for both concatenated and av-
erage meta-embeddings. This result shows a strong correlation between the two clus-
tering results. Almost 90% of the elements are correctly clustered as given in ground
truth clustering. ARI score of 0.72 while using concatenated embeddings for clustering

54 Chapter 5: Experimental Setup and Evaluations

represents an adequate recovery of the true (ground truth) clustering results. FMI score
greater than 0.7 also represents a considerable similarity between the two clustering
algorithms.

BIRCH Clustering

BIRCH is a hierarchical clustering algorithm that performs clustering in a single iteration
by scanning all data at once. It transforms data into a smaller tree-like structure by using
CF trees. The hyperparameters within BIRCH clustering are branching factor, threshold,
and the number of clusters. In our example, we initialize the number of clusters with
278 which taken from prior clustering results, the branching factor is set at 50 and the
threshold is 0.1. Like k-means clustering, we will evaluate it using the cluster metrics
mentioned above and also the impact of triplet loss on these cluster metrics.

Cluster Metric Averaged Meta-Embedding Concatenated Meta-Embedding

ARI 0.020 0.056
FMI 0.053 0.076

Homogeneity 0.396 0.497
Completeness 0.542 0.565

V-measure 0.458 0.529

Table 5.7: Evaluating cluster metrics on record embeddings generated without triplet loss clus-
tered by using BIRCH

Cluster Metric Averaged Meta-Embedding Concatenated Meta-Embedding

ARI 0.687 0.690
FMI 0.694 0.696

Homogeneity 0.908 0.908
Completeness 0.921 0.922

V-measure 0.914 0.915

Table 5.8: Evaluating cluster metrics on record embeddings generated with triplet loss clustered
by using BIRCH

Similar to results from cluster metrics on k-means clustering, we can deduce that clus-
tering performed on meta-embeddings generated from individual attributes without triplet
loss generate clusters completely different from the ground truth. As shown in table 5.7,
the values for ARI and FMI in both concatenated and averaged meta-embeddings are
close to 0. V-measure value from this is also close to 0.5, which again means that there
is low correlation between the two clustering results.

Chapter 5: Experimental Setup and Evaluations 55

The v-measure score from table 5.8 is better than k-means clustering, and this repre-
sents the clustering results from BIRCH clustering on both meta-embeddings are almost
correlated to true clustering. Homogeneity and completeness values are both more than
0.9, where the homogeneity score represents 90% of the elements within our clusters
belonging to the same given true clusters. The completeness score shows that more
than 90% of elements from true clusters are contained within the same clusters from
the BIRCH algorithm. ARI score also represents a sufficient recovery of original clus-
ters from both meta-embeddings. FMI score for both embeddings is similar and close
to 0.7 representing a reasonable similarity between the two outcomes.

5.3 Results

Both intrinsic and extrinsic evaluations show that our model effectively creates embed-
dings for the given product data. These embeddings preserve the semantic and struc-
tural similarities from the original product records and they can be used to effectively
cluster similar records. In intrinsic evaluations, we don’t see much difference in using
concatenated or averaged meta-embeddings for both record similarity and visualization
of these embeddings.

For extrinsic evaluations, we evaluated different cluster metrics on k-means cluster-
ing and BIRCH clustering. All these metrics compare the two clustering results differ-
ently and the interpretation of all of these scores individually is given in the evaluations
above. From the tables above, it is shown that concatenated meta-embeddings yield
slightly better clustering results than averaged meta-embeddings as it captures more
information by preserving all dimension from individual attributes. However, the train-
ing time for clustering on concatenated meta-embeddings is also more than averaged
meta-embeddings. As the clusters we are using as ground truth was performed using
hierarchical clustering, the results from averaged meta-embeddings using BIRCH are
notably better than k-means.

From both intrinsic and extrinsic evaluations, we can conclude triplet loss technique
used in our approach have a significant impact on the quality of embeddings. Cluster
metrics evaluated on embeddings trained without triplet loss show no correlation be-
tween the two clustering results. Also, visualization for embeddings that are not trained
using triplet loss is scattered as shown in appendices in figures B.1, B.3 and B.2, B.4.
They are loosely coupled, and similar products and manufacturers are not as close as
in embeddings trained with triplet loss.

