
MASTER THESIS

Rohit Khanduri

Fraud detection in Credit Cards using Machine Learning technologies

Mittweida, 2020

Fakultät Angewandte Computer- und Biowissenschaften

MASTER THESIS

Fraud detection in Credit Cards
using Machine Learning

technologies

Author:
Rohit Khanduri

Course of Studies:
Applied Mathematics for Network and Data

Sciences

Seminar Group:
Fakultät Angewandte Computer- und

Biowissenschaften

First examiner:
Prof. Dr. rer. nat. habil. Thomas Villmann

Second examiner:
Dipl.-Math. Lars Nöbel

Submission:
Mittweida, 15.11.2020

Defence/Evaluation:
Mittweida, 2020

Fakultät Angewandte Computer- und Biowissenschaften

MASTER THESIS

Bibliographic description:
Khanduri, Rohit:
Fraud detection in Credit Cards using Machine Learning technologies -
2020 - Mittweida, Hochschule Mittweida, Fakultät Angewandte Computer- und
Biowissenschaften, Master Thesis, 2020

1 CONTENTS

Contents
List of Figures 3

List of Tables 4

1 Abstract 5

2 Acknowledgements 5

3 Introduction 6

4 Challenges in Fraud Detection 6

5 Objective 6

6 Outline 7

7 Related work and Theory of Machine Learning 7
7.1 Related Work . 7
7.2 Machine Learning . 8

7.2.1 Introduction . 9
7.2.2 Main challenges of Machine Learning . 10
7.2.3 Classification . 10
7.2.4 Feature Engineering . 10
7.2.5 Overfitting the Training Data . 11
7.2.6 Underfitting . 11

7.3 Predictive modelling . 12
7.3.1 Classification Predictive Modelling . 12
7.3.2 Regression Predictive Modelling . 12

7.4 Class Imbalance Problem . 13
7.5 Solutions to the Class imbalance problem . 13
7.6 Resampling . 13
7.7 Random Undersampling . 13
7.8 Tomek Link removals . 14
7.9 Random Oversampling . 14
7.10 Synthetic Minority Oversampling Technique (SMOTE) 14
7.11 SMOTE and Tomek Link removal together . 14
7.12 Ensemble Learning . 14

7.12.1 Voting Classifiers . 15
7.12.2 Bagging . 16
7.12.3 Out-of-bag Error Estimation . 17
7.12.4 Boosting . 17
7.12.5 Boosting as a gradient descent . 18
7.12.6 Margin for classification . 18

7.13 Selected models . 18
7.13.1 Logistic Regression . 19
7.13.2 Decision Trees . 21

2 CONTENTS

7.13.3 Random Forests . 22
7.13.4 XGBoost . 23

7.14 Evaluation Metrics . 25
7.14.1 Confusion Matrix . 25
7.14.2 Precision . 26
7.14.3 Recall . 26
7.14.4 Precision and Recall - The F1 Score . 26
7.14.5 Precision/Recall Trade-off . 27
7.14.6 Area under the Precision Recall Curve . 27
7.14.7 The ROC Curve . 27

8 Data and the method 28
8.1 Data description . 28
8.2 Standardization of the data . 32
8.3 Splitting the data . 32
8.4 Data resampling . 32
8.5 10 fold cross validation . 32
8.6 Training and Testing . 33
8.7 Performance evaluation . 33

9 Results 33
9.1 Logistic Regression . 33

9.1.1 No resampling . 33
9.1.2 Random Undersampling . 34
9.1.3 Tomek Links Removal . 36
9.1.4 Random Oversampling . 40
9.1.5 SMOTE . 40
9.1.6 SMOTE & Tomek Links removal . 42

9.2 Random Forest . 46
9.2.1 No resampling . 46
9.2.2 Random Undersampling . 48
9.2.3 Tomek Links Removal . 48
9.2.4 Random Oversampling . 50
9.2.5 SMOTE . 50
9.2.6 SMOTE & Tomek Links removal . 54

9.3 XGBoost . 58
9.3.1 No resampling . 58
9.3.2 Random Undersampling . 58
9.3.3 Tomek Links Removal . 60
9.3.4 Random Oversampling . 64
9.3.5 SMOTE . 64
9.3.6 SMOTE & Tomek Links removal . 66

9.4 Summary of results . 70

10 Conclusion 70

Bibliography 72

3 LIST OF FIGURES

List of Figures
1 Precision Recall Curve . 28
2 Confusion Matrix . 29
3 A comparison of the number of Fraudulent transactions versus the number of nor-

mal transactions . 30
4 Heatmap for Correlation . 32
5 Logistic Regression Confusion Matrix - No Resampling 34
6 Logistic Regression AUC-ROC - No Resampling . 35
7 Logistic Regression AUC-PR Curve - No Resampling 35
8 Logistic Regression Confusion Matrix - Random Undersampling 36
9 Logistic Regression AUC-ROC - Random Undersampling 37
10 Logistic Regression AUC-PR Curve - Random Undersampling 37
11 Logistic Regression Confusion Matrix - Tomek Links removal 38
12 Logistic Regression AUC-ROC - Tomek Links removal 38
13 Logistic Regression AUC-PR Curve - Tomek Links removal 39
14 Logistic Regression Confusion Matrix - Random Oversampling 40
15 Logistic Regression AUC-ROC - Random Oversampling 41
16 Logistic Regression AUC-PR Curve - Random Oversampling 41
17 Logistic Regression Confusion Matrix - SMOTE . 42
18 Logistic Regression AUC-ROC - SMOTE . 43
19 Logistic Regression AUC-PR Curve - SMOTE . 43
20 Logistic Regression Confusion Matrix - SMOTE and Tomek Links removal 44
21 Logistic Regression AUC-ROC - SMOTE and Tomek Links removal 44
22 Logistic Regression AUC-PR Curve - SMOTE and Tomek Links removal 45
23 Random Forest Confusion Matrix - No Resampling 46
24 Random Forest AUC-ROC - No Resampling . 47
25 Random Forest AUC-PR Curve - No Resampling . 47
26 Random Forest Confusion Matrix - Random Undersampling 48
27 Random Forest AUC-ROC - Random Undersampling 49
28 Random Forest AUC-PR Curve - Random Undersampling 49
29 Random Forest Confusion Matrix - Tomek Links removal 50
30 Random Forest AUC-ROC - Tomek Links removal 51
31 Random Forest AUC-PR Curve - Tomek Links removal 51
32 Random Forest Confusion Matrix - Random Oversampling 52
33 Random Forest AUC-ROC - Random Oversampling 52
34 Random Forest AUC-PR Curve - Random Oversampling 53
35 Random Forest Confusion Matrix - SMOTE . 54
36 Random Forest AUC-ROC - SMOTE . 55
37 Random Forest AUC-PR Curve - SMOTE . 55
38 Random Forest Confusion Matrix - SMOTE and Tomek Links removal 56
39 Random Forest AUC-ROC - SMOTE and Tomek Links removal 56
40 Random Forest AUC-PR Curve - SMOTE and Tomek Links removal 57
41 XGBoost Confusion Matrix - No Resampling . 58
42 XGBoost AUC-ROC - No Resampling . 59
43 XGBoost AUC-PR Curve - No Resampling . 59

4 LIST OF TABLES

44 XGBoost Confusion Matrix - Random Undersampling 60
45 XGBoost AUC-ROC - Random Undersampling . 61
46 XGBoost AUC-PR Curve - Random Undersampling 61
47 XGBoost Confusion Matrix - Tomek Links removal 62
48 XGBoost AUC-ROC - Tomek Links removal . 62
49 XGBoost AUC-PR Curve - Tomek Links removal . 63
50 XGBoost Confusion Matrix - Random Oversampling 64
51 XGBoost AUC-ROC - Random Oversampling . 65
52 XGBoost AUC-PR Curve - Random Oversampling 65
53 XGBoost Confusion Matrix - SMOTE . 66
54 XGBoost AUC-ROC - SMOTE . 67
55 XGBoost AUC-PR Curve - SMOTE . 67
56 XGBoost Confusion Matrix - SMOTE and Tomek Links removal 68
57 XGBoost AUC-ROC - SMOTE and Tomek Links removal 68
58 XGBoost AUC-PR Curve - SMOTE and Tomek Links removal 69

List of Tables
1 Description of the dataset . 29
2 Logistic Regression results for various threshold values for No Resampling 34
3 Logistic Regression results for various threshold values for Random Undersampling . 36
4 Logistic Regression results for various threshold values for Tomek Links removal . . 39
5 Logistic Regression results for various threshold values for Random Oversampling . . 40
6 Logistic Regression results for various threshold values for SMOTE 42
7 Logistic Regression results for various threshold values for SMOTE and Tomek

Links removal . 45
8 Random Forest results for various threshold values for No Resampling 46
9 Random Forest results for various threshold values for Random Undersampling . . . 48
10 Random Forest results for various threshold values for Tomek Links removal 50
11 Random Forest results for various threshold values for Random Oversampling 53
12 Random Forest results for various threshold values for SMOTE 54
13 Random Forest results for various threshold values for SMOTE and Tomek Links

removal . 57
14 XGBoost results for various threshold values for No Resampling 58
15 XGBoost results for various threshold values for Random Undersampling 60
16 XGBoost results for various threshold values for Tomek Links removal 63
17 XGBoost results for various threshold values for Random Oversampling 64
18 XGBoost results for various threshold values for SMOTE 66
19 XGBoost results for various threshold values for SMOTE and Tomek Links removal 69
20 Summary of the results . 70

5 2 ACKNOWLEDGEMENTS

1 Abstract
Financial fraud for banks can be a reason for huge monetary losses. Studies have shown that, if
not mitigated, financial fraud can lead to bankruptcy for big financial institutions and even insol-
vency for individuals. Credit card fraud is a type of financial fraud that is ever growing. In the
future, these numbers are expected to increase exponentially and that’s why a lot of researchers
are focusing on machine learning techniques for detecting frauds. This task, however, is not a
simple task. There are mainly two reasons

• varying behaviour in committing fraud

• high level of imbalance in the dataset (the majority of normal or genuine cases largely out-
numbers the number of fraudulent cases)

A predictive model usually tends to be biased towards the majority of samples, in an unbalanced
dataset, when this dataset is provided as an input to a predictive model.
In this Thesis this problem is tackled by implementing a data-level approach where different re-
sampling methods such as undersampling, oversampling, and hybrid strategies along with bagging
and boosting algorithmic approaches have been applied to a highly skewed dataset with 492 iden-
tified frauds out of 284,807 transactions.
Predictive modelling algorithms like Logistic Regression, Random Forest, and XGBoost have
been implemented along with different resampling techniques to predict fraudulent transactions.
The performance of the predictive models was evaluated based on Receiver Operating Characteristic-
Area under the curve (AUC-ROC), Precision Recall Area under the Curve (AUC-PR), Precision,
Recall, F1 score metrics.

2 Acknowledgements
I would like to express my sincere gratitude to my advisor, Anne Reichmuth, for her
valuable and constructive suggestions and reviews during the planning and develop-
ment of this research work. She consistently guided me in the right direction by giving
me valuable tips and instructions to improve my work. I would also like to thank Mr.
Lars Nöbel, Prof. Dr. Thomas Villmann and Prof. Dr. Marika Kaden for their con-
tinuous support and for being a part of my thesis committee.

ROHIT KHANDURI

Hochschule Mittweida, 2020

6 5 OBJECTIVE

3 Introduction
Financial fraud is a serious white-collar crime which is often accompanied by strict punishment
and monetary or non-monetary fines.
In the report 2018 True Cost of Fraud Study for the Retail Sector (LexisNexis, 2018), prepared
and published by the LexisNexis Risk Solutions, estimates that fraud costed US eCommerce an
average of 2.38 percent of revenue in 2018. These costs vary by sector - digital goods and physical
goods. With the boom in the technological sector, there is an increased growth in digital pay-
ments leading to an extremely high rise in the number of digital financial fraud cases. Accord-
ing to the LexisNexis Report (LexisNexis, 2018) the losses due to credit card, debit and prepaid
cards were $ 22.8 billion worldwide in 2018 which is a 4% increase from $ 16.31 billion in 2015.
The solutions to such fraud can be categorized as prevention and detection. The former involves
preventing the fraud in the source itself and the latter is the action taken after the occurrence of
the event.
The technologies like Address Verifcation System (AVS) and Card Verifcation System (CVM) are
usually used to prevent fraud, as per the article by FIS Global (Global, 2019a, see). Fraud needs
to be detected when it can not be prevented and necessary actions need to be taken. As per the
article by FIS Global (Global, 2019b), fraud detection solutions include Predictive analytics, Ex-
perienced fraud analysts, Outlier models, Custom rule management, Global profiling, Mobile card
controls, etc. to identify fraud.
This Thesis focuses on the automatic fraud detection system using machine learning technologies.

