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Abstract

Sequences are an important data structure in molecular biology, but unfortu-
nately it is difficult for most machine learning algorithms to handle them, as
they rely on vectorial data. Recent approaches include methods that rely on
proximity data, such as median and relational Learning Vector Quantization.
However, many of them are limited in the size of the data they are able to handle.
A standard method to generate vectorial features for sequence data does not
exist yet. Consequently, a way to make sequence data accessible to preferably
interpretable machine learning algorithms needs to be found. This thesis will
therefore investigate a new approach called the Sensor Response Principle,
which is being adapted to protein sequences. Accordingly, sequence similarity is
measured via pairwise sequence alignments with different sequence alignment
algorithms and various substitution matrices. The measurements are then
used as input for learning with the Generalized Learning Vector Quantization
algorithm. A special focus lies on sequence length variability as it is suspected
to affect the sequence alignment score and therefore the discriminative quality
of the generated feature vectors. Specific datasets were generated from the
Pfam protein family database to address this question. Further, the impact of
the number of references and choice of substitution matrices is examined.
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Chapter 1

Introduction

1.1 Motivation
Machine learning methods are being applied to domain-specific data from

an enormous range of fields, one of them being biology [Angra and Ahuja, 2017].
Biological data can be very complex and the underlying information quite
difficult to extract [Zitnik et al., 2019]. Information often lies hidden behind
relations of different elements in a graph-like structure [Ahmedt-Aristizabal
et al., 2021]. Amino acids are one such type of element. They are the building
blocks of life on the scale of proteins. Proteins are functional units that control
the cell and carry out most of its intra- and intercellular functions [Zvelebil
and Baum, 2007]. Proteins are therefore vital components of life that clearly
must have an uncountable plurality of shapes and forms in order to be able to
perform all kinds of different actions within and outside of our cells and those
of every other species on earth that we know of.

The shape of a protein is associated with its function. The 3-dimensional
(D) representation is not known for most proteins. The openly available
RCSB Protein Data Bank (RCSB PDB) [Berman, 2000] contains 3D struc-
tural data for 171,077 proteins (PDB Stats) as of 18th October 2022. The
UniProt Knowledgebase (UniProtKB) however contains 568,363 sequences of
proteins that have been manually annotated and reviewed and a staggering
230,496,503 sequences of proteins that were automatically annotated [UniProt
consortium, 2022]. This huge number of sequences is the result of billions of
polynucleotides and polypeptides being sequenced by millions of researchers
and lab technicians in laboratories all around the world. Sequencing is and
always has been much easier hence cheaper and more accessible than protein
structure determination. This will likely always be the case even with the recent
development of AlphaFold [Jumper et al., 2021] as the structure prediction is
not possible for all types of proteins and the folding of proteins depends on a
plethora of different circumstances like the conditions of its environment to
say the least. Further, protein sequences contain a lot of information already
for they are not merely characters of an alphabet jumbled together but indeed
collections in which order matters. The order in which amino acids are fused
together with peptide bonds like a chain is crucial for the specific shape that
this chain will take on.

The flow of information within cells from the genes to proteins, as described
in the Central Dogma of Molecular Biology, is described through sequences
of letters from different alphabets [Crick, 1970]. The sequence of proteins is
essentially read off of the nucleic sequences within the genes. These nucleic
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sequences have an alphabet of only four letters C, G, A and T for Cytosine,
Guanine, Adenine and Thymine whereas the basic alphabet of proteins has
20 letters, which stand for the different amino acids that are chained together
to polypeptide chains, which in turn fold into proteins. The term basic is here
meant to only include amino acids that are found to make up proteins in nature.
The alphabet can be slightly larger, but is mostly still defined as those 20 amino
acids. The folded polypeptide chain, finally, represents a functional unit within
the cell with numerous functions and interactions with other biomolecules.
During this flow, more information is required that goes into the translation
of a gene to a protein sequence [Hanson and Coller, 2017], but this work will
focus exclusively on protein sequences.

Summing up, protein sequences play an important role in bioinformatics.
They symbolize one important way to store information about the components
and the 2D structure of a protein.

