
MASTER THESIS

Mr.
Venkata Sai Sandeep Yendamuri

Comparison of numerical
properties comparing Automated

Derivatives (Autograd) and explicit
derivatives (Gradients) for

Prototype based models

2022

Faculty of Applied Computer Sciences and
Biosciences

MASTER THESIS

Comparison of numerical
properties comparing Automated

Derivatives (Autograd) and explicit
derivatives (Gradients) for

Prototype based models

Author:
Venkata Sai Sandeep Yendamuri

Study Programme:
Applied Mathematics in Networking and Data Science

Seminar Group:
MA19w1-M

First Referee:
Prof. Dr. Thomas Villmann

Second Referee:
M.Sc. Alexander Engelsberger

Mittweida, November 2022

Acknowledgement

I would like to convey my sincere and heartfelt gratitude to Prof. Dr. Thomas Villmann
and my supervisor Mr. Alexander Engelsberger for their kind guidance, supervision, and
valuable feedback.

Bibliographic Information

Yendamuri, Venkata Sai Sandeep: Comparison of numerical properties comparing Automated
Derivatives (Autograd) and explicit derivatives (Gradients) for Prototype based models, 49 pages,
5 figures, Hochschule Mittweida, University of Applied Sciences, Faculty of Applied Computer
Sciences and Biosciences

Master Thesis, 2022

Abstract

Differentiation is ubiquitous in the field of mathematics and especially in the field of Machine
learning for calculations in gradient-based models. Calculating gradients might be complex and
require handling multiple variables. Supervised Learning Vector Quantization models, which are
used for classification tasks, also use the Stochastic Gradient Descent method for optimizing
their cost functions. There are various methods to calculate these gradients or derivatives,
namely Manual Differentiation, Numeric Differentiation, Symbolic Differentiation, and Automatic
Differentiation. In this thesis, we evaluate each of the methods mentioned earlier for calculating
derivatives and also compare the use of these methods for the variants of Generalized Learning
Vector Quantization algorithms.

I

I. Contents

Contents . I

List of Figures . II

List of Tables . III

1 Introduction . 1

1.1 Background . 1

1.2 Structure of the Thesis . 2

2 Learning Vector Quantization . 3

2.1 Basics concepts of Learning Vector Quantization . 3

2.1.1 Similarities and Dissimilarities . 3

2.1.2 Prototypes . 5

2.2 Kohonen’s Learning Vector Quantization . 6

2.3 Generalized Learning Vector Quantization . 7

2.4 Generalized Relevance Learning Vector Quantization . 9

2.5 Generalized Matrix Learning Vector Quantization . 11

3 Methods for computing Derivatives . 14

3.1 Manual Differentiation . 14

3.2 Numerical Differentiation . 15

3.3 Symbolic Differentiation . 16

3.4 Automatic Differentiation . 18

3.4.1 Forward Mode: . 18

3.4.2 Reverse Mode:. 20

4 Implementation of Automatic Differentiation to Prototype-Based Models 22

4.1 Applying Automatic Differentiation to GLVQ . 22

4.2 Applying Automatic Differentiation to localized GMLVQ . 25

5 Experimental Results . 29

5.1 Using explicit derivatives in GLVQ . 29

5.2 Using Automatic Differentiation in GLVQ . 31

6 Conclusion . 34

I

Bibliography . 35

A Python-Code . 37

A.1 GLVQ code. 37

A.1.1 Utilities . 37

A.1.2 GLVQ. 38

II

II. List of Figures

3.1 Computational Graph of Equation (3.11) . 18

4.1 GLVQ Computational Graph . 22

4.2 AD Computational Graph for localized GMLVQ cost function . 26

5.1 GLVQ classification using Manual Differentiation. 31

5.2 GLVQ classification using autograd . 33

III

III. List of Tables

3.1 Forward primal trace of Equation (3.11) and forward derivative trace 19

3.2 Reverse mode - forward primal trace and Reverse adjoint trace . 21

4.1 Forward primal trace for GLVQ cost function . 23

4.2 GLVQ Reverse Derivative trace . 24

4.3 Forward Primal Trace for localized GMVLQ cost function . 26

4.4 Reverse Derivative Trace for localized GMLVQ cost function Equation (4.5) 27

5.1 Accuracy and Process time in Seconds of GLVQ Algorithm for Iris data classification . . 33

Chapter 1: Introduction 1

1 Introduction

1.1 Background

Machine learning has grown in importance and received more attention from academia
and business. Machine learning is used in almost every functional operation we ob-
serve in our daily lives. There are numerous applications of Machine learning, for ex-
ample, speech recognition, self-driving cars, image recognition, recommendation sys-
tems, fraud detection, language translation and many more. For further detail, there
are various forms of Machine Learning models, they are supervised, unsupervised, and
reinforcement learning. Classification learning is the fundamental scheme that falls un-
der "supervised learning" [1]. In supervised learning, we train the model with large
datasets to find patterns in the labelled data. There are various strategies to achieve
this task, such as Multi-Layer Perceptron (MLP), Support Vector Machines (SVM), K-
Nearest Neighbors and Learning Vector Quantization (LVQ). Except for the LVQ mod-
els, the models mentioned earlier are challenging to interpret and act as black boxes.
This paper will focus on supervised Learning Vector Quantization (LVQ) models and
their generalized variants. These LVQ models utilize prototypes to represent the data
classes, and training takes place by Hebbian Learning [2]. Similar to all the machine
learning models, LVQ models also have certain cost functions, which are minimized
using Stochastic Gradient Descent during the training of the models.

When using gradient-based optimization in machine learning, we require to calculate
derivatives. There are various methods to compute derivatives: Manual Differentiation,
Numerical Differentiation, Symbolic Differentiation, and Automatic Differentiation. Man-
ual Differentiation is accomplished by applying fundamental derivative rules, which can
be time-consuming for more complex functions. On the other hand, Numerical Differenti-
ation uses the concept of finite differences. It is comparatively easy to employ but poten-
tially inaccurate due to round-off and truncation errors. The fact that it scales poorly for
gradients makes it unsuitable for machine learning, which frequently requires gradients
concerning millions of parameters. Symbolic Differentiation is the automated version
of Manual Differentiation and resolves the shortcomings in both Manual and Numerical
Differentiation, but it frequently leads to the expression swelling problem [3]. Automatic
Differentiation relies on the chain rule in differentiation. The domain of the variables is
changed to include derivative values, and the semantics of the operators are modified to
propagate derivatives in accordance with the chain rule. Automatic Differentiation tech-
nically generates numerical derivative evaluations rather than derivative expressions at
the time of implementation by accumulating the derivative values throughout code ex-
ecution. To fully comprehend the issues, we will go into detail for each method with a
brief example.

2 Chapter 1: Introduction

In this thesis, we explain the working of prototype based algorithms. Then, we study
the implementation of the Automatic Differentiation while optimizing the cost function of
these algorithms. Finally, we further compare the performance of the GLVQ algorithm
equipped with Automatic Differentiation and the algorithm with Manual Differentiation in
theory and python scripts.

1.2 Structure of the Thesis

The remaining report has been structured in the following manner:

• Chapter 2 explains various prototype based models - Learning Vector Quantiza-
tion (LVQ), Generalized Learning Vector Quantization (GLVQ), Generalized Rel-
evance Vector Quantization (GRLVQ) and Generalized Matrix Learning Vector
Quantization (GMLVQ).

• Chapter 3 discusses various methods of computing derivatives, namely, Manual
Differentiation, Numerical Differentiation, Symbolic Differentiation, and Automatic
Differentiation.

• Chapter 4 explains how the computation of derivatives using Automatic Differenti-
ation or Autograd is achieved in the above-mentioned Vector Quantization models,
including the computation graph.

• Chapter 5 provides details explanation of using explicit derivatives and Automatic
Derivatives for the GLVQ model.

• Chapter 6 provides a conclusion and some areas for future scope.

Chapter 2: Learning Vector Quantization 3

2 Learning Vector Quantization

Learning Vector Quantization (LVQ) is a supervised algorithm for classification tasks in-
troduced by Teuvo Kohonen [4]. It was motivated by the Hebbian learning rule and uses
the concept of codebook vectors or prototypes and their dissimilarities. These proto-
types realize attraction and repulsion schema during learning [5]. Many realizations of
LVQ are created to serve a distinct objective of classification tasks. The main difference
between these realizations is the dissimilarity measure chosen for specific tasks. This
chapter discusses the variants of LVQ algorithms considered for this thesis.

2.1 Basics concepts of Learning Vector Quantization

It is essential to understand the fundamental ideas to comprehend the variations of the
Learning Vector Quantization models. So, we first begin defining the concepts of dis-
similarities, which are related to similarities in this section as explained in [6,7] followed
by the concepts of prototypes.

2.1.1 Similarities and Dissimilarities

In real life, objects are compared based on sharing properties. The more properties are
shared, the more similar the objects with each other. The trivial assumption is that an
object is similar to itself.

Definition 2.1 (Similarity measure). For a non-empty set of objects X , the similarity
measure s : X×X → R, we assume the following two properties:

• Maximum dominance: s(u,u)≥ s(u,v) and s(u,u)≥ s(v,u) for all u,v ∈ X .
• Non-negativity: s(u,v)≥ 0 ∀ u,v ∈ X .

A basic similarity satisfies only the maximum dominance principle. In comparison, the
primitive similarity satisfies both the Maximum dominance and Non-negativity proper-
ties.

Definition 2.2 (Dissimilarity measure). For a non-empty set of objects X , the dissimi-
larity measure d : X×X → R, we assume the following two properties:

• Minimum dominance: d(u,u)≤ d(u,v) and d(u,u)≤ d(v,u) for all u,v ∈ X .
• Non-negativity: d(u,v)≥ 0 ∀ u,v ∈ X .

4 Chapter 2: Learning Vector Quantization

A basic dissimilarity satisfies only the minimum dominance principle. Whereas primitive
dissimilarity also fulfils the non-negativity property. In this research, we consider using
Euclidean distance as a dissimilarity measure.

Definition 2.3 (Euclidean distance). The Euclidean distance for the vectors u and v in
n-dimensional vector space Rn is given as

dE(u,v) =

√
n

∑
i=1

(ui− vi)2 (2.1)

We often use the Squared Euclidean distance to reduce complexity, which is given as:

d2
E(u,v) =

n

∑
i=1

(ui− vi)
2 (2.2)

Mahalanobis distance is the generalization of Euclidean distance. It employs the statis-
tical properties of a given dataset [8].