56 Chapter 5: Experimental Setup and Evaluations

5.4 Implementation Details

The algorithms were written using Python 3 programming language. We used conda
(Anaconda) [1] as a virtual environment for managing packages used in implementation
across different servers. Pandas [56] and NumPy [30] are the essential python packages
used for pre-processing data. We used gensim [63], which is a python library that pro-
vides an easy implementation for both word2vec and doc2vec algorithms. Other python
packages used for triplet loss and visualization include tensorflow [2], matplotlib [34],
and scikit-learn (sklearn) [57].

All experiments were executed on a machine with an M1 pro chip powered by 10 cores
(8 high-performance cores and 2 efficiency cores) and 16GB of RAM, running macOS
12.4. No GPU acceleration is involved in the experiment. The dataset used for train-
ing algorithms has been limited to 10,000 records. The total training time for creating
embeddings on both categorical and descriptive attributes using word2vec and doc2vec
was 25 minutes. For running triplet loss on each attribute separately for 500 epochs, the
total training time was 5 hours. The training for all of these embeddings was parallelized
by using multiprocessing.

The hyperparameters value we used for implementing word2vec and doc2vec in gensim
are listed below:

Hyperparameters of word2vec

Following are the hyperparameters we used for implementing Skip-gram word2vec along
with their explanations:

• vector_size = 300: This is the embedding dimension

• window = 10: It is the size of context window

• negative = 10: Number of samples for negative sampling

• min_count=1: Minimum occurence of the word in the corpus to be considered

• workers = 10: All CPU workers to be used

• epochs = 10: Number of times the algorithm scans the corpus

• sg = 1: 0 means CBOW and 1 means skip-gram

• hs = 0: This means hierarchical softmax is not used

Hyperparameters of Doc2vec

Following are the hyperparameters we used for implementing Skip-gram word2vec along
with their explanations:

Chapter 5: Experimental Setup and Evaluations 57

• vector_size = 600: This is the embedding dimension

• window = 10: It is the size of context window

• negative = 10: Number of samples for negative sampling

• min_count=2: Minimum occurence of the word in the corpus to be considered

• workers = 10: All CPU workers to be used

• dm = 1: 0 means PV-DBOW and 1 means PV-DM

• hs = 0: This means hierarchical softmax is not used

• alpha = 0.025: Initial learning rate

• min_alpha = 0.05: Minimum learning rate as the training progresses

58

Chapter 6: Conclusion and Future Work 59

6 Conclusion and Future Work

In this thesis, we presented an approach for creating embeddings for heterogeneous
product data from Unite’s e-commerce platform in the form of tabular records having
different attributes presenting the product details. This model uses popular NLP ap-
proaches word2vec and doc2vec in a non-NLP context to create embeddings for each
attribute separately. These attribute embeddings present that associations between
records in a table can be learned by creating the context in a similar way to learning the
relationship between words in a sentence. Our approach also further optimized these
embeddings to better preserve relationships in an attribute.

Product embeddings generated by our model have been evaluated both qualitatively
and quantitatively by intrinsic and extrinsic evaluation measures. We can deduce from
the results of these evaluations, that embeddings created using this model can also be
extended to datasets other than e-commerce or product data. This approach provides a
generic framework for creating embeddings for data in the form of structured records or
tables. The evaluation techniques discussed also illustrate the usability of embeddings
generated by this approach for downstream tasks.

Further improvements in this approach can be made by using a meta-embedding tech-
nique that uses a non-linear transformation to combine individual attribute embeddings.
This kind of technique will better preserve and combine the information from all attribute
embeddings. We also need to generalize this framework to generate embeddings for
new and unseen products by using the vocabulary from existing embeddings and with-
out re-running the whole process.

60

Chapter 6: Bibliography 61

Bibliography

[1] Anaconda software distribution. Anaconda Inc., 2016.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, L. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, T. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, P. Viégas, F.and Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from tensorflow.org.

[3] A. Achille and S. Soatto. An overview on data representation learning: From tradi-
tional feature learning to recent deep learning. CoRR, abs/1611.08331, 2017.