1.2 Feature Generation
Machine learning algorithms often rely on linear algebra. Practically,

this means that their input is required to be of a vectorial form. A lot of
the information about biomolecules is, however, stored in various kinds of
graphs, which are much more complex and fundamentally a different data
structure. Protein sequences are a special kind of graph called a path graph
where the vertices are elements of the set of amino acids A. All elements
inA = {A, R, N, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V} stand for different
amino acids, specified in [JCBN, 1984]. Data of this form can not readily be
used as input for most machine learning algorithms, especially those that are
based on distance measures. In the case of protein sequences, several attempts
at a so-called feature generation have been proposed. Some do not rely on
an alignment of the sequences, like resolved Mutual Information Function
(rMIF) [Bohnsack et al., 2021], natural vectors [Wang et al., 2019] and bag
of words (amino acid alphabet too large) [Blaisdell, 1989], some of which are
systematized in [Bohnsack, 2020]. Other methods are based on the proximity
of data and can make use of sequence alignments.

Two attempts to utilize alignment scores of protein sequences have been
made as part of a 6-month research module. First, an integration of Dy-
namic Time Warping (DTW) into Learning Vector Quantization (LVQ) [Jain
and Schultz, 2018] was investigated, but many challenges were encountered.
Further, solutions involving Relational LVQ (RLVQ) [Hammer et al., 2014] were
explored. Descriptions and discussions of both can be found in the report on
the research module, upon request to the first referee or voigt5@hsmw.de. The
main downside of both is the computational intensity. Both approaches require
the calculation of all pairwise alignments, be it by DTW or any other alignment
algorithm.

This work will examine yet another approach, called the Sensor Response
Principle (SRP), which will be introduced in section 2.4.
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Chapter 2

Methods and basics

2.1 Sequence Alignment
Sequences in molecular biology are a very important vehicle with which

to convey information about a protein and its components (amino acids), as
established above. Not only are all the amino acids described that are involved
in shaping the protein, but their relation to one another is also described. To
be more precise, the order in which they are chained together linearly with
peptide bonds from beginning to end is specified.

It stands to reason that a comparison of protein sequences would yield some
information about their structural relationship, their evolutionary relationship
or even their functional relationship. There are a myriad of ways to compare
sequences with each other. Some of the ones for nucleic sequences can be
found systematized in [Bohnsack, 2020]. The methods described herein all
have to do with sequence alignments.

Broadly, a set of sequences, be it polypeptides (protein) or nucleotides
(Deoxyribonucleic Acid (DNA)/Ribonucleic Acid (RNA)), is being arranged in a
way that adjoins similar subsequences. Many algorithms have been devised
to align two or more sequences with each other in an optimal or a heuristic
way [Zvelebil and Baum, 2007, p. 128]. Some of them will be applied and
discussed here.

Whichever algorithm is employed to determine the alignment, the quality of
it must be evaluated in order to assess its soundness as a measure of similarity.
This is done by calculating a score of the alignment. An alignment of very
similar and/or related sequences will then have a high score and an alignment
of two random sequences a low score. Further, the optimal alignment(s) will
have the highest score within the space of possible alignments. This score is
important for the design of an alignment algorithm and is usually what it is
being optimized for. A perfect scoring scheme likely does not exist because it
has to take all evolutionary processes into account. Yet, the abovementioned
assumptions are true most of the time for common scoring schemes.

One of the simplest ones is sequence identity. It describes the percentage
of identical matches along the aligned sequences. This way, all matches are
rewarded and all mismatches penalized equally. That does not, however, reflect
the probabilities for mutations that are seen in nature. And an explanation
is also not too far off: amino acids have properties. These properties are
determined by the residue of each amino acid.

Some residues are more similar to each other than others, i.e. they all have
their effect on the structure and function of the protein but when one amino
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Figure 2.1: Schematic structure of an amino acid. Amino acids consist of an
amino and a carboxylic acid with a so-called residue R attached to the alpha
carbon Cα.

acid is switched out for another physico-chemically more similar amino acid,
it does not result in so big a structural or functional change. Some residues, for
example, are acidic and others are basic. Some are polar, others non-polar [Yoo
et al., 2014]. The probability of a certain amino acid to be changed to another,
owing to mutation, and producing a still functioning protein structure can
be empirically observed with the help of statistics [Henikoff and Henikoff,
1992]. The resulting substitution matrices are an important resource for the
scoring of alignments [Hess et al., 2016]. The set of sequences underlying the
statistical analysis can be on a spectrum from almost identical and clearly
homologous to almost wholly different and merely predicted homologous. The
underlying dataset plays an important role as well [Keul et al., 2017]. The goal
is to integrate as much background knowledge as possible into the process
of alignment and that knowledge comes from the theory of evolution. This
approach brings about a wide variety of substitution matrices that can be used
for alignments of protein sequences in the context of different bioinformatic
questions or hypotheses. The selection of the best substitution matrix for a
given problem is naturally associated with expert knowledge, although there is
a tendency to use the default, which is called BLOSUM62, for many cases.