Definition 2.4 (Mahalanobis distance). The Mahalanobis distance for the vectors
u,v ∈ Rn generated from a same probability distribution is given as

dM(u,v) =
√
(u− v)T CT (u− v) (2.3)

Where C is a covariance matrix. However, if C is the identity matrix, it recovers Eu-
clidean distance. The covariance matrix C assumes full rank, which is invertible. For
generalization, we drop this full rank assumption which results in Quadratic dissimilar-
ity.

Definition 2.5 (Quadratic dissimilarity). For the vectors u,v ∈ Rn and transition matrix
Q ∈ Rm×n that does a linear mapping, the Quadratic dissimilarity is given by

dQ(u,v) =
√

(u− v)T QT Q(u− v) (2.4)

Chapter 2: Learning Vector Quantization 5

The dimensionality of the vector space after linear mapping is given by the hyperpa-
rameter m. Like the Mahalanobis distance, the Quadratic dissimilarity also recovers the
Euclidean distance on the modified input vectors with Λ = QT Q given by

dQ(u,v) =
√
(u− v)T Λ(u− v) (2.5)

2.1.2 Prototypes

The main idea of T Kohonen is to represent the data classes by one or more prototypes
[5] which is given by the following definition.

Definition 2.6 (Prototype). A prototype or a codebook vector is an element wi in data
space Rn with a fixed class label c(wi) ∈C such that at least one prototype is assigned
to each class. The set W is the collection of M prototypes, which is given as

W = {wi ∈ Rn|i = 1,2, ..,M} (2.6)

Determining Winner Prototypes: To determine the winner prototypes, we first initialize
the prototypes wi ∈W in the input data space X = {x1,x2,x3, ...,xN} ⊆ Rn. Then, we
check for the fit of the prototype for a given data point xi ∈ X equipped with a class label
c(xi) ∈ C based on one of the earlier mentioned dissimilarity measures. The choice
dissimilarity measure depends on the algorithm we are applying.

We must consider the smallest dissimilarity to obtain the nearest prototype for the data
point xi. This nearest prototype is said to be the winner prototype w∗ is determined by a
Winner-Takes-All (WTA) rule

w∗ = argmin
wi∈W

(d(x,wi)) (2.7)

Here, d is the dissimilarity measure. The winner prototype w∗ is further classified into

• winner prototype or best matching prototype w+ with the same class label as data
point x

w+ = argmin
c(x)=c(wi)

d(x,wi) (2.8)

6 Chapter 2: Learning Vector Quantization

• winner prototype w− with a different class label than of data point x

w− = argmin
c(x)̸=c(wi)

d(x,wi) (2.9)

2.2 Kohonen’s Learning Vector Quantization

The Learning Vector Quantization algorithms proposed by Teuvo Kohonen are motivated
by Bayes theory of probability and vector quantization. There are various variants of
LVQ algorithms, namely LVQ1, LVQ2, and LVQ3, which are heuristic approaches [9].
The fundamental idea behind these algorithms is the prototype vector shifts motivated
by the Hebbian learning principle. The vector shifts realize the attraction and repulsion
scheme [6], which we discuss here.

In this method, we consider a dataset X = {xi ∈ Rn, i = 1,2, ..,m} equipped with class
labels c(xi)∈C and the prototype set W as given in Equation (2.6), with the class labels
C(wk) such that each class is assigned with at least one prototype. We first initialize
these W prototypes randomly and iterate over the below two steps.

1. Arbitrarily choose a data point xi from dataset X ∈ Rn with class c(xi) and deter-
mine the closest prototype w∗ using the WTA rule from Equation (2.7).

2. If the class of the prototype is equal to the class of the data point c(xi) = c(w∗),
the prototype is pushed towards the data point (Attraction). Otherwise, if w∗ is
close to xi but with incorrect class c(xi) ̸= c(w∗), the prototype is pushed away
from the data point (Repulsion).

The adaption of prototypes is given by calculating the gradient of the dissimilarity mea-
sure often chosen as Euclidean distance.

∆w∗ =
∂dE

∂w∗
= Φ(x,w∗) · (x−w∗) (2.10)

where the Φ(x,w∗) defines the vector shift

Φ(x,w∗) =

{
+1 if c(w∗) = c(x)→ (Attraction)

−1 if c(w∗) ̸= c(x)→ (Repulsion)
(2.11)

The update of the prototype is done by the following

w∗← w∗−α∆w∗ (2.12)

Chapter 2: Learning Vector Quantization 7

Here, the α is the learning rate that controls the magnitude of the vector shift. The
algorithm mentioned above is LVQ1, and the prototype update rule in Equation (2.12)
might look similar to the Stochastic Gradient Descent (SGD) rule Equation (3.1). How-
ever, due to the fact that the vector shift Φ(x,w∗) is not differentiable with respect to the
prototype, we cannot assume SGD.

2.3 Generalized Learning Vector Quantization

Sato and Yamada developed a generalized version of Learning Vector Quantization in
1996 by introducing a differentiable cost function that updates the prototypes based on
the steepest descent method or SGD [10]. Preserving the initial setting of LVQ, that
is, the determination of winner prototypes w+ and w−, the dissimilarity between x and
prototype of the same class w+

d+(x) = d(x,w+) (2.13)

and dissimilarity between x and the prototype of a different class d− is given as

d−(x) = d(x,w−) (2.14)

Here we use the squared metric of Equation (2.1), namely squared Euclidean distance,
as the dissimilarity measure.

d±(x) = d2
E(x,w

±) =
n

∑
i=1

(xi−w±)2 (2.15)

using Equation (2.13) and Equation (2.14), we calculate the relative distance differ-
ence

µ(x) =
d+(x)−d−(x)
d+(x)+d−(x)

(2.16)

The function µ(x) ∈ [−1,1] is a classifier function that represents the data point x is
correctly classified if µ(x) < 0. The µ(x) > 0 represents the data point x is incorrectly
classified. This leads to the formulation of a learning requirement as the minimization of
a cost function EGLV Q defined by

8 Chapter 2: Learning Vector Quantization

EGLV Q =
n

∑
i=1

H(µ(x)) (2.17)

where H(k) is the Heaviside step function which is given as

H(k) =

{
1 i f k ≥ 0
0 otherwise

(2.18)

The Heaviside function H(k) is not differentiable. Sato and Yamada have replaced the
step function with the Sigmoid function Equation (2.19), which is a differentiable and
monotonically increasing activation function. There is an extensive study of various
activation functions used for GLVQ in [11]. However, in our paper, we consider using the
Sigmoid activation function, which is given as

φθ (k) =
1

1+ exp(−k
θ
) (2.19)

It is important to note that when θ → 0, the Sigmoid function converges to Heaviside
function Equation (2.18). Therefore, the overall cost function of the GLVQ is given as

EGLV Q =
n

∑
i=1

φ(µ(xi)) (2.20)

with local losses EGLV Q = φ(µ(x)), resulting in stochastic gradient descent learning,
which realizes attraction and repulsion scheme for w+, w− with dissimilarities as men-
tioned in Equation (2.13), Equation (2.14). The gradient of the loss function EGLV Q

with respect to the winner prototypes w+ and w− are calculated by the chain rule of
differentiation as follows

∆w+ =
∂EGLV Q

∂w+

=
∂φ(µ(x))

∂ µ(x)
· ∂ µ(x)

∂d+(x)
· ∂d+(x)

∂w+

=
∂φ(µ(x))

∂ µ(x)
· 2d−

(d++d−)2 · (−2(x−w+))

=
−∂φ(µ(x))

∂ µ(x)
· 4d−

(d++d−)2 · (x−w+)

(2.21)

Chapter 2: Learning Vector Quantization 9

∆w− =
∂EGLV Q

∂w−

=
∂φ(µ(x))

∂ µ(x)
· ∂ µ(x)

∂d−(x)
· ∂d−(x)

∂w−

=
∂φ(µ(x))

∂ µ(x)
· −2d+

(d++d−)2 · (−2(x−w−))

=
∂φ(µ(x))

∂ µ(x)
· 4d+

(d++d−)2 · (x−w−)

(2.22)

The learning rule for prototypes in GLVQ using stochastic gradient descent with learning
parameter α > 0 is given as

w+← w++α
∂φ

∂ µ
· 4d−

(d++d−)2 · (x−w+) (2.23)

w−← w−−α
∂φ

∂ µ
· 4d+

(d++d−)2 · (x−w−) (2.24)

Using the Euclidean distance as a dissimilarity measure might only be accurate for
some classification tasks as it assumes equal importance to all the features in the input
dimension. Therefore, the dissimilarity measures are explicitly chosen based specifically
on the tasks. B.Hammer and T.Villmann have introduced a weighing or relevance factor
λ between the data points and prototypes [12]. This extension of GLVQ is known as
Generalized Relevance Vector Quantization (GRLVQ).

2.4 Generalized Relevance Learning Vector
Quantization

The Generalized Relevance Learning Vector Quantization (GRLVQ) is an extension of
the GLVQ algorithm proposed by B.Hammer and T.Villmann [12]. Using the squared
Euclidean distance as a dissimilarity measure might not be appropriate for all the clas-
sification tasks. GRLVQ uses the relevance factors λ = (λ , ..,λm),λi ≥ 0 between data
points x and prototypes w, resulting in the following dissimilarity metric

dλ (x,w) =
n

∑
i=1

λi(xi−wi)
2 (2.25)

The input dimension is scaled by the relevance weights λi, interpreting higher weights
λi for the features contributing more to the classification. In contrast, a smaller or 0
relevance weight interprets the corresponding feature does not contribute or is of no

10 Chapter 2: Learning Vector Quantization

importance, thus, can be omitted [13].

