
MASTER THESIS

Mr.
Jawad Niazi

Analysis, comparison, and
implementation of machine

learning algorithms for
optimization of customer data

deduplication problems in
enterprise CX programs

2022





Faculty of Applied Computer and Bio Sciences

MASTER THESIS

Analysis, comparison, and
implementation of machine

learning algorithms for
optimization of customer data

deduplication problems in
enterprise CX programs

Author:
Jawad Niazi

Study Programme:
Applied Mathematics for Network and Data Sciences

Seminar Group:
MA19W1-M

First Referee:
Prof. Dr. rer. nat. habil. Thomas Villmann

Second Referee:
Dipl. Ing. Florian Sölch

Mittweida, September 2022



Acknowledgement

I would like to express my sincere gratitude to my supervisors, Professor Dr. Thomas
Villmann and Dr. Marika Kaden, for all the guidance and help with my Master’s thesis.
I want to express my sincere gratitude to my second supervisor Dipl. Ing. Florian
Sölch for trusting me to do this thesis topic in his department and for all the support
he gave me in this period. I want to express my appreciation to my wife and daughter,
who always supported and encouraged me. I am grateful to all my friends, especially
Dr. Mohammad Mohammadi, who gave me help and support across the years of my
Master’s course.



Bibliographic Information

Niazi, Jawad : Analysis, comparison, and implementation of machine learning algorithms for
optimization of customer data deduplication problems in enterprise CX programs, 43 pages,
10 figures, Hochschule Mittweida, University of Applied Sciences, Faculty of Applied Computer
and Bio Sciences

Master Thesis, 2022

Abstract

In this thesis, we focus on using machine learning to automate manual or rule-based processes
for the deduplication task of the data integration process in an enterprise customer experience
program. We study the underlying theoretical foundations of the most widely used machine
learning algorithms, including logistic regression, random forests, extreme gradient boosting
trees, support vector machine, and generalized matrix learning vector quantization. We then
apply those algorithms to a real, private data set and use standard evaluation metrics for clas-
sification such as confusion matrix, precision and recall, area under the precision-recall curve,
and area under the Receiver Operating Characteristic curve to compare their performances and
results.





I

I. Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Machine Learning Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Area under the Precision-Recall curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Area under the ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Generalized Matrix Learning Vector Quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Extreme Gradient Boosting Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Regularized Learning Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Gradient Tree Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.3 Split Finding Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Feature importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Empirical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Experiments and Results Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



I

5.4 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Generalized Matrix Learning Vector Quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6.1 ROC and Precision-Recall Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6.2 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.6.3 Feature importance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



II

II. List of Figures

2.1 Precision-Recall Curve of a binary classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 ROC Curve of a random classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 The proportion of each class in training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Percentage of missing values for each class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 ROC curves of all the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Precision-Recall curves of all the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Feature importance of all the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 GMLVQ Learned Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Confusion matrices on the dev set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 Confusion matrices on the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38





III

III. List of Tables

2.1 Confusion matrix of a binary classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Confusion matrix of a classifier on an imbalanced data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Variable descriptions for input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Variable descriptions for training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Classification report of logistic regression on the dev set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Classification report of random forest on the dev set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Classification report of the XGBoost on the dev set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Classification report of SVM model on the dev set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Classification report of GMLVQ on the dev set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6 Classification report of LGMLVQ on the dev set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33





Chapter 1: Introduction 1

1 Introduction

Most large companies have been divided into separate business units to increase agility.
These units often have unrestricted freedom to adopt, process, handle and save any
kind of schema for a certain entity type (such as customers) based on their needs. As a
result, the same data are saved in separate locations (data silos) with varying granularity
and structure and sometimes even contradictory and inconsistent details. Such silos
are typical in businesses, and their integration for business gain (e.g., cross-selling or a
reduction in the cost of product lines) is a primary objective for many enterprises. [21]

A typical data integration workflow is as follows: (a) Raw source data is imported into
a data lake; (b) Records are converted into standard units (e.g., all the currencies con-
verted to Euro or dollar); (c) Errors are cleaned; often, some values are erroneous or
missing; (d) The sources’ various schemas are matched to align the columns. This stage
is essential for enabling the comparison of data from various sources; (e) Records are
clustered using record linkage and deduplication tools; Each cluster of records is as-
sumed to represent the same entity. (f) Golden canonical values must be chosen for
the columns in these clusters to create a final integrated data set. Moreover, there is a
classification task in the workflow that puts input records into different categories (such
as standard or master records) and often interleaves with the deduplication and schema
mapping steps. [21]

The Customer Experience (CX) program is a good solution when working with large-
scale data integration projects. This program uses a rule-based system to perform
deduplication and golden value selection. Users and domain experts define the rules
for transforming and classifying input data records. When the data sources increase,
and the system grows, the rule-based system requires more rules to be determined,
making the system more complicated and decreasing accuracy. It is clear that rule-
based systems do not scale well and need a more automated solution. Automating
classification decisions such as classifying records, matching columns, or linking similar
records with machine learning (ML) is a convenient method. [21]

This thesis focuses on analysis, comparison, and implementation of machine learning
algorithms to automate customer data deduplication problem in an enterprise CX pro-
gram in a company using its private data set. In the current system, different features are
matched with different combinations, and also fuzzy search logic is used to define the
rules. The defined rules categorize the data into three groups: duplicate, non-duplicate
and likely duplicate. The likely duplicate is then checked by a human, who is called a
data steward. The data steward also finds the duplicates manually and merges them
using the specific interface designed for him. The existing data shows that the defined
rules classified only 38% of the duplicates directly and 20% with the help of a data stew-



2 Chapter 1: Introduction

ard (semi-manual). The rest of the duplicates, 42%, are found entirely manually by the
data steward.

Deep learning (neural networks) has achieved great success over the past decade in
various fields, including autonomous vehicles, speech recognition, virtual personal as-
sistants, video surveillance, search engine optimization, social media services, online
customer support, recommendation systems, and more. Implementing deep learning in
business data integration applications is still challenging, though, because to learn the
classification task, a lot of labeled data must be collected, and also there aren’t many
logical justifications for the output decisions. [21]

This thesis focuses on five conventional ML algorithms. These algorithms include lo-
gistic regression, random forests, extreme gradient boosting trees (XGBoost), support
vector machines (SVM), and generalized matrix learning vector quantization (GMLVQ).
The underlying concepts of each algorithm are explained in further detail from a math-
ematical perspective. In deduplication, we have only two classes, duplicate and non-
duplicate. Training data for ML models are obtained directly from humans in the loop
and indirectly through the existing rule system in a weak-supervision approach. Data
pre-processing and feature engineering are also done to prepare the data for training.

This thesis also evaluates the effectiveness of each model using standard classification
assessment metrics such as confusion matrix, precision, recall, F-measure, area under
the precision-recall curve, and area under the Receiver Operating Characteristic (ROC)
curve. Algorithms are compared to each other in terms of metric values to determine
which algorithm provides the best results.

The structure of this thesis is as follows. Chapter 2 covers the fundamentals of ML.
This chapter will discuss various ML methods, mainly supervised learning classification,
as well as different measures to evaluate model performance. Chapter 3 investigates
five popular classification algorithms and explains the mathematics underlying these
models. Chapter 4 provides a brief overview of the empirical data utilized in this thesis
and explains the pre-processing and feature engineering used to prepare the data for
model training. Chapter 5 describes the experiments and the results, in addition to the
concept and environmental settings for implementing ML algorithms. The comparison
of the results is also covered in this chapter. Finally, the work’s conclusions are given in
chapter 6.



Chapter 2: Machine Learning Fundamentals 3

2 Machine Learning Fundamentals

Mohri et al. define ML as computational methods using past information to make and
improve predictions or behaviors [12]. The data and prediction algorithms are the main
components making ML a data-driven method that combines computer science con-
cepts with statistics, probability, and optimization. There are different types of ML meth-
ods: supervised learning, unsupervised learning, semi-supervised learning, and rein-
forcement learning.

The most common type is supervised learning which aims to learn a mapping from input
x to output y, given a set of labeled examples D = {(xi,yi)}N

i=1. Here D is called the
training set and N is the number of training examples. If the output yi is a categorical or
nominal variable from some finite set, yi ∈ {1, . . . ,C}, the task is known as classification,
and when yi is real-valued, the problem is called regression. [12]

In unsupervised learning, the learner receives unlabeled data, D = {xi}N
i=1, as a train-

ing set and learns the useful properties of the structure of the data. Here the goal is
to find patterns and draw conclusions from the unlabeled data. Clustering and dimen-
sionality reduction are examples of unsupervised learning problems. Semi-supervised
learning receives labeled and unlabeled data as a training set and makes predictions
for all unseen data points. This type of learning is suitable when labels are expensive
to obtain, but unlabeled data is easily available. Reinforcement learning does not use
labeled data. An agent instead learns over time by interacting with its environment.
Agent takes actions which lead it from one state to the next. It also receives a reward
or a punishment for each of its actions. A reinforcement learning model learns by trying
new strategies (exploration) and making use of known successful techniques (exploita-
tion). The objective is to optimize its rewards throughout actions and iterations with the
environment. [12,13]

2.1 Classification

This section summarizes chapter 1 of the book "Machine Learning: A probabilistic Per-
spective" [14]. In the scope of this thesis, we focus only on classification. It is one
of the most widely used forms of machine learning to solve many real-world problems
like document classification, email spam filtering, and image classification. In classifi-
cation, each training example xi is a d-dimensional vector of numbers representing the
features. The result is expressed as y ∈ {1, . . . ,C} where C is the number of classes.
Depending on the C value, there are different types of classification. If C = 2, this is
called binary classification and we usually assume y ∈ {0,1}. In the case of C > 2, we
have a multiclass or multinomial classification where the model classifies instances into



4 Chapter 2: Machine Learning Fundamentals

one of three or more classes. Multiclass classification is a single-label problem in which
the model categorizes instances into precisely one of more than two classes. There is a
generalization of multiclass classification called multi-label classification which the out-
put is a binary vector y. In multi-label classification, there is no restriction on how many
classes the instance can be assigned to; therefore, the model gives a value of 0 or 1
for each label in y. While many classification algorithms naturally allow the use of more
than two classes, some are binary by nature; nevertheless, these can be transformed
into multiclass classifiers using some techniques.