[4] A. Akbik, D. Blythe, and R. Vollgraf. Contextual string embedding for language
modeling. In Proceedings of the 27th International Conference on Computational
Linguistics, pages 1638–1649. Association for Computational Linguistics, 2018.

[5] S. Alrumiah and M. Hadwan. Implementing big data analytics in e-commerce:
Vendor and customer view. IEEE Access, 9, 2021.

[6] E. Amigo, J. Gonzalo, J. Artiles, and F. Verdejo. A comparison of extrinsic cluster-
ing evaluation metrics based on formal constraints. Information Retrieval Journal,
12:461–486, 2009.

[7] B. Amir. A survey of word embeddings evaluation methods. CoRR,
abs/1801.09536, 2018.

[8] P. Bachman, W. Buchwalter, and R. D. Hjelm. Learning representations by maxi-
mizing mutual information across views. CoRR, abs/1906.00910, 2019.

[9] R. Baraniuk, D. Donoho, and M. Gavish. The science of deep learning. Proceed-
ings of the National Academy of Sciences, 117(48):30029–30032, 2020.

[10] O. Barkan and N. Koenigstein. Item2vec: Neural item embedding for collaborative
filtering. CoRR, abs/1603.04259, 2016.

[11] R. Bellman and R. Kalaba. A mathematical theory of adaptive control processes.
Proceedings of the National Academy of Sciences, 45(8):1288–1290, 1959.

[12] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new

62 Chapter 6: Bibliography

perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828, 2013.

[13] F. Bianchi, J. Tagliabue, and B. Yu. Query2Prod2Vec: Grounded word embeddings
for eCommerce. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies: Industry Papers, pages 154–162. Association for Computational Linguis-
tics, 2021.

[14] A. Bibal, V. Vu, G Nanfack, and B. Frénay. Explaining t-sne embeddings locally by
adapting lime. 10 2020.

[15] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with
subword information. CoRR, abs/1607.04606, 2016.

[16] A. Borthwick and Y. L. A. Sim. Record2vec: Unsupervised representation learning
for structured records. In ICDM, 2018.

[17] S. Cao, X. Wang, and K. M. Kitani. Learnable embedding space for efficient neural
architecture compression. In International Conference on Learning Representa-
tions, 2019.

[18] C. Chang, W. Liao, Y. Chen, and L. Liou. A mathematical theory for clustering in
metric spaces. CoRR, abs/1509.07755, 2015.

[19] F. Chen, X. Liu, D. Proserpio, I. Troncoso, and F. Xiong. Studying product competi-
tion using representation learning. CoRR, abs/2005.10402, 2020.

[20] B. Danushka and O. James. A survey on word meta-embedding learning. Pro-
ceedings of the 31st International Joint Conference on Artificial Intelligence, 2022.

[21] A. Deshpande and M. Kumar. Artificial Intelligence for Big Data: Complete Guide
to Automating Big Data Solutions Using Artificial Intelligence Techniques. Packt
Publishing, 2018.

[22] J. Devlin, M. Chang, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018.

[23] B. Dzimtry, C. Kyunghyun, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Rep-
resentations, ICLR, 2014.

[24] M. Faruqui, Y. Tsvetkov, P. Rastogi, and C. Dyer. Problems with evaluation of word
embeddings using word similarity tasks. In Proceedings of the 1st Workshop on

Chapter 6: Bibliography 63

Evaluating Vector-Space Representations for NLP. Association for Computational
Linguistics, 2016.

[25] U. Fayyad, C. Reina, and P. S. Bradley. Initialization of iterative refinement cluster-
ing algorithms. In Proceedings of the Fourth International Conference on Knowl-
edge Discovery and Data Mining, page 194–198. AAAI Press, 1998.

[26] J. R. Firth. A synopsis of linguistic theory 1930-55. Studies in Linguistic Analysis
(special volume of the Philological Society), 1952-59, 1957.

[27] V. Flavian, S. Elena, and C. Alexis. Meta-prod2vec - product embeddings using
side-information for recommendation. CoRR, abs/1607.07326, 2016.

[28] R. M. Gray. Entropy and Information Theory. Springer Publishing Company, Incor-
porated, 2nd edition, 2011.