The training in GRLVQ is derived similarly to GLVQ by minimization of the cost function
based on SGD. The cost function of GRLVQ is given as

EGRLV Q =
n

∑
i=1

φ(µλ (xi)) (2.26)

here φ is the Sigmoid activation function as mentioned in Equation (2.19) and µλ (xi)

is

µ(x) =
d+

λ
(x)−d−

λ
(x)

d+
λ
(x)+d−

λ
(x)

(2.27)

Where d+ is the dissimilarity between data point x and the closest correct prototype w+,
similarly, d− is the dissimilarity between data point x and the closest incorrect prototype
w−. The learning rule can be formulated from the cost function Equation (2.26) by
taking derivatives of the cost function with respect to the prototypes w and the relevance
weights λ with the learning rate α > 0, giving us the updates as follows

w+← w+−α ∆w+

w−← w−−α ∆w−

λ ← λ −α ∆λ

(2.28)

The derivatives ∆w+,∆w−,∆λ are given as

∆w+ = φ
′(µλ (x)) ·

2d−
λ

(d+
λ
+d−

λ
)2 ·

∂d+
λ
(x)

∂w+
(2.29)

∆w− = φ
′(µλ (x)) ·

−2d+
λ

(d+
λ
+d−

λ
)2 ·

∂d−
λ
(x)

∂w−
(2.30)

∆λ = φ
′(µλ (x)) ·

(
2d−

λ

(d+
λ
+d−

λ
)2 ·

∂d+
λ
(x)

∂λ
−

−2d+
λ

(d+
λ
+d−

λ
)2 ·

∂d−
λ
(x)

∂λ

)
(2.31)

To prevent the degeneration of the metric, the relevance factors λi are normalized af-
ter each update such that ∑

n
i=1 λi = 1. The update mentioned above considers the

Chapter 2: Learning Vector Quantization 11

global relevance factors. We can also use local relevance, which has separate rele-
vance vectors for prototypes w+ and w− as λ+ and λ−, respectively. This method is
called Localized Generalized Relevance Learning Vector Quantization (LGRLVQ) which
is proposed in [14].

2.5 Generalized Matrix Learning Vector Quantization

Generalized Matrix Learning Vector Quantization (GMLVQ) was introduced by Schnei-
der, Biehl, and Hammer [13], which is an extension of Generalized Relevance Learning
Vector Quantization (GRLVQ). We utilize a full relevance matrix Λ in the dissimilarity
measure. We consider the pairwise correlations between the data dimensions for better
class discrimination by using the squared Quadratic distance as mentioned in Equation
(2.5). The squared Quadratic distance for the GMLVQ algorithm is given by

dΛ(x,w) =
n

∑
i=1

(xi−wi)
T

Λ(xi−wi) (2.32)

here Λ is an n× n symmetric and positive semi-definite matrix attained by substituting
Ω, an arbitrary n×n matrix as follows

Λ = Ω
T

Ω (2.33)

giving us AT Λ A=AT ΩT Ω A=(ΩT A)2≥ 0. From Equation (2.32) and Equation (2.33),
the dissimilarity is given as

dΛ(x,w) =
n

∑
i=1

(xi−wi)
T

Ω
T

Ω(xi−wi) (2.34)

We preserve the classifier function setting of GLVQ for GMLVQ and represent the rela-
tive distance as follows

µΛ(x) =
dΛ(x,w+)−dΛ(x,w−)
dΛ(x,w+)+dΛ(x,w−)

(2.35)

12 Chapter 2: Learning Vector Quantization

This classifier function µΛ(x) holds the same properties as that of GLVQ, whereas we
just use a different dissimilarity measure for GMLVQ. Using the classifier function, we
can compute the classification error function for GMLVQ is given as

EGMLV Q =
n

∑
x=1

φ(µΛ(xi)) (2.36)

We considered φ as a Sigmoid function as given in Equation (2.19). The learning rule
can be determined from the GMLVQ cost function Equation (4.5) using the chain rule of
differentiation. We presume that the dissimilarity measure dΛ(x,w) can be differentiated
with respect to w+ and w− as following

∆w+ =
∂EGMLV Q(x)

∂w+

=
∂φ(µΛ(x))

∂ µΛ(x)
· ∂ µΛ(x)

∂d+
Λ
(x)
·

∂d+
Λ
(x)

∂w+

=
∂φ(µΛ(x))

∂ µΛ(x)
· 2d−

(d+
Λ
+d−

Λ
)2 · (−2Λ(x−w+))

=
∂φ(µΛ(x))

∂ µΛ(x)
· −4d−

(d+
Λ
+d−

Λ
)2 ·Λ(x−w+)

(2.37)

∆w− =
∂EGMLV Q(x)

∂w−

=
∂φ(µΛ(x))

∂ µΛ(x)
· ∂ µΛ(x)

∂d−
Λ
(x)
·

∂d−
Λ
(x)

∂w−

=
∂φ(µΛ(x))

∂ µΛ(x)
· −2d+

(d+
Λ
+d−

Λ
)2 · (−2Λ(x−w−))

=
∂φ(µΛ(x))

∂ µΛ(x)
· 4d+

(d+
Λ
+d−

Λ
)2 ·Λ(x−w−)

(2.38)

From the gradient Equation (2.37) and Equation (2.38), the corresponding adaptation
formulae for the prototypes w+ and w− are given as:

w+← w+−α ∆w+

w−← w−−α ∆w− (2.39)

Chapter 2: Learning Vector Quantization 13

As we update the prototypes w+ and w−, we need to adjust the Ω matrix. So, we
calculate the change in the GMLVQ classification error with respect to Ω+ and Ω− as

∆Ω
+ =

∂EGMLV Q(x)
∂Ω+

=
∂φ(µΛ(x))

∂ µΛ(x)
· ∂ µΛ(x)

∂d+
Λ

·
∂d+

Λ

∂Ω+

= φ
′(µΛ(x)) ·

(
2d−

Λ

(d+
Λ
+d−

Λ
)2 ·
(

2Ω
+(x−w+)2

)) (2.40)

∆Ω
− =

∂EGMLV Q(x)
∂Ω−

=
∂φ(µΛ(x))

∂ µΛ(x)
· ∂ µΛ(x)

∂d−
Λ

·
∂d−

Λ

∂Ω−

= φ
′(µΛ(x)) ·

(
−2d+

(d+
Λ
+d−

Λ
)2 ·
(

2Ω
−(x−w−)2

)) (2.41)

From the gradient Equation (2.40), and Equation (2.40), the corresponding adaptation
formulae for Ω+ Ω− are given as:

Ω
+←Ω

+−α ∆Ω
+

Ω
−←Ω

−−α ∆Ω
− (2.42)

Where α is the learning rate. It is important to note that the Λ should be accompanied
by a regularization technique while matrix adaptation to achieve stable behaviour [15].
For this, we impose a similar setting of normalization as employed in GRLVQ by setting
∑

n
i=1 Λ = 1. As we can see from the update of the Ω matrix, we have considered the

local matrices Ω+ and Ω−. This method is also known as Localized Generalized Matrix
Learning Vector Quantization (LGMLVQ).

14 Chapter 3: Methods for computing Derivatives

3 Methods for computing Derivatives

In machine learning, we extensively use the concept of differentiation for gradient-based
optimization models. The generalized variants of Vector Quantization models we dis-
cuss in this research use Stochastic Gradient Descent (SGD) to optimize the cost func-
tions. The Stochastic Gradient Descent (SGD) is an iterative approach to optimize the
cost function [16]. For a cost function f (X ,W), each iteration of SGD involves choosing
a random data point xt ∈ X from the training set and updating the parameter wt ∈W
with learning rate α > 0 as follows

wt+1 = wt−α
∂ f (xt ,wt)

∂wt
(3.1)

There are various ways to compute these derivatives, namely Manual Differentiation,
Numeric Differentiation, Symbolic Differentiation and Automatic Differentiation or Auto-
grad. This section briefly explains each technique and then discusses the benefits and
drawbacks of using each approach.

3.1 Manual Differentiation

In Manual Differentiation, we must calculate the derivative of a function using the below-
mentioned basic rules of differentiation. Let us assume the functions u, v, and w with
constants a,b ∈ R.

• Constant rule: The derivative of a constant is 0. For a function u(x) = a, the
derivative with respect to x is

d(a)
dx

= 0

• Sum rule: The derivative of function w = au(x)+bv(x) with respect to x is given
as

d(au(x)+bv(x))
dx

= a
u(x)
dx

+b
v(x)
dx

= au′(x)+bv′(x)

• Product rule: For a function w = u(x)v(x), the derivative with respect to x is

d(u(x)v(x))
dx

= u′(x)v(x)+u(x)v′(x)

• Quotient rule: The derivative with respect to x for a function w = u(x)
v(x) is

d
dx

(
u(x)
v(x)

)
=

u′(x)v(x)−u(x)v′(x)
(v(x))2

Chapter 3: Methods for computing Derivatives 15

• Chain rule: For a function w = u(v) and v = f (x) the chain rule is given as

dw
dx

=
dw
dv

dv
dx

Considering a sample example, for a function f (x,y) = x2−3xy+2ex the derivative with
respect to x is done as

∂ f (x,y)
∂x

=
∂x2

∂x
− ∂ (3xy)

∂x
+

∂ (2ex)

∂x
= 2x−3y+2ex

(3.2)

In this example, partial differentiation was utilized, which treats all variables other than
the one we differentiate with as constants. This process seems to be easy as we con-
sidered a simple function, but it could be a tedious process for complex functions, which
might also lead to some human errors.

3.2 Numerical Differentiation

To estimate derivatives, Numerical Differentiation employs the method of finite differ-
ences. It is based on the limit definition of a derivative in its most basic form. The partial
derivative for multivariate function f : Rn→R with respect to the ith unit vector of v with
a step size h > 0 is given as

∂ f (v)
∂vi

≈ f (v+hei)− f (v)
h

(3.3)

This may be a reasonably straightforward implementation. However, there are some
difficulties with accuracy and numerical stability. One issue is truncation error, we are
trying to approximate a limit as h→ 0, but we are using some non-zero h.

Definition 3.1 (Truncation Error). The error of approximation or inaccuracy one expe-
riences as a result of approximating a limit as h→ 0 but h not actually being zero is
known as truncation error [3].

This error of approximation is proportional to step-size h. Reducing the step size might
result in an increase in round-off error.

Definition 3.2 (Rounding Error). The difference between a particular algorithm’s output

16 Chapter 3: Methods for computing Derivatives

using precise arithmetic and that of the same method using finite-precision, rounded
arithmetic is known as the rounding error [17].

The rounding error is inversely proportional to the power of h. Thus, while choosing
a step size, we must carefully consider this trade-off between truncation and rounding
errors.

While there are a few strategies, such as higher-order differences and Richardson ex-
trapolation, to improve Numerical Differentiation, the computing complexity has also
grown with small approximation errors due to the increase in dimensionality.

Some approximation errors in machine learning may be acceptable. However, another
major problem with Numerical Differentiation is that it requires O(n) evaluations for the
n-dimensional gradient. The time complexity could be very large when we have several
features in real-time [3].

3.3 Symbolic Differentiation

Symbolic Differentiation is an automated version of Manual Differentiation. By employ-
ing common derivative rules, the function’s closed-form expression might be symboli-
cally differentiated, which changes the original expression into the derivative of interest.
In Symbolic Differentiation, the function’s mathematical expression is parsed and trans-
formed into simple computation nodes.