Sometimes we are interested to know to what extent the model is confident about its
decision. In this case, a probabilistic outcome p(y|x,D), which is a probability distri-
bution over possible labels, gives us more information about the decision. We assume
y = f (x) for an unknown function f and try to approximate the function f , and then use
this estimated function ŷ = f̂ (x) to make predictions on the new input data. In the case
of a probabilistic outcome, we select the label with the highest probability as the true
label using

ŷ = f̂ (x) =
C

argmax
c=1

p(y = c|x,D). (2.1)

For example, let us consider the deduplication problem. When a new input is given to
the probabilistic classifier, it will provide an output such as (duplicate (0.7), non-duplicate
(0.3)). Since the highest probability is 0.7, the true label of the input will be "duplicate".
However, if the classifier is deterministic (non-probabilistic), it will only provide the final
label "duplicate".

2.2 Performance Measurements

To assess the effectiveness of a prediction model, we must compare the predicted and
actual values. Since deduplication is a binary classification (classification with only two
classes, duplicate and non-duplicate), we investigate the metrics used to evaluate this
kind of problem. This section summarizes the paper "An introduction to ROC analysis"
[5].

2.2.1 Confusion Matrix

When we have a binary classifier, there are four possible outcomes for a given in-
stance.

• True Positive (TP): it is positive and classified as positive,

• False Negative (FN): it is positive and classified as negative,

• True Negative (TN): it is negative and classified as negative,



Chapter 2: Machine Learning Fundamentals 5

• False Positive (FP): it is negative and classified as positive.

Using this classifier and a set of instances, we can create a two-by-two confusion matrix,
also known as a contingency table, to represent the dispositions of the set of cases.

Predicted class

Negative Positive

Actual class
Negative True Negative False Positive

Positive False Negative True Positive

Table (2.1) Confusion matrix of a binary classifier

Table (2.1) shows a confusion matrix for a binary classifier. The numbers along the main
diagonal show the correct decisions made, while the numbers off-diagonal represent
the errors and the confusion between the two classes. Many standard metrics, such as
accuracy, specificity, sensitivity, precision, and recall, are built on the foundation of this
matrix. In the following, we see the definition of some of them and show how they are
calculated.

Accuracy: the model’s accuracy can be determined by averaging the values along the
matrix’s main diagonal

accuracy =
T P+T N

T P+T N +FP+FN

Accuracy is essentially the proportion of correct predictions and it is easy to calculate.
The accuracy, however, does not accurately reflect the classifier’s performance when
the dataset is imbalanced (the number of samples in one class is much higher than that
in the other class). For instance, let us suppose we have imbalanced data in which 950
examples belong to class non-duplicate, and only 50 samples belong to class duplicate,
which would easily cause the classifier to be biased in favor of class non-duplicate.
Even if the model classifies all samples as non-duplicate, the accuracy is 95%. Table
(2.2) shows its confusion matrix. For class non-duplicate, the classifier has a 100%
recognition rate, while for class duplicate, it is 0%. Therefore, we must search for other
metrics that offer a more accurate classifier assessment.



6 Chapter 2: Machine Learning Fundamentals

Predicted class

Duplicate Non-duplicate

Actual class
Duplicate 0% 100%

Non-duplicate 0% 100%

Table (2.2) Confusion matrix of a classifier on an imbalanced data set

Recall: it is estimated as the proportion of positive data points, which are correctly
classified concerning all the positive data in the data set

recall =
T P

T P+FN
.

Precision: it is the ratio of true positives to all predicted positives

precision =
T P

T P+FP

The point is that making accurate positive predictions is not sufficient. A solid predictive
model must have a good combination of successful positive predictions and successful
negative predictions. However, in situations where the performance in the positive class
is more critical, recall, which is described as the true positive rate, and precision as the
positive predictive value are two essential indicators [11].

F1-measure is a way of combining precision and recall and is defined as the harmonic
mean of them

F1−measure =
2

1
precision +

1
recall

F1-measure is a solution to have a single value that accounts for both recall and pre-
cision and has a value in [0, 1]. However, we do not calculate an overall F1 score for
multi-class classification problems. Instead, we use a one-vs-rest method to determine
the F1 score for each class. F-measure is typically closer to the smaller one of the two
measures. A high value also means that the two measurements are both relatively solid
and convincing [11].



Chapter 2: Machine Learning Fundamentals 7

2.2.2 Area under the Precision-Recall curve

In many real-life problems, like here, we are more interested in the actual positive cases.
Since precision (positive predictive value) and recall (true positive rate) are two metrics
that are based on positive class, we use them to plot a curve known as precision-recall
curve (PRC), where precision is on the y-axis and recall is on the x-axis. For a given
classifier, by connecting all the pairs of precision and recall at different thresholds we
can draw the PRC (in section 2.2.3 we explain how different thresholds can be used
for different type of classifiers). The area under the precision-recall curve (AUPRC),
ranging between 0 and 1, is a typical metric for classifier effectiveness. [11]

Figure (2.1) depicts a PRC along with AUPRC for a binary classifier. A classifier that
passes through the upper right corner of a PRC (corresponding to 100% precision and
100% recall) is a perfect classifier. In general, the closer a point is to that position, the
better the classifier is. [11]

Figure (2.1) Precision-Recall Curve of a binary classifier

The critical point is that the PRC is not constructed using the number of true negative
results. Therefore, adding true negative examples does not affect the precision-recall
curves. When assessing binary classifiers on imbalanced data sets, the Precision-
Recall plot provides more useful information about the positive class prediction. [11]

2.2.3 Area under the ROC curve

ROC plot is used to visualise the performance of a classifier. There is only a precise
definition of ROC for binary classifier. It is based on two basic evaluation measures,
sensitivity, and specificity. Sensitivity is a performance measure of the whole positive
part of a data set, whereas specificity is a performance measure of the entire negative
part.



8 Chapter 2: Machine Learning Fundamentals

Sensitivity: it is estimated as the proportion of positive data points, which are correctly
classified concerning all the positive data in the data set

sensitivity =
T P

T P+FN

Specificity (true negative rate): it is calculated as the proportion of correctly classified
negative data points.

Speci f icity =
T N

FP+T N
.

Several points in the ROC space are needed to plot a ROC curve. Some classifiers,
such as logistic regression, naturally provide a probability or score, a numeric value
representing the degree to which an instance belongs to a class. For the simplicity
of referencing, we call them scoring classifier. These classifiers with different thresh-
old values produce different points in ROC space. The ROC curve can be created by
connecting these points.

However, many classifier models are discrete, meaning they only produce a class label
for each instance. Instead of only using class labels, we wish to create scores from a
classifier to produce different points in the ROC space. Many discrete classifiers can
quickly be transformed into scoring classifiers. For instance, a decision tree uses the
percentage of instances at a leaf node to determine the class label of that node; the
class decision is simply the one with the most prevalence. These class ratios could be
used to calculate a score. A rule learner keeps similar statistics on rule confidence, and
a score can be calculated based on how confidently a rule matches a given instance.
Even if a classifier only outputs a class label, a score can still be created by aggregating
all the class labels. Finally, voting and scoring may be used in combination. Different
scores can produce different points in the ROC space, and the ROC curve will be plotted
by connecting them.

ROC curve is a two-dimensional graph in which true positive rate (sensitivity) and false
positive rate (1-specificity) are represented on the Y and X axes, respectively. A ROC
curve shows relative trade-offs between benefits (true positives) and costs (false pos-
itives) at different classification thresholds. Figure (2.2) shows the ROC curve of a
random classifier.

It is important to take note of a few points in the ROC space.

• The lower left point (0, 0): is the strategy of never classifying something positive.
This classifier never makes a false positive error but also never receives a real
positive

• The upper right point (1, 1): is the strategy of always issuing positive classifica-
tions.



Chapter 2: Machine Learning Fundamentals 9

Figure (2.2) ROC Curve of a random classifier

• The upper left point (0, 1): represents perfect classification.