[29] G. Hamerly and C. Elkan. Alternatives to the k-means algorithm that find better
clusterings. In Proceedings of the Eleventh International Conference on Informa-
tion and Knowledge Management, page 600–607. Association for Computing Ma-
chinery, 2002.

[30] R. C. Harris, K. J. Millman, S. J. V. D. Walt, R. Gommers, Virtanen. P., D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, S. Picus, M. Hoyer,
M. Kerkwijk, M. Brett, A. Haldane, J. F. D. Río, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant. Array programming with NumPy. Nature, 2020.

[31] G. Hinton and S. Roweis. Stochastic neighbor embedding. In Advances in Neural
Information Processing Systems, volume 15. MIT Press, 2002.

[32] H. V. D. Hoef and J. Warrens, M. Understanding information theoretic measures
for comparing clusterings. Behaviormetrika, 46, 2018.

[33] E. Hoffer and N. Ailon. Deep metric learning using triplet network. In Similarity-
Based Pattern Recognition, pages 84–92. Springer International Publishing, 2015.

[34] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 2007.

[35] C. Janiesch, P. Zschech, and K. Heinrich. Machine learning and deep learning.
CoRR, abs/2104.05314, 2021.

[36] D. Jarrett and M. V. D. Schaar. Target-embedding autoencoders for supervised
representation learning. 2020.

64 Chapter 6: Bibliography

[37] X. Jin and J. Han. Partitional Clustering, pages 766–766. Springer US, 2010.

[38] C. Joshua and B. Danushka. Frustratingly easy meta-embedding – com-
puting meta-embeddings by averaging source word embeddings. CoRR,
abs/1804.05262, 2018.

[39] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR, 2015.

[40] Y. LeCun, , Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–44, 2015.

[41] Q. Lee and T. Mikolov. Distributed representations of sentences and documents.
31st International Conference on Machine Learning, ICML, 4, 2014.

[42] J. Li, C. Xiong, and S. Hoi. Learning from noisy data with robust representation
learning, 2021.

[43] Z. Li, M. Zhang, W. Che, T. Liu, and W. Chen. Joint optimization for chinese
pos tagging and dependency parsing. Audio, Speech, and Language Processing,
IEEE/ACM Transactions on, 22:274–286, 2014.

[44] J. B. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In Proc. of the fifth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297. University of California Press, 1967.

[45] L. V. D. Matten and G. Hinton. Viualizing data using t-sne. Journal of Machine
Learning Research, 9:2579–2605, 2008.

[46] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. 1st International Conference on Learning Representations,
ICLR, 2013.

[47] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed represen-
tations of words and phrases and their compositionality. CoRR, abs/1310.4546,
2013.

[48] U. Naseem, I. Razzak, S. K. Khan, and M. Prasad. A comprehensive survey on
word representation models: From classical to state-of-the-art word representation
language models. CoRR, abs/2010.15036, 2020.

[49] N. Nayak, G. Angeli, and C. Manning. Evaluating word embeddings using a repre-
sentative suite of practical tasks. In Proceedings of the 1st Workshop on Evaluating
Vector-Space Representations for NLP, pages 19–23. Association for Computa-
tional Linguistics, 2016.

Chapter 6: Bibliography 65

[50] Z. Nazari, M. Nazari, M. S. S. Danish, and D. Kang. Evaluation of class noise
impact on performance of machine learning algorithms. 08 2018.

[51] A. Neelakantan, T. Xu, R. Puri, A. Radford, J. M. Han, J. Tworek, Q. Yuan, N. Tezak,
J. W. Kim, C. Hallacy, J. Heidecke, P. Shyam, B. Power, T. E. Nekoul, G. Sastry,
G. Krueger, D. Schnurr, F. P. Such, K. Hsu, M. Thompson, T. Khan, T. Sherbakov,
J. Jang, P. Welinder, and L. Weng. Text and code embeddings by contrastive pre-
training. CoRR, abs/2201.10005, 2022.

[52] A. Nemec and R. Brinkhurst. The fowlkes–mallows statistic and the comparison of
two independently determined dendrograms. Canadian Journal of Fisheries and
Aquatic Sciences, 45:971–975, 04 2011.

[53] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation func-
tions: Comparison of trends in practice and research for deep learning. CoRR,
abs/1811.03378, 2018.