These nodes relate to basic functions whose derivatives could be derived from elemen-
tary derivative operations like the derivative of powers, trigonometric functions, scalar
products, and polynomials. The derivative of basic blocks are then combined using com-
pound derivative functions like sum, product, quotient, and chain rules. This eliminates
the issues with numerical precision caused by Numerical Differentiation, which enables
precise computing of derivatives. However, there is a problem associated with using
Symbolic Differentiation, as the derivatives in Symbolic Differentiation are not calculated
in the run-time, and the expression we differentiate would become exponentially large
due to nested computations resulting in a problem of Expression Swell. For example,
for a function

c(x) = a(x)b(x)

c′(x) = a′(x)b(x)+a(x)b′(x) (3.4)

if a(x) = f (x)g(x)

=⇒ c(x) = (f ′(x)g(x)+ f (x)g′(x))b(x)+ f (x)g(x)b′(x) (3.5)

Chapter 3: Methods for computing Derivatives 17

there would be nested computation duplication between a and a′, leading to a large sym-
bolic expression. Thus careless Symbolic Differentiation can lead to expression swell
problem. As per [3], Symbolic Differentiation results in expressions that are complex
and redundant. For example, symbolically differentiating the cost function of GLVQ as
given in Equation (2.20)

EGLV Q =
n

∑
i=1

φ(µ(xi)); (3.6)

with respect to the prototype, the w+ is shown below

∂EGLV Q

∂w+
=

∂φ(µ(x))
∂ µ(x)︸ ︷︷ ︸

(I)

· ∂ µ(x)
∂d+(x,w)︸ ︷︷ ︸

(II)

· ∂d+(x,w)
∂w+︸ ︷︷ ︸
(III) (3.7)

For ease of comprehension, let us compute Equation (3.7) by parts. The derivative of
the component (I) is given by

d φ(x)
dx

= φ(x)(1−φ(x)) (3.8)

Symbolically differentiating the component (II)

∂ µ(x)
∂d+(x,w)

=
∂

∂d+

(
d+−d−

d++d−

)
=

(d+−d−)′(d++d−)− (d+−d−)(d++d−)′

(d++d−)2

=
((d+)′− (d−)′)(d++d−)− ((d+)′+(d−)′)(d+−d−)

(d++d−)2

(3.9)

The derivative of component (III) is given by

∂d+(x,w)
∂w+

=
∂ (x−w+)2

∂w+

= 2(x−w+)(x−w+)′

= 2(x−w+)((x)′− (w+)′)

(3.10)

Combining the results of components (I),(II), and (III) from Equation (3.8), Equation
(3.9), and Equation (3.10) would exacerbate the calculation. Furthermore, in Machine
Learning, we are more concerned about numerical evaluations rather than generating

18 Chapter 3: Methods for computing Derivatives

expressions. One other drawback of Symbolic Differentiation is that they are limited
to closed-form expressions. That is, it would not be possible to implement Symbolic
Differentiation in loops or recursion or, more generally, open-formed expressions [18].

3.4 Automatic Differentiation

Automatic Differentiation (AD) computes derivatives with the same accuracy as symbolic
derivatives. In AD, we extend the procedure of Symbolic Differentiation by evaluating
derivatives along with evaluating function values. It is also crucial to note that the AD
technique can be used to differentiate open-form expressions, which constitute loops
and recursions which cannot be handled by Symbolic or Numeric differentiation [18].

The derivative of the overall composite function can be obtained by combining the
derivatives of the constituent operations using the chain rule, as all numerical com-
putations are ultimately composed of a finite set of elementary operations for which
derivatives are known. The Automatic Differentiation (AD) approach is built on evalua-
tion traces. The evaluation trace of elementary operations is also known as the Wengert
list [3]. The process flow can be visualized with the help of a computation graph. AD has
two modes. One is forward accumulation tangent mode and then followed by reverse
mode.

3.4.1 Forward Mode:

Forward mode accumulates the elementary operations performed in the function. Let
us take a sample function

f (x,w) = (y− xw)2 (3.11)

to determine the evaluation trace and its corresponding computational graph.

Figure 3.1: Computational Graph of Equation (3.11)

Chapter 3: Methods for computing Derivatives 19

Figure (3.1) is the computational graph which shows the propagation of the input vari-
ables of Equation (3.11) and the elementary operations performed on the intermediate
variables. The left side of Table (3.1) represents the forward primal or evaluation trace of
Equation (3.11), in which the function is evaluated in parts. We implement three-part no-
tation as mentioned in [3] for a function f : Rn→ Rm, the variables ui−n = xi, i = 1, ...,n
are inputs and the ui, i = 1, .., j are intermediate variables which are used to perform
arithmetic operations, and lastly, Sm−1 = u j−k,k = m−1, ..,0 are the output variables.

The derivatives of the intermediate variables ui are calculated with respect to x, resulting
in u′i =

∂ui
∂x .

Forward Primal Trace
u−1 = y = 5
u0 = x = 2
u−2 = w = 1

Forward Derivative Trace
u′−1 = 0
u′0 = 1
u′−2 = 0

u1 = u0 ·u−2 = 2 u′1 = u′0 ·u−2 +u0 ·u
′
−2 = 1

u2 = u−1−u1 = 3 u′2 = u′−1− (u1)
′ =−1

u3 = (u2)
2 = 9 u′3 = ((u2)

2)′ = 2 ·u2 ·u′2 =−6
S = u3 = 9 S′ = u′3 =−6

Table 3.1: Forward primal trace of Equation (3.11) and forward derivative trace

The right side of Table (3.1) represents the derivative trace, and we can see that deriva-
tive of the output with respect to the x is S′. We can cross-check using the chain rule by
creating the corresponding derivative trace for each elementary operation in the forward
primal trace as follows

∂S
∂x

=
∂u3

∂u0
(3.12)

=
∂u3

∂u2
· ∂u2

∂u1
· ∂u1

∂u0

=
∂u2

2
∂u2
· ∂ (u−1−u1)

∂u1
· ∂ (u0 ·u−2)

∂u0

=−2u2 =−2(3) =−6

Generalizing the concept of the Forward Mode AD, we calculate the Jacobian of function
f :Rn→Rm with n, m independent variables xi and dependent variables yi, respectively.
However, we only obtain one column of the Jacobian matrix, which is evident that we
set x′i =

∂x
∂x = 1 and derivatives of other input variables as 0.

20 Chapter 3: Methods for computing Derivatives

J f =

∂S1
∂x1

... ∂S1
∂xn

.

.

.
∂Sm
∂x1

... ∂Sm
∂xn

We would need another evaluation in order to compute the rate of change with respec-
tive w. Thus, as a result, n evaluations are needed to compute the full Jacobian matrix.
However, we can compute Jacobian vector products efficiently without matrix calcula-
tions in Forward AD mode by initializing x′ = v

J f v =

∂S1
∂x1

... ∂S1
∂xn

.

.

.
∂Sm
∂x1

... ∂Sm
∂xn

 .

v1

v2

.

.

vn

In cases of functions like f : Rn→R we initialize a vector u with a linear combination of
partial derivatives x′ = v. However, we would require n evaluations to compute the full
Jacobian matrix.

For functions like f : R→ Rm, the derivatives for all m variables could be calculated in
a single forward pass. But in general, in cases where the features n, are more than the
labels m, that is f : Rn→ Rm, we consider using the reverse mode AD.

3.4.2 Reverse Mode:

In reverse AD, we retain the same three-part notation as mentioned in the Forward
mode AD. The AD propagates derivatives backwards from a given output when it is in
the reverse accumulation mode, which makes it similar to a generalized backpropaga-
tion algorithm. Here we introduce adjoints ûi, which is integrated to each intermediate
variable ui. The adjoint ûi is given as

ûi =
∂yk

∂ui
(3.13)

the rate of change of the output yk with respect to change in the variable ui. The AD in
reverse mode is a two-phase process.

Chapter 3: Methods for computing Derivatives 21

Forward Primal Trace
u−1 = y = 5
u0 = x = 2

u−2 = w = 1

Reverse Adjoint Derivative Trace
û3 = 1

u1 = u0 ·u−2 = 2 û2 = û3 · ∂u3
∂u2

= 2 ·u2 = 6
u2 = u−1−u1 = 3 û1 = û2 · ∂u2

∂u1
= 6(−1) =−6

u3 = (u2)
2 = 9 û0 = û1 · ∂u1

∂u0
=−6(1) =−6

S = u3 = 9 û−1 = û2 · ∂u2
∂u−1

= 6(1) = 6

û−2 = û1 · ∂u1
∂u−2

=−6(2) =−12

Table 3.2: Reverse mode - forward primal trace and Reverse adjoint trace

The first phase is the forward phase which is similar to that of the Forward mode AD,
where the original function is evaluated, which sets the intermediate variables ui along
with recording the dependencies in the computation graph in Figure (3.1) and as shown
in the left side of Table (3.2). In the second phase, the derivatives are computed back-
wards from the outputs to the inputs by propagating adjoints Equation (3.13) as shown
in the right side of Table (3.2). In the reverse phase, we start with the derivative of the
output, which would be û3 =

∂u3
∂u3

= 1 and propagating backwards.

The adjoint û2 is calculated by multiplying the adjoint of successor û3 and the corre-
sponding derivative of u3 with respect to u2. Similarly, this process is propagated until
the derivatives of all the input variables (x,w) are calculated in just one reverse pass
by keeping a record of intermediate adjoints and derivatives through the bookkeeping
process [3].

Considering Forward mode AD, if we need to calculate the derivative of Equation (3.11)
with respect to the variable w would need to run one more forward pass. So, comparing
Reverse mode AD to Forward mode AD, the Reverse Mode AD takes less time to eval-
uate the function, especially in cases like f : Rn → R in which all the inputs could be
evaluated in a single pass compared to n evaluations of Forward mode.

22 Chapter 4: Implementation of Automatic Differentiation to Prototype-Based Models

4 Implementation of Automatic
Differentiation to Prototype-Based Models

We already had an overview of the prototype-based models and the prototype adap-
tation based on the Stochastic Gradient Descent method, which extensively uses the
concepts of calculating the derivatives in the previous sections. We also discussed the
methods of computation of the derivatives. This section implements the Automatic Dif-
ferentiation of GLVQ and GMLVQ algorithms.