Informally, it is better if a point in ROC space is to the northwest of another. Classifiers
close to the x-axis on the left-hand side of a ROC graph are referred to as "conservative"
since they only classify something positive when sufficient supporting data exists. As a
result, they produce fewer false positive mistakes but frequently have low true positive
rates. Classifiers in the upper right corner of a ROC curve are sometimes referred to as
"liberal" classifiers since they make positive classifications with weak evidence, so they
classify nearly all positives correctly. However, they frequently have high false positive
rates.

Non of the both is a better solution. Since we want to have a high true positive rate and
at the same time low false positive rate, we are more interested in the performance on
the far left-hand side of the ROC space. In other words, we are interested in a classifier
that have a combination of good positive and negative predictions.

Another benefit of using the ROC curve is a single metric called area under the ROC
curve (AUC) score. It is an area under the curve determined in the ROC space, as
the name indicates. It is one of the most widely used evaluation metrics for classifier
performance. AUC aggregates the performance measure of all possible classification
thresholds. A classifier’s AUC measures the likelihood of ranking a randomly selected
positive example higher than a randomly selected negative one. The range of the AUC
is [0; 1]. The higher the AUC, the stronger the classifier distinguishes between classes.
[10]



10 Chapter 3: Machine Learning Algorithms

3 Machine Learning Algorithms

There are many algorithms to create a predictive model for a classification problem. In
this thesis we use five different algorithms: linear regression, random forest, extreme
gradient boosting tree (XGBoost), support vector machine (SVM), and generalized ma-
trix learning vector quantization (GMLVQ). Although they all essentially have the same
task—predicting a dependent variable based on independent variables—they all are
based on different mathematical techniques. In this chapter, we explain the ideas and
mathematics behind these algorithms.

3.1 Logistic Regression

Logistic regression is one of the first algorithms every data scientist tries in any clas-
sification problem. In this thesis, we also used the logistic regression as our first and
baseline model; therefore, here we explain it briefly, summarizing chapters 1 and 8 of
the book Machine Learning: A Probabilistic Perspective [14] and chapter 5 of the book
Interpretable machine learning [13]. Logistic regression is the generalization of linear
regression for (binary) classification with two modifications. First, the distribution of y is
a Bernoulli distribution, y ∈ {0,1}, instead of Gaussian [14]. Therefore, we have

p(y|x,w) = Ber(y|µ(x)) (3.1)

where µ(x) =E[y|x] = p(y = 1|x). Second, we pass the linear combination of the inputs
through a function that ensures 0≤ µ(x)≤ 1 by defining

µ(x) = sigm(wT x) (3.2)

where sigm(η) refers to the sigmoid function which is also known as the logistic or
logit function.
The definition of sigmoid is

sigm(η)≜
1

1+ exp(−η)
(3.3)

It is also known as a squashing function because it maps the whole real values to
[0,1], in order to output probabilities.
Putting all together, we get

p(y|x,w) = Ber(y|sigm(wT x)) (3.4)



Chapter 3: Machine Learning Algorithms 11

This is called logistic regression. We can obtain a decision rule of the following if we
threshold the output probability at 0.5

ŷ(x) = 1⇐⇒ p(y = 1|x)> 0.5 (3.5)

This is called a linear decision boundary, whose normal (perpendicular) is given by
w. When the data is not linearly separable, i.e., no straight line separating the two
classes, we can expand the basis function and create models with non-linear decision
boundaries.
Now we discuss methods for estimating a logistic regression model’s parameters. The
negative log-likelihood (NLL) for logistic regression is given by

NLL(w) =−
N

∑
i=1

log[µI(yi=1)
i × (1−µi)

I(yi=0)]

=−
N

∑
i=1

[yilogµi +(1− yi)log(1−µi)]

(3.6)

This is also called the cross-entropy error function.
By assuming ŷi ∈ {−1,+1} instead of yi ∈ {0,1} we have p(y = 1) = 1

1+exp(−wT x) and

p(y = 1) = 1
1+exp(wT x) . Then the negative log-likelihood is

NLL(w) =
N

∑
i=1

log(1+ exp(−ŷiwT xi)) (3.7)

Unlike linear regression, we can no longer express the maximum likelihood estimation
(MLE) in closed form. Instead, we have to compute it using an optimization algorithm.
In order to do so, we need to calculate the gradient (first derivative) g, and Hessian
(second derivative) H, which are as follows

g =
d

dw
f (w) = ∑

i
(µi− yi)xi = XT (µ− y)

H =
d

dw
g(w)T = ∑

i
(∇wµi)xT

i = ∑
i

µi(1−µi)xixT
i

= XT SX

(3.8)

where S ≜ diag(µi(1−µi)). We can also show that H is positive definite. Therefore, the
NLL is convex and has a unique global minimum. [14]

Molnar [13] explains the interpretation of the logistic regression as follows. The logistic
function converts the weighted sum into a probability, and the weights do not influence
the outcome linearly. Therefore we formulate the equation for the interpretation so that



12 Chapter 3: Machine Learning Algorithms

only the linear term is on the right side of the formula.

ln
(

P(y = 1)
1−P(y = 1)

)
= log

(
P(y = 1)
P(y = 0)

)
= β0 +β1x1 + · · ·+βpxp (3.9)

The term in the ln() function is "odds" (e.g., probability of a data point is duplicate
divided by the probability of the data is not duplicate), and it is known as log odds when
it is wrapped in a logarithm.

The logistic regression model is a linear model for the log odds, as this formula demon-
strates. We can see how the prediction changes when one of the features x j is changed
by one unit. Initially, we can do this by using the exp() function on both sides of the
equation:

P(y = 1)
1−P(y = 1)

= odds = exp(β0 +β1x1 + · · ·+βpxp). (3.10)

Next, we compare the results of increasing one of the feature values by 1. However, we
look at the ratio of the two predictions rather than the difference:

oddsx j+1

oddsx j

=
exp(β0 +β1x1 + · · ·+β j(x j+1)+ · · ·+βpxp)

exp(β0 +β1x1 + · · ·+β jx j + · · ·+βpxp)

= exp(β j(x j+1)−β jx j)

= exp(β j)

(3.11)

Finally, we reach something as simple as exp() of a feature weight. A change in a
feature x j by one unit increases the log odds ratio by the value of the corresponding
weight. The interpretations for the logistic regression model with various feature types
are as follows:

• Numerical feature: If we increase the value of feature x j by one unit, the estimated
odds change by an exp(β j) factor.

• Binary categorical feature: One of the two values of the feature is the reference
category. Switching the feature x j from the reference category to the other cate-
gory changes the predicted odds by an exp(β j) factor.

All machine learning algorithms have advantages and disadvantages, which should be
considered when choosing them to solve a problem. The advantages of logistic re-
gression are: providing probabilistic output, is computationally efficient, and is easy to
implement and regularize. On the other hand, it is vulnerable to over-fitting and can not
solve nonlinear problems. [17]



Chapter 3: Machine Learning Algorithms 13

3.2 Generalized Matrix Learning Vector Quantization

A series of statistical pattern classification methods called learning vector quantization
(LVQ), introduced by Teuvo Kohonen in the late 1980s [?], tries to learn prototypes.
Hyperplanes between prototypes define the class regions. LVQ algorithms are compet-
itive learning algorithms based on the winner-take-all learning rule and differ in that only
certain elements or neighborhoods are updated during learning. The following narrows
down the paper "Adaptive relevance matrices in learning vector quantization" [19].

The initial learning rules for the LVQ were heuristic and had convergence problem. Two
main approaches defining explicit cost functions have been proposed to address this
problem. The first model is known as generalized learning vector quantization (GLVQ),
and its cost function is related to minimizing error and maximizing the margin of the
classifier. The second approach, which uses a statistical objective function to derive a
learning rule by gradient ascent, is called Robust Soft-LVQ (RSLVQ). In the following,
we discuss a GLVQ-based model. [19]

Assume training data (xi,yi) ∈ RN ×{1, . . . ,C} are given, C denoting the number of
different classes and N the dimensionality of the data. The LVQ model consists of
prototypes in the weight space wi ∈RN with their class label as c(wi)∈ {1, . . . ,C}. Here
we introduce the similarity measure as dλ , where λ specifies the metric parameters.
Usually, the metric is the standard Euclidean. A data point x∈RN is mapped to the class
of the closest prototype (also called the winner) c(x) = c(wi), if dλ (wi,x) ≤ dλ (w j,x)
holds for every j ̸= i.
Learning aims to determine weight locations so that the training data are mapped to the
correct class labels. Sato and Yamada [18] introduced a very flexible approach that the
training derived based on the steepest descent method as minimization of the following
cost function

∑
i

φ(µi) where µi =
dλ

J (x)−dλ
K(x)

dλ
J (x)+dλ

K(x)
(3.12)

Φ is a monotonic function, and the distances are; dλ
J (x) = dλ (wJ,x) is the distance of

data point x from the closest prototype wJ with the same class label y, and dλ
K(x) =

dλ (wK,x) is the distance from the closest prototype wK with a different class label than
y. When the classification of the data point is correct, the numerator is negative. The
denominator satisfies −1 < µ(x)< 1.