[54] B. Paaßen, C. Gallicchio, A. Micheli, and A. Sperduti. Embeddings and represen-
tation learning for structured data. CoRR, abs/1905.06147, 2019.

[55] J. Palacio-Niño and F. Berzal. Evaluation metrics for unsupervised learning algo-
rithms. CoRR, abs/1905.05667, 2019.

[56] The pandas development team. pandas-dev/pandas: Pandas, 2020.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 2011.

[58] J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word repre-
sentation. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 14:1532–1543, 2014.

[59] S. C. R and R. K. Dubey. Meta-embeddings for natural language inference and
semantic similarity tasks. CoRR, abs/2012.00633, 2020.

[60] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. In 4th International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016.

[61] W. M. Rand. Objective criteria for the evaluation of clustering. 66:846–850, 1971.

66 Chapter 6: Bibliography

[62] K. Ravi and V. Ravi. A survey on opinion mining and sentiment analysis: Tasks,
approaches and applications. Knowlede based systems, 89:14–46, 2015.

[63] R. Řehůřek and P. Sojka. Software framework for topic modelling with large cor-
pora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50. ELRA, 2010.

[64] W. Ren, Y. Miche, I. Oliver, S. Holtmanns, K. Bjork, and A. Lendasse. On distance
mapping from non-euclidean spaces to euclidean spaces. In Machine Learning
and Knowledge Extraction, pages 3–13. Springer International Publishing, 2017.

[65] E. Rendón, I. Abundez, A. Arizmendi, and E.M. Quiroz. Internal versus external
cluster validation indexes. International Journal of Computers and Communica-
tions, 5:27–34, 01 2011.

[66] P. Ristoski, P. Petrovski, P. Mika, and H. Paulheim. A machine learning approach
for product matching and categorization. Semantic Web, 9:707–728, 2018.

[67] A. Rogers and A. Drozd. Intrinsic evaluations of word embeddings: What can
we do better? In Proceedings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 36–42. Association for Computational Linguistics,
2016.

[68] A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based external
cluster evaluation measure. pages 410–420, 2007.

[69] M. Sahlgren. The distributional hypothesis. Italian Journal of Linguistics, 20, 2008.

[70] C. Sammut and G. I. Webb. Encyclopedia of Machine Learning. 2010.

[71] T. Schnabel, I. Labutov, D. Mimno, and T. Joachims. Evaluation methods for unsu-
pervised word embeddings. 2015.

[72] R. Socher, M. Mohammadi, and R. Mundra. Cs 224d: Deep learning for nlp. 2015.

[73] S. Srinivasan, K. Ramamritham, and A. Kumar. Inducing conceptual embedding
spaces from wikipedia. International World Wide Web Conferences Steering Com-
mittee, 2017.

[74] B. M. Sundheim. Overview of the fourth message understanding evaluation and
conference. Association for Computational Linguistics, 1992.

[75] B. Szalkai. Generalizing k-means for an arbitrary distance matrix. CoRR,
abs/1303.6001, 2013.

Chapter 6: Bibliography 67

[76] M. Tomas, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. Proceedings of Workshop at ICLR, 2013, 2013.

[77] L. Vasile, E. Smirnova, and A. Conneau. Meta-prod2vec - product embeddings
using side-information for recommendation. CoRR, abs/1607.07326, 2016.

[78] S. Wagner and D. Wagner. Comparing clusterings - an overview. Technical Report,
2007.

[79] B. Wang, A. Wang, F. Chen, Y. Wang, and C. J. Kuo. Evaluating word embedding
models: Methods and experimental results. CoRR, abs/1901.09785, 2019.

[80] K. Weinberger and L. Saul. Distance metric learning for large margin nearest neigh-
bor classification. Journal of Machine Learning Research, 10, 2009.

[81] Y. Wenpeng and S. Hinrich. Learning word meta-embeddings. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics, pages
1351–1360. Association for Computational Linguistics, 2016.

[82] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Product knowledge graph
embedding for e-commerce. CoRR, abs/1911.12481, 2019.

[83] D. Xu, C. Ruan, E. Körpeoglu, S. Kumar, and K. Achan. Theoretical understandings
of product embedding for e-commerce machine learning. CoRR, abs/2102.12029,
2021.