4.1 Applying Automatic Differentiation to GLVQ

The cost function of GLVQ as mentioned in Equation (2.20) is taken as

EGLV Q =
n

∑
i=1

φ

(
d+(xi,wi)−d−(xi,wi)

d+(xi,wi)+d−(xi,wi)

)
(4.1)

The learning in GLVQ takes place by taking derivatives of the cost function Equation
(4.1) with respect to the closest prototype with correct class w+ and the closest proto-
type with incorrect class w−. As we have multiple inputs, we use the Reverse AD mode
to avoid two evaluations while using Forward AD mode.

Figure 4.1: GLVQ Computational Graph

So, we first start with the evaluation of the cost function in the forward primal trace phase
as shown on the left side of Table (4.1), initializing input vector x, the closest prototype
with correct class w+ and the closest prototype with incorrect class w− as u0, u−1,
and u−2 respectively. We proceed further with primitive arithmetic operations with the
intermediate variables in order to completely evaluate the cost function in Equation (4.1).

Chapter 4: Implementation of Automatic Differentiation to Prototype-Based Models 23

With the information on the dependencies between the variables and the arithmetic
operations, we build the computational graph as shown in Figure (4.1). For numeric
derivations, let us initialize the input variables u0, u−1, and u−2 with sample vectors
given at the top of Table (4.1). The right side of the Table (4.1), shows the numerical
evaluations.

Forward Primal Trace

u0 = x = [2,3]
u−1 = w1 = [4,3]
u−2 = w2 = [2,2]

u1 = (u0−u−1)
2 = [4,0]

u2 = (u0−u−2)
2 = [0,1]

u3 = u1−u2
= [4,0] - [0,1]
= [4, -1]

u4 = u1 +u2
= [4,0] + [0,1]
= [4, 1]

u5 = u3/u4
= [4, -1] / [4, 1]
= [1, -1]

u6 = φ(u5)
= [φ(1),φ(−1)]
= [0.7311, 0.2689]

Table 4.1: Forward primal trace for GLVQ cost function

Now we have constructed the computational graph while building the forward primal
trace (4.1), we start to find the derivative trace from backward, starting from the node u6

along with computing its corresponding adjoint û6 as shown in Table (4.2).

The left side of Table (4.2) gives us the computation formulae of the adjoints, and the
right side of the Table (4.2) shows the corresponding numerical evaluations of the ad-
joints. We need to note that the adjoint û6 is set to 1 as ∂u6

∂u6
= 1.

24 Chapter 4: Implementation of Automatic Differentiation to Prototype-Based Models

Reverse Adjoint Derivative Trace
û6 = [1,1]

û5 = û6 · ∂u6
∂u5

[1,1] · ∂φ(u5)
∂u5

= [1,1] · (φ(u5)(1−φ(u5))
= [0.1966,0.1966]

û4 = û5 · ∂u5
∂u4

[0.1966,0.1966] ·
∂

u3
u4

∂u4

= [0.1966,0.1966] · (−u3
u2

4
)

= [−0.04926,0.1966]

û3 = û5 · ∂u5
∂u3

[0.1966,0.1966] ·
∂

u3
u4

∂u3
= [0.1966,0.1966].[0.2500,1]
= [0.0492,0.1966]

û2 = û4 · ∂u4
∂u2

û4 · ∂ (u1+u2)
∂u2

= û4.(1)
= [−0.0492,0.1966]

û2 = û2 + û3 · ∂u3
∂u2

û2 + û3 · ∂ (u1−u2)
∂u2

= û2− û3
= [−0.0983,0.0000]

û1 = û4 · ∂u4
∂u1

û4 · ∂ (u1+u2)
∂u1

= û4
= [−0.0492,0.1966]

û1 = û1 + û3 · ∂u3
∂u1

û1 + û3 · ∂ (u1−u2)
∂u1

= û1 + û3
= [−0.0492,0.1966]+ [0.0492,0.1966]
= [0.0000,0.3932]

û−1 = û1 · ∂u1
∂u−1

û1 · ∂ (u0−u−1)
2

∂u−1

= 2û1(u0−u−1) · ∂ (u0−u−1)
∂u−1

= [0.0000,0.3932] · (−2(u0−u−1))
= [0,0]

û−2 = û2 · ∂u2
∂u−2

û2 · ∂ (u0−u−2)
2

∂u−2

= 2û2 · (u0−u−2) · ∂ (u0−u−2)
∂u−2

=−2([−0.0983,0.0000])(u0−u−2)
= [−0.3932,0.0000]

Table 4.2: GLVQ Reverse Derivative trace

Chapter 4: Implementation of Automatic Differentiation to Prototype-Based Models 25

Looking into the Computational Graph Figure (4.1), one can say that u1 can effect u6

only by effecting u3 and u4 as shown below

∂u6

∂u1
=

∂u6

∂u4

∂u4

∂u1
+

∂u6

∂u3

∂u3

∂u1

=
∂u6

∂u5

∂u5

∂u4

∂u4

∂u1
+

∂u6

∂u5

∂u5

∂u3

∂u3

∂u1

= û4
∂u4

∂u1
+ û3

∂u3

∂u1

(4.2)

In the Table (4.2), the above mentioned equation is computed in two steps

û1 = û4 ·
∂u4

∂u1
and û1 = û1 + û3 ·

∂u3

∂u1
(4.3)

Similarly, u2 can effect u6 only by effecting u3 and u4 which is also carried out in two
steps in the Table (4.2).

Therefore, we have the derivative of the GLVQ cost function with respect to the closest
prototypes of the same class w+ and closest prototype of different class w− as ∆w+ =

û−1 and ∆w− = û−2 respectively. Thus the learning rule from Equation (2.23), and
Equation (2.24) with learning rate α > 0 are given as

w±← w±−α∆w± (4.4)

4.2 Applying Automatic Differentiation to localized
GMLVQ

The cost function for GMLVQ as given in the Equation (4.5) with sigmoid activation
function φ and with the classifier function µΛ(xi) is

EGMLV Q =
n

∑
i=1

φ(µΛ(xi)) (4.5)

µΛ(x) =
dΛ(x,w+)−dΛ(x,w−)
dΛ(x,w+)+dΛ(x,w−)

(4.6)

The learning in localized GMLVQ takes place by taking derivatives of the cost function

26 Chapter 4: Implementation of Automatic Differentiation to Prototype-Based Models

Equation (4.5) with respect to the closest prototype with correct class w+ and the closest
prototype with incorrect class w− and their corresponding relevance matrices Ω+ and
Ω− respectively. As we have multiple inputs, we use the Reverse AD mode to avoid four
evaluations while using Forward AD mode.

We begin with evaluating the cost function by assigning the input variables x, w+, w−,
Ω+, and Ω− as u0, u−1, u−2, u−3, and u−4 respectively. Then, evaluating the elementary
operations between intermediate variables and tracking the dependencies, we build the
computational graph as shown in Figure (4.2). Table (4.3) shows the forward primal
trace of numerical evaluation of the cost function Equation (4.5) with a sample vectors
given at the top of Table (4.3).

Figure 4.2: AD Computational Graph for localized GMLVQ cost function

We begin with forward phase and assume the data point x = [1.5,2.3], winner prototype
with same class w+ = [2.2,3.2] and prototype with incorrect class w− = [1.7,0.2] which
results in Ω+ = [[0.5,0.5], [0.5,0.5]] and Ω− = [[0.5,−0.5], [−0.5,0.5]] as shown in the
Table (4.3).

Forward Primal Trace
u0 = x = [1.5,2.3]

u−1 = w+ = [2.2,3.2]
u−2 = w− = [1.7,0.2]

u−3 = Ω+ = [[0.5,0.5], [0.5,0.5]]
u−4 = Ω− = [[0.5,−0.5], [−0.5,0.5]]

u1 = u0−u−1 [−0.7000,−0.9000]
u2 = u0−u−2 [−0.2000,2.1000]
u3 = (u1 ·u−3)

2 [[0.1225,0.2025], [0.1225,0.2025]]
u4 = (u2 ·u−4)

2 [[0.0100,1.1025], [0.0100,1.1025]]
u5 = u3−u4 [[0.1125,−0.9000], [0.1125,−0.9000]]
u6 = u3 +u4 [[0.1325,1.3050], [0.1325,1.3050]]
u7 =

u5
u6

[[0.8491,−0.6897], [0.8491,−0.6897]]
u8 = φ(u7) [[0.7004,0.3341], [0.7004,0.3341]]

Table 4.3: Forward Primal Trace for localized GMVLQ cost function

Chapter 4: Implementation of Automatic Differentiation to Prototype-Based Models 27

In the second phase of the Reverse Mode AD, the derivatives of the adjoints of interme-
diate variables are computed with numerical evaluations as shown in Table (4.4). The
left side of the Table (4.4) interprets the adjoint computations and the right side gives us
the numerical evaluations.

Reverse Adjoint Derivative Trace
û8 =

∂u8
∂u8

[[1.,1.], [1.,1.]]

û7 = û8 · ∂u8
∂u7

= û8 · ∂φ(u7)
∂u7

[[0.2099,0.2225], [0.2099,0.2225]]

û6 = û7 · ∂u7
∂u6

= û7 ·
∂

u5
u6

∂u6
[[−1.3447,0.1176], [−1.3447,0.1176]]

û5 = û7 · ∂u7
∂u5

= û7 ·
∂

u5
u6

∂u5
[[1.5838,0.1705], [1.5838,0.1705]]

û4 = û5 · ∂u5
∂u4

=−û5 [[−1.5838,−0.1705], [−1.5838,−0.1705]]

û4 = û4 +(û6 · ∂u6
∂u4

) = û4 + û6 [[−2.9285,−0.0529], [−2.9285,−0.0529]]

û3 = û5 · ∂u5
∂u3

= û5 [[1.5838,0.1705], [1.5838,0.1705]]

û3 = û3 +(û6 · ∂u6
∂u3

) = û3 + û6 [[0.2391,0.2881], [0.2391,0.2881]]

û2 = û4 · ∂u4
∂u2

= 2û4Ω−u2Ω− [[0.2929,−0.0556], [0.2929,−0.0556]]

û1 = û3 · ∂u3
∂u1

= 2û4Ω−u1Ω− [[−0.0837,−0.1296], [−0.0837,−0.1296]]

û−1 = û1 · ∂u1
∂u−1

=−û1 [[0.0837,0.1296], [0.0837,0.1296]]

û−2 = û2 · ∂u2
∂u−2

=−û2 [[−0.2929,0.0556], [−0.2929,0.0556]]

û−3 = û3 · ∂u3
∂u−3

= û3 · ∂ (u−3u1)
2

∂u−3
[[0.1171,0.2333], [0.1171,0.2333]]