The squared weighted Euclidean metric dλ (w,x)=∑i λi(wi−xi)
2 with λi≥ 0 and ∑i λi =

1 has been shown [8] to be a straightforward and effective option that enables the ap-
plication of prototype-based learning even in the case of high-dimensional data with
features of various but as-yet-unknown relevance. The benefit of this measure is that
the relevance factors λi can be interpreted directly and reveals some insights about the
classification task. The larger the value of λi is for a dimension, the more important
that dimension is for the classification. This technique is called generalized relevance



14 Chapter 3: Machine Learning Algorithms

learning vector quantization (GRLVQ) [9].

Remember that the relevance factors need not be global and might instead be locally
tied to individual prototypes. In this case, for each prototype j, we update the relevance
factors λ j, and compute the distance of a data point x from prototype w j, dλ j

(w j,x)
based on λ j. This allows a local relevance adaptation, which we refer to as localized
GRLVQ (LGRLVQ) [7].

Another significant extension of LVQ is the generalized matrix LVQ (GMLVQ) that follows
the concept of GRLVQ [19]. GMLVQ considers a generalized distance metric as

dΛ(w,x) = (x−w)T
Λ(x−w), (3.13)

where Λ is a full N×N matrix that accounts for the correlations between the features.
The Λ is a valid metric only if it is positive (semi-)definite and symmetric. This is achieved
by substituting

Λ = Ω
T

Ω (3.14)

which yields uT Λu = uT ΩT Ωu = (ΩT u)2 ≥ 0 for all u, where Ω is an arbitrary real N×N
matrix. In this way, arbitrary Euclidean metrics can be realized, taking into consideration
rotations of the axes and correlations of the dimensions.
The squared distance becomes

dΛ(w,x) = ∑
i jk
(xi−wi)ΩkiΩk j(x j−w j), (3.15)

The learning rule can be derived by computing the derivatives concerning w and Ω. The
derivative of dΛ with respect to w yields

∇wdΛ(w,x) =−2Λ(x−w) =−2Ω
T

Ω(x−w). (3.16)

The derivatives with respect to a single element Ωlm yields

∂dΛ(w,x)
∂Ωlm

= ∑
j
(xm−wm)Ωl j(x j−w j)+∑

i
(xi−wi)Ωli(xm−wm)

= 2.(xm−wm)[Ω(x−w)]l,

(3.17)

where subscripts l,m specify vectors components. Hence, the update equations are

△wJ = ε ·2 ·Φ′(µ(x)) ·µ+(x) ·Λ · (x−wJ),

△wK =−ε ·2 ·Φ′(µ(x)) ·µ−(x) ·Λ · (x−wK).
(3.18)



Chapter 3: Machine Learning Algorithms 15

For the update of the matrix elements Ωlm we get

△Ωlm =− ε ·2 ·Φ′(µ(x))·(
µ
+(x) ·

(
(xm−wJ,m)[Ω(x−wJ)]l

)
−

µ
−(x) ·

(
(xm−wK,m)[Ω(x−wK)]l

))
.

(3.19)

Both updating prototypes and matrix elements correspond to the Hebbian term. It is also
possible to choose the metric’s learning rate separately from the prototypes’ learning
rate. To prevent the algorithm from degeneration, Λ should be normalized after each
update.

The computation of the nearest correct and incorrect prototypes determines the com-
plexity of one adaptation step (O(N2 ·Nw)), where Nw is the number of prototypes, and
the adaptation is O(N2). This procedure is typically repeated across some linearly scal-
able time increments to achieve convergence. As a result, this method is quicker than
the unsupervised fuzzy-clustering variant, which employs a similar metric form but calls
for a matrix inversion at each step. In addition, this approach determines the measure in
a supervised manner, allowing the parameters to be tuned for the specific classification
task.

We can use a single complete matrix to account for the transformation of the entire
input space, or we can use local matrices connected to the specific prototypes. When
we work with local matrices, the squared distance of data point x to a prototype w j is
computed as dΛ j

(w j,x) = (x−w j)
T Λ j(x−w j). Each matrix is adapted individually and

we get the update equations as

△Ω
J
lm =− ε ·2 ·Φ′(µ(x))·

µ
+(x) ·

(
(xm−wJ,m)[Ω

J(x−wJ)]l
)
,

△Ω
K
lm =+ ε ·2 ·Φ′(µ(x))·

µ
−(x) ·

(
(xm−wK,m)[Ω

K(x−wK)]l
)
.

(3.20)

One potential the localized matrices have is that they can consider the correlations,
which may vary between different classes in feature space. We refer to this general
version as Localized Generalized Matrix LVQ (LGMLVQ). In contrast to GMLVQ, which
is characterized by piecewise linear decision boundaries, LGMLVQ provides nonlinear
decision boundaries made up of quadratic pieces. In this way, the prototypes’ receptive
fields are no longer required to be convex or connected for LGMLVQ. [19]

The advantage of GMLVQ is its explainability. The result interpretation is straightforward
because the resulting classifier is represented by prototype locations and matrix param-
eters. Prototype locations show typical class representatives, and matrix parameters
highlight the significance of input dimensions for diagonal elements and correlations



16 Chapter 3: Machine Learning Algorithms

for off-diagonal elements. Moreover, local and global parameters can be used to de-
scribe individual classes or the overall classification. One disadvantage of this method
is its computational costs which increase quadratically when the dimension of the data
increases. [19]

3.3 Support Vector Machine

The following information summarizes chapter 15 of the book Understanding Machine
Learning: From Theory to Algorithms [20].
Support Vector Machines (SVM) can handle both classification and regression prob-
lems. Each data point in SVM is represented as a point in an n-dimensional space (n
being the number of features), with each feature’s value being the value of a particular
coordinate. Then, we perform a classification by defining the hyperplane that distin-
guishes between two classes. The high dimension of feature space causes difficulties
with sample complexity and computational complexity. In order to address the sample
complexity problem, the SVM algorithmic paradigm looks for separators with "large mar-
gins". We will see later on how the kernel trick addresses the computational complexity
problem.
We define the margin as the minimum distance between a point in the training set and
the hyperplane. When performing classification, we consider two scenarios: the data
can be separated linearly, or the separator is nonlinear. We employ SVM with a hard
margin when the data is linearly separable, and we do not want any misclassifications.
However, we can use a soft margin for our classifier when a linear border is not feasible,
or we prefer to accept certain misclassifications to improve generality.

Suppose the hyperplane separating our two classes has the following definition:

wT xx+b = 0 (3.21)

Then the margin would be two parallel hyperplanes:

|wTTT xx+α|
||w||

and
|wTTT xx+β |
||w||

(3.22)

The goal of hard margin SVM is to maximize the distance between the two hyperplanes
while preventing misclassifications. We can use the formula for the distance of a point
from a plane to measure this distance, and the total margin would be

|α−β |
||w||

(3.23)

Subsequently, the problem would be to maximize 2
||WW || or minimize ||WW ||2 . Instead, we will



Chapter 3: Machine Learning Algorithms 17

use its squared form to simplify the problem when taking the gradients

min
w,b

1
2
||w||2 ≡min

w,b

1
2

wT w (3.24)

This optimization comes with the constraint of no misclassification

yi(wwwT xxxi +b)≥ 1. (3.25)

This optimization is called the primal problem and is guaranteed to have a global mini-
mum.
There are some differences in the soft margin SVM optimization process. Since we al-
low misclassification in Soft-SVM, we need to minimize the misclassification error. For
this we should define a loss function and the usual loss function is the hinge loss

max{0,1− yi(wwT xi +b)}. (3.26)

The primal problem we had for hard margin SVM is now compounded by the loss of a
misclassified point called a slack variable. Consequently, the primal problem with the
soft margin is:

min
1
2
||w||2 +C

n

∑
i=1

ζi

s.t. yi(wT xi +b)≥ 1−ζ ∀i = 1, . . . ,n,ζi ≥ 0
(3.27)

The trade-off between maximizing the margin and minimizing the loss is controlled by a
new regularization parameter C. We see that the addition of slack variables makes the
primal problem different from the one for the hard margin.

So far, we assumed that all objects we want to classify have a fixed-size feature vector.
However, in some cases, it is not like that; for example, a protein sequence, molecular
structure, or text document does not have a fixed-sized feature vector. In these kinds
of problems, a widely used solution is measuring the similarity of different objects. Let
κ(x,x′)≥ 0 be a similarity measure between objects x,x′ ∈ X , where X is some abstract
space; we will call κ a kernel function which is a symmetric (κ(x,x′)= κ(x′,x)) and non-
negative function. SVM uses the kernel trick to transform the data into the form of inner
products (x,x′) by calling the kernel function κ(x,x′); however, we can still work with the
original feature vector space. [14]

Now we discuss how to apply the kernel trick to the classification problem summarizing
chapter 14 of the book Machine Learning: A Probabilistic Perspective [14]. In this the-
sis, for simplicity, we consider only linearly separable problems. We can show that the
objective function (3.27) can be solved by introducing Lagrange multipliers (αi), and the
solution has the form

ŵ = ∑
i

αixi (3.28)



18 Chapter 3: Machine Learning Algorithms

where αi = λiyi and because of the hinge loss α is sparse. We call xi for which αi >

0 support vectors; these are points on or inside the margin that are classified either
correctly or incorrectly.