[84] J. Xu, H. He, Xu. Sun, X. Ren, and S. Li. Cross-domain and semisupervised
named entity recognition in chinese social media: A unified model. volume 26,
pages 2142–2152, 2018.

[85] H. M. Zahera and M. A. Sherif. Probert: Product data classification with fine-tuning
bert mode. Proceedings of Mining the Web of HTML-embedded Product Data
Workshop, 2020.

[86] D. Zhang, Y. Li, and Z. Zhang. Deep metric learning with spherical embedding.
CoRR, abs/2011.02785, 2020.

[87] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering
method for very large databases. page 103–114. Association for Computing Ma-
chinery, 1996.

68

69

Appendices

Chapter A: Record Similarity Without Triplet Loss 71

A Record Similarity Without Triplet Loss

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA
Product Name Similarity

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.896
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm 0.792
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.771
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.735
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.718
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.712
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.688
Gewebeband ext.Power 56348 schwarz L.10m B.48mm Rl.TESA 0.682
Gewebeband extra Power® 56348 schwarz Länge 10 m Breite 48 mm
Rolle TESA

0.616

Tesa Folienband extra Power Universal 50 mm x 10 m schwarz 0.582

Table A.1: Top 10 Similar products to a given product by using cosine similarity on Averaged
meta-embeddings wihtout triplet loss

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA
Product Name Similarity

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.893
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm 0.782
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.773
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.714
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.709
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.694
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.692
Gewebeband ext.Power 56348 schwarz L.10m B.48mm Rl.TESA 0.660
Gewebeband extra Power® 56348 schwarz Länge 10 m Breite 48 mm
Rolle TESA

0.583

Tesa Folienband extra Power Universal 50 mm x 10 m schwarz 0.561

Table A.2: Top 10 Similar products to a given product by using cosine similarity on Concatenated
meta-embeddings without triplet loss

72 Chapter A: Record Similarity Without Triplet Loss

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA
Product Name Similarity

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6621
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6619
tesa Folienband extra Power Universal, 50 mm x 10 m, schwarz
(8756348)

0.66

tesa Reparaturband extra Power, schwarz, 10m x 50mm 0.6595
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.6594
Gewebeband extra Power® 56348 schwarz Länge 10 m Breite 48 mm
Rolle TESA

0.6592

Tesa Extra Power Universal schwarz 48 mm x 10 m Gewebeklebeband 0.6574
tesa Reparaturband schwarz 10mx50mm Power Perfect, extra Power 0.6553
tesa extra Power Universal 10m 50mm schwarz 0.655
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.654

Table A.3: Top 10 Similar products to a given product by using euclidean distance on Averaged
meta-embeddings without triplet loss

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA
Product Name Similarity

Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.968
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.955
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.948
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.947
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.947
Gewebeband ext.Power® 56348 schwarz L.10m B.48mm Rl.TESA 0.946
Gewebeband ext.Power 56348 schwarz L.10m B.48mm Rl.TESA 0.9455
Tesa Folienband extra Power Universal 50 mm x 10 m schwarz 0.940
Tesa Extra Power Universal schwarz 48 mm x 10 m Gewebeklebeband 0.933
Spannungsprüfer DUSPOL digital Benning 0.9327

Table A.4: Top 10 Similar products to a given product by using euclidean similarity on Concate-
nated meta-embeddings without triplet loss

Chapter B: Embedding Visualization Without Triplet Loss 73

74 Chapter B: Embedding Visualization Without Triplet Loss

B Embedding Visualization Without Triplet
Loss

Figure B.1: Visualization of Manufacturer Name from concatenated meta-embeddings without
triplet loss using t-sne

Chapter 6: Conclusion and Future Work 75

Figure B.2: Visualization of Product Name from concatenated meta-embeddings without triplet
loss using t-sne

76 Chapter 6: Conclusion and Future Work

Figure B.3: Visualization of Manufacturer Name from averaged meta-embeddings without triplet
loss using t-sne

Chapter 6: Conclusion and Future Work 77

Figure B.4: Visualization of Product Name from averaged meta-embeddings without triplet loss
using t-sne

78

Erklärung 79

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, 31. August 2022

HSMW-Thesis