û−4 = û4 · ∂u4
∂u−4

= û4 · ∂ (u−4u2)
2

∂u−4
[[−0.1171,0.2333], [0.1171,−0.2333]]

Table 4.4: Reverse Derivative Trace for localized GMLVQ cost function Equation (4.5)

The variable u4 can effect u8 only by effecting u5 and u6. The same could be interpreted
from computation graph. So the computation is given as

∂u8

∂u4
=

∂u8

∂u5

∂u5

∂u4
+

∂u8

∂u6

∂u6

∂u4

=
∂u8

∂u7

∂u7

∂u5

∂u5

∂u4
+

∂u8

∂u7

∂u7

∂u6

∂u6

∂u4

= û5
∂u5

∂u4
+ û6

∂u6

∂u4

(4.7)

The adjoint calculation or the contribution of u4 for the output u8 is done in two steps. In
the Table (4.4), the above mentioned equation is computed in two steps as below

û4 = û5 ·
∂u5

∂u4
and û4 = û4 + û6 ·

∂u6

∂u4
(4.8)

28 Chapter 4: Implementation of Automatic Differentiation to Prototype-Based Models

The adjoints û−1, û−2, û−3, and û−4 represent ∂EGMLV Q
∂w+ , ∂EGMLV Q

∂w− , ∂EGMLV Q
∂Ω+ , and ∂EGMLV Q

∂Ω−

respectively. The computation of all these derivatives are done in a single reverse pass.
Hence this makes the Reverse AD mode less costly than the Forward mode AD which
would require 4 passes to evaluate the derivatives of the cost function Equation (4.5)
with respect to w+, w−, Ω+, and Ω−.

Chapter 5: Experimental Results 29

5 Experimental Results

In this chapter, we discuss the experimental results of implementing various differen-
tiation techniques for differentiating the cost function of prototype based models. We
will compare the results while applying the Autograd and explicit derivatives on GLVQ
algorithm.

5.1 Using explicit derivatives in GLVQ

Before the introduction of Automatic Differentiation, Manual Differentiation and Symbolic
Differentiation is widely used in programming. As mentioned in the previous chapters,
Manual Differentiation explicitly computes the derivative of interest and passes the nu-
merals to generate the results. As the GLVQ cost function is not complex, we could
simply compute explicit derivatives of it.

From Equation (2.21) and Equation (2.22), the derivative of the GLVQ cost function with
respect to w+ and w− are given as

∆w+ =
∂EGLV Q

∂w+

=
∂φ(µ(x))

∂ µ(x)
· ∂ µ(x)

∂d+(x)︸ ︷︷ ︸
(I)

· ∂d+(x)
∂w+︸ ︷︷ ︸

(II)

∆w− =
∂EGLV Q

∂w−

=
∂φ(µ(x))

∂ µ(x)
· ∂ µ(x)

∂d−(x)︸ ︷︷ ︸
(III)

· ∂d−(x)
∂w−︸ ︷︷ ︸
(IV)

(5.1)

After the prototypes are initialized and the w+, w− have been identified, the implemen-
tation of explicit differentiation for the GLVQ cost function in the python scripts requires
defining the corresponding calculations of d+, d−, µ as functions as they are called for
every iteration

def sigmoid(x, theta):
return (1 / (1 + (np.exp(-1 * theta * xData))))

def d_plus(x, w_plus):
return (x - w_plus)**2

30 Chapter 5: Experimental Results

def d_minus(x, w_minus):
return (x - w_minus)**2

def mu(d_plus, d_minus):
return (d_plus - d_minus) / (d_minus + d_plus)

The derivatives of components (I), and (III) from Equation (5.1) are calculated by
calling the below functions while passing the d+ and d− arguments.

def mu_dash_dplus(d_plus, d_minus):
return (2) * (d_minus) / np.square(d_plus + d_minus)

def mu_dash_dminus(d_plus, d_minus):
return (-2) * (d_plus) / np.square(d_plus + d_minus)

The derivatives of components (II), and (IV) from Equation (5.1) are calculated by
calling the below functions

def d_dash_wplus(x, w_plus):
return (-2) * (x - w_plus)

def d_dash_wminus(x, w_minus):
return (-2) * (x - w_minus)

The below code is run passing the numerical values for the variables to gives exact
computation of Equation (5.1)

delta_wplus = sigmoid(mu(d_plus, d_minus)) * (1- sigmoid(mu(d_plus, d_minus))) *
mu_dash_dplus(d_plus, d_minus) * d_dash_wplus(x, w_plus)

delta_wminus = sigmoid(mu(d_plus, d_minus)) * (1- sigmoid(mu(d_plus, d_minus))) *
mu_dash_dminus(d_plus, d_minus) * d_dash_wminus(x, w_minus)

giving us the derivatives of the GLVQ cost function with respect to w+ and w+. This
are used in the prototype adaptation rule as given in the Equation (2.23) and Equation
(2.24).

Chapter 5: Experimental Results 31

Figure 5.1: GLVQ classification using Manual Differentiation

we have carried an experiment using the Manual Differentiation for GLVQ from [19],
using NumPy arrays by defining the derivatives explicitly in the form of function calls re-
sulting in Figure (5.1). We trained the GLVQ algorithm with 200 epochs, three prototypes
per class and the learning rate as 0.01 giving an accuracy of 96%.

5.2 Using Automatic Differentiation in GLVQ

There are various libraries available that support Automatic Differentiation. PyTorch is
one of the libraries that performs the Automatic Differentiation while immediate execu-
tion of dynamic tensor computation [20, 21]. We would not necessarily calculate the
derivatives explicitly or derive the computation graphs in order to compute derivatives.
The Autograd package in PyTorch is capable of performing reverse-mode Automatic Dif-
ferentiation. As mentioned in Chapter 3, it is capable of computing the gradients with
respect to multiple input variables. Implementing the Automatic derivatives to cost func-
tion and the calculation of derivatives need not be explicitly done by the user. Instead,
we use a PyTorch method called grad [21].

Considering the GLVQ cost function from Equation (2.20). For computation of Automatic
derivatives using PyTorch Autograd package. For a data point x the nearest prototype
with same class w+ = w_plus, nearest prototype with different class w− = w_minus are
determined as below

32 Chapter 5: Experimental Results

import torch
x = torch.tensor([1.5, 2.3], requires_grad = True)
w_plus = torch.tensor([2.2, 3.2], requires_grad = True)
w_minus = torch.tensor([1.7, 0.2], requires_grad = True)

The argument "requires_grad" is set to True as PyTorch tracks that we would be inter-
ested to create a gradient for the variable and building the computational graph when we
do operations along with the variable. Otherwise if "requires_grad = False" the back-
ward computation graph that calculates the derivative of interest is not computed.

The d+, d−, µ , and overall cost functions are defined as below

def d_plus(x, w_plus):
return torch.sum(torch.pow((x - w_plus), 2), dim= 1)

def d_minus(x, w_minus):
return torch.sum(torch.pow((x - w_minus) , 2), dim= 1)

def mu(d_plus, d_minus):
return (d_plus - d_minus) / (d_plus + d_minus)

def sigmoid(x, theta = 1):
return (1 / (1 + (torch.exp(-1 * theta * x))))

The cost function of GLVQ is calculated from the below function call

E_GLVQ = sigmoid(mu(d_plus, d_minus))

The learning of the GLVQ is obtained by calculating the derivatives with respect to w+

and w− as given in Equation (2.21) and Equation (2.22). These derivatives can be
computed just by using the "grad" method as follows

grad_vector = torch.ones(x.shape[0])
E_GLVQ.backward(gradient=grad_vector)
delta_w_plus = w_plus.grad
delta_w_minus = w_minus.grad

The "backward()" method creates the vector jacobian matrix. It is crucial to clear the
gradients after each iteration to prevent gradient accumulation which could be done by
executing "w_plus.zero_()", and "w_minus.zero_()".

Chapter 5: Experimental Results 33

Figure 5.2: GLVQ classification using autograd

We have carried out an experiment using the Iris dataset with autograd using [19, 22]
and modifying the numpy arrays with tensors to work with PyTorch Autograd library.

Figure (5.2) explains the training of the GLVQ algorithm with 200 epochs, three proto-
types per class and the learning rate as 0.01 giving an accuracy of 96

Autograd Manual
Epoch Accuracy Process time Accuracy Porcess time

50 95.33 % 8.74 95.33% 9.45
100 95.33% 15.09 95.33% 17.50
200 96 % 25.46 96.0% 27.87

Table 5.1: Accuracy and Process time in Seconds of GLVQ Algorithm for Iris data clas-
sification

The Table (5.1) shows the number of Epochs, Accuracy score and the Process time in
seconds for GLVQ model used in classification of Iris dataset using Manual and Auto-
matic Differentiation. We observed the accuracy scores of both the algorithms have no
change, however, in this experiment, we have observed a reduction in processing time
while executing the program with autograd.

34 Chapter 6: Conclusion

6 Conclusion

In this paper, we have discussed various variants of prototype-based models, with the
main focus on variants of GLVQ algorithms. Furthermore, various methods of computing
the derivatives have been investigated, and the cost functions of GLVQ variants have
been evaluated. We have implemented Manual Differentiation, Symbolic Differentiation
and Automatic Differentiation for these cost functions and discussed the array operations
and the vector transformations with the help of detailed examples.

We observed that due to the precision and truncation errors, Numerical Differentiation
would not be a better technique for taking derivatives of the cost functions. We ex-
tensively use the recursion and loops at the time of training the GLVQ models, which
are not supported by the Symbolic Differentiation as they are limited to closed-form ex-
pressions. The Manual differentiation is reliable as they generate the derivatives with
exact numeric precision. However, the gradients are to be manually calculated, and
the gradient operations are limited, narrowing the control flow. The reverse mode Auto-
matic Differentiation addresses the problems from earlier mentioned methods providing
greater control of the gradient operations by evaluating the intermediate variables of the
cost function and storing the dependencies of the computational graph in the memory
and calculating the gradients with respect to multiple variables in one single pass. This
reverse mode Automatic Differentiation requires large amount of memory than the other
methods as it requires to store the intermediate variables and their dependencies.

From the experiments we have conducted to compare the performance of using explicit
differentiation and Automatic Differentiation, we observed no change in the accuracy
of the models. However, there is a slight reduction in the processing time while using
Automatic Differentiation at the time of training the GLVQ model due to comparatively
fewer array operations.