The algorithm used to calculate the alignment presents an additional aspect.
There are essentially two types of alignments: global and local. A global
alignment attempts to align sequences over their whole length. Contrarily, a
local alignment seeks to make out the parts of sequences that are related. A
global alignment is particularly useful for sequences that are closely related
and have approximately the same length, whereas a local alignment is better
if the sequences are only partly similar, e.g. when a domain is present in
both that might have been conserved in both proteins [Zvelebil and Baum,
2007, pp. 135-136]. The most basic way to calculate global and local align-
ments are the Needleman-Wunsch algorithm (NW) [Needleman and Wunsch,
1969] and the Smith-Waterman algorithm (SW) [Smith and Waterman, 1981]
respectively. Both employ dynamic programming schemes to optimize the
alignment of sequences by identifying matches between them and by inserting
gaps into them. The reward of matches and the penalty cost of mismatches
or insertions/deletions (indels) influence the resulting alignment and score.
The score in turn translates into a measure of similarity for sequences. The
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2.2 BLOcks SUbstitution Matrix
The comparison of protein sequences has long been an important tool for

molecular biologists and bioinformaticians. The attempts to measure protein
sequence similarity are aided by sequence alignment algorithms, such as the
previously mentioned NW and SW algorithms. Those two and also many others
align sequences with the help of substitution matrices. There are numerous
ways to construct such substitution matrices, based on different rationales
and datasets [Altschul, 1991] (for an overview, see [Trivedi and Nagarajaram,
2020]). One methodology, however, has produced a family of substitution
matrices which is the most frequently used, the BLOcks SUbstitution Matrix
(BLOSUM) [Hess et al., 2016].

It is based on counting the substitutions of pairs of amino acids in a specific
set of aligned protein sequences, which are aligned in so-called blocks. Blocks
are local, ungapped Multiple Sequence Alignments (MSAs) which have been
derived from highly conserved regions from the BLOCKS database [Henikoff
and Henikoff, 1991]. In order to avert the many redundancies in the blocks,
which are likely to occur when the sequences are very similar, clustering is
performed. Each cluster consists of all sequences that are identical to a certain
degree to one or more other sequences in the same cluster. The clusters within
the blocks are then weighed as a single sequence during the counting. For
a block of width w and s sequences, a total of ws(s − 1)/2 amino acid pairs
can be counted. Note that the direction of the mutational events, i.e. the
order of the protein sequences, are not considered with this method and the
frequency of changes from an amino acid i to j is the same as for j to i . The
substitution frequencies are then determined for all pairs of the 20 different
amino acids. That means that for all 20 + 19 + · · ·+ 1 = 210 different amino
acid pairs, the pairings of those two amino acid letters i and j across a column
are counted, then summed up over all columns. This is repeated in all blocks
and the frequencies fij are stored within a table. The observed probability of
the occurrence for the pair i and j then amounts to

qij =
fij

20∑
i=1

i∑
j=1

fij

. (2.3)

Next to the observed probabilities, the expected probabilities are required
as well, because the scores for the amino acid pairs in BLOcks SUbstitution
Matrixs (BLOSUMs) are logarithms of odds. The probability that any amino
acid i is part of a pair is

pi = qii +
∑
j ̸=i

qij/2 (2.4)

The expected probabilities of occurrence eij can then be obtained as pipj if i = j
or as pipj + pjpi = 2pipj if i ̸= j . Finally, the log odds ratio can be calculated
as

sij = log2(qij/eij) (2.5)
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which is subsequently often multiplied by the scaling factor 2 (to obtain half-bit
units) and rounded to the nearest integer. [Henikoff and Henikoff, 1992].

Pairwise sequence identity is measured by counting all matching amino
acids in an alignment of the two sequences divided by the total length of the
alignment, as illustrated in figure 2.4.

Figure 2.4: Alignment example. Here, two short sequences were aligned
optimally according to the sequence identity. With 10 matching (identical) loci
and a total length of 16, sequence identity amounts to 10/16 = 62.5%. Figure
from [Zvelebil and Baum, 2007, p. 80].

The most frequently used BLOSUM is BLOSUM62. It is generated, as
described above, with a minimal sequence identity of 62% in each cluster.
Additionally, 4 other BLOSUMs are used within this work and can be found
in the appendix. They were chosen because they have been the substitution
matrices available by default in the highly influential BLAST [Altschul et al.,
1990]. They have been taken from the BLAST source code and can be found at
https://ftp.ncbi.nlm.nih.gov/blast/matrices/.