4 Challenges in Fraud Detection
Developing a Fraud detection system is a very complicated task. The developer needs to deter-
mine the learning strategy (supervised learning or unsupervised learning), the algorithm/s (Logis-
tic regression, random forest, etc.), the features, and how to deal with the class imbalance prob-
lem (very few fraudulent cases compared to the normal cases) (Pozzolo and Bontempi, 2015).
Unbalanced classes are not the only major concern for fraud detection systems but overlapping of
classes due to limited transaction information is another problem for classification (Holte et al.,
1989), and most machine learning algorithms do not perform well under these scenarios (Jap-
kowicz and Stephen, 2002). A Fraud detection model predicts the fraudulent classes and alerts
the investigating team about a probable fraud. This Investigating team will then perform a fur-
ther investigation and provide feedback to the system to improve its performance. This is, how-
ever, a time taking process due to which only a few transactions can be validated and just a few
feedbacks being provided to the predictive model, resulting generally in a less accurate model
(Dal Pozzolo et al., 2015). As financial institutes very rarely disclose the customer data to the
public due to confidentiality issues, the real financial datasets are very hard to find which poses
as one of the major challenges in fraud detection related research (Dal Pozzolo et al., 2014).

5 Objective
The main objective of this thesis is to perform predictive analysis on credit card transaction dataset
using machine learning techniques and detect the fraudulent transactions from the given dataset.

7 7 RELATED WORK AND THEORY OF MACHINE LEARNING

The focus is to identify whether a transaction belongs to the normal class or the fraudulent class
using predictive models.
Different resampling techniques were implemented to tackle the class imbalance problem and a
series of machine learning algorithms like logistic regression, random forest, and xgboost were
tested to obtain the results.

6 Outline
• Chapter 1 is focused on fraud and its impact in the financial sector, an overview of a fraud

detection process in general, the challenges faced by such systems, and finally an approach
to develop a fraud detection system is proposed.

• Chapter 2 focuses on theoretical and background knowledge of Machine Learning for a bet-
ter understanding of the proposed model.

• Chapter 3 focuses on the analysis methodology.

• Chapter 4 focuses on a comparison of the methods/models used for predicting frauds from
the unbalanced dataset.

• Chapter 5 concludes the research and summarizes the results.

7 Related work and Theory of Machine Learning

7.1 Related Work
Credit card fraud is a major problem in the financial sector. Many researchers are actively work-
ing on to mitigate and find probable solutions for this problem. In this chapter we will discuss
about some of the research work done in the past for this field.
Pozzolo et al. (Dal Pozzolo et al., 2014), in their study, have focused on basically two approaches
towards detection of fraud:

• Static approach: where they train a detection model in a "seasonal manner" (once a month
or once a year)

• Online approach: where they update the model immediately after the new transaction data
arrives.

They stated that the online learning approach is a better approach towards detecting fraud as
the behavior for any fraud changes from time to time. Pozzolo et al. (Dal Pozzolo et al., 2014)
also proposed that the Average Precision (AP), Area Under Curve (AUC), and PrecisionRank are
the best measures for detecting frauds.
In another study, Pozzolo et al. (Dal Pozzolo et al., 2015) concluded that random forest is the
best approach in the fraud detection task.
A graph-based approach to develop a fraud detection system was proposed in a study by Lebi-
chot et al. (Lebichot et al., 2017) where a collective inference algorithm was used to infer the

8 7 RELATED WORK AND THEORY OF MACHINE LEARNING

fraudulent behaviour in the dataset. This algorithm, known as Anomaly Prevention using Ad-
vanced Transaction Exploration (APATE), was significantly improved by Lebichot et al. (Lebi-
chot et al., 2017) in their study to achieve their goal.
In their study, Awoyemi et al. (Awoyemi et al., 2017), analysed the data from K-nearest neighbor,
logistic regression, and Naive Bayes applied on credit card transaction data, which was further
resampled using Synthetic Minority Over-sampling Technique (SMOTE). The result showed that
K-nearest neighbor performed better than the Logistic Regression and Naive Bayes measured in
terms of recall, precision, balanced classification rate, specificity, and Mathews correlation coeffi-
cient.
Srivastava et al. (Srivastava et al., 2008) proposed a Hidden Markov Model (HMM) which analy-
ses the spending habit of the customer in order to detect the fraudulent behavior.
In thier research, Wheeler and Aitken (Wheeler and Aitken, 2000) have investigated multiple al-
gorithms to detect fraud, and showed that an adaptive approach filters and orders fraud cases
and subsequently reduces the number of fraud investigations.
Carcillo et al. (Carcillo et al., 2017) proposed a unique solution in their study where they ex-
plored big data technology in fraud detection using big data tools such as Cassandra, Spark, and
Kafka and developed a system called Scalable Realtime Fraud Finder (SCARFF). They estab-
lished the fact that a highly scalable, fault-tolerant, and accurate system needs to be developed
for fraud detection as such systems have to work on real-time transactions and because of the
massive amount of transaction data, such a system has advantages and performs much better
over conventional systems.
Domingos (Domingos, 1999), in his research, stated that the cost of all the misclassification errors
is not constant and proposed a method to embed a procedure to minimizing cost in the classifier
and named this cost-sensitive model, MetaCost. He found out a systematic decrease in the total
cost with MetaCost compared to other non cost-sensitive classifiers.
Aleskerov et al. (Aleskerov et al., 1997), in their study, proposed a database mining system that
uses neural networks for fraud detection.
In another research study, Baader and Krcmar (Baader and Krcmar, 2018) proposed an auto-
mated feature engineering approach to reduce the higher false positive rate which is usually ob-
served in fraud prediction.
Even though there exists a lot of research in understanding the customer usage patterns, fraud
processing time, reducing the number of fraud investigations, etc. there does not exists a lot of
research focusing on the machine learning models best suitable for such a predictive analysis.
This thesis, thus, aims to preform predictive analysis with a focus on various techniques such as
sampling, ensemble and hybrid methods to tackle the problem of class imbalance.

7.2 Machine Learning
Machine Learning (ML) is a branch of Artificial Intelligence that lets machines (computers) learn
tasks automatically without explicitly programming them (Valkov, 2019). In order to create a
machine that can learn, one needs to follow the following steps:

• Define a computer understandable problem

• Choose a model (or a set of models) capable of solving the problem

• Provide the data to the model

9 7 RELATED WORK AND THEORY OF MACHINE LEARNING

• Assess the problem and improve the machine

7.2.1 Introduction

In machine learning, computers (models) are used to identify patterns in data automatically us-
ing statistical learning techniques. These techniques are, then, used to make highly accurate pre-
dictions about new and unseen data.
Dimensions in a data set are known as features which are sometimes also referred to as variables,
or predictors. Identifying boundaries in data using mathematics is the core of statistical learning.
These mathematical models should be trainable and creating such a model is also called training
a model.
Machine Learning is used to find patterns in data which can later be identified in new and unseen
data. These methods are used to identify patterns in data using statistical learning.
One common ML method is a decision tree. A decision tree uses if-then statements to identify
patterns in data provided to it. These if-then conditional statements are called forks, which split
the data into two branches based on some value and this value between the branches is called
a split point. In an ideal scenario, at the best split, the results of each branch of a decision tree
should be as homogeneous (or pure) as possible.
To add a new split point, the decision tree algorithm repeats the earlier process on the subsets of
data. This repetition is called recursion, which is a frequently occurring term in Machine Learn-
ing terminology. Additional forks add new information that can increase a tree’s prediction accu-
racy.
The ultimate (final) branches of the tree are called leaf nodes. The data provided to these models
is called training data because it is used to train the model.
To test the tree’s performance on new data, new data points are passed as parameters. This pre-
viously unused data is called test data.
There are four main types of learnings:

• Supervised - In such a learning setting there is a dataset, which is a collection of N labelled
examples. Each example has a vector of features xi and label yi. The label yi can belong
to a finite set of classes {1, 2, ..., C}, a real number or even complex numbers. The goal of
supervised learning models is to receive a feature x as an input and predict a correct label
for it. (Valkov, 2019)

• Semi-supervised - In such a setting, the dataset contains both labelled and unlabelled exam-
ples. Usually, the quantity of unlabelled examples is much higher than labelled examples.
The goal of this learning method is the same as that of Supervised learning.

• Unsupervised - In such a setting there is a dataset, which is a collection of N unlabelled ex-
amples. The goal is to receive a feature x as an input and transform it into another. Some
practical examples include Clustering, Dimensionality reduction, Anomaly detection, etc.(Valkov,
2019)

• Reinforcement- This type of learning is basically concerned with building an agent to in-
teract with an environment by fetching its state and executing an action. Actions provide
rewards and change the state of the environment. The goal is to maximize the reward by
learning a set of actions. (Valkov, 2019)

10 7 RELATED WORK AND THEORY OF MACHINE LEARNING

7.2.2 Main challenges of Machine Learning

The main things that can go wrong in the process of selecting a learning algorithm and training
it are usually due to "bad algorithm" and "bad data".

• Insufficient Training Data - For ML models to work properly a lot of data is needed.There
may be a need for thousands of examples even for very trivial problems, and may be even
millions of examples for complex problems like image or speech recognition. (Valkov, 2019)

As per the paper (Michele Banko, 2001), published by Microsoft Researchers Michele Banko
and Eric Brill, relatively different ML Algorithms performed almost identically on a com-
plex problem of Natural Language Disambiguation after providing the algorithms with
enough data. As per the authors (Michele Banko, 2001)

these results suggest that we may want to reconsider the trade-off between spend-
ing time and money on algorithm development versus spending it on corpus de-
velopment.

This development further gained strength through the paper by Peter Novrig et al. (Alon Halevy,
2009) titled "The Unreasonable Effectiveness of Data"

• Bad Quality Data - A system is likely to perform bad if the training data is full of errors,
outliers, and noise as this makes it hard for the system to detect patterns. Therefore, clean-
ing the data is a necessary activity for Machine Learning.

7.2.3 Classification

Classification problem in machine learning can be defined as the task of predicting the class label
of a given data point. For example, fraud detection can be identified as a classification problem.
In this case, the goal is to predict if a given transaction is fraud or genuine. Generally, there are
three types of classification: binary classification, where there are two output labels (e.g., classify-
ing a transaction which may be fraud or genuine), multi-class classification, where there are more
than two output labels (e.g., classifying a set of images of flowers which may be Rose or Lilly or
Sunflower) and multi-label classification, where the data samples are not mutually exclusive and
each data samples are assigned a set of target labels (e.g., classifying a crab on the basis of the
sex and color in which the output labels can be male/female and red/black). This thesis deals
with the binary classification problem where the output label is either normal or fraud.

7.2.4 Feature Engineering

The ML Model can only learn if the training data contains higher number of relevant features
versus a low or even a very low number of irrelevant features. This is, in fact, a very critical part
for a successful Machine Learning project and is known as Feature Engineering. Feature Engi-
neering involves:

• Feature Selection

• Feature Extraction - combining features to produce more meaningful ones (Valkov, 2019)

• Gathering new data to create new features.

11 7 RELATED WORK AND THEORY OF MACHINE LEARNING

7.2.5 Overfitting the Training Data

The goal of a Machine Learning model is to learn patterns in data in order to identify these pat-
terns in data which has not been previously exposed to the model. This process of learning pat-
terns is known as generalisation and the goal of a Machine Learning model is to increase this
generalisation which enables the model to make efficient predictions.
A fit, in statistics, is the approximation of a target function and the process of measuring this
approximation is known as the goodness of fit.
Learning from a datset involves two concepts:

• Signal - A signal is a pattern which a ML model learns

• Noise - Noise is the randomness or irrelavant data in a dataset.

Overfitting occurs when the Machine Learning model generalizes too well which means that it
learns patterns (signals) in a dataset leading to it eventually decreasing the performance on new
data.
This can be mitigated, generally, by following the basic steps mentioned in the paper (López de
Prado, 2020)

• decreasing the number of parameters required by the learning model

• selecting a model that requires fewer parameters

• more training data for training the model

• noise reduction in the data

According to the paper by (Li et al., 2018), "hyperparameters" are input parameters provided
to a machine learning algorithm which control the performance on new data; hyperparameters
are usually parameters that control the required amount of regularization, learning rates, and the
learning process of an algorithm. The efficiency of a Machine Learning model depends on how
these hyperparameters are configured or tuned.
How these hyperparameters interact with each other is still a topic under research.

7.2.6 Underfitting

Underfitting is the opposite of Overfitting. This occurs when it is too difficult for the model to
learn the patterns in data i.e. it does not generalize the data.
As per the paper by (Allamy, 2014), this problem can be usually fixed by:

• Selecting a more powerful model, with more parameters

• Passing better features as parameters to the learning algorithm

• constraint reduction (e.g. reduction of the regularization hyperparameter)

12 7 RELATED WORK AND THEORY OF MACHINE LEARNING

7.3 Predictive modelling
Predictive modeling is the process of predicting outcomes based on data provided to a model in
order to identify these predictions in new, unseen data.
Predictive modeling is a mathematical problem for approximating a mapping function f from
input variables X to output variables y. This is also known as Function Approximation
These variables are usually Random Variables.

f(X) :→ Y (1)

In general, function approximation tasks are divided into

• Classification tasks

• Regression tasks

7.3.1 Classification Predictive Modelling

Classification Predictive modeling is a mathematical problem for classifying data in classes based
on what the model has learned from training data. It predicts a discrete output variable y from
input variables X by approximating a mapping function f .
A Random Variable is discrete if

P (X = aj for some j) = 1 (2)

, where aj is a finite list of values for j = 1, ..., n or an infinite list of values for j = 1,
If X is a discrete Random Variable, then the finite or infinite set of values a such that P (X =
a) > 0 is called the support of X.
It is used for predicting the class or category for a given observation. The Credit Card Fraud
Detection dataset is basically a classification problem of two classes viz. Fraud and Non-fraud,
which is in turn a Binary classification problem.
Two types of learners in classification are lazy learners and eager learners.