Once the model is trained, we can then make predictions using

ŷ(x) = ŵ0 + ŵT x (3.29)

Replacing the definition of ŵ we get

ŷ(x) = ŵ0 +∑
i

αixT
i x (3.30)

Finally, by replacing xT
i x with κ(xi,x) we get a kernelized solution

ŷ(x) = ŵ0 +∑
i

αiκ(xi,x). (3.31)

This takes O(sD) time to compute, where s≤ N is the number of support vectors. This
depends on the sparsity level, and hence on the regularizer C.

SVM has nice theoretical guarantees about over-fitting. With the right kernel function,
SVM works well even if the data is not linearly separable in the underlying feature space.
However, in practice, choosing a kernel function that would produce the optimal outcome
is difficult. Besides that, interpreting the final model is also challenging. [10]

3.4 Extreme Gradient Boosting Trees

Since machine learning is a critical element of the success of many applications, finding
models that can deal with complex and large amounts of data is crucial. Nowadays,
ensemble methods that mainly rely on randomization techniques or adaptive emphasis
procedures have been very effective tools. One of these ensemble methods is eXtreme
Gradient Boosting or XGBoost, a decision tree ensemble based on gradient boosting.
This section summarizes the paper XGBoost: A Scalable Tree Boosting System [3].

The success of XGBoost is primarily due to its scalability in all scenarios. The scalability
of XGBoost is due to the following innovations: A novel tree learning approach is used to
handle sparse data, and taking instance weights in approximate tree learning is made
possible via a theoretically justified weighted quantile sketch procedure. Learning is
accelerated by parallel, and distributed computing, which speeds up model exploration.
In addition, XGBoost uses out-of-core processing to process billions of instances on a
desktop for data scientists. Finally, combining these methods to create an end-to-end
system that scales to even larger data sets with the least amount of cluster resources
is even more fascinating. In addition to these significant contributions, XGBoost makes



Chapter 3: Machine Learning Algorithms 19

additional improvements in proposing a regularized learning objective.

3.4.1 Regularized Learning Objective

Assume a data set with n observations and m features D= {xi,yi} (|D|= n,xi ∈Rm,yi ∈
R) is given. A tree ensemble model uses K additive functions to predict the output

ŷi = φ(xi) =
K

∑
k=1

fk(xi), fk ∈ F (3.32)

where F = { f (x) = wq(x)}(q : Rm→ T,w ∈ RT ) is the space of regression tree. Here
q represents the structure of each tree that maps an example to the corresponding
leaf index, while T is the number of leaves in the tree. Each fk corresponds to an
independent tree structure q and leaf weights w. Each leaf of the regression trees has
a score value, and we use wi to represent the score on the i-th leaf. We will classify a
given example into the leaves using the decision rules in the trees q and then sum up
the scores in the associated leaves w to determine the final prediction.

We define the following regularized objective to learn the set of functions used in the
model

L(φ) = ∑
i

l(ŷi,yi)+∑
k

Ω( fk)

where Ω( f ) = γT +
1
2

λ ||w||2
(3.33)

here l is likelihood function and is differentiable. To prevent over-fitting, the additional
regularization term (the second term) helps to smooth the final learned weights. The
regularized objective willing to select a model using simple and predictive functions.
When we set the regularization parameter to zero, we reach the objective of the tradi-
tional gradient tree boosting.

3.4.2 Gradient Tree Boosting

Since the model is trained in an additive way (equation (3.33)), we use the output value
of the new tree to optimize the function. Let ŷ(t)i be the prediction of the i-th instance at
the t-th iteration; now we add ft to minimize the following objective.

L(t) =
n

∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi))+Ω( ft) (3.34)



20 Chapter 3: Machine Learning Algorithms

We use the second-order approximation to optimize the objective for regression and
classification problems

L(t) ≃
n

∑
i=1

[l(yi, ŷ
(t−1)
i )+gi ft(xi)+

1
2

hi f 2
t (xi)]+Ω( ft) (3.35)

where gi = ∂ŷt−1l(yi, ŷ
(t−1)
i ) and hi = ∂ 2

ŷt−1l(yi, ŷ
(t−1)
i ) are the first and second order gra-

dient statistics on the loss function. To simplify the objective, we can remove the con-
stant terms at step t

L̂(t) =
n

∑
i=1

[gi ft(xi)+
1
2

hi f 2
t (xi)]+Ω( ft) (3.36)

We define I j = {i|q(xi) = j} as the instance set of leaf j. We rewrite equation (3.36) by
expanding Ω

L̃(t) =
n

∑
i=1

[gi ft(xi)+
1
2

hi f 2
t (xi)]+ γT +

1
2

λ

T

∑
j=1

w2
j

=
T

∑
j=1

[(∑
i∈I j

gi)w j +
1
2
(∑

i∈I j

hi +λ )w2
j ]+ γT

(3.37)

For a fixed structure q(x), we can calculate the optimal weight w∗j of leaf j as

w∗j =
∑i∈I j gi

∑i∈I j hi +λ
, (3.38)

and compute the optimal value as

L̃(t)(q) =
1
2

T

∑
j=1

(∑i∈I j gi)
2

∑i∈I j hi +λ
+ γT. (3.39)

When we evaluate the quality of a tree structure, equation (3.39) can be used as a scor-
ing function. In practice, it is not possible to examine every conceivable tree structure
q; hence, we apply a greedy algorithm to build the tree from a single leaf. We use the
following formula after each split for the loss reduction

Lsplit =
1
2

[
(∑i∈IL gi)

2

∑i∈IL hi +λ
+

(∑i∈IR gi)
2

∑i∈IR hi +λ
− (∑i∈I gi)

2

∑i∈I hi +λ

]
− γ (3.40)

where IL and IR are the instance set of left and right nodes after the split, and I =
IL∪ IR.

In addition to the regularized objective, XGBoost uses two more techniques to prevent
over-fitting further.
Shrinkage, proposed by Friedmann [6], scales newly added weights by a factor after
each step of tree boosting. It reduces the influence of each tree and makes space for



Chapter 3: Machine Learning Algorithms 21

new trees to enhance the model, much like a learning rate in stochastic optimization.
Column (feature) sub-sampling is another technique that prevents over-fitting more
than the traditional row sub-sampling and speeds up computations of the parallel algo-
rithm.

So far, we have discussed the unique regression tree of XGBoost. The following sub-
sections explain what makes XGBoost relatively efficient with large training datasets.

3.4.3 Split Finding Algorithms

Finding the best split is one of the critical challenges with tree learning. One com-
mon algorithm is the exact greedy algorithm that enumerates all the possible splits
for continuous features. In order to do so, the algorithm must sort the data according
to feature values, then iterate through the data to gather the gradient statistics for the
structure score in equation (3.40). Enumerating all possible splitting points makes the
exact greedy algorithm extremely powerful. However, it is impossible to do so efficiently
when the data does not completely fit into memory or in distributed settings. An ap-
proximate algorithm is needed to support effective gradient tree boosting in these two
scenarios.

In the approximate algorithm, instead of testing every single threshold, we could divide
the data into quantiles and only use the quantiles as candidate thresholds to split the
observations. Proposing split point candidates is a critical step in the approximate algo-
rithm. Depending on when the proposal is made, the algorithm comes in two different
forms. The global variant suggests all candidate splits during the initial tree construc-
tion stage and employs the same suggestions for split finding at all levels. Therefore,
it needs fewer proposal steps but more candidate points. On the other hand, the local
variant refines and re-proposes the candidates after each split; therefore, it needs fewer
candidates and can be more suitable for deeper trees.

Usually, the Quantile Sketch algorithm is used to propose the split point candidates.
The general idea of the quantile sketch algorithm is to make an approximate histogram
of the feature values to calculate approximate quantiles. However, XGBoost uses the
Weighted Quantile Sketch algorithm. In the quantile sketch algorithm, every observa-
tion has equal weight, but each observation is scaled with the second-order gradient
statistics in the weighted quantile sketch.

It frequently happens in many real-world problems where the input x is sparse. There-
fore, the algorithm must learn the sparsity pattern in the data. We propose including a
default direction in each tree node to classify the observations with missing values into
it. In each branch, there are two choices of default direction, and the algorithm learns
the optimal direction from the data i.e., the path with max gain. The algorithm is shown
in Alg. 1. The key improvement is only visiting the non-missing entries Ik. This improve-



22 Chapter 3: Machine Learning Algorithms

Algorithm 1 Sparsity-aware Split Finding

Input: I, instance set of current node
Input: Ik = {i ∈ I|xik ̸= missing}
Input: d, feature dimension

Also applies to the approximate setting; only collect statistics of non-missing entries
into buckets
gain← 0
G← ∑i∈I gi,H← ∑i∈I hi
for k = 1 to m do

GL← 0,HL← 0
for j in sorted (Ik, ascent order by x jk) do

GL← GL +g j,HL← HL +h j
GR← G−GL,HR← H−HL

score← max(score, G2
L

HL+λ
+

G2
R

HR+λ
− G2

H+λ
)

end for
GR← 0,HR← 0
for j in sorted(Ik, descent order by x jk) do

GR← GR +g j,HR← HR +h j
GL← G−GR,HL← H−HR

score← max(score, G2
L

HL+λ
+

G2
R

HR+λ
− G2

H+λ
)

end for
end for

Output: Split and default directions with max gain

ment makes computation complexity linear to the number of non-missing observations
in the input.