2.3 Learning Vector Quantization
Learning Vector Quantization (LVQ) is a prototype-based learning scheme

that was introduced by Teuvo Kohonen [Kohonen, 1986]. It may be categorized
as supervised learning in the interest of learning a classification task.

Learning Vector Quantization 2.1
The most well-known variant of Learning Vector Quantization (LVQ) that

adapts some improvements over the original approach is LVQ2.1. It works as
follows:

Let T = {(xi , c(xi)) ∈ X × C , i = 1, ... , nX} be a labeled training dataset
where the data X ⊂ Rd is labeled with class labels c(xi) ∈ C from the set of
classes C . A set of labeled prototypes
W = {(wi , c(wi)) ∈ W × C , i = 1, ... , nW} is then initialized randomly in the
data space, i.e. W ⊂ Rd . Prototypes can be used to classify data by assigning
the label of the closest prototype. The closest prototype is determined by calcu-
lating the squared Euclidean distance between a data point and all prototypes,
as in equation 2.6. The closest prototype to an xi is called the winner and has
the index s(xi).

s(xi) = argmin
j
∥xi −wj∥2 (2.6)

The prototypes undergo updates during training, which is done iteratively.
First, a data point xi is selected randomly and the winning prototype ws(xi ) is
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being determined. ws(xi ) is henceforth only called ws . If the label c(ws) is the
same as c(xi) then ws (also denoted as w+) gets pulled towards the data point.
If, in turn, c(ws) ̸= c(xi), then ws (also denoted as w−) gets pushed away from
xi . This is called the Attraction Repulsion Scheme (ARS) and is described in the
following equations:

ws(t + 1) = ws(t)− α(t)(xi −ws(t)) if c(ws) = c(xi) (2.7)

ws(t + 1) = ws(t) + α(t)(xi −ws(t)) if c(ws) ̸= c(xi) (2.8)

Here, t signifies the time step and α(t) is a learning rate which can be changed
over time. The prototypes are updated in this manner until they converge or
until the iteration is aborted manually or after a specified number of repeats.

Generalized LVQ
A generalized variant, the Generalized LVQ (GLVQ), was proposed in

1995 that minimizes a differentiable cost function S that is approximating
the classification error through Stochastic Gradient Descent (SGD) [Sato and
Yamada, 1995]. As with LVQ2.1, a data point xi is selected randomly and the
squared Euclidean distance d is calculated to every prototype. In contrast to
LVQ2.1, two prototypes are then chosen:

• w+
i , which represents the winning prototype from the set of prototypes

of the same class as xi c(w+
i ) = c(xi)

• w−
i , which represents the winning prototype from the set of prototypes

with a different class from that of xi c(w−
i ) ̸= c(xi)

The cost function consists of the classification term

µ(xi) =
d+
i − d−

i

d+
i + d−

i

(2.9)

which is wrapped in a monotonously increasing function f and summed up
over all data points:

SGLVQ =
N∑
i=1

f (µ(xi)) (2.10)

f (µ(xi)) is the local error regarding to the datapoint xi . d+
i and d−

i denote the
squared Euclidean distances of xi to w+ and w− respectively. It therefore holds
that µ(xi) < 0 whenever the classification is correct for a given data point
(d+

i < d−
i ) and µ(xi) > 0 Whenever the classification is wrong (d+

i > d−
i ).

Overall µ(x) stays between −1 and 1.
The update of the prototypes wi ∈ W is realized with SGD as follows:

w±
i ← w±

i − α
∂f (µ(xi))

∂w±
i

(2.11)

α denotes, once again, a learning rate that can be changed over time. The
prototypes are updated in this manner, minimizing the cost function SGLVQ ,
until the algorithm converges or the procedure is aborted manually.
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The design of Generalized LVQ with the ARS and using SGD makes it a
robust [Saralajew et al., 2019], fast and flexible [Villmann et al., 2016] machine
learning algorithm. The fact that the prototypes live in the data space makes
it interpretable by domain experts. A plethora of variations on the concept
of LVQ and GLVQ have been developed to adapt it to different problems and
requirements.

One important change to the algorithm is the way prototypes are initialized.
There are numerous ways besides the random initialization. One strategy that
is often used is to initialize the prototypes on the class means. Thus, if the data
is structured in clusters, prototypes already have a good starting point.