• Lazy learners - These learners store the training data in a data structure to learn patterns
in it and classify the patterns in new data (test data) based on the patterns similar to or
matching those in training data. They have a small learning time but a high prediction
time as they try to match patterns in new data to those identified in old data. Some pop-
ular examples of Lazy learners are K - Nearest Neighbour, Case - Based Reasoning.

• Eager learners - Eager learners perform the classification task based on the given training
data before receiving data for classification. These learners start the learning task as soon
as they receive the training data which results in a low prediction time but a high learning
time. Some popular Eager learning algorithms are Decision Tree, Naive Bayes, Artificial
Neural Networks.

7.3.2 Regression Predictive Modelling

Regression Predictive modeling is a mathematical problem for predicting a continuous output
variable y from input variables X by approximating a mapping function f .

13 7 RELATED WORK AND THEORY OF MACHINE LEARNING

A Random Variable is said to be continuous if its Cumulative Density Function can be differenti-
ated.

f(t) = F ′(t) (3)

, where t ≥ 0, f(t) is the PDF and F ′(t) is the derivative of F (t)

7.4 Class Imbalance Problem
When a dataset is dominated by data belonging to one class in comparison to other classes, the
dataset is said to be imbalanced and this problem is known as a class imbalance problem. Most
real-world applications (datasets) have such a class distribution where the count of one class la-
bel heavily dominates the count of another class label. Fraud detection is one of the best exam-
ples of class imbalance, where the number of fraud class label is very low compared to the normal
class label. Most machine learning algorithms have a very poor performance for an unbalanced
dataset. In the next sections, we will discuss how this problem can be tackled, which algorithms
can be used, and the evaluation metrics that can be used for performance assessment.

7.5 Solutions to the Class imbalance problem
The popular approaches for solving the class imbalance problem can generally be classified into
the following categories: sampling/resampling approach, ensemble learning approach, and cost-
sensitive learning approach. This Thesis focuses on resampling and ensemble approach which are
discussed in the following sections.

7.6 Resampling
As previously mentioned, a lot of Machine Learning algorithms do not perform well for an un-
balanced dataset. Therefore, this unbalanced data needs to be processed before feeding it to the
Machine Learning algorithms. Resampling is of, basically, three types: undersampling, oversam-
pling, and hybrid.

• Undersampling: The number of the majority class data is reduced in order to balance the
dataset. This sampling technique is considered to be beneficial when the dataset size is
huge and reducing the majority class data (samples) improves the runtime.

• Oversampling: It is the opposite of Undersampling. Instead of the majority class, Oversam-
pling replicates the minority class data in order to balance the majority and minority class
data numbers.

• Hybrid: A hybrid approach, as the name suggests, implements both over and undersam-
pling approaches in order to rebelance the data.

7.7 Random Undersampling
As the name suggests, this method randomly removes the majority class data to achieve a bal-
anced dataset. It is preferred to be used when the training dataset is huge. Some advantages of
this method include an improved runtime whereas an important disadvantage is that there is no
way to track which majority class data will be deleted, therefore the loss of valuable information
can reduce the effectiveness of this method.

14 7 RELATED WORK AND THEORY OF MACHINE LEARNING

7.8 Tomek Link removals
As mentioned by (Batista et al., 2004), a Tomek Link is a pair of examples belonging to different
classes which are each other’s nearest neighbours. If D1, D2 are two samples belonging to two
different classes in a dataset, then the pair (D1, D2) is a Tomek Link if there is no sample D3
such that the distance between D3 and D1 or D3 and D2 is less than the distance between D1
and D2. This approach can be considered as an undersampling approach.

7.9 Random Oversampling
This method is the opposite of random undersampling. It randomly removes the minority class
data to achieve a balanced dataset. It does not lead to information loss like random undersam-
pling does but there is a high chance of overfitting the data as it copied the minority class data
over and over in order to achieve a balanced dataset.

7.10 Synthetic Minority Oversampling Technique (SMOTE)
SMOTE is a very popular technique used for rebalancing. This technique, which was developed
by Chawla el al. (Bowyer et al., 2011), creates new minority class data (examples) by interpo-
lating between several nearest minority example data, rather than replacing as done by Random
oversampling which reduces the problem of overfitting the training dataset. SMOTE selects these
nearest minority class examples randomly depending on the amount of oversampling required.

7.11 SMOTE and Tomek Link removal together
As per Chawla el al. (Bowyer et al., 2011) SMOTE, whilst creating new synthetic minority ex-
amples tends to overfit the data. This needs to be mitigated and an efficient technique to miti-
gate this overfitting is to us SMOTE along with removal of Tomek Links. Over sampling is first
carried out using SMOTE followed by removal of Tomek Links in order to achieve a balanced
dataset.

7.12 Ensemble Learning
The process of aggregating answers for a question from different sources is the basic idea behind
the term ensemble.
In a Machine Learning context, an ensemble is a group of predictors. The technique of learning
from a dataset to make predictions is known as ensemble learning and this method of learning is
known as an ensemble method.
According to the paper by Peter Bühlmann (Bühlmann, 2012b)
Assume a training set of data

D = (x1, y1), ..., (xn, yn) (4)

drawn from a probability distribution (xn, yn) ∼ (X,Y)
Given an fixed ensemble of classifiers

h = h1(x), ..., hK(x)for K ≥ 1 (5)

15 7 RELATED WORK AND THEORY OF MACHINE LEARNING

Consider A to be an outcome for a classifier hk(x), we define

P̂ (n) = empirical probability of A (6)

The empirical margin function is given by

m̂(x, y) = P̂k(hk(x) = y)−max
j 6=y

P̂k(hk(x) = y) (7)

= average margin of the ensemble of classifiers (8)
hk(x) = h(x|Θk)wherek ∈ K,Θk = (θk1 , ..., θkn) (9)

The generalisation error of the classifier ensemble is

e = Px,y(m̂(x, y) < 0) (10)

As K →∞, where K is the number of trees,

e→K→∞ Px,y

[
PΘ(h(x,Θ) = y)−max

j 6=y
P̂Θ(hk(x,Θ) = j) < 0

]
There are a lot of ensemble methods available viz. bagging, boosting, stacking, etc. For our re-
search we tried out the following popular methods

• Random Forests (Bagging)

• Boosting

7.12.1 Voting Classifiers

A very simple way to create an even better classifier is to aggregate the predictions of each classi-
fier and predict the class that gets the most votes. This is known as a majority-vote classifier.
Suppose for a classification task we have three classifiers, h1(X), h2(X), h3(X). In order to pro-
duce a better classifier we must combine these classifiers. A very banal way to combine these
rules is to calculate the mode.

h(X) = mode{h1(X), h2(X), h3(X)} (11)

This procedure can be easily extended for any number of classifiers and even for weighted classi-
fiers (See Equation (12))

h(X) = argmaxi
N∑
j=1

θjI(hj(X) = i) (12)

, where

• θ1, ..., θN are weights that sum to 1

• I(.) is the indicator vector

16 7 RELATED WORK AND THEORY OF MACHINE LEARNING

In terms of empirical probability Equation (12) can be rewritten as:

h(X) = argmaxi
N∑
j=1

θj p̂
i
j (13)

, where

• θ1, ..., θN are weights that sum to 1

• p̂ij is the probability estimate from the jth classification to ith classification.

Equation (11) is referred as Majority Vote Learner (MaVL) and equation (12) is referred as Semi
Majority Vote Learner (Semi MaVL)

7.12.2 Bagging

Bootstrap aggregation, also known as Bagging, is an ensemble method for improving estimation
or classification schemes. According to Leo Breiman (Breiman, 1996), Bagging is a variation re-
duction technique for a given base procedure.
Bühlmann, Peter and Yu, Bin (Bühlmann and Yu, 2002) showed that Bagging is a smoothing
operation used to effectively improve the predictive performance of regression and classification
trees.
Consider a regression or classification setting,

(Xi, Y i) for i = 1, ..., n (14)

where

• Xi ∈ RandXi is a vector (predictor variable).

• Y i ∈ 0, 1, ..., J − 1 is the classification with J classes.

• E[Y |X = x] is the target function for regression.

• P[Y = j|X = x] for j = 1, ..., n is the target function for classification.

h = ĝ(.) = hn
(
(X1, Y 1), ..., (Xn, Y n)

)
(.) : Rd → R is the Predictor or Estimator function

The algorithm constructs a bootstrap sample ((X1∗
, Y 1∗

), ..., (Xn∗
, Y n

∗
)) by randomly picking n

times with replacement from
(
(X1, Y 1), ..., (Xn, Y n)

)
It then computes the bootstrap estimator ĝ∗(.) = hn

(
(X1∗

, Y 1∗
), ..., (Xn∗

, Y n
∗
)
)

(.)
The algorithm then repeats these two steps M number of times yielding ĝ∗k(.) for j = 1, ...,M .
The bagged estimator here is defined as ĝBag(.) = M−1

∑M
k=1 ĝ

∗k(.).
In theory,

ĝBag(.) = E∗[ĝ∗(.)]forM =∞ (15)
According to Peter Bühlmann (Bühlmann, 2012a) the finite number M in practice governs the
accuracy of the Monte Carlo approximation but otherwise, it should not be viewed as a tuning
parameter for bagging.
For Classification, the estimator function is defined as:

h = ĝ∗kj (.) = P̂∗[Y ∗k = j|X∗k = .]forj = 0, 1, ..., J − 1 (16)

which yields an estimator P[Y = j|X = .]

17 7 RELATED WORK AND THEORY OF MACHINE LEARNING

7.12.3 Out-of-bag Error Estimation

Consider a loss ρ(Y, ĝ(X)) = |Y − ĝ(X)|2 which is the measure of the noise(discrepancy) between
the estimated function, ĝ, evaluated at X, and the corresponding Y .
The generalization error in this case is:

err = E [ρ(Y, ĝ(X))] (17)

where

• the expectation E is calculated over the independent identically distributed training data
(X1, Y 1), ..., (Xn, Y n).

• ĝ(.) is a function of the training data

• (X,Y) is a new test observation.

According to Peter Bühlmann (Bühlmann, 2012a, p. 10), approximately exp(−1) ≈ 37% of the
original observations in a bagged sample are left out.
These left-out observations, according to Leo Breiman (Breiman, 1996), are known as "out-of-
bag" observations denoted by Bootk.
Bootk are basically the original sample indices that were resampled in the kth bootstrap sample.
The out-of-bag error estimate function is defined as:

ˆerrOB = n−1
n∑
i=1

N−1
M

M∑
k=1

I[(Xi,Y i)/∈Bootk]ρ(Y i,ĝk(Xi))

NM =

M∑
k=1

I[(Xi,Y i)/∈Bootk]

7.12.4 Boosting

Boosting (also known as hypothesis boosting), as proposed by Schapire (Schapire, 1990) and (Schapire,
2002) and also mentioned by Freund (Freund, 1995) (Freund and Schapire, 1996), is an ensemble
method which combines several weak learners to produce a strong learner.
It trains the predictors sequentially with each predictor trying to correct its predecessor.
These are sequential ensemble methods where the weights θk in Equation (18) depend on ĝ1, ..., ĝk−1

ĝens(.) =
M∑
k=1

θkĝk(.) (18)

A review of boosting is presented by Buehlmann and Hothorn in (Buehlmann and Hothorn, 2007)
where concepts and algorithms have been very elaborately illustrated.
As pointed out by L. Breiman (Breiman, 1998) (Breiman, 1999), boosting can be viewed as a
non-parametric optimization algorithm in functional thesis.
The Gradient Boosting algorithm (XGBoost) was used in this Thesis to predict fraudulent trans-
actions.

18 7 RELATED WORK AND THEORY OF MACHINE LEARNING

7.12.5 Boosting as a gradient descent

L. Breiman (Breiman, 1998) (Breiman, 1999) introduced boosting as a gradient descent method.
The goal is to predict a function (See equation (19)) which minimizes loss (See equation (20))

g : Rd → R (19)

E [ρ(Y, g(X))] (20)

ρ(., .) : R x R→ R+ (21)

based on (Xi, Y i) for i = 1, ..., n. The loss function, ρ, is convex (See equation (21)).
The classification case, where the response Y is a discrete Random Variable, has been taken into
consideration.
As mentioned by L. Breiman (Breiman, 1998) (Breiman, 1999), boosting algorithms have a low
empirical risk (See equation (22)).

n−1
n∑
i=1

ρ(Yi, g(Yi)) (22)

where g(.) =
∑
k θkgk(.)

7.12.6 Margin for classification

The margin is denoted by ȳg where ȳ = 2y − 1 ∈ {−1, 1} Therefore, loss is a function of ȳg only
(See equation (23)).