The process of sorting the data is the most time-consuming step in tree learning. To
reduce this cost, XGBoost, once before training, sorts each column by corresponding
feature value and stores them in the compressed column format in in-memory units,
which are called blocks, and reuses them in later iterations. This input layout linearizes
the split search algorithm in the exact greedy algorithm. The block structure also im-
proves the time efficiency of the approximate algorithm in the following ways: 1) the
quantile finding step becomes a linear scan over the sorted columns, 2) histogram ag-
gregation, the binary search also takes on the form of a linear time merging method, 3)
split finding can be parallelized, and 4) it supports column sub-sampling.

3.5 Random Forest

This section summarizes the "A random forest guided tour" [1] paper and thesis [10].
One of the most successful algorithms in classification and regression is the Random
Forest algorithm, introduced by Leo Breiman in 2001 [2]. The idea behind random
forest is to train M different trees on different subsets of data chosen randomly with



Chapter 3: Machine Learning Algorithms 23

replacement and then aggregate the predictions by averaging. It is simple to use and
known for its high accuracy and ability to deal with high-dimensional feature spaces. [1]
In this way we obtain the function

f (x) =
M

∑
m=1

1
M

fN(x) (3.41)

where fN is a tree with N training instances, the default number of trees in the forest,
denoted by M, is ntree = 500. This technique which is introduced by Breiman in 1996,
is called “bootstrap aggregating” or in short bagging .

Bootstrap in the ML context means creating a sample data set from the original one with
the same size. However, in the bootstrap sample, some instances will be represented
multiple times while others won’t be picked. In bagging, each decision tree in the ensem-
ble is created using a sample with replacement from the training set. Statistically, 64%
of examples are likely to appear at least once in the sample. The sample’s instances
are referred to as in-bag instances, whereas the other instances (about 36%) are called
out-of-bag instances. To identify the class label of an unlabeled instance, each tree in
the ensemble serves as a base classifier. By using majority voting, which assigns one
vote to each classifier’s predicted class label, the instance is categorized according to
the class label that has received the most votes. Computationally, it is one of the most
effective procedures to improve unstable estimates for large and high-dimensional data
sets, where finding a good model in one step is not possible because of the complexity
and scale of the problem. [4]

For the m− th tree in the forest, the estimated value for the data point x is denoted by
fN(x;θm,DN), where DN is the bootstrap sample containing x, and θ1, . . . ,θM are inde-
pendent random variables, that are distributed in the same way as the generic random
variable θ . The objective of the binary classification problem is to predict the value of
the random response Y given a set of random variables X. The random response Y has
values in {0,1}. A classifier fN in this case tries to predict the label Y from x and DN

using a Borel measurable function of x and DN . The classifier fN is said to be consistent
in this framework if its conditional probability of error

L( fN) = P[FN(X) ̸= Y |DN ] (3.42)

satisfies

lim
n→∞

EL( fN) = L∗ (3.43)



24 Chapter 3: Machine Learning Algorithms

where L∗ is the error of the optimal and unknown Bayes classifier:

f ∗(x) =

{
1, i f p[Y = 1|X = x]> P[Y = 0|X = x]

0, otherwise
(3.44)

A majority vote among the classification trees is used to determine the random forest
classifier in the classification case, so

f (x) =

1, i f
M

∑
m=1

1
M

fN(x)>
1
2

0, otherwise

(3.45)

In the case of random forests, the method looks for the best feature from some random
subset of the features rather than splitting a node to get the most significant feature. As
a result, we receive a great diversity that frequently leads to the creation of a superior
model. [10]

3.5.1 Feature importance

The random forest also learns the importance of each feature in the classification and
regression problem. It gives a global insight into the model’s behavior and is practical,
especially when there are many features and we must apply a feature selection mecha-
nism.

Out-of-bag instances are used to determine the feature’s importance. First, we need to
define the out-of-bag error, which is the mean prediction error on each training sample
xi, using just the trees that did not have xi in their bootstrap sample. The out-of-bag error
for each data point is collected and averaged over the forest during the fitting procedure.
After training, the values of the j-th feature are permuted among the training data, and
the out-of-bag error is once more computed on this perturbed data set to determine the
significance of the j-th feature. By averaging the difference in out-of-bag error before
and after the permutation over all trees, the significance score for the j-th feature is
determined. The standard deviation of these differences is used to standardize the
score. [2]



Chapter 4: Empirical Data 25

4 Empirical Data

4.1 Input Data

Deduplication is a binary problem where there are two classes, duplicate and non-
duplicate. We must prepare training data for both classes. We use a data set that
belongs to a company and is not publicly available. Training data for ML models are ob-
tained directly from the data stewards’ decisions on finding the duplicates manually and
indirectly through the existing rule system in a weak-supervision approach (deciding on
the likely duplicates by data stewards). The data is in a structured database. To extract
the data, we used various techniques, including pivoting the data, combining numerous
tables, and dealing with nested json objects. Although the amount of data is growing
daily, we created the prediction models using all the data to the date we started imple-
menting the models, which is only 32776 pairs of customer information. The input data
has a total of 17 variables (see table 4.1). As the pie chart (4.1) shows, training data is
almost imbalanced. There are 26199 non-duplicates, almost 80% of the data, and the
remaining 20% is duplicate data. Another important point is that the majority class is
positive.

Figure (4.1) The proportion of each class in training data

We extract the data from the historical data table for the first group, duplicate data,
which are stored as duplicate pairs. But for the second group, which is non-duplicated
data, we need to find the most similar pair for each customer. After having all the
duplicate and similar pairs, we compare each of their attributes, and if the values match,
we assign a binary value of 1; otherwise, 0. This approach works for all the variables
since they have already been standardized and converted into common units except for
the company name. The company name is an important variable. Since it is in text
format, there might be a spelling error, typo error, or some additional information like
the company legal form. Therefore, we do not use an exact match for comparison but



26 Chapter 4: Empirical Data

the fuzzy-search logic. For the fuzzy search, Levenstein distance is used to calculate
the distance and similarity of the two names. Therefore, the company name has a real
value in [0, 1]. All other variables have a binary value of 0 or 1 if they have values to
compare; otherwise have a null value. Hence, each training data shows how similar two
customers are by comparing their variables.

Column Description Type
companyname Company name Text
legalform legal form Text
website website URL Text
addresstype address type Text
street street name Text
number hous number Number
zipcode zip code Number
city city name Text
state state name Text
country country code Text
countryiso2code country code Text
countryiso3code country code Text
county county name Text
po-box-no post box number Text
email email address Text
phone-number phone number Number
MessengerId messemger Id Text
VAT tax number Text

Table (4.1) Variable descriptions for input data

4.2 Feature engineering

In machine learning, the process of selecting or creating new features (variables) in
a data set to improve the result of machine learning is known as feature engineering.
Feature selection includes removing unnecessary or redundant variables. Input data
may have many variables, some of which do not improve the prediction performance and
make the model more complicated. We can find unnecessary variables by assessing
the correlation of independent and dependent variables using a test model. Feature
creation is the process of variable modification and the creation of new ones by merging
or splitting different variables. [16]

In this thesis, the first use of feature engineering is the selection of the relevant variables.
We made a feature selection by doing some exploratory data analysis. In real-world
problems, it is normal to have many missing values in the data. Since variables with
mostly missing values do not contribute to the prediction performance, we remove them



Chapter 4: Empirical Data 27

from the input data. Legalform, website, county, countryiso2code, countryiso3code,
postboxnumber, email, phone number, and messengerId are the variables that are re-
moved.

The second use of feature engineering in the thesis is the creation of new variables.
Since most customers do not have data for all different types of addresses, including
legal, order, invoice, and other, the latter three types were combined to create a new
address type as non-legal. After this step, there are only two different address types,
legal and non-legal, each including house number, street, city or zip code, and country.
Besides combining multiple variables to create a new one, we tried splitting a variable
into two. Some company names also contain the legal form of the company. We ex-
tracted the legal form into a new variable to see if it improved the prediction performance.
Since it did not affect improving the performance, we removed it.
After feature engineering, the training data looks like table 4.2, and its total size on the
memory is 3.0 MB.

Column description Type
Namesimilarity name similarity Decimal
Vat tax number similarity Binary
Legalstreet street similarity in Legal address Binary
Legalcityzip city or zip code similarity in Legal address Binary
Legalcountry country similarity in Legal address Binary
Legalhousnumber hous number similarity in Legal address Binary
nonlegalstreet street similarity in nonlegal address Binary
nonlegalcityzip city or zip code similarity in nonlegal address Binary
nonlegalcountry country similarity in nonlegal address Binary
nonlegalhousnumber hous number similarity in nonlegal address Binary
label label of the data (0=duplicate, 1= non-duplicate) Binary

Table (4.2) Variable descriptions for training data

4.3 Missing Values

As figure 4.2 shows, the training data has many missing values. They must be re-
placed with appropriate values because some algorithms do not support them. There
are different methods for missing value imputation, including mean, median, and mode
imputation, and also averaging some nearing neighbors. Since the variables with miss-
ing values have a binary data type, mean value imputation is not an appropriate choice.
We tried the mode value, which is 0 for all the variables. To prevent the data from being
biased in favor of class 0 (duplicate), we also tried the 0.5 value for imputation, but it had
a negative effect on the predictions. Moreover, since VAT is an important variable in dis-



28 Chapter 4: Empirical Data

Figure (4.2) Percentage of missing values for each class

tinguishing between classes, we implemented the k-nearest neighbors (KNN) algorithm
to predict the values of missing VAT. KNN used all other variables as training data and
predicted the missing VAT number based on the eight nearest neighbors.