Generalized Matrix LVQ
Another adaption concerns the distance function of GLVQ. The squared

euclidean distance d2(x,w) = ∥x−w∥2 that was introduced in equation 2.6
gets replaced by the squared omega distance

d2
Ω(x,w) = (x−w)TΩTΩ(x−w) (2.12)

with the relevance matrix Ω, which gives the algorithm the name General-
ized Matrix LVQ (GMLVQ) [Schneider et al., 2009]. The elements of matrix
Ω ∈ Rm×n with m ≤ n are updated during training as well. The multiplication
with matrix Ω represents a linear transformation of the feature input space to
Rm [Bunte et al., 2012]. The so-called Classification Correlation Matrix (CCM)
Λ can then be derived by Λ = ΩTΩ with Λ ∈ Rn×n. From [Biehl et al., 2016]:
"Diagonal entries of Λ control the importance of single feature dimensions in
the distance and can account for their potentially different scaling. Off-diagonal
elements relate to the contribution of pairs of features". That means that it
is possible to interpret Λ to gain insights into the amount of influence each
feature has on classification and therefore how important the feature is for the
GMLVQ model.

All GLVQ and GMLVQ models in this thesis have been trained with the help
of ProtoTorch [Ravichandran, 2020], ProtoTorch Models, PyTorch Lightning
and were evaluated with scikit-learn [Pedregosa et al., 2011].

2.4 Sensor Response Principle
The just-mentioned GLVQ algorithm, like many other machine learning

algorithms, requires input in vectorial form, as indicated briefly in section 1.2. A
common and abundant data format in molecular biology is that of a sequence,
be it a nucleic sequence or a protein sequence. Protein sequences are aligned to
each other frequently in bioinformatics in order to measure their similarity and
detect evolutionary relationships. Looking at protein sequence similarity from a
machine learning perspective, those similarity measurements span a proximity
space. There are machine learning algorithms that can exploit proximity data
or (dis-)similarity data, such as Median GLVQ [Nebel et al., 2015] or Relational
GLVQ (RGLVQ) [Hammer et al., 2014], but with serious limits on the size of
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the dataset. As discussed in the report on the research module, both need
a lot of time to calculate dissimilarities and also a lot of memory to store
them. A much more sparse approach is demonstrated in [Bohnsack et al., 2022]
on graph kernels, which are inner products for graphs that can be used as
measurements to compare their similarity to each other. The so-called Sensor
Response Principle (SRP) is inspired by sensor fusion, as in [Zoghlami et al.,
2021]. It only calculates the proximity measure to a small subset of the original
data in order to approximate it and is therefore many times faster, smaller and
more efficient. The original data is then only represented by their proximity to
the small subset, which is henceforth called references. Sequence alignment
scores can be used as the proximity measure in the case of protein sequences
to which the SRP may, thus, be adapted in the following way.

Let there be a set of protein sequences P , with each element in P being
a potential reference r ∈ P . Accordingly, one sequence r is picked and the
alignment score calculated to all x ∈ P . Multiple alignment algorithms may
be used with multiple sets of parameters, e.g. the substitution matrices used.
They represent different kinds of sensors that measure the proximity/similarity
d(x , r) between all the data points x and the reference r . All data points are
thereupon described by the sensor response vector x = d(x , r), which consists
of the different sensor responses d(x , r) to the reference r :

d(x , r) = (dAS1(x , r), dAS2(x , r), ... , dASn(x , r))
T (2.13)

where dAS1 ... dASn stand for the different alignment scores calculated by various
algorithms and/or parameter sets. Consequently, a vectorial sensor response
space X emerges in which every protein sequence x ∈ P is represented by a
feature vector x ∈ X that relates it to reference r . Figure 2.5 shows a schematic
summary of the approach on an example that aligns a sequence x and the
reference r with NW, SW and 3 different BLOSUMs. The result is the 4D
xsequence which defines x in the vectorial feature space.

Besides multiple alignment algorithms and different parameters, the set
of references may also be added to in order to increase the dimensionality of
the feature space X . But, because the choice of the best reference is difficult
to estimate and may depend on the kind of sensor, finding an optimal set of
multiple references is even more difficult. In this work, multiple references
will be chosen at random and the distribution of their performance in aiding
classification will be evaluated. Strategies to find optimal references or sets of
references may include carrying out the sensor measurement for all of them,
which is, depending on the dataset, very time-extensive and would neutralize
one of the advantages of the SRP.