(ȳ − g)
2

= ȳ2 − 2ȳg + g2 (23)

= 1− 2ȳg + (ȳg)2 (24)

using y2 = 1 The misclassification loss I[ȳg<0] is also a function of ȳg

7.13 Selected models
The this section we discuss the models selected for predictive analysis. We chose very popular
predictive models like Logistic Regression, Ensemble Learning methods like Random Forest and
XGBoost. The main motivation behind choosing these methods was based to the paper by Kos-
tiantis et al. (Kotsiantis and Pintelas, 2005) where the authors quoted that

ensembles are often much more accurate than the individual classifiers that make
them up. The main reason is that many learning algorithms apply local optimization
techniques, which may get stuck in local optima. For instance, decision trees employ a
greedy local optimization approach, and neural networks apply gradient descent tech-
niques to minimize an error function over the training data. As a consequence even if
the learning algorithm can in principle find the best hypothesis, we actually may not
be able to find it. Building an ensemble may achieve a better approximation, even if
no assurance of this is given. Boosting algorithms are considered stronger than bag-
ging on noise-free data, however, bagging is much more robust than boosting in noisy
settings

19 7 RELATED WORK AND THEORY OF MACHINE LEARNING

7.13.1 Logistic Regression

Logistic Regression, also known as logit, is a regression algorithm commonly used for classification
predictive modelling computes the probability of a set of values belonging to a class. It works
on the principle of a binary classifier. The goal of Logistic Regression is to compute a parameter
vector and uses maximum likelihood method for parameter estimation.

odds =
P (event)

1− P (event)
(25)

Let P (y = 1|X) = p(X) such that X ∈ R and p(X) ∈ [0, 1] (26)

The Sigmoid function, as per King (King and Zeng, 2001), is written as:

σ (X) =
1

1 + exp (−t)
(27)

This σ(X) is the p(X). The equation (27) can be written in terms of log odds as:

log
p(X)

1− p(X)
= t = θT .X (28)

The goal of Logistic Regression is to is to estimate parameter vector θ̂. It uses maximum likeli-
hood method for parameter estimation.
The θT is the transpose (row vector instead of column vector) of θ - the model’s parameter vec-
tor. The θT has been written as θ in the derivations further.
Consider N samples with labels 0 or 1. For samples labelled 1, we need to estimate θ̂ such that
p̂(X) is as close to 1 as possible and for samples labelled 0, we need to estimate θ̂ such that 1 −
p̂(X) is as close to 1 as possible.
This can be shows as the product of all samples labelled as 1 (See equation (29)) and all samples
labelled as 0 (See equation (30)). ∏

s∈yi=1

p(xi) (29)

∏
s∈yi=0

(1− p(xi)) (30)

, where s is the sample.
Combining these equations (29) and (30) in the likelihood function, we obtain:

L(θ) =
∏

s∈yi=1

p(xi)
∏

s∈yi=0

(1− p(xi)) (31)

L(θ) =
∏

p(xi)(yi)
∏

(1− p(xi))(1−yi) (32)

(33)

20 7 RELATED WORK AND THEORY OF MACHINE LEARNING

Converting this to log-likelihood, we get:

l(θ) =

n∑
i=1

yilog(p(xi)) +

n∑
i=1

(1− yi)log(1− p(xi)) (34)

Substituting p(xi) with its exponential form as seen in equation (28), we get:

l(θ) =

n∑
i=1

yiyiθxi − log(1 + expθx
i

) (35)

Such equations are also known as transindental equations
The goal is: θ = argmax θl(θ).
For this the Newton Raphson method is used as per the paper by Akram et al. (Akram and ul Ann,
2015)

∇θl(θ) = ∇θl(θ∗) + (θ − θ∗)∇θθl(θ∗) (36)

where θ∗ is the global minimum and ∇θ is the gradient with respect to θ

=⇒ ∇θl(θ∗) + (θ − θ∗)∇θθl(θ∗) = 0 (37)

=⇒ θ = θ∗ − ∇θl(θ
∗)

∇θθl(θ∗)
(38)

and
θ(t+1) = θt − ∇θl(θ

t)

∇θθl(θt)
(39)

where ∇θθ is the Hessian Matrix which is the gradient of ∇θ.
The equation :

∇θl = ∇θ

[∑
i=1

nyiθxi − log(1 + exp(θxi))

]
(40)

can be further written as ∑
i=1

n
[
yi − p(xi)

]
xi (41)

and therefore, the equation :
∇θθl = ∇θ

∑
i=1

n
[
yi − p(xi)

]
xi (42)

is the gradient of
∇θl (43)

and can be further written as ∑
i=1

np(xi)
[
yi − p(xi)

]
(xi)

T
xi (44)

where (xi)T is the transpose of xi.

21 7 RELATED WORK AND THEORY OF MACHINE LEARNING

This can further be written in matrix form as:

∇θl = XT (Y − Ŷ) (45)

∇θθl = −XTP (1− P)X = −XTWX (46)

where P (1− P) is the diagonal matrix W

=⇒ θt+1 = θt + (XTW tX)−1(Y − Ŷ) (47)

By choosing a threshold value, the probability can now be estimated.

p(X) =
1

1 + exp (−θX)
= p̂ (48)

After estimating the probability p̂ = hθ(x) of data (instance) belonging to the positive class, it is
easily able to make the prediction ŷ (See equation (49))

ŷ =

{
0, if p̂ < 0.5
1, if p̂ ≥ 0.5

(49)

The cost function of the Logistic Regression is just the average cost of all training instances for
the whole training set. It is popularly known as the log loss, show in equation (50)

hθ = − 1

m

m∑
i=1

[
yi log

(
p̂i
)

+
(
1− yi

)
log
(

1− p̂i
)]

(50)

This cost function is a convex function, therefore any optimization algorithm is going to find the
global minimum (According to King et al. (King and Zeng, 2001)).
The partial derivatives (See equation (51)) with jth θj basically computes the average after com-
puting the prediction error and multiplying by the jth feature value. This gradient vector con-
taining all partial derivatives can now be used in the Batch Gradient Descent.

∂

∂θj
hθ = − 1

m

m∑
i=1

[
σ
(
θT .xi

)
− yi

]
xi(j) (51)

7.13.2 Decision Trees

Decision Trees are very versatile Machine Learning algorithms which are capable of performing
both classification and regression tasks.
The Basics - Assume that there are n data samples and feature vectors {xi}ni=1 with classes yi.
A decision tree (predictive model) is used to go from observations about an item (represented in
the branches) to conclusions about the item’s value (represented in the leaves). It has a root node
(depth zero, at the top of the tree). If a condition is satisfied, the observer moves down in either
the left direction or right, depending on what it wants to conclude.
Every node has a samples attribute, which counts how many instances it is related to, and a
value attribute, which tells how many training instances of each class it applies to, as mentioned
in the publication by Klusowski et al. (Klusowski, 2020). Gini Impurity - A node also has a
gini attribute (See equation (52)) which measures its impurity. According to Jason Klusowski

22 7 RELATED WORK AND THEORY OF MACHINE LEARNING

(Klusowski, 2020), a node is said to be "pure" if all training instances it applies to, belong to the
same class. In that case, it is said to have gini = 0.

Gi = 1−
n∑
k=1

p2
i,k (52)

, where

• Gi is the gini score

• pi,k is the ratio of class k instances among the training instances in the ith node.

Computational Complexity - A prediction cycle in a Decision Tree involves traversing it from
the root node to the leaf node. This computation usually has a complexity of O(log2(m)) and
since each node, in one traversal cycle, is checked only for one feature, the overall prediction com-
plexity is a mere O(log2(m)).
The training algorithm, however, compares all features and therefore it accumulates a training
complexity of O(n x m log(m)) as shown in the section on Decision Trees in the paper by Klu-
sowski et al. (Klusowski, 2020).
Another measure of impurity - Another measure of impurity for a Decision Tree is known as
Entropy impurity measure (See equation (53)). A set’s entropy has a value zero when it contains
instances of only one class. The following equation (53) shows the entropy of the ith node.

Hi = −
n∑
k=1pi,k 6=0

pi,k log(pi,k) (53)

Gini impurity is slightly faster to compute as compared to entropy but it tends to isolate the
most frequently occurring class in its own branch of the tree, while entropy, on the other hand,
tends to produce slightly more balanced trees as mentioned in the paper by Laura E. Raileanu et
al. (Raileanu and Stoffel, 2000).
Regularisation - Compared to linear models that assume that the data provided to them is lin-
ear, the Decision Trees make very few assumptions about the data, this basically means that they
can work on any type of data that is provided to them, which is obviously based on very loose
details.
As mentioned previously, the tree structure adapts itself to the data provided, thus increasing the
possibility of overfitting it. It produces a model, known as a non-parametric model, which does
not have the parameters determined prior to the training task.
To avoid this overfitting, regularisation is needed which is subjective to the algorithm but is usu-
ally controlled by setting the max_depth parameter as mentioned earlier.
Instability The main issue with Decision Trees is their sensitivity. This means that they are
highly sensitive to small variations in the training data.
Random Forests can limit this instability by averaging predictions over many trees, which is dis-
cussed in the next section 7.13.3.

7.13.3 Random Forests

An ensemble of Decision Trees, according to Ho et al. (Tin Kam Ho, 1995), is a Random Forest.

23 7 RELATED WORK AND THEORY OF MACHINE LEARNING

A random forest searches for the best feature among a random subset of features and adds extra
randomness during the growing phase of the tree instead of searching the best feature for a node
during splitting, according to Ho et al.(Tin Kam Ho, 1995).
This randomness results in a much diverse tree structure, as compared to a Decision Tree, sup-
ported by a lower variance.
Mathematically speaking,
Assume a training set of data

D = (x1, y1), ..., (xn, yn) (54)

drawn randomly from a probability distribution (xn, yn) ∼ (X,Y)
Given an ensemble of classifiers

h = h1(x), ..., hK(x)for K ≥ 1 (55)

If each hk(x) is a decision tree, then this ensemble is a random forest (See equation (56)).

hk(x) = h(x|Θk)wherek ∈ K,Θk = (θk1 , ..., θkn) (56)

The classification f(x) is done on a voting scheme.

7.13.4 XGBoost

Extreme Gradient Boosting popularly known as XGBoost is one of the most efficient boosting
algorithms till date. XGBoost is based on the boosting technique ,explained previously, usually
used with decision tree as a weak learner. We have discussed batch learning earlier and we ex-
plain a new approach to Machine Learning known as stream learning.
Stream learning is a machine learning technique that involves learning from data streams.
For our Credit Card Fraud Detection dataset, run-time consideration is a critical measure. For
fraud detection in transaction data waiting for a long time before prediction can lead to a lot of
fraudulent transactions being missed out.
In stream learning, the learning models have access to data only once and thus need to process it
in real time. This limited access may lead to change in relationship between features and targets
as the data keeps on changing. This change in data, as mentioned by the authors Jacob Montiel
et al. (Montiel et al., 2020) is known as concept drift. The relationship between features and tar-
gets is known as a "concept".
In case of a concept drift, batch methods usually fail as they’re trained on a different concept
whereas stream learning models are constantly updated to accommodate this concept drift.
In stream learning there are two main types of algorithms which are distinguished from each
other based on the schema used to train the model.

• Instance - these are incremental algorithms where a single data sample is used at a time.

• Batch incremental - these are incremental algorithms where batches of data samples are
used one at a time. Once a given (parameter) number of data samples are stored in a batch,
the learning model is trained.

The Accuracy weighted ensemble, as mentioned in the paper by Monteil et al. (Montiel et al.,
2020), is a framework that uses weighted classifiers for mining streams with a concept drift. En-
semble predictors are discarded if their prediction is below a threshold value based on an instance-
based pruning strategy.

24 7 RELATED WORK AND THEORY OF MACHINE LEARNING

The goal of the XGBoost algorithm is to predict

Y = yi : i ∈ 1, 2, ..., n (57)

corresponding to a set of feature vectors X = xi : i ∈ 1, 2, ..., n, as mentioned by Chen et al.
(Chen and Guestrin, 2016).
Ensemble methods yield ŷi corresponding to a given input xi by combining predictors of all mem-
bers of the ensemble learning, as per Chen et al. (Chen and Guestrin, 2016).

hK =

K∑
k=1

h(Y, Ŷ k−1 + fk(X)) + ω(fk) (58)

, where

• fk ∈ F is the space of the base functions

• Ŷ is the predicton

• fk is the base function

• ω(fk) is the regularisation parameter (penalty function)

The ensemble is created using a technique known as forward additive modelling, as mentioned in
the paper by Monteil et al. (Montiel et al., 2020), where new trees are added one step at a time.
At step k, the existing predictors evaluate the training data and the corresponding prediction
scores Y k, obtained after this evaluation, are used to create new predictors.

Ŷk =

K∑
k=1

fk(X) = Ŷk−1 + fk(X) (59)

ŷi =

K∑
k=1

fk(xi) (60)

, where ŷi is the final prediction obtained by adding the predictions for each tree fk.
According to Jacob Montiel et al. (Montiel et al., 2020), in a batch setting

Ŷk =
K∑
k=1

fk(θk) = Ŷk−1 + fk(θk) (61)

There are actually two strategies (Montiel et al., 2020) to update the ensemble.