This thesis provides a strong foundation for working with Automatic Differentiation for
prototype-based models in theory and in practice. However, we did not observe a signif-
icant variation in the processing speed. Therefore, future work might consider the tech-
niques to increase the processing speed, also focusing on methods to reduce space
complexity due to storing the dependencies of the intermediate variable and their nu-
merical values.

Chapter 6: Bibliography 35

Bibliography

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[2] Petra Schneider, Michael Biehl, and Barbara Hammer. Distance learning in dis-
criminative vector quantization. Neural computation, 21(10):2942–2969, 2009.

[3] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jef-
frey Mark Siskind. Automatic differentiation in machine learning: a survey. Journal
of Machine Learning Research, 18(153):1–43, 2018.

[4] Teuvo Kohonen. Improved versions of learning vector quantization. 1990 IJCNN
International Joint Conference on Neural Networks, pages 545–550 vol.1, 1990.

[5] Teuvo Kohonen. Learning Vector Quantization, pages 245–261. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2001.

[6] Sascha Saralajew. New prototype concepts in classification learning. 2020.

[7] Thomas Villmann, Marika Kaden, David Nebel, and Andrea Bohnsack. Similari-
ties, dissimilarities and types of inner products for data analysis in the context of
machine learning. In International Conference on Artificial Intelligence and Soft
Computing, pages 125–133. Springer, 2016.

[8] Michael Biehl, Barbara Hammer, and Thomas Villmann. Prototype-based models
for the supervised learning of classification schemes. Proceedings of the Interna-
tional Astronomical Union, 12(S325):129–138, 2016.

[9] Teuvo Kohonen. Learning Vector Quantization, pages 175–189. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1995.

[10] Atsushi Sato and Keiji Yamada. Generalized learning vector quantization. In
D. Touretzky, M.C. Mozer, and M. Hasselmo, editors, Advances in Neural Infor-
mation Processing Systems, volume 8. MIT Press, 1995.

[11] Thomas Villmann, Jensun Ravichandran, Andrea Villmann, David Nebel, and
Marika Kaden. Investigation of activation functions for generalized learning vec-
tor quantization. In Alfredo Vellido, Karina Gibert, Cecilio Angulo, and José David
Martín Guerrero, editors, Advances in Self-Organizing Maps, Learning Vector
Quantization, Clustering and Data Visualization, pages 179–188, Cham, 2020.
Springer International Publishing.

36 Chapter 6: Bibliography

[12] Barbara Hammer and Thomas Villmann. Generalized relevance learning vector
quantization. Neural Networks, 15(8):1059–1068, 2002.

[13] Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices
in learning vector quantization. Neural computation, 21:3532–61, Dec 2009.

[14] Barbara Hammer, Frank-Michael Schleif, and Thomas Villmann. On the gener-
alization ability of prototype-based classifiers with local relevance determination.
2005.

[15] Thomas Villmann, Andrea Bohnsack, and Marika Kaden. Can learning vector
quantization be an alternative to svm and deep learning? - recent trends and ad-
vanced variants of learning vector quantization for classification learning. Journal
of Artificial Intelligence and Soft Computing Research, 7(1):65–81, 2016.

[16] Léon Bottou et al. Online learning and stochastic approximations. On-line learning
in neural networks, 17(9):142, 1998.

[17] C.W. Ueberhuber. Numerical Computation 1: Methods, Software, and Analysis.
Numerical Computation 1 Vol. XVI. Springer Berlin Heidelberg, 1997.

[18] Andreas Griewank. A mathematical view of automatic differentiation. Acta Numer-
ica, 12:321–398, 2003.

[19] Akash Anand. Glvq-in-numpy. https://github.com/a-anandtv/Glvq-in-
numpy, 2021.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems, 32, 2019.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

[22] J Ravichandran. Prototorch. https://github.com/si-cim/prototorch, 2020.

Appendix A: Python-Code 37

Appendix A: Python-Code

A.1 GLVQ code

A.1.1 Utilities

1 import torch
2

3 def squared_euclidean (xData , wPrototypes):
4 # Checking if dimensions match
5 if (xData.shape [1] != wPrototypes.shape [1]):
6 #Invalid dimensions exception
7 raise ValueError (" Invalid inputs. Shapes for the passed

arguments do not match .")
8

9 # Caclulate Euclidean distance
10 expanded_data = torch.unsqueeze(xData , axis =1)
11 distances = torch.sum(torch.pow (expanded_data - wPrototypes ,

2), axis =2)
12

13 return distances
14

15

16 def sigmoid (xData , theta = 1):
17 return (1 / (1 + (torch.exp(-1 * theta * xData))))
18

19 def plot2d (plotObject , figure , xData , xLabels , wData , wLabels ,
dimensions =(0, 1)):

20 if (len(dimensions) != 2):
21 raise ValueError ("Only 2 dimensions are allowed .")
22

23 for dms in dimensions:
24 if (dms > xData.size()[0]):
25 # Invalid dimension passed
26 raise ValueError(f"Dimension value {dms} overflows the

size for the given dataset .")
27

28 fig = plotObject.figure(figure)
29 chart = fig.add_subplot (1, 2, 1)
30

31 chart.scatter(xData[:, dimensions [0]], xData[:, dimensions [1]],
c=xLabels , cmap=’viridis ’)

32 chart.scatter(wData[:, dimensions [0]], wData[:, dimensions [1]],
c=wLabels , marker=’D’)

33

34 plotObject.show()

Listing A.1: Utilities

38 Appendix A: Python-Code

A.1.2 GLVQ

1 import numpy as np
2 import torch
3 import matplotlib.pyplot as plt
4

5

6 class Glvq:
7

8 def __init__(self , prototypes_per_class =1, learning_rate =0.01,
epochs =30,

9 validation_set_percentage =0.1, stop_by =5):
10 """
11 Function initializes model with given attributes or

using the default
12 values for the attributes.
13 """
14

15 # Identifier to check if model has initialized correctly
16 self.data_loaded = False
17 self.prototypes_init = False
18

19 if (prototypes_per_class < 1):
20 # Prototypes per class has to be >= 1
21 raise ValueError ("At least 1 prototype per class needed

.")
22

23 # Model attributes
24 self.prototypes_per_class = prototypes_per_class
25 self.learning_rate = learning_rate
26 self.epochs = epochs
27 self.validation_set_percentage = validation_set_percentage
28 self.stop_by = stop_by
29

30 # Data collected
31 self.input_data = torch.tensor ([])
32 self.input_data_labels = torch.tensor ([])
33 self.prototypes = torch.tensor ([])
34 self.prototype_labels = torch.tensor ([])
35 self.distances = torch.tensor ([])
36 self.dplus = torch.tensor ([])
37 self.dminus = torch.tensor ([])
38 self.costs = torch.tensor ([])
39 self.accuracies = torch.tensor ([])
40

41 # For Visualization
42 self.visualize_data = False
43 self.view_dimensions = (0,1)
44 self.showError = False
45 self.showAccuracy = False
46

47

Appendix A: Python-Code 39

48 def load_data(self , input_data , input_data_labels):
49

50 # Saving input data
51 self.input_data = input_data
52

53 # Normalize the data
54 # self.normalize_data ()
55

56 if (len(self.input_data) != len(input_data_labels)):
57 # Labels do not match to the passed input
58 raise ValueError(f"Error! Invalid input label size.

Input size of {len(self.input_data)}, Input label size is {len(
input_data_labels)}.")

59

60 self.input_data_labels = input_data_labels
61

62 # Count the number of unique classes
63 self.no_of_classes = len (torch.unique(self.

input_data_labels))
64

65 self.data_loaded = True
66

67 print ("GLVQ Model: Data loaded .")
68

69 def normalize_data(self):
70 """
71 Normalizes data in place using a min -max -scaling

strategy
72 """
73 self.input_data = (self.input_data - torch.min(self.

input_data , axis =0) [0]) / (torch.max(self.input_data , axis =0)[0]
- torch.min(self.input_data , axis =0) [0])

74

75 def initialize_prototypes(self , initialize_by ="class -mean",
pass_w =[], pass_w_labels =[]):

76 self.initialize_by = initialize_by
77

78 # Initialize the prototypes
79 if (initialize_by == "initialized "):
80 if (len(pass_w) != 0) and (len(pass_w_labels) != 0):
81 if (self.input_data.shape [1] == pass_w.shape [1])

and (len(pass_w_labels) == len(pass_w)):
82 self.prototypes = pass_w
83 self.prototype_labels = pass_w_labels
84 else:
85 raise ValueError (" Attribute shapes do not match

. ")
86 else:
87 raise RuntimeError (" Missing arguments. Initial

weights and weight labels expected ")
88 elif (initialize_by == "class -mean"):
89 if self.data_loaded:

40 Appendix A: Python-Code

90 self.prototypes , self.prototype_labels = self.
_generateClassMeanPrototypes(

91 self.input_data ,
92 self.input_data_labels ,
93 self.prototypes_per_class ,
94 self.no_of_classes)
95 else:
96 raise RuntimeError ("Data not loaded into the model.

Model requires data to process for class means .")
97 elif (initialize_by == "random -input"):
98 if self.data_loaded:
99 self.prototypes , self.prototype_labels = self.

_generateRandomInputPrototypes ()
100 else:
101 raise RuntimeError ("Data not loaded into the model.

Model requires data to process for class means .")
102 elif (initialize_by == "random "):
103 self.prototypes , self.prototype_labels = self.