In the end, we compared all the results and found that mode (0) imputation had the
best results. Therefore, we imputed all the missing values with 0. However, among the
implemented ML models in this thesis, XGBoost can handle the missing values. Hence,
we did not impute the missing values when training XGBoost.



Chapter 5: Experiments and Results Comparison 29

5 Experiments and Results Comparison

The thesis aims to compare different machine learning methods for duplicate prediction
of customer data. The prediction models were created using the python language in the
Jupyter Notebook. It is a language commonly used for machine learning applications.
Many python libraries exist to save time and effort on the initial cycle of development.
One of the most popular python libraries for machine learning is scikit-learn which pro-
vides variously supervised and unsupervised learning algorithms. We used the scikit-
learn library to implement the selected algorithms and evaluate their performance.

Here, the objective of the models is to predict duplicate customers as accurately as pos-
sible. On the other hand, there is this limitation: none of the customers should be falsely
identified as duplicates, known as false negative error. This error causes businesses
to lose crucial client information. Suppose the system merges two customers that be-
long to different clients. In that case, this might cause them to see each other’s data
which is against the General Data Protection Regulation (a set of European Union rules
on data protection and privacy). Therefore, the focus is on reducing the false negative
error as much as possible while improving duplicate prediction accuracy. We used two
different techniques to achieve this goal.

The first solution is to increase the amount of non-duplicate data. Even though there is
typically more non-duplicate than duplicate data, we added more of this type. Feeding
the model with more data from one class makes it more accurate at identifying that class.
The second solution is to give the non-duplicate data more importance. Different models
offer this feature in various ways: logistic regression, random forests, and SVM have an
attribute named class weight, XGBoost has scale-pos-weight, and GMLVQ provides this
feature with the number of prototypes per class. In GMLVQ, we set 4 and 6 prototypes
for duplicate and non-duplicate classes, respectively. For the rest of the models, the
importance of the duplicate compared to the non-duplicate is 0.4 to 0.6.

After pre-processing the data, it is divided into the train, dev (development), and test
sets. The train set, which contains 80% of the data, is used to train the model. And 20%
of the data is used as the dev set to validate the trained model. The last month’s data,
which contains 851 non-duplicate and 150 duplicate examples, evaluate the model’s
generalizability as the test set. Since the data is almost imbalanced, one vital point
to consider when splitting the data is that both train and dev sets must have a similar
proportion of each class. Scikit-learn library provides the functionality to ensure that
the data spread proportionally among the train and dev sets. We also used GridSearch
library of the Scikit-learn to optimize the models’ hyper-parameters.

After establishing the train, dev, and test sets, the next step is building the models. The
first model is logistic regression as a baseline model. In the following, we use Negative



30 Chapter 5: Experiments and Results Comparison

and Positive to denote duplicate and non-duplicate classes, respectively.

All the models were implemented using the following libraries:

• python version 3.8.8
• sklearn version 1.1.1
• numpy version 1.20.1
• XGBoost version 1.6.0
• sklvq version 0.1.2
• matplotlib version 3.3.4

5.1 Logistic Regression

Table (5.1) and charts (5.5, 5.1, and 5.2) show the result of different metrics for the
baseline model. We built logistic regression and used GridSearch (a tool that is used for
hyperparameter tuning) to optimize its hyper-parameters. It took 34 seconds to run the
GridSearch, giving 92% overall accuracy. The confusion matrix shows that the model
performs better in identifying the positive class with a 97.79% accuracy compared to
68.16% for the negative. The precision, recall, and f1-score also reflect the same re-
sults differently. The confusion matrix on the test set shows that the model has a good
generalization ability and gives the same and lower error rates for Positive and False
classes, respectively. The area under the ROC curve (AUC) is 0.9576, and AUPRC is
0.9581. After tuning the hyperparameters, training the model takes only 0.07 seconds
which is quite fast.
For more information on how to interpret the model, please see section 3.1.

Precision Recall F1-score

0 0.89 0.68 0.77
1 0.92 0.98 0.95

macro avg 0.90 0.83 0.86
weighted avg 0.92 0.92 0.91

Table (5.1) Classification report of logistic regression on the dev set

5.2 Random Forest

We created the random forest model and tuned its hyper-parameters using GrdiSearch.
It took 11 minutes and 32 seconds to run the GrdiSearch, providing an overall accuracy
of 92%. Although GridSearch gives the optimum hyper-parameter values, we still had to
manually adjust the maximum tree depth to 7 to lower the false negative error rate. The



Chapter 5: Experiments and Results Comparison 31

confusion matrix (5.5) shows that the error rate is shifting from false negative to false
positive, despite some metrics like accuracy and f1-score remaining unchanged from
the baseline model. The prediction accuracy of non-duplicate data is 98.51% while that
of duplicate class is 66.79%. As mentioned before, it is crucial to reduce the false neg-
ative error rate as much as possible. The model performs better on the non-duplicate
prediction, as seen by the increased values in the AUC (0.9674) and AUPRC (0.9675).
The confusion matrix (5.6) on the test set demonstrates that a 10 observations reduc-
tion in false negative error was offset by a 27 observations rise in false positive error
compared to the baseline model. It takes 0.67 seconds to train the tuned random forest.
The size of the random forest model on the disk after saving with joblib is 1.03 MB. Since
we limited the depth of the trees, the model is a shallow random forest and consumes
less memory.

Precision Recall F1-score

0 0.92 0.67 0.77
1 0.92 0.99 0.95

macro avg 0.92 0.83 0.86
weighted avg 0.92 0.92 0.92

Table (5.2) Classification report of random forest on the dev set

5.3 XGBoost

Tuning the XGBoost model is a difficult task because it has many parameters. Applying
GridSearch to optimize the XGBoost hyper-parameters took 9 minutes and 39 seconds.
The model’s overall accuracy is the same as the baseline and random forest models,
92%. The confusion matrix on dev set (5.5) and the classification report (5.3) show
that the performance of the XGBoost model is almost the same as the random forest.
However, the AUC value (0.9794) in figure (5.1) and the AUPRC value (0.9946) show
that the model has a better performance on positive prediction compared to the random
forest. The positive point about XGBoost is that it can handle the missing values and
learn the data’s sparsity pattern. Hence, we see in the confusion matrix (5.6) that it has
a better generalization of the test data. The prediction accuracy of non-duplicate data
is 98.45% while that of duplicate class is 67.17%. Training the tuned model takes 0.7
seconds.
The XGBoost as an ensemble model has 115 estimators, and its size on the disk after
saving with joblib is 0.24 MB which is smaller than the random forest. So far, the XG-
Boost model has the best performance.



32 Chapter 5: Experiments and Results Comparison

Precision Recall F1-score

0 0.92 0.67 0.78
1 0.92 0.98 0.95

macro avg 0.92 0.83 0.86
weighted avg 0.92 0.92 0.92

Table (5.3) Classification report of the XGBoost on the dev set

5.4 Support Vector Machine

For SVM, as mentioned in section 3.3, finding a kernel that gives the best result is a
difficult task in practice. However, applying the GridSearch, we found that the Radial
Basis Function (RBF) kernel is the best choice for our problem. The confusion matrix
on dev set (5.5), classification report (5.4) and the overall accuracy show that SVM is
performing as well as the XGBoost and the random forest models. But when we look at
the confusion matrix on the test set (5.6), it demonstrates that the SVM does not have a
good generalization on the non-duplicate data with 22 error.
SVM is known as a black box algorithm and does not provide interpretability. However,
we are using the scikit-learn library, which implemented SVM with a method called Platt
scaling. In the Platt scaling method, an SVM model is first trained, then a sigmoid
function is used to map the output of SVM into probabilities [15]. When we set the
probability attribute of SVM to True, it takes 47 seconds to train the model, which is a
very long time compared to the other models we have used. On the other hand, the area
under the ROC curve (5.1) shows a smaller value (0.945). The precision-recall curve
and AUPRC value (0.9826) also show that SVM does not perform well on the positive
class.
The trained model has 4156 support vectors, and its size on the disk after saving with
joblib is 0.4 MB.