• Push strategy - the ensemble in this strategy resembles a queue that works on a "First in
first out" strategy (FIFO)

• Replacement strategy - in this strategy, the older predictors are replaced by the newer ones.

25 7 RELATED WORK AND THEORY OF MACHINE LEARNING

Wi = min
(
Wmin.2

i,Wmax

)
(62)

which is knows as the dynamic window size (Montiel et al., 2020) and W is the window (buffer)
size.
In both the strategies mentioned above, the algorithm waits for K number of iterations for a new
ensemble model.
As discussed earlier, the learning model in stream learning requires new predictions at anytime
due to the concept drift, which may or may not occur, and thus a window (buffer) is needed to
make predictions to accommodate for the new prediction time. This is known as the window.

i =

[
log2

Wmax

Wmin

]
(63)

, where
K−1∑
i=0

Wmin.2
i << K.Wmax (64)

According to Jacob Montiel et al. (Montiel et al., 2020), to handle the concept drift, the XG-
Boost algorithm uses the method ADWIN to track changes in the performance of XGBoost tak-
ing the concept drift into consideration measured by a metric such as Classification Accuracy
(Montiel et al., 2020).

7.14 Evaluation Metrics
Different performance metrics can be used for evaluating different Machine Learning algorithms.
In this study the focused has been on Confusion Matrix, Precision, Recall, F1 Score, Area under
the Precision Recall Curve (AUC-PR) and the Area under the Receiver Operating Characteristic
Curve (AUC-ROC).

7.14.1 Confusion Matrix

A metric for measuring the accuracy and correctness of the predictions by a model is the confu-
sion matrix. It is used for Classification problems where the output can belong to two or more
types of classes. The confusion matrix, is an N x N matrix where N is the number of class labels
that need to be classified, describes the overall performance of a predictive model when used on
some dataset.
This metric is generally a measure of the count of the number of errors or false predictions when
feature A (class A) is classified as feature B or vice versa.
Each column in a confusion matrix represents a predicted class whereas each row represents the
actual class.
This matrix consists of the following statistical measures:

• True Positive (TP): a value is called a TP when the actual and the predicted values both
are positive.

• False Positive (FP): a value is called an FP when the actual value is negative and the pre-
dicted value is positive.

26 7 RELATED WORK AND THEORY OF MACHINE LEARNING

• True Negative (TN): a value is called a TN when the actual value is negative and the pre-
dicted value is negative.

• False Negative (FN): a value is called a TN when the actual value is positive and the pre-
dicted value is negative.

A perfect classifier has only true positives and true negatives, so its confusion matrix would have
non-zero values on its main diagonal (top left to bottom right)

7.14.2 Precision

We obtain a lot of information from the confusion matrix, but it is usually easy to interpret a
concise metric.
Precision is defined as the accuracy of the positive predictions (See equation (65)).

precision =
TP

TP + FP
(65)

, where

• TP is the number of True Positives

• FP is the number of False Positives

7.14.3 Recall

One can compute one single correct positive prediction (prediction = 1
1 = 100%). This is, of

course, absurd as the classifier would ignore everything except one positive instance.
Therefore, precision is usually used with another metric, recall or True positive rate (TPR) which
is a measure of the correctly detected positive instances (See equation (66)).

recall =
TP

TP + FN
(66)

, where

• TP is the number of True Positives

• FN is the number of False Negatives

7.14.4 Precision and Recall - The F1 Score

Precision and Recall are often combined into a single metric known as the F1 score (See equation
(67)).
The F1 score is basically the harmonic mean (See equation (67)) of the precision and recall.
The harmonic mean gives much more weight to low values as it is largely insensitive to outliers
that have much larger values than the other data (Dodge, 2008, p. 240). The classifier gets a
higher F1 score if both recall and precision are high.
The harmonic mean of n observations is defined as n divided by the sum of the inverses of all of
the observations.

27 7 RELATED WORK AND THEORY OF MACHINE LEARNING

According to Yadolah Dodge (Dodge, 2008, p. 240)

H =
n∑

i=1 n
1
xi

(67)

, where

• xi are n non-zero quantities for i = 1, ..., n of a quantitative variable X

F1 =
TP

TP + FN+FP
2

(68)

, where

• TP is the number of True Positives

• FN is the number of False Negatives

• FP is the number of False Positives

7.14.5 Precision/Recall Trade-off

Precision increases as the recall decreases and vice versa. This relationship between precision and
recall is commonly known as the Precision/Recall Trade-off.

7.14.6 Area under the Precision Recall Curve

The Area under the Precision Recall Curve (AUC-PR) is a commonly used tool to measure the
performance of a predictive model in case of unbalanced data and is based on the Precision and
Recall values shown at different probability thresholds. The area under this curve can be used to
measure the performance of a model. Figure 1 shows an example of a Precision Recall Curve (PR
Curve).

7.14.7 The ROC Curve

The Receiver Operating Characteristic is another commonly used tool with binary classifiers. The
Receiver Operating Characteristic curve plots the recall (also known as the True Positive Rate
or sensitivity) against the False Positive Rate unlike the precision/recall curve, which plots the
precision versus recall.
The ratio of negative instances that are incorrectly classified as positive is known as the False
Positive Rate.

FPR = 1− TNR (69)

, where

• TNR is the number of True Positive Rate

• FPR is the number of False Positive Rate

28 8 DATA AND THE METHOD

Figure 1: Precision Recall Curve

The ratio of correctly classified negative instances is the True Negtive Rate, also known as speci-
ficity.
The ROC curve plots the graph of sensitivity versus 1− specificity.
Just like the Precision/Recall trade-off discussed earlier, there exists a trade-off here as well:
higher the recall (TPR), the more false positives (FPR) the classifier produces.
One way to compare classifiers is by computing the Area under the curve.

• A perfect classifier will have a value of AUC-ROC equal to 1

• A purely random classifier will have a value of AUC-ROC equal to 0.5

This fact, according to Serrano-López et al. (Serrano-López et al., 2010), can be used as a suit-
able measurement of global accuracy of classification. An interesting property that the AUC-
ROC posesses is that the Area under the curve obtained without approximating the parameters
corresponds with the Wilcoxon-Mann-Whitney statistic (Mann and Whitney, 1947). This enables
testing the hypothesis accurately and establishing a result. Figure 2 shows an example of a Con-
fusion Matrix.

8 Data and the method

8.1 Data description
The dataset used in this thesis was originally used for a research project (Pozzolo et al., 2015)
carried out by Worldline and the Machine Learning Group of ULB (Universit Libre de Bruxelles),
and it was also released on Kaggle, a community of data scientists and machine learners. The
Credit Card Fraud Detection dataset (ULB, 2018) contains credit card transactions that occurred
in September 2013 by many European cardholders.

29 8 DATA AND THE METHOD

Figure 2: Confusion Matrix

Variable Data Type Description
V1-V28 Double Principal components
Amount Double Amount of the transaction
Class Integer Class of the transaction (1 - Fraud or 0 - normal)
Time Integer Time between each transaction and the first transaction

Table 1: Description of the dataset

The time-span of this transactional data (ULB, 2018) is two days, where there are 492 identified
frauds out of 284,807 transactions. This is a highly unbalanced dataset (ULB, 2018), in which the
positive class (frauds) are 0.172 percent of all transactions, which can be seen in the Figure 3
Principle Component Analysis (PCA) transformation has been applied to the dataset (ULB,
2018), due to confidentiality issues, to not disclose the original features. There are total 30 fea-
tures out of which 28 features have been generated by PCA.
PCA is a dimensionality-reduction technique in which a large number of original variables are
reduced into a smaller subset of feature variables. The only features that have not been trans-
formed into principal components are ’Amount’ and ’Time’. The Table 1 shows the description of
the data.

• Features V1, V2, ... V28 are the principal components obtained with PCA.

• the features Time and Amount have not been transformed using PCA. The feature Time
contains time elapsed between each transaction and the first transaction in seconds where
as the feature Amount contains the amount of the transaction.

• The feature Class is the features that is used to differentiate between the fraud cases, value
1, from the non fraud cases, with value 0.

30 8 DATA AND THE METHOD

Figure 3: A comparison of the number of Fraudulent transactions versus the number of normal
transactions

In predictive analysis, it is better to visualize the data before implementing the model. The data
was visualised in terms of the correlation between variables. Two statistics that are used to mea-
sure the correlation between the datasets are covariance and correlation coefficient.
Covariance is mathematically defined as:

Cov(X,Y) =
E(X − µX)(Y − µY)

σXσY
(70)

where

• Cov is the covariance

• µX is the mean of the random variable X

• µY is the mean of the random variable Y

• σX is the standard deviation of the random variable X

• σY is the standard deviation of the random variable Y

A very common method of computing the correlation is known as the Pearson’s Correlation
Coefficient or Pearson’s r (Chee, 2015).
Pearson’s r is a measure of the linear relationship between two interval or ratio variables, and can
have a value between -1 and 1. It is the same measure as the point-biserial correlation; a mea-
sure of the relationship between a dichotomous (yes or no, male or female) and an interval/ratio
variable according to Cramer et al. (Cramer, 1998)
According to Cramer (Cramer, 1998)

Pearson’s correlation is the ratio of the variance shared by two variables.

31 8 DATA AND THE METHOD

Given a pair of random variables (X, Y):

r =
Cov(X,Y)

σXσY
(71)

where

• Cov is the covariance

• σX is the standard deviation of the random variable X

• σY is the standard deviation of the random variable Y

In terms of the expectation of the random variables (X, Y), the covariance is mathematically de-
fined as:

Cov(X,Y) =
E(X − µX)(Y − µY)

σXσY
(72)

We know,

µX = E[X]

µY = E[Y]

σ2
X = E[X]2 − [E[X]]2

σ2
Y = E[Y]2 − [E[Y]]2

E(X − µX)(Y − µY) = E(X − E[X])(Y − E[Y]) = E[XY]− E[X]E[Y] (73)

Now, substituting (73) into (70) and (71), we get

rX,Y =
E[XY]− E[X]E[Y]√

E[X]2 − [E[X]]2
√

E[Y]2 − [E[Y]]2
(74)

The given correlation matrix (Figure 4) shows that none of the V1 to V28 principal components
have any correlation to each other. However, if we observe further, response variable ’Class’ has
some form of positive and negative correlations with the principal components, but it does not
correlate with ’Time’ and ’Amount’.
The correlation coefficient mentioned in equation (71) ranges from -1 to 1. A closer value to 1
implies that it has a strong positive correlation as mentioned in the paper by Marilyn K. Simon
(Marilyn K. Simon, 2011); for example, as the ’Amount’ increases, the feature ’V7’ also increases.
When the correlation is closer to -1, then there is a strong negative correlation, as mentioned in
the paper by Marilyn K. Simon (Marilyn K. Simon, 2011), which basically means that the values
of the features tends to go down as the ’Amount’ increases. In the end, there are values close to
0, which imply that there is no linear correlation as mentioned in the paper by Senthilnathan
Samithamby (Senthilnathan, 2019).
As it can be seen in the correlation matrix (See Figure 4), the attributes V1 to V28 are almost
uncorrelated except certain correlations between some of these attributes with Time. For exam-
ple, ’Time’ is inversely correlated with the attribute ’V3’ and ’Amount’ is directly correlated with
’V7’ and ’V20’ along with being inversely correlated with attributes ’V2’ and ’V5’.
Generally, feature variables with higher correlation have a more significant impact during the
training phase, as mentioned in the study by Failing et al. (Failing and Theeuwes, 2014).

32 8 DATA AND THE METHOD

Figure 4: Heatmap for Correlation

8.2 Standardization of the data
A very common requirement for most Machine Learning algorithms is that the data be standard-
ized. Data Standardisation refers to rescaling the features, so that they have a mean of 0 and a
standard deviation of 1, so that they are like the standard normal distribution.

8.3 Splitting the data
A splitting ratio of 70:30 was chosen to split the data into 70% training and 30% test sets. The
training set was used training the model, hyperparameter tuning and resampling whereas the test
set was used to test the performance of the training model.

8.4 Data resampling
The dataset was resampled using using various resampling techniques like random under and
oversampling along with SMOTE and removal of Tomek Links, which have been discussed in the
previous sections in detail.

8.5 10 fold cross validation
K-fold cross-validation means splitting the training set into K-folds (in this case, ten), then mak-
ing predictions and evaluating them on each fold using a model trained on the remaining folds.

33 9 RESULTS

As discussed earlier, "hyperparameters" are input parameters provided to a machine learning al-
gorithm which control the performance on new data; hyperparameters are usually parameters
that control the required amount of regularization, learning rates, and the learning process of an
algorithm. The efficiency of a Machine Learning model depends on how these hyperparameters
are configured or tuned and for tuning these hyperparameters, a popular technique used is cross-
validation.

8.6 Training and Testing
After tuning the hyperparameters, the hyperparameters were set for each model and the resam-
ples dataset was passed to each model for training. As a result, the models learned different pat-
terns in the resampled training data. This trained model was then tested on the test set to even-
tually evaluate their performances.