Given a set of protein sequences P with |P| = N sequences, NAS different
combinations of alignment algorithms and their parameters/substitution ma-
trices, and Nr references, then the time complexity amounts to O(N · NAS · Nr )
with Nr ≪ N . Both mentioned alignment algorithms, NW and SW, have a time
complexity of O(mn) depending on the lengths m and n of the sequences. The
SRP therefore saves a lot of time compared to, e.g. RGLVQ and Median GLVQ,
that need all pairwise alignment scores which corresponds to O(N

2

2
· NAS).

Space complexities behave accordingly and all the advantages are passed on to
the training of the classifier.
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Chapter 3

Experimental setup

The following chapter is intended to highlight the most important as-
pects of the experimental setup. Code and data will be made available under
https://github.com/si-cim/SRPMastersThesis.

3.1 Datasets
The objective was to find a dataset containing labeled protein sequences to

test the SRP on. Several datasets were generated in a non-deterministic manner
by parsing the Pfam database [Mistry et al., 2020]. Pfam is a database dedicated
to the classification of protein sequences into protein families and domains.
Most of the entries in Pfam are manually annotated with functional information
from literature. All data was only picked from the manually curated part.
Pfam announced that "The Pfam website will be decommissioned in January
2023." and they have recently started to forward all users to its new home, the
InterPro [Blum et al., 2020]. All Pfam links within this thesis will therefore
lead to InterPro directly. At the time of retrieval (Pfam 35.0, February 2022),
19632 protein domains were present with many different protein sequences
each (over 44 million in total). No expert knowledge was taken into account
during the compilation of the datasets. This means that the domains that were
chosen have not been looked at closely to check whether they are particularly
close or far from each other in the space of all domains. The decision to stay
away from such considerations was made because it was unclear whether it
would be necessary for the experiments that domains should have a distinct
relationship to each other. It is however conceivable that the chance to pick
either very similar or dissimilar domains is very small. They are likely also no
perfect representatives of the space of protein domains, but rather a naturally
random collection.

The first dataset is entitled Pfam8. Powers of 2 were used throughout the
composition process of all datasets to make handling easier. Pfam8 is described
in table 3.1 and consists of 23 = 8 randomly chosen domain families. 210 protein
sequences were randomly chosen for each of these families. Sequences within
a family are homologous and likely quite similar. The dataset has a total of
213 sequences and classes are uniformly distributed. None of the families in
Pfam8 is a member of the same clan as any other. It is possible, that more than
one classified domain is present in a single region of a protein sequence and
that this protein is then a member of two families. This is, however, prevented
during curation, unless the domains are in the same clan [Punta et al., 2011].
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Since this is not the case, all chosen sequences will be member of only one
class. Since the sequences in Pfam8 were picked randomly from Pfam, they are
of different lengths (175.0± 108.9 amino acids).

domain ID clan ID domain description

PF00310 CL0052 NTN GATase_2 Glutamine
amidotransferases class-II

PF00370 CL0108 Actin_ATPase FGGY_N FGGY family of
carbohydrate kinases, N-terminal

domain

PF01454 CL0123 HTH MAGE MAGE homology domain

PF02230 CL0028 AB_hydrolase Abhydrolase_2
Phospholipase/Carboxylesterase

PF07179 - SseB SseB protein N-terminal domain

PF07694 CL0315 Gx_transp 5TM-5TMR_LYT 5TMR of
5TMR-LYT

PF13290 CL0159 E-set CHB_HEX_C_1
Chitobiase/beta-hexosaminidase

C-terminal domain

PF13415 CL0186 Beta_propeller Kelch_3 Galactose
oxidase, central domain

Table 3.1: The Pfam8 dataset. IDs of each protein family and their clan
membership are shown, along with a short description. 1024 sequences were
sources at random from each of the protein families.

Another two datasets were generated by almost the same procedure. In
order to investigate the role that sequence length plays for the proposed feature
extraction method, a constraint was set on the length of the sequences from
Pfam. The first dataset consists, again, of 8 domain families with 1024 se-
quences each, but with the condition that all sequences are of length L with
190 < L < 210. It is called Pfam8_L200. For the second dataset 4 families from
Pfam8_L200 were copied over and 4 more families were randomly picked with
sequences of length L with 390 < L < 410. It is called Pfam8_Lhybrid . The
specific domain families can be seen in table 3.2. All data files will be made
available under https://github.com/si-cim/SRPMastersThesis. Once again, none
of the chosen domain families are classified under the same clan and inter-class
similarity is therefore likely not very high. Within each class sequences are of
very similar length, according to the standard deviations. The overall sequence
length in Pfam8_L200 has a very low standard deviation as well (200.8± 5.7).
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DS
domain