_generateRandomPrototypes ()
104 else:
105 raise ValueError(f"Unknown value passed for attribute

initialize_by. Passed value: \"{ initialize_by }\"")
106

107 self.prototypes_init = True
108

109 print ("GLVQ Model: Prototypes generated and initialized .")
110

111 def _generateClassMeanPrototypes(self , xData , xLabels , k, C):
112

113

114 unique_labels = torch.unique(xLabels) # (C,)
115 unique_label_mask = torch.eq(xLabels , torch.unsqueeze(

unique_labels , 1)) # (C,n)
116

117 # Use this mask to get matching xData
118 class_data = torch.where(torch.unsqueeze(unique_label_mask

,2), xData , 0) # (C,n,m)
119

120 # Count number of elements per class
121 elmnts_per_class = torch.sum(unique_label_mask , axis =1)

(C,)
122

123 # Initial location for prototypes (class means)
124 class_means = torch.sum(class_data , axis =1) / torch.

unsqueeze(elmnts_per_class ,1) # (C,m)
125

126 prototype_labels = torch.tensor(list(unique_labels) * k)
127 prototypes = class_means[prototype_labels.long()]
128

129 return prototypes , prototype_labels
130

131

Appendix A: Python-Code 41

132 def setVisualizeOn(self , dimensions =(0, 1), showError=False ,
showAccuracy=False):

133 """
134 Sels and initializes the model to generate

visualizations for the training
135

136 Parameters:
137 dimensions: A 2D array of the dimensions to be used

to plot. Defaults to dimensions 0 and 1.
138 """
139

140 if (len(dimensions) != 2):
141 # Dimensions passed is more than 2. Raise exception
142 raise ValueError ("Only 2 dimensions are allowed .")
143

144 if (self.data_loaded):
145 for dms in dimensions:
146 if (dms > (self.input_data.shape [0] * self.

input_data.shape [1])):
147 # Invalid dimension passed (input_data).shape

[0] * (input_data).shape [1]
148 raise ValueError(f"Dimension value {dms}

overflows the size for the given dataset .")
149 else:
150 raise RuntimeError ("Input data not loaded into model

for validating the given view dimensions ")
151

152 self.visualize_data = True
153 self.view_dimensions = dimensions
154 self.showAccuracy = showAccuracy
155 self.showError = showError
156

157 # Forming mesh for drawing the decision boundaries
158 grid_step_size = 0.1
159 x_min = self.input_data [:, self.view_dimensions [0]]. min() -

grid_step_size
160 x_max = self.input_data [:, self.view_dimensions [0]]. max() +

grid_step_size
161 y_min = self.input_data [:, self.view_dimensions [1]]. min() -

grid_step_size
162 y_max = self.input_data [:, self.view_dimensions [1]]. max() +

grid_step_size
163

164 self.xx, self.yy = torch.meshgrid(torch.arange(x_min , x_max
, grid_step_size), torch.arange(y_min , y_max , grid_step_size))

165

166 print ("GLVQ Model: Model visualization set to ON.")
167

168 def _plot2d(self , chart):
169

170 if (not(self.visualize_data)):
171 raise RuntimeError ("Model visualization not initialized

42 Appendix A: Python-Code

.")
172

173 contour_heights = self._calculate_contour_heights(
174

175 torch.tensor(np.c_[torch.ravel(self.xx), torch.ravel(
self.yy)]) , self.prototypes [:, self.view_dimensions])

176

177 contour_heights = contour_heights.reshape(self.xx.shape)
178

179 chart.scatter(self.input_data [:, self.view_dimensions [0]],
self.input_data [:, self.view_dimensions [1]]

180 , c=self.input_data_labels , cmap=’viridis ’)
181 chart.scatter(self.prototypes [:, self.view_dimensions [0]],

self.prototypes [:, self.view_dimensions [1]]
182 , c=self.prototype_labels , marker=’D’, edgecolor =" black

")
183 chart.contourf(self.xx, self.yy , contour_heights , len(torch

.unique(self.prototype_labels)) - 1, cmap=’viridis ’, alpha =0.2)
184

185 def _plotLine(self , chart , values):
186 """
187 Plots a simple line plot for the provided values
188

189 Parameters:
190 chart: A subplot object where the scatter plot has

to be plotted
191 values: The list of values that has to be plotted
192 """
193 if (not(self.visualize_data)):
194 raise RuntimeError ("Model visualization not initialized

.")
195

196

197 chart.plot(torch.arange(values.size()[0]), values , marker ="
d")

198

199 def _mu(self , dplus , dminus):
200 """
201 Calculates the value for mu(x) = (d_plus - d_minus) / (

dplus + d_minus)
202

203 Parameters:
204 dplus: A 1D array of d_plus values. Size is equal

to that of the data points
205 dminus: A 1D array of d_minus values. Size is equal

to that of the data points
206

207 Returns:
208 A 1D array of the result of mu(x)
209 """
210 return (dplus - dminus) / (dminus + dplus)
211

Appendix A: Python-Code 43

212

213 def fit(self):
214 """
215 Run the model with initialized values. Function

optimizes the prototypes minimizing the
216 GLVQ classification error
217 """
218 distances = self.distances
219 dplus = self.dplus
220 dminus = self.dminus
221

222 # Check if model has data loaded and prototypes initialized
223 if self.data_loaded and self.prototypes_init:
224 # Model is valid
225

226 # Number of datapoints
227 n_x = len(self.input_data)
228

229 dist_mask = torch.eq(torch.unsqueeze(self.
input_data_labels , 1), self.prototype_labels)

230

231 fig = plt.figure ("GLVQ Model Training!", figsize =(10,
10))

232

233 # Check if visualization is set and initialize plot
object

234 if (self.visualize_data):
235 chartCount = 1
236

237 if (self.showAccuracy):
238 chartCount += 1
239 if (self.showError):
240 chartCount += 1
241

242 gs = fig.add_gridspec(chartCount , 2)
243 # plt.ion()
244 # plt.show()
245

246 for i in range(self.epochs):
247

248 if (self.visualize_data):
249 plt.clf()
250

251 distances = squared_euclidean(self.input_data , self
.prototypes)

252 nearest_matching_prototypes = torch.argmin(torch.
where(dist_mask , distances , torch.inf), axis =1)

253 nearest_mismatched_prototypes = torch.argmin(torch.
where(torch.logical_not(dist_mask), distances , torch.inf), axis
=1)

254

255

44 Appendix A: Python-Code

256

257

258 w1 = (self.prototypes[nearest_matching_prototypes])
.requires_grad_(True)

259 w2 = (self.prototypes[nearest_mismatched_prototypes
]).requires_grad_(True)

260

261

262 dplus = torch.sum(torch.pow((self.input_data - w1)
, 2), dim= 1)

263 dminus = torch.sum(torch.pow((self.input_data - w2)
, 2), dim= 1)

264

265

266 # Initial cost for validation
267 initial_cost = torch.sum(self._mu(dplus , dminus))
268 initial_cost = torch.tensor ([initial_cost])
269

270 if (i == 0):
271 print(" initial_cost", initial_cost)
272 print(" costs", self.costs)
273

274 self.costs = torch.cat((self.costs ,
initial_cost) ,0)

275

276 accuracy = (torch.sum(dplus < dminus) / n_x) *
100

277 accuracy = torch.tensor ([accuracy])
278 self.accuracies = torch.cat((self.accuracies ,

accuracy) ,0)
279

280

281 cost_function = sigmoid(self._mu(dplus , dminus))
282

283 ext_grad = torch.ones (150)
284 cost_function.backward(gradient = ext_grad)
285

286

287 dell_mu_wplus = w1.grad
288 dell_mu_wminus = w2.grad
289

290 # Generating an update matrix with the calculated
gradient

291 update_for_prototypes = torch.zeros((distances.
shape[0], distances.shape[1], self.input_data.shape [1]))

292 update_for_prototypes[torch.arange(n_x),
nearest_matching_prototypes] += dell_mu_wplus

293 update_for_prototypes[torch.arange(n_x),
nearest_mismatched_prototypes] += dell_mu_wminus

294 update_for_prototypes = torch.sum(
update_for_prototypes , axis =0)

295

Appendix A: Python-Code 45

296 # Update the prototypes
297 new_prototypes = self.prototypes - (self.

learning_rate) * update_for_prototypes
298 self.prototypes = new_prototypes
299

300 # Visualize
301 if (self.visualize_data):
302 pos = 0
303 axes1 = fig.add_subplot(gs[pos , :], title="Data

plot")
304 self._plot2d(axes1)
305

306 if (self.showError):
307 pos += 1
308 axes2 = fig.add_subplot(gs[pos , :], title="

Error trend")
309 self._plotLine(axes2 , self.costs)
310

311 if (self.showAccuracy):
312 pos += 1
313 axes3 = fig.add_subplot(gs[pos , :], title="

Accuracy trend (in %)")
314 self._plotLine(axes3 , self.accuracies)
315 plt.pause (0.001)
316

317 # For Validation
318 distances = squared_euclidean(self.input_data ,

new_prototypes)
319 nearest_matching_prototypes = torch.argmin(torch.

where(dist_mask , distances , torch.inf), axis =1)
320 nearest_mismatched_prototypes = torch.argmin(torch.

where(torch.logical_not(dist_mask), distances , torch.inf), axis
=1)

321 dplus = distances[torch.arange(n_x),
nearest_matching_prototypes]

322 dminus = distances[torch.arange(n_x),
nearest_mismatched_prototypes]

323

324 updated_cost = torch.sum(self._mu(dplus , dminus))
325

326 updated_cost = torch.tensor ([updated_cost])
327

328 self.costs = torch.cat((self.costs , updated_cost)
,0)

329

330 # Calculate and store accuracy
331 accuracy = (torch.sum(dplus < dminus) / n_x) * 100
332 accuracy = torch.tensor ([accuracy])
333

334 self.accuracies = torch.cat((self.accuracies ,
accuracy) ,0)

335

46 Appendix A: Python-Code

336 print (" Epoch: ", i+1, " Cost: ", self.costs[i], "
Accuracy: ", self.accuracies[i], "%")

337

338 w1.grad.zero_() #nulling out previous gradients
339 w2.grad.zero_()
340

341

342

343 if (self.visualize_data):
344 plt.show()
345 #plot2d (self.input_data , self.input_data_labels , self.

prototypes , self.prototype_labels , "Data plot")
346 else:
347 # Model pltis not valid
348 raise RuntimeError ("Model not initialized properly to

run _fit().")
349

350 def predict(self , predictData):
351 """
352 Generate a prediction for a provided data point or data

matrix
353

354 Parameter:
355 predicData: A (n,m) matrix of n datapoints with m

features each
356

357 Returns:
358 A (n,) array of labels for the provided dataset
359 """
360 if (predictData.shape [1] != self.prototypes.shape [1]):
361 raise ValueError (" Dimension of the data to be predicted

does not match with the model prototypes ")
362

363 closest_prototypes = torch.argmin(squared_euclidean(
predictData , self.prototypes), axis =1)

364

365 return self.prototype_labels[closest_prototypes]
366

367

368 def _calculate_contour_heights(self , xData , prototypes):
369 """
370 Internal function to calculate contour heights to draw

decision boundaries
371

372 Parameters:
373 xData: Data vectors
374 protoypes: Prototype vectors
375

376 Return:
377 An array of labels for the closest prototypes
378 """
379 closest_prototypes = torch.argmin(squared_euclidean(xData ,

Appendix A: Python-Code 47

prototypes), axis =1)
380

381 return self.prototype_labels[closest_prototypes]

Listing A.2: Autograd in GLVQ model

48

Erklärung 49

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, im November 2022

HSMW-Thesis