8.7 Performance evaluation
In this thesis, the focus has been on Recall, Precision, F1 Score, AUC-PR and AUC-ROC as a
measure of prediction efficiency. The accuracy of the model has not been used as Accuracy usu-
ally tends to give a misleading conclusion in case of an unbalanced dataset. As an example, con-
sider a dataset with 100 transactions out of which 5 are fraudulent transactions. A model pre-
dicting all of the transactions passed to it as legitimate achieves an accuracy of 95%, which is
very high but the model never predicted any fraudulent transaction.
The consequences of missing fraudulent transactions for any financial institution or an individual
can be catastrophic. For the models to not miss fraudulent transactions in the dataset, the re-
call score had to be high. The precision should not be neglected in this case as it was equally im-
portant to not predict a transaction as fraudulent when it was not. The harmonic mean of both
these measures, the F1 Score, was also considered as a metric for evaluating the prediction effi-
ciency.
As mentioned by Saito et al. (Saito and Rehmsmeier, 2015) ROC is a popular and strong mea-
sure to evaluate the performance of binary classifiers. However, it requires special caution when
used with imbalanced datasets. The Precision Recall Curve (PR Curve) changes with the ratio of
positives and negatives.
In this thesis, the performance of the models was evaluated based on both these curves.

9 Results
The results of all the models have been compared with each other using the comparison metrics
discussed previously viz. Precision, Recall, F1 score, AUC-ROC score, and AUC-PR score for all
the previously discussed solutions to the class imbalance problem. Hyperparameters (as explained
earlier in previous sections) were selected for each model using the GridSerachCV technique.

9.1 Logistic Regression
9.1.1 No resampling

The best value of the hyperparameter "C" for the Logistic Regression, with a value of 0.1, was
found using the GridSerachCV technique. As discussed earlier, in case of an imbalanced dataset,

34 9 RESULTS

the logistic regression or any other model will generally perform very well for predicting the nor-
mal or non-fraud transactions. The Logistic Regression, in this case, performed very well without
resampling with precision, recall and f1 scores of 0.9991, 0.9995 and 0.9993 respectively as shown
in Table 2. On the contrary, logistic regression performed really bad when dealing with fraudu-
lent transactions, where the precision and recall were 0.6774 and 0.5250. In addition, Precision
Recall area under the curve (AUC-PR) and AUC-ROC curve values, which are shown in Figure 7
and Figure 6 respectively, also didn’t turn out to be very satisfactory. Figure 5 shows the confu-
sion matrix of the logistic regression model when no resampling was performed on the dataset.

Figure 5: Logistic Regression Confusion Matrix - No Resampling

Class No. of Samples Precision Recall F1 Score
0 85283 0,9991 0,9995 0,9993
1 160 0,6774 0,5250 0,5915

avg/total 85443 0.9985 0.9986 0.9986

Table 2: Logistic Regression results for various threshold values for No Resampling

9.1.2 Random Undersampling

The best value of the hyperparameter "C" for the Logistic Regression, with a value of 0.1, was
found using the GridSerachCV technique. Logistic Regression, in this case, performed very well
on random undersampling of data with precision, recall and f1 scores of 0.9998, 0.9819 and 0.9908
respectively as shown in Table 3. The performance was satisfactory when dealing with fraudu-
lent transactions, where the precision and recall were 0.0857 and 0.9062. The Precision Recall
area under the curve AUC-PR and AUC-ROC curve values are shown in Figure 10 and Figure 9

35 9 RESULTS

Figure 6: Logistic Regression AUC-ROC - No Resampling

Figure 7: Logistic Regression AUC-PR Curve - No Resampling

36 9 RESULTS

respectively. Figure 8 shows the confusion matrix of the logistic regression model when random
undersampling was performed on the dataset.

Figure 8: Logistic Regression Confusion Matrix - Random Undersampling

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9819 0.9908
1 160 0.0857 0.9062 0.1566

avg/total 85443 0.9981 0.9817 0.9892

Table 3: Logistic Regression results for various threshold values for Random Undersampling

9.1.3 Tomek Links Removal

The best value of the hyperparameter "C" for the Logistic Regression, with a value of 0.1, was
found using the GridSerachCV technique. Logistic Regression, in this case, performed very well
on removing Tomek Links with precision, recall and f1 scores of 0.9991, 0.9995 and 0.9993 respec-
tively as shown in Table 4. On the contrary, logistic regression performed really bad when dealing
with fraudulent transactions, where the precision and recall were 0.6746 and 0.5312. In addition,
Precision Recall area under the curve AUC-PR and AUC-ROC curve values, which are shown in
Figure 13 and Figure 12 respectively, also didn’t turn out to be very satisfactory. Figure 11 shows
the confusion matrix of the logistic regression model when tomek links were removed from the
dataset.

37 9 RESULTS

Figure 9: Logistic Regression AUC-ROC - Random Undersampling

Figure 10: Logistic Regression AUC-PR Curve - Random Undersampling

38 9 RESULTS

Figure 11: Logistic Regression Confusion Matrix - Tomek Links removal

Figure 12: Logistic Regression AUC-ROC - Tomek Links removal

39 9 RESULTS

Figure 13: Logistic Regression AUC-PR Curve - Tomek Links removal

Class No. of Samples Precision Recall F1 Score
0 85283 0.9991 0.9995 0.9993
1 160 0.6746 0.5312 0.5944

avg/total 85443 0.9985 0.9986 0.9986

Table 4: Logistic Regression results for various threshold values for Tomek Links removal

40 9 RESULTS

9.1.4 Random Oversampling

The best value of the hyperparameter "C" for the Logistic Regression, with a value of 0.001, was
found using the GridSerachCV technique. Logistic Regression, in this case, performed very well
on random oversampling of data with precision, recall and f1 scores of 0.9998, 0.9874 and 0.9890
respectively as shown in Table 5. The performance was satisfactory when dealing with fraudulent
transactions, where the precision and recall were 0.0724 and 0.9000. The Precision Recall area
under the curve AUC-PR and AUC-ROC curve values are shown in Figure 16 and Figure 15 re-
spectively. Figure 14 shows the confusion matrix of the logistic regression model when random
oversampling was performed on the dataset.

Figure 14: Logistic Regression Confusion Matrix - Random Oversampling

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9874 0.9890
1 160 0.0724 0.9000 0.1340

avg/total 85443 0.9981 0.9872 0.9874

Table 5: Logistic Regression results for various threshold values for Random Oversampling

9.1.5 SMOTE

The best value of the hyperparameter "C" for the Logistic Regression, with a value of 0.01, was
found using the GridSerachCV technique. Logistic Regression, in this case, performed very well
on random oversampling of data with precision, recall and f1 scores of 0.9998, 0.9840 and 0.9918
respectively as shown in Table 6. The performance was satisfactory when dealing with fraudulent
transactions, where the precision and recall were 0.0938 and 0.8812. The Precision Recall area

41 9 RESULTS

Figure 15: Logistic Regression AUC-ROC - Random Oversampling

Figure 16: Logistic Regression AUC-PR Curve - Random Oversampling

42 9 RESULTS

under the curve AUC-PR and AUC-ROC curve values are shown in Figure 19 and Figure 18 re-
spectively. Figure 17 shows the confusion matrix of the logistic regression model when SMOTE
was performed on the dataset.

Figure 17: Logistic Regression Confusion Matrix - SMOTE

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9840 0.9918
1 160 0.0938 0.8812 0.1695

avg/total 85443 0.9981 0.9838 0.9903

Table 6: Logistic Regression results for various threshold values for SMOTE

9.1.6 SMOTE & Tomek Links removal

The best value of the hyperparameter "C" for the Logistic Regression, with a value of 0.01, was
found using the GridSerachCV technique. Logistic Regression, in this case, performed very well
on random oversampling of data with precision, recall and f1 scores of 0.9998, 0.9803 and 0.9899
respectively as shown in Table7. The performance was satisfactory when dealing with fraudulent
transactions, where the precision and recall were 0.0793 and 0.9062. The Precision Recall area
under the curve AUC-PR and AUC-ROC curve values are shown in Figure 22 and Figure 21 re-
spectively. Figure 20 shows the confusion matrix of the logistic regression model when SMOTE
was performed along with removing Tomek Links on the dataset.

43 9 RESULTS

Figure 18: Logistic Regression AUC-ROC - SMOTE

Figure 19: Logistic Regression AUC-PR Curve - SMOTE

44 9 RESULTS

Figure 20: Logistic Regression Confusion Matrix - SMOTE and Tomek Links removal

Figure 21: Logistic Regression AUC-ROC - SMOTE and Tomek Links removal

45 9 RESULTS

Figure 22: Logistic Regression AUC-PR Curve - SMOTE and Tomek Links removal

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9803 0.9899
1 160 0.0793 0.9062 0.1458

avg/total 85443 0.9981 0.9801 0.9884

Table 7: Logistic Regression results for various threshold values for SMOTE and Tomek Links
removal

46 9 RESULTS

9.2 Random Forest
9.2.1 No resampling

The best hyperparameters for the Random Forest were "total trees: 400, max features: auto" ,
which were found using the GridSerachCV technique. As discussed earlier, in case of an imbal-
anced dataset, the Random Forest or any other model will generally perform very well for pre-
dicting the normal or non-fraud transactions. The Random Forest performed very well for both
normal and fraudulent classes with an overall F1 Score of 0.9991, 0.9995 and 0.9993 respectively
as shown in Table 8.
On the contrary, Random Forest performed really bad when dealing with fraudulent transac-
tions, where the precision and recall were 0.6774 and 0.5250. The Precision Recall area under
the curve (AUC-PR) and (AUC-ROC) curve values are shown in Figure 25 and Figure 24 respec-
tively. Figure 23 shows the confusion matrix of the Random Forest model when no resampling
was performed on the dataset.

Figure 23: Random Forest Confusion Matrix - No Resampling

Class No. of Samples Precision Recall F1 Score
0 85283 0,9991 0,9995 0,9993
1 160 0,6774 0,5250 0,5915

avg/total 85443 0.9995 0.9996 0.9997

Table 8: Random Forest results for various threshold values for No Resampling

47 9 RESULTS

Figure 24: Random Forest AUC-ROC - No Resampling

Figure 25: Random Forest AUC-PR Curve - No Resampling

48 9 RESULTS

9.2.2 Random Undersampling

The best hyperparameters for the Random Forest were "total trees: 400, max features: auto" ,
which were found using the GridSerachCV technique. Random Forest, in this case, performed
very well on random undersampling of data with precision, recall and f1 scores of 0.9998, 0.9637
and 0.9814 respectively as shown in Table 9. On the contrary, Random Forest performed really
bad when dealing with fraudulent transactions, where the precision and recall were 0.0453 and
0.9187. The Precision Recall area under the curve AUC-PR and AUC-ROC curve values are
shown in Figure 28 and Figure 27 respectively. Figure 26 shows the confusion matrix of the Ran-
dom Forest model when random undersampling was performed on the dataset.

Figure 26: Random Forest Confusion Matrix - Random Undersampling

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9637 0.9814
1 160 0.0453 0.9187 0.0864

avg/total 85443 0.9981 0.9636 0.9798

Table 9: Random Forest results for various threshold values for Random Undersampling

9.2.3 Tomek Links Removal

The best hyperparameters for the Random Forest were "total trees: 400, max features: auto" ,
which were found using the GridSerachCV technique. The Random Forest performed very well
for both normal and fraudulent classes with an overall F1 Score of 0.84 as shown in Table 10.
The Precision Recall Curve and the ROC-AUC Curve are shown in Figure 31 and Figure 30 re-

49 9 RESULTS

Figure 27: Random Forest AUC-ROC - Random Undersampling

Figure 28: Random Forest AUC-PR Curve - Random Undersampling

50 9 RESULTS

spectively. Figure 29 shows the confusion matrix of the Random Forest model when tomek links
were removed from the dataset.

Figure 29: Random Forest Confusion Matrix - Tomek Links removal

Class No. of Samples Precision Recall F1 Score
0 85283 0.9996 0.9999 0.9997
1 160 0.9815 0.7750 0.8407

avg/total 85443 0.9994 0.9994 0.9994

Table 10: Random Forest results for various threshold values for Tomek Links removal

9.2.4 Random Oversampling

The best hyperparameters for the Random Forest were "Number of trees: 800, max features:
auto" , which were found using the GridSerachCV technique. The Random Forest performed very
well for both normal and fraudulent classes with an overall F1 Score of 0.85 as shown in Table 11.
Precision Recall area under the curve AUC-PR and AUC-ROC curve values are shown in Figure
34 and Figure 33 respectively. Figure 32 shows the confusion matrix of the Random Forest model
when random oversampling was performed on the dataset.

9.2.5 SMOTE

The best hyperparameters for the Random Forest were "total trees: 600, max features: auto" ,
which were found using the GridSerachCV technique. This time the overall F1 Score was 0.76
along with the Precision score decreasing to 0.68 and the Recall of 0.87 which raised doubts about
selecting this result. These results are shown in Table 12. Precision Recall area under the curve

51 9 RESULTS

Figure 30: Random Forest AUC-ROC - Tomek Links removal

Figure 31: Random Forest AUC-PR Curve - Tomek Links removal

52 9 RESULTS

Figure 32: Random Forest Confusion Matrix - Random Oversampling

Figure 33: Random Forest AUC-ROC - Random Oversampling

53 9 RESULTS

Figure 34: Random Forest AUC-PR Curve - Random Oversampling

Class No. of Samples Precision Recall F1 Score
0 85283 0.9996 1.000 0.9998
1 160 0.9685 0.7688 0.8571

avg/total 85443 0.9995 0.9995 0.9995

Table 11: Random Forest results for various threshold values for Random Oversampling

54 9 RESULTS

AUC-PR and AUC-ROC curve values are shown in Figure 37 and Figure 36 respectively. Figure
35 shows the confusion matrix of the Random Forest model when SMOTE was performed on the
dataset.