ID
clan ID description length in

amino acids

▷◁ PF01061 CL0181
ABC-2 ABC2_membrane ABC-2

type transporter
205.9±3.6

▷ PF01184 -
Gpr1_Fun34_YaaH

GPR1/FUN34/yaaH family
200.7±5.6

▷◁ PF02361 - CbiQ Cobalt transport protein 199.9±6.0

▷ PF05013 CL0035
Peptidase_MH FGase
N-formylglutamate

amidohydrolase
206.4±2.6

▷◁ PF06439 CL0004
Concanavalin 3keto-disac_hyd
3-keto-disaccharide hydrolase

200.7±5.4

▷◁ PF06764 CL0172
Thioredoxin DUF1223 Protein of

unknown function (DUF1223)
196.6±4.3

▷ PF07685 CL0014
Glutaminase_I GATase_3

CobB/CobQ-like glutamine
amidotransferase domain

195.3±3.5

▷ PF20169 -
DUF6537 Family of unknown

function (DUF6537)
200.7±3.0

◁ PF00450 CL0028
AB_hydrolase Peptidase_S10

Serine carboxypeptidase
402.6±4.8

◁ PF00464 CL0061
PLP_aminotran SHMT Serine

hydroxymethyltransferase
396.9±4.9

◁ PF00999 CL0064
CPA_AT Na_H_Exchanger

Sodium/hydrogen exchanger
family

398.2±5.0

◁ PF02163 CL0126
Peptidase_MA Peptidase_M50

Peptidase family M50
399.6±5.1

Table 3.2: The Pfam8_L200 and Pfam8_Lhybrid datasets. In the first column,
dataset (DS), a "▷" is placed when the domain family belongs to Pfam8_L200
a "◁" when it belongs to Pfam8_Lhybrid and a "▷◁" if it belongs to both. All
families contain 210 sequences each, i.e. data are uniformly distributed among
classes.

3.2 Evaluation
Evaluation methods such as accuracy, F1-Score or Matthews Correlation

Coefficient (MCC) play an important role in judging the performance of
machine learning methods. The aim, however, of the experimental investi-
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gation in the following chapter is to ascertain the efficacy of applying the
SRP in the context of sequences in molecular biology. Here, the machine
learning model is not under examination but rather the feature generation.
Nonetheless, the performance metric stays the same. To determine how well
the SRP is channeling the information that is encoded in the sequences into
the classification algorithm, accuracy is going to be employed as a metric. This
happens under the assumption that the machine learning algorithm of choice
learns to classify the featurized sequences as best as possible because the goal
is to only judge the ability of the SRP to generate features, not to judge the
effectiveness of the classifier.

Accuracy is the ratio of correct class predictions to the size of the whole
dataset, as shown in the following equation (adapted from [scikit-learn devel-
opers, 2022] and [Margherita et al., 2020]):

Accuracy =
number of correct predictions
total number of predictions

. (3.1)

One has to consider that if the dataset is imbalanced, accuracy as a performance
measure can be misleading. That is because if a majority of data points are
from one class, e.g. 90%, and the classifier does not learn at all and appoints
classes to data points at random, the accuracy would nevertheless be at around
90%. This would signal a good performance although the machine learning
model did not learn anything about patterns or relationships in the data, which
is what one wants. In order to circumvent this fallacy without losing the ability
to use this relatively straight-forward performance metric, one can check if
the classes in the dataset are of about equal size. That is the reason why all
classes are sized equally in the generated datasets (see section 3.1). This way,
accuracy is an unbiased measure of how many correct predictions are made by
the machine learning model.

To further reduce the bias of data, the model is cross-validated by ran-
domly splitting the data 10-fold twice and taking the average of the resulting
accuracies. To clarify, each run and subsequent evaluation will be repeated
20 times on different subsamples of data each time. The standard deviation
of accuracies will also be shown in order to give a measure of robustness and
confidence. While the machine learning model will be trained on the training
datasets (≈ 9/10 of the data), only the accuracy of prediction on the validation
dataset (≈ 1/10 of the data) is evaluated. This intends to reduce the risk that
the model is overfit to the data, since its accuracy is judged on data that it has
not been trained with.
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Chapter 4