Precision Recall F1-score

0 0.91 0.68 0.78
1 0.92 0.98 0.95

macro avg 0.92 0.83 0.87
weighted avg 0.92 0.92 0.92

Table (5.4) Classification report of SVM model on the dev set

5.5 Generalized Matrix Learning Vector Quantization

Section 3.2 discussed two matrix learning vector quantization variants, GMLVQ and
LGMLVQ. We built both models, and the tables (5.5 and 5.6) show their classification



Chapter 5: Experiments and Results Comparison 33

reports. The results show that they have almost the same performance. We set 10 pro-
totypes for GMLVQ, 4 and 6 prototypes for Negative and Positive classes, respectively,
while LGMLVQ has only one prototype for the Negative class and two for the Positive
class. It took 48 seconds to train the GMLVQ model, while LGMLVQ needed a longer
time, 52 seconds since it has local matrices to update. The area under the ROC curve
for LGMLVQ is (0.9611), while it is a little bit lower, 0.9569, for GMLVQ. The AUPRC
values also show that LGMLVQ performs better in the positive class than the GMLVQ
with (0.9882) and (0.9869), respectively. The interpretation of GMLVQ and LGMLVQ is
straightforward because they give a full matrix representing each attribute’s importance
and correlation. The following shows the results for both models.

Precision Recall F1-score

0 0.89 0.70 0.78
1 0.93 0.98 0.95

macro avg 0.91 0.84 0.87
weighted avg 0.92 0.92 0.92

Table (5.5) Classification report of GMLVQ on the dev set

Precision Recall F1-score

0 0.90 0.70 0.78
1 0.93 0.98 0.95

macro avg 0.91 0.84 0.87
weighted avg 0.92 0.92 0.92

Table (5.6) Classification report of LGMLVQ on the dev set

5.6 Results Summary

In the following we put all the confusion matrices, the ROC curves, and the PRC next to
each other for better comparison.

5.6.1 ROC and Precision-Recall Curves

Figures (5.1) and (5.2) show the ROC curve with AUC scores and the PRCs with AUPRC
scores for all the implemented models, respectively. AUC and AUPRC summarize the
curve information in one number. Since the data is imbalanced and the majority class
is positive, we see high AUC and AUPRC scores for all models. Please see section 2.2
for an explanation of how to plot the ROC and PRC curves.



34 Chapter 5: Experiments and Results Comparison

These two figures show that SVM with a wavy curve has the worst performance among
all the models, while XGBoost produces the most significant results. Since XGBoost
uses regularization in training, its model is less complex and does not overfit. In addition,
it learns the sparsity pattern of the data. Hence, it has a better generalization, as the
AUC, AUPRC, and confusion matrices (5.6) show.

Figure (5.1) ROC curves of all the models

Figure (5.2) Precision-Recall curves of all the models



Chapter 5: Experiments and Results Comparison 35

5.6.2 Interpretability

Interpretation of Logistic regression is straightforward. It provides coefficients capturing
how a feature contributes to the prediction. Please see section 3.1 for further explana-
tion.

ROC curves and PRCs demonstrate that XGBoost and random forest tree ensemble
models have the best performance, especially in positive class detection. These two
models give a model-wide interpretation. They provide feature importance that shows
how much each variable contributes to the decision. This feature importance can be
used in feature selection when there are many features, and we must apply a feature
selection mechanism. [1]

GMLVQ and LGMLVQ are known as explainable models. In comparison to previous
methods, they not only provide how much an individual feature is important but also
how much its correlation with other variable can effect the decision. The diagonal el-
ements of the matrix show the feature importance, and off-diagonal elements of the
matrix demonstrate the correlations of the variables. Moreover the prototypes captures
the typical behavior within classes.

SVM produces the poorest results. It is known as the black box model, and its interpre-
tation is difficult. Some methods, like the Platt scaling method, make SVM interpretable,
but their result is inconsistent.

5.6.3 Feature importance comparison

By looking at the trained models, we can understand which variables are more important
for different algorithms to distinguish between classes. To visualize it for better compari-
son, we plotted in the figure (5.3) the coefficients of logistic regression alongside the fea-
ture importance of random forest, XGBoost, and GMLVQ (the diagonal elements of the
Omega matrix of GMLVQ represent the feature importance). Due to space limitations,
we omitted LGMLVQ in this chart. Of course, we normalized them before plotting.

The chart shows that all the models consider nonlegal-street as the most important
variable. XGBoost considers this variable the only and most important while the second
most important variable is three times smaller. One reason might be that the nonlegal
address has fewer missing values than the legal address, and the street gives more
detailed information about the company location than the city, country, and house num-
ber (house number has the highest missing values among nonlegal address attributes).
Another interesting point is that the company name does not contribute so much to the
decisions. As the graph reveals, it has a low importance score for all the models except
for random forest.



36 Chapter 5: Experiments and Results Comparison

Figure (5.3) Feature importance of all the models

Figure 5.4 depicts the matrix of GMLVQ. As already explained, the matrix’s diagonal
shows the variable’s significance. Here, we again see that the nonlegal-street variable
has the largest value, meaning it is the most important variable. Off-diagonal elements
show the correlation of the variables. We see the largest correlation between legal-
country and nonlegal-country, which makes sense, while customers may have different
branches (addresses) inside a country.

Figure (5.4) GMLVQ Learned Matrix



Chapter 5: Experiments and Results Comparison 37

Figure (5.5) Confusion matrices on the dev set



38 Chapter 5: Experiments and Results Comparison

Figure (5.6) Confusion matrices on the test set



Chapter 6: Conclusion 39

6 Conclusion

The efficient usage of the data and machine learning algorithms is essential for the
success of machine learning in the deduplication process. The algorithm cannot, how-
ever, give the best predictions all on its own. To obtain the best prediction outcomes,
feature engineering, the process of modifying data for machine learning, must also be
considered.

This thesis compared ML algorithm selection in terms of their ability to improve the
deduplication results. Different evaluation metrics were used to compare the output of
five different ML algorithms. Feature engineering and data pre-processing were done to
improve the performance of the models. Two main feature engineering methods, feature
selection and feature creation, were applied with exploratory analysis and manual inter-
pretation of the data. Since the data set contained a high percentage of missing values,
many approaches to handling missing values were tested before mode (0) imputation
was ultimately chosen as the best option.

Results of the models show similarities and differences in some metrics values. All the
models give an overall accuracy of 92%. However, their results in predicting positive
and negative classes are different. The measurement values show that random forests
and XGBoost have the best performances in the positive prediction, especially the XG-
Boost. These two are tree ensemble models but use different approaches for training.
Random forest uses the bagging technique while XGBoost uses gradient boosting to
train decision trees.

SVM provides the poorest result in positive prediction. It is also known as the black
box model, which means it does not give any justification for its decisions. On the
other hand, GMLVQ and LGMLVQ have almost a similar performance to logistic regres-
sion and provide better results in predicting negative examples, as confusion matrices
show. However, these two LVQ variants are much slower in training. The positive point
about LVQ variants is that they are more explainable and provide more details about the
data.

In summary, XGBoost has the best performance with 92% overall accuracy. The pre-
diction accuracy of non-duplicate data is 98.45%, while that of the duplicate class is
67.17%. Compared to the current rule-based system that provides only 38% accuracy
in finding the duplicates directly and 20% with weak supervision with the help of a data
steward, XGBoost makes a significant improvement.



40



Chapter 6: Bibliography 41

Bibliography

[1] Gérard Biau and Erwan Scornet. A random forest guided tour. Test, 25(2):197–227,
2016.

[2] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[3] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge dis-
covery and data mining, pages 785–794, 2016.

[4] Khaled Fawagreh, Mohamed Medhat Gaber, and Eyad Elyan. Random forests:
from early developments to recent advancements. Systems Science & Control
Engineering: An Open Access Journal, 2(1):602–609, 2014.

[5] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,
27(8):861–874, 2006.

[6] Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data
analysis, 38(4):367–378, 2002.

[7] Barbara Hammer, Frank-Michael Schleif, and Thomas Villmann. On the gener-
alization ability of prototype-based classifiers with local relevance determination.
2005.

[8] Barbara Hammer, Marc Strickert, and Thomas Villmann. On the generalization
ability of grlvq networks. Neural Processing Letters, 21(2):109–120, 2005.

[9] Barbara Hammer and Thomas Villmann. Generalized relevance learning vector
quantization. Neural Networks, 15(8-9):1059–1068, 2002.

[10] Olga Isakova. Application of machine learning algorithms for classification and
regression problems for mobile game monetization. Master’s thesis, 2019.

[11] Jiaju Miao and Wei Zhu. Precision–recall curve (prc) classification trees. Evolu-
tionary intelligence, 15(3):1545–1569, 2022.

[12] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Ma-
chine Learning. The MIT Press.

[13] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.



42 Chapter 6: Bibliography

[14] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[15] John Platt et al. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers, 10(3):61–
74, 1999.

[16] Murat Pojon. Using machine learning to predict student performance. Master’s
thesis, 2017.

[17] Susmita Ray. A quick review of machine learning algorithms. In 2019 Interna-
tional Conference on Machine Learning, Big Data, Cloud and Parallel Computing
(COMITCon), pages 35–39, 2019.

[18] Atsushi Sato and Keiji Yamada. Generalized learning vector quantization. Ad-
vances in neural information processing systems, 8, 1995.

[19] Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices
in learning vector quantization. Neural computation, 21(12):3532–3561, 2009.

[20] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[21] Michael Stonebraker, Ihab F Ilyas, et al. Data integration: The current status and
the way forward. IEEE Data Eng. Bull., 41(2):3–9, 2018.



Erklärung 43

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, im September 2022