Figure 35: Random Forest Confusion Matrix - SMOTE

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9840 0.9918
1 160 0.0938 0.8812 0.1695

avg/total 85443 0.9992 0.9990 0.9991

Table 12: Random Forest results for various threshold values for SMOTE

9.2.6 SMOTE & Tomek Links removal

The best hyperparameters for the Random Forest were "total trees: 400, max features: auto" ,
which were found using the GridSerachCV technique. This time the overall F1 Score was 0.84
along with a good balance of Precision score (0.84) and the Recall of 0.84 as shown in Table 13.
The Precision Recall area under the curve AUC-PR and AUC-ROC curve values are shown in
Figure 40 and Figure 39 respectively. Figure 38 shows the confusion matrix of the Random Forest
model when SMOTE was performed along with removing Tomek Links on the dataset.

55 9 RESULTS

Figure 36: Random Forest AUC-ROC - SMOTE

Figure 37: Random Forest AUC-PR Curve - SMOTE

56 9 RESULTS

Figure 38: Random Forest Confusion Matrix - SMOTE and Tomek Links removal

Figure 39: Random Forest AUC-ROC - SMOTE and Tomek Links removal

57 9 RESULTS

Figure 40: Random Forest AUC-PR Curve - SMOTE and Tomek Links removal

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9803 0.9899
1 160 0.0793 0.9062 0.1458

avg/total 85443 0.9994 0.9994 0.9994

Table 13: Random Forest results for various threshold values for SMOTE and Tomek Links re-
moval

58 9 RESULTS

9.3 XGBoost
9.3.1 No resampling

The best hyperparameters for the XGBoost were "Learning rate:0.1, total estimators:1000, max-
imum depth:6, minimum child weight:6, Sub-sample:0.85" , which were found using the GridSer-
achCV technique. XGBoost performed really well without resampling in classifying the normal
transactions and obtained a Recall score of 0.73 which was later improved. The evaluation met-
rics of the XGBoost are shown in the Table 14.
Precision Recall area under the curve AUC-PR and AUC-ROC curve values are shown in Figure
43 and Figure 42 respectively. Figure 41 shows the confusion matrix of the XGBoost model when
no resampling was performed on the dataset.

Figure 41: XGBoost Confusion Matrix - No Resampling

Class No. of Samples Precision Recall F1 Score
0 85283 0.9995 0.9999 0.9993
1 160 0.9291 0.7375 0.8223

avg/total 85443 0.9994 0.9994 0.9994

Table 14: XGBoost results for various threshold values for No Resampling

9.3.2 Random Undersampling

The best hyperparameters for the XGBoost were "Learning rate: 0.1, number of estimators:50,
maximum depth:5, minimum child weight:4, subsample:0.85" , which were found using the Grid-
SerachCV technique. XGBoost performed really bad with random undersampling in classifying

59 9 RESULTS

Figure 42: XGBoost AUC-ROC - No Resampling

Figure 43: XGBoost AUC-PR Curve - No Resampling

60 9 RESULTS

the fraudulent transactions and obtained a Precision score of 0.037 which was later improved.
The evaluation metrics of the XGBoost are shown in the Table 15.
Precision Recall area under the curve AUC-PR and AUC-ROC curve values are shown in Figure
46 and Figure 45 respectively. Figure 44 shows the confusion matrix of the XGBoost model when
random undersampling was performed on the dataset.

Figure 44: XGBoost Confusion Matrix - Random Undersampling

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9594 0.9792
1 160 0.0397 0.8938 0.0760

avg/total 85443 0.9980 0.9593 0.9775

Table 15: XGBoost results for various threshold values for Random Undersampling

9.3.3 Tomek Links Removal

The best hyperparameters for the XGBoost were "Learning rate: 0.1, number of estimators:115,
maximum depth:4, minimum child weight:5, subsample:0.65" , which were found using the Grid-
SerachCV technique. XGBoost performed really bad with removal of Tomek Links in classifying
the fraudulent transactions and obtained a Precision score of 0.87 which was a major improve-
ment over random undersampling. The evaluation metrics of the XGBoost are shown in the Ta-
ble 16.
Precision Recall area under the curve AUC-PR and AUC-ROC curve values are shown in Figure
49 and Figure 48 respectively. Figure 47 shows the confusion matrix of the XGBoost model when
Tomek links were removed from the dataset.

61 9 RESULTS

Figure 45: XGBoost AUC-ROC - Random Undersampling

Figure 46: XGBoost AUC-PR Curve - Random Undersampling

62 9 RESULTS

Figure 47: XGBoost Confusion Matrix - Tomek Links removal

Figure 48: XGBoost AUC-ROC - Tomek Links removal

63 9 RESULTS

Figure 49: XGBoost AUC-PR Curve - Tomek Links removal

Class No. of Samples Precision Recall F1 Score
0 85283 0.9995 0.9998 0.9996
1 160 0.8702 0.7125 0.7835

avg/total 85443 0.9992 0.9993 0.9992

Table 16: XGBoost results for various threshold values for Tomek Links removal

64 9 RESULTS

9.3.4 Random Oversampling

The best hyperparameters for the XGBoost were "Learning rate: 0.1, number of estimators: 572,
maximum depth: 5, minimum child weight: 6, Subsample: 0.75" , which were found using the
GridSerachCV technique. XGBoost performed really well with random oversampling in classi-
fying the fraudulent transactions and obtained a Precision score of 0.8 and Recall score of 0.83.
The evaluation metrics of the XGBoost are shown in the Table 17.
Precision Recall area under the curve AUC-PR and AUC-ROC curve values are shown in Figure
52 and Figure 51 respectively. Figure 50 shows the confusion matrix of the XGBoost model when
random oversampling was performed on the dataset.

Figure 50: XGBoost Confusion Matrix - Random Oversampling

Class No. of Samples Precision Recall F1 Score
0 85283 0.9997 0.9996 0.9997
1 160 0.8024 0.8375 0.8196

avg/total 85443 0.9993 0.9993 0.9993

Table 17: XGBoost results for various threshold values for Random Oversampling

9.3.5 SMOTE

The best hyperparameters for the XGBoost were "Learning rate: 0.1, total estimators:870, max-
imum depth:10, minimum child weight:6, subsample:0.7" , which were found using the GridSer-
achCV technique. XGBoost performed really bad with SMOTE in classifying the fraudulent trans-
actions and obtained a Precision score of 0.53 and Recall score of 0.87. The evaluation metrics of
the XGBoost are shown in the Table 18.

65 9 RESULTS

Figure 51: XGBoost AUC-ROC - Random Oversampling

Figure 52: XGBoost AUC-PR Curve - Random Oversampling

66 9 RESULTS

Precision Recall area under the curve AUC-PR and AUC-ROC curve values are shown in Figure
55 and Figure 54 respectively. Figure 53 shows the confusion matrix of the XGBoost model when
SMOTE was performed on the dataset.

Figure 53: XGBoost Confusion Matrix - SMOTE

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9985 0.9992
1 160 0.5303 0.8750 0.6604

avg/total 85443 0.9989 0.9983 0.9985

Table 18: XGBoost results for various threshold values for SMOTE

9.3.6 SMOTE & Tomek Links removal

The best hyperparameters for the XGBoost were "Learning rate: 0.1, total estimators:600, max-
imum depth:7, minimum child weight:6, subsample:0.7" , which were found using the GridSer-
achCV technique. XGBoost, with SMOTE and removal of Tomek Links for classifying the fraud-
ulent transactions, obtained a Precision score of 0.20 and Recall score of 0.88. The evaluation
metrics of the XGBoost are shown in the Table 19.
Precision Recall area under the curve AUC-PR and AUC-ROC curve values are shown in Figure
58 and Figure 57 respectively. Figure 56 shows the confusion matrix of the XGBoost model when
SMOTE was performed on the dataset.

67 9 RESULTS

Figure 54: XGBoost AUC-ROC - SMOTE

Figure 55: XGBoost AUC-PR Curve - SMOTE

68 9 RESULTS

Figure 56: XGBoost Confusion Matrix - SMOTE and Tomek Links removal

Figure 57: XGBoost AUC-ROC - SMOTE and Tomek Links removal

69 9 RESULTS

Figure 58: XGBoost AUC-PR Curve - SMOTE and Tomek Links removal

Class No. of Samples Precision Recall F1 Score
0 85283 0.9998 0.9934 0.9966
1 160 0.2023 0.8875 0.3295

avg/total 85443 0.9983 0.9932 0.9954

Table 19: XGBoost results for various threshold values for SMOTE and Tomek Links removal

70 10 CONCLUSION

9.4 Summary of results
The performance discussed above has been summarised in the following Table (See Table 20).
The results Table 20 shows that the Logistic Regression performs the worst out of all the three

Classifier Resampling Technique Precision Recall F1 Score PR AUC ROC AUC

Logistic
Regression

No Resampling 0.68 0.53 0.59 0.45 0.85
Random Undersampling 0.09 0.91 0.16 0.72 0.97
Tomek Links removal 0.67 0.53 0.59 0.45 0.85
Random Oversampling 0.07 0.90 0.13 0.72 0.97

SMOTE 0.09 0.88 0.17 0.72 0.96
SMOTE & Tomek Links removal 0.08 0.91 0.15 0.72 0.97

Random
Forest

No Resampling 0.96 0.79 0.87 0.86 0.96
Random Undersampling 0.05 0.92 0.09 0.77 0.97
Tomek Links removal 0.92 0.78 0.84 0.85 0.95
Random Oversampling 0.97 0.77 0.86 0.87 0.96

SMOTE 0.68 0.87 0.76 0.84 0.97
SMOTE & Tomek Links removal 0.84 0.84 0.84 0.87 0.97

XGBoost

No Resampling 0.93 0.74 0.82 0.82 0.92
Random Undersampling 0.04 0.89 0.08 0.67 0.96
Tomek Links removal 0.87 0.71 0.78 0.82 0.95
Random Oversampling 0.80 0.84 0.82 0.82 0.95

SMOTE 0.53 0.88 0.66 0.85 0.98
SMOTE & Tomek Links removal 0.22 0.88 0.35 0.56 0.98

Table 20: Summary of the results

models taking their F1 scores into account. This shows that ensemble techniques perform better
even when the dataset is highly unbalanced. When comparing all the models without resampling,
Random Forest and XGBoost performed much better than Logistic Regression keeping in mind
their overall F1 scores. In case of random undersampling, all the models had good Recall scores
but the Precision scores were really bad. Now, considering only the emsemble models, the Pre-
cision and Recall scores without resampling and on removing Tomek Links remained almost the
same. In case of random oversampling, both the ensemble methods performed quite well consid-
ering their F1 Scores. For SMOTE, both the ensemble methods had poor Precision scores but
the Recall scores were good. In the hybrid setting of SMOTE and removal of Tomek links, the
Precision and Recall scores for the Random Forest was quite balanced in comparison to that of
XGBoost. Additionally, there is was a lot of difference observed between the AUC-ROC Curves
for both the models.

10 Conclusion
The Credit Card Fraud Detection dataset used in this study, was an extremely unbalanced dataset
with 284, 804 normal transactions and 492 fraudulent transactions, was a publicly available dataset
provided by the Machine Learning group of Universit Libre de Bruxelles containing records of
credit card transactions made by European cardholders which occurred between two days of Septem-
ber 2013.

71 10 CONCLUSION

Predictive models usually tend to be biased towards the majority class samples for an unbalanced
dataset which results in misclassification of data. This problem was tackled in this thesis by us-
ing resampling the dataset using techniques like random undersampling, Tomek links removal,
random oversampling, SMOTE and a hybrid approach using SMOTE and Tomek links removal
together and providing this dataset to bagging and boosting approaches like RandomForest and
XGBoost respectively. The Logistic Regression model was used to compare the results of these
ensemble methods. The comparison results showed that the random forest performs the best for
resampled data using SMOTE and Tomek links removal technique.
This study can be extended by using a learning approach that takes the costs of misclassification
into account. For many financial institutions this cost can be in the form of a few thousand to
billions of dollars. The other costs that could be considered are cost of contacting the cardholders
and transaction analysis. A study of models that consider such costs can be a way to work futher
and extend this thesis. The only hindrance could the the amount of data as such studies require
huge amounts of data to be available for research purposes.

72 BIBLIOGRAPHY

Bibliography
Saba Akram and Qurrat ul Ann. Newton raphson method. International Journal of Scientific
and Engineering Research, page 5, 07 2015.

E. Aleskerov, B. Freisleben, and B. Rao. Cardwatch: a neural network based database mining
system for credit card fraud detection. In Proceedings of the IEEE/IAFE 1997 Computational
Intelligence for Financial Engineering (CIFEr), pages 220–226, 1997. doi: 10.1109/CIFER.
1997.618940.

Haider Allamy. Methods to avoid over-fitting and under-fitting in supervised machine learning
(comparative study). Computer Science, Communication and Instrumentation Devices, 12
2014.

Fernando Pereira Alon Halevy, Peter Norvig. The unreasonable effectiveness of data, 2009. URL
http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/
35179.pdf.

John Awoyemi, Adebayo Adetunmbi, and Samuel Oluwadare. Credit card fraud detection using
machine learning techniques: A comparative analysis. pages 1–9, 10 2017. doi: 10.1109/ICCNI.
2017.8123782.

Galina Baader and Helmut Krcmar. Reducing false positives in fraud detection: Combining the
red flag approach with process mining. International Journal of Accounting Information Sys-
tems, 31:1 – 16, 2018. ISSN 1467-0895. doi: https://doi.org/10.1016/j.accinf.2018.03.004. URL
http://www.sciencedirect.com/science/article/pii/S146708951630077X.

Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. A study of the
behavior of several methods for balancing machine learning training data. SIGKDD Ex-
plor. Newsl., 6(1):20–29, June 2004. ISSN 1931-0145. doi: 10.1145/1007730.1007735. URL
https://doi.org/10.1145/1007730.1007735.

Kevin W. Bowyer, Nitesh V. Chawla, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
synthetic minority over-sampling technique. CoRR, abs/1106.1813, 2011. URL http://arxiv.
org/abs/1106.1813.

L Breiman. Arcing classifiers. Statistics Department, pages 801–824, 1998.

L Breiman. Prediction games and arcing algorithms. Neural Computation, pages 1493–1517,
1999.

Leo Breiman. Bagging predictors. Machine Learning, pages 123–140, 1996.

P. Buehlmann and T. Hothorn. Boosting algorithms: regularization, prediction and model fitting
(with discussion). Statistical Science, pages 477–505, 2007.

Peter Bühlmann. Bagging, boosting and ensemble methods. Handbook of Computational Statis-
tics, 01 2012a. doi: 10.1007/978-3-642-21551-3_33.

Peter Bühlmann. Bagging, boosting and ensemble methods. Handbook of Computational Statis-
tics, 01 2012b. doi: 10.1007/978-3-642-21551-3_33.

http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/35179.pdf
http://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/35179.pdf
http://www.sciencedirect.com/science/article/pii/S146708951630077X
https://doi.org/10.1145/1007730.1007735
http://arxiv.org/abs/1106.1813
http://arxiv.org/abs/1106.1813

73 BIBLIOGRAPHY

Peter Bühlmann and Bin Yu. Analyzing bagging. Ann. Statist., 30(4):927–961, 08 2002. doi:
10.1214/aos/1031689014. URL https://doi.org/10.1214/aos/1031689014.

Fabrizio Carcillo, Andrea Dal Pozzolo, Yann - A ë l Le Borgne, Olivier Caelen, Yannis Mazzer,
and Gianluca Bontempi. SCARFF: a scalable framework for streaming credit card fraud detec-
tion with spark. CoRR, abs/1709.08920, 2017. URL http://arxiv.org/abs/1709.08920.

Jennifer Chee. Pearson’s product moment correlation: Sample analysis. University of Hawaii at
Mānoa School of Nursing, 05 2015.

Tianqi Chen and Carlos Guestrin. Xgboost. Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Aug 2016. doi: 10.1145/2939672.
2939785. URL http://dx.doi.org/10.1145/2939672.2939785.

Duncan Cramer. Fundamental Statistics for Social Research. Routledge, Routledge, London,
1998.

Andrea Dal Pozzolo, Olivier Caelen, Yann-Aël Le Borgne, Serge Waterschoot, and Gianluca Bon-
tempi. Learned lessons in credit card fraud detection from a practitioner perspective. Expert
Systems with Applications, 41:4915–4928, 08 2014. doi: 10.1016/j.eswa.2014.02.026.

Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gianluca Bontempi.
Credit card fraud detection and concept-drift adaptation with delayed supervised information.
07 2015. doi: 10.1109/IJCNN.2015.7280527.

Yadolah Dodge. The Concise Encyclopedia of Statistics. Springer Science + Business Media,
LLC, Heidelberger Platz 3, Berlin, BE 14197, 2008.

P. Domingos. Metacost: a general method for making classifiers cost-sensitive. In KDD ’99, 1999.

Michel Failing and Jan Theeuwes. Exogenous visual orienting by reward. Journal of vision, 14,
05 2014. doi: 10.1167/14.5.6.

Y Freund. Boosting a weak learning algorithm by majority. Information and Computation, pages
256–285, 1995.

Y Freund and R.E. Schapire. Experiments with a new boosting algorithm. Machine Learning:
Proc. Thirteenth International Conference, pages 148–156, 1996.

FIS Global. The best fraud prevention strategies for ecommerce, 2019a. URL https:
//www.fisglobal.com/en/insights/merchant-solutions-worldpay/article/
the-best-fraud-prevention-strategies-for-ecommerce.

FIS Global. 6 things to look for in a credit card fraud detection solution, 2019b. URL
https://www.fisglobal.com/en/insights/merchant-solutions-worldpay/article/
6-things-to-look-for-in-a-credit-card-fraud-detection-solution.

Robert C. Holte, Liane E. Acker, and Bruce W. Porter. Concept learning and the problem of
small disjuncts. In Proceedings of the 11th International Joint Conference on Artificial Intelli-
gence - Volume 1, IJCAI’89, page 813–818, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc.

https://doi.org/10.1214/aos/1031689014
http://arxiv.org/abs/1709.08920
http://dx.doi.org/10.1145/2939672.2939785
https://www.fisglobal.com/en/insights/merchant-solutions-worldpay/article/the-best-fraud-prevention-strategies-for-ecommerce
https://www.fisglobal.com/en/insights/merchant-solutions-worldpay/article/the-best-fraud-prevention-strategies-for-ecommerce
https://www.fisglobal.com/en/insights/merchant-solutions-worldpay/article/the-best-fraud-prevention-strategies-for-ecommerce
https://www.fisglobal.com/en/insights/merchant-solutions-worldpay/article/6-things-to-look-for-in-a-credit-card-fraud-detection-solution
https://www.fisglobal.com/en/insights/merchant-solutions-worldpay/article/6-things-to-look-for-in-a-credit-card-fraud-detection-solution

74 BIBLIOGRAPHY

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study. Intel-
ligent Data Analysis, pages 429–449, 2002.

Gary King and Langche Zeng. Logistic regression in rare events data. Society for Political
Methodology, pages 1–27, 02 2001.

Jason Klusowski. Sparse learning with cart, 06 2020.

Sotiris Kotsiantis and P. Pintelas. Combining bagging and boosting. International Journal of
Computational Intelligence, 1:324–333, 01 2005.

Bertrand Lebichot, Fabian Braun, Olivier Caelen, and Marco Saerens. A graph-based, semi-
supervised, credit card fraud detection system. volume 693, pages 721–733, 11 2017. ISBN
978-3-319-50900-6. doi: 10.1007/978-3-319-50901-3_57.

LexisNexis. 2018 true cost of fraudsm study for the retail sector, 2018.
URL https://risk.lexisnexis.com/insights-resources/research/
2018-true-cost-of-fraud-study-for-the-retail-sector.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-
band: A novel bandit-based approach to hyperparameter optimization, 2018. URL https:
//arxiv.org/pdf/1603.06560.pdf.

Marcos López de Prado. Overfitting: Causes and solutions, 2020. URL https://ssrn.com/
abstract=3544431.

H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochas-
tically larger than the other. Ann. Math. Statist., 18(1):50–60, 03 1947. doi: 10.1214/aoms/
1177730491. URL https://doi.org/10.1214/aoms/1177730491.

Jim Goes Marilyn K. Simon. Correlational research. Dissertation and Scholarly Research: Recipes
for Success, 04 2011.

Eric Brill Michele Banko. Scaling to very very large corpora for natural language disam-
biguation, 2001. URL http://disi.unitn.it/$~$bernardi/Courses/CompLing/Papers/
banko-brill-acl2001.pdf.

Jacob Montiel, Rory Mitchell, Eibe Frank, Bernhard Pfahringer, Talel Abdessalem, and Albert
Bifet. Adaptive xgboost for evolving data streams, 2020.

A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. Calibrating probability with un-
dersampling for unbalanced classification. In 2015 IEEE Symposium Series on Computational
Intelligence, pages 159–166, 2015. doi: 10.1109/SSCI.2015.33.

Andrea Dal Pozzolo and G. Bontempi. Adaptive machine learning for credit card fraud detection.
2015.

Laura E. Raileanu and Kilian Stoffel. Theoretical comparison between the gini index and infor-
mation gain criteria. Annals of Mathematics and Artificial Intelligence, 41:77–93, 2000.

https://risk.lexisnexis.com/insights-resources/research/2018-true-cost-of-fraud-study-for-the-retail-sector
https://risk.lexisnexis.com/insights-resources/research/2018-true-cost-of-fraud-study-for-the-retail-sector
https://arxiv.org/pdf/1603.06560.pdf
https://arxiv.org/pdf/1603.06560.pdf
https://ssrn.com/abstract=3544431
https://ssrn.com/abstract=3544431
https://doi.org/10.1214/aoms/1177730491
http://disi.unitn.it/$~$bernardi/Courses/CompLing/Papers/banko-brill-acl2001.pdf
http://disi.unitn.it/$~$bernardi/Courses/CompLing/Papers/banko-brill-acl2001.pdf

75 BIBLIOGRAPHY

Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the ROC
plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE, 10(3):e0118432,
March 2015. doi: 10.1371/journal.pone.0118432. URL https://doi.org/10.1371/journal.
pone.0118432.

R.E Schapire. The strength of weak learnability. Machine Learning, pages 197–227, 1990.

R.E Schapire. The boosting approach to machine learning: an overview. Springer, Springer, 2002.

Samithamby Senthilnathan. Usefulness of correlation analysis. SSRN Electronic Journal, 07 2019.
doi: 10.2139/ssrn.3416918.

Antonio Serrano-López, Emilio Olivas, José Martín-Guerrero, Rafael Magdalena, and Juan
Gómez-Sanchís. Feature selection using roc curves on classification problems. Proceed-
ings of the International Joint Conference on Neural Networks, pages 1–6, 07 2010. doi:
10.1109/IJCNN.2010.5596692.

Abhinav Srivastava, Amlan Kundu, Shamik Sural, and Arun Majumdar. Credit card fraud detec-
tion using hidden markov model. Dependable and Secure Computing, IEEE Transactions on, 5:
37 – 48, 02 2008. doi: 10.1109/TDSC.2007.70228.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on Docu-
ment Analysis and Recognition, volume 1, pages 278–282 vol.1, 1995.

Machine Learning Group ULB. Credit card fraud detection - anonymized credit card trans-
actions labeled as fraudulent or genuine, 2018. URL https://www.kaggle.com/mlg-ulb/
creditcardfraud.

Venelin Valkov. Hands-On Machine Learning from Scratch - Develop a Deeper Understanding of
Machine Learning Models by Implementing Them from Scratch in Python. Leanpub, Victoria,
British Columbia, Canada, 2019.

Richard Wheeler and Stuart Aitken. Multiple algorithms for fraud detection. Knowledge-Based
Systems, 13:93–99, 04 2000. doi: 10.1016/S0950-7051(00)00050-2.

https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud

	List of Figures
	List of Tables
	Abstract
	Acknowledgements
	Introduction
	Challenges in Fraud Detection
	Objective
	Outline
	Related work and Theory of Machine Learning
	Related Work
	Machine Learning
	Introduction
	Main challenges of Machine Learning
	Classification
	Feature Engineering
	Overfitting the Training Data
	Underfitting

	Predictive modelling
	Classification Predictive Modelling
	Regression Predictive Modelling

	Class Imbalance Problem
	Solutions to the Class imbalance problem
	Resampling
	Random Undersampling
	Tomek Link removals
	Random Oversampling
	Synthetic Minority Oversampling Technique (SMOTE)
	SMOTE and Tomek Link removal together
	Ensemble Learning
	Voting Classifiers
	Bagging
	Out-of-bag Error Estimation
	Boosting
	Boosting as a gradient descent
	Margin for classification

	Selected models
	Logistic Regression
	Decision Trees
	Random Forests
	XGBoost

	Evaluation Metrics
	Confusion Matrix
	Precision
	Recall
	Precision and Recall - The F1 Score
	Precision/Recall Trade-off
	Area under the Precision Recall Curve
	The ROC Curve

	Data and the method
	Data description
	Standardization of the data
	Splitting the data
	Data resampling
	10 fold cross validation
	Training and Testing
	Performance evaluation

	Results
	Logistic Regression
	No resampling
	Random Undersampling
	Tomek Links Removal
	Random Oversampling
	SMOTE
	SMOTE & Tomek Links removal

	Random Forest
	No resampling
	Random Undersampling
	Tomek Links Removal
	Random Oversampling
	SMOTE
	SMOTE & Tomek Links removal

	XGBoost
	No resampling
	Random Undersampling
	Tomek Links Removal
	Random Oversampling
	SMOTE
	SMOTE & Tomek Links removal

	Summary of results

	Conclusion
	Bibliography