Experiments, results and
discussion

This chapter will combine descriptions of experiments and their results.
The results will then be discussed right away in order to inform the design of
subsequent experiments. Default parameters will be assumed wherever possible
for all software and algorithms unless it is specifically noted otherwise. This is
due to the immense amount of places where parameter optimization is possible.
Every part of the approach can be adjusted, from gap costs during alignment
to the number of reference sequences during measurement. Adjustments have
to be made one by one in order to be able to understand what each of the
changes is doing. The most important and hopefully robust metric by which
to judge the overall effect of each change is the performance of the classifier
on the dataset. The performance heavily relies on the parametrization of the
algorithm but the hope is that by starting with the simplest setup, strong biases
can mostly be prevented. The first experiments apply the GLVQ classifier with
only one prototype per class. Additionally, the following parameters are set:

• batch size is 64

• the monotonously increasing function f in equation 2.10 is the following
sigmoid function: f (x) = 1

1+e−βx with β = 10

• prototypes are initialized for each class in the class mean

• k-folds cross-validation with 10 random splits and 2 random repeats

• 28 = 256 such runs with a different set of references each time

• BLOSUM62 is used as the default substitution matrix for both alignment
algorithms unless specified otherwise

4.1 The initial attempt
The potential of the SRP in combination with a classifier is to be explored. As

a first step, a simple experiment is conducted. As the classifier, Gaussian Naive
Bayes algorithm (GNB) is used because it lacks parameters. The dataset is the
unconstrained Pfam8 dataset that was randomly sourced from the Pfam protein
family database (see section 3.1). The dataset simulates a real world problem
where sequences would likely come in all lengths, also within a single protein
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family. Reference sequences are chosen randomly, one at a time. According to
the SRP, similarity is measured between the reference and all other sequences.
This is done with the score that is acquired by either of the two described
sequence alignment algorithms, the NW and the SW. Then, with only this one
feature as the input, the GNB algorithm is applied that tries to learn to classify
the sequences on the basis of their similarity to the reference. The results may
be observed in figure 4.1 in the form of a violin plot.

Violin plots show similar markers as box plots, i.e. the minimal, mean and
maximal values of the data. Additionally, they show how the data is distributed
as smoothed probability density curves. The areas under those curves are
filled-out, wing-like and symmetrical. If a majority of the data is between the
mean and the maximal value, then the wing will be wider there (as in figure 4.1
on the left. When little data is as low as the minimal value then this end of the
violin will have a sharp tip (as in figure 4.1 on the right).

Figure 4.1: Violin plot of the accuracy of the GNB classifier for three different
inputs. The inputs were the alignment scores from each the NW(1D) and the
SW(1D) and both together (2D). 29 = 512 runs with different references were
conducted. The dashed red line signifies the random classification case, i.e. the
worst possible performance for an 8-class problem.

Pfam8 is no benchmark dataset, i.e. information about the performance
of other methods is missing. However, as a first proof of concept for feature
generation from sequences, results look promising. The mean accuracy over
all reference choices for NW alignment scores is 55.0%± 14.4%. The maximal
accuracy that was achieved for NW scores is even 73.7%± 0.6%. This is high
considering that the data set has 8 uniformly distributed classes. If there
was no information in the generated 1D feature, the accuracy would only
amount to 1/8 = 12.5% which is signified by the dashed red line. The runs
using the SW alignment score was not able to perform as well for classification.
The mean accuracy was only at 30.5%± 2.8% and the maximal accuracy
at 36.3%± 1.7%. Although that is higher than 12.5%, it is not equally as
reassuring. Taking both the global and the local alignment score as input
leads to a slight improvement over using only NW with a mean accuracy of
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62.3%± 12.5%. The best references in this scenario lead to 79.8%± 0.7%
accuracy.

Evidently, information from sequences in molecular biology can be trans-
lated into a vectorial form that is accessible to a machine learning algorithm.
Unfortunately, the standard deviation over all achieved accuracies is quite high,
which raises doubts. Furthermore, the difference between the two alignment
scores in terms of accuracy could be problematic if not understood. When both
scores were used, some references seemed to produce a similarity measure
that was distinctive enough to discriminate well between sequences from the
8 classes. Others yielded comparatively poor results. The mixture of apparent
potential and uncertainty warrant additional research into some of the factors
that might influence the SRP approach to sequences in molecular biology and
motivate the following sections.

4.2 Is the length of the sequences significant for
classification?

To start off, one question should be addressed right away. Both sequence
alignment algorithms that have been mentioned in chapter 3 add up the rewards
and costs of matches, mismatches and indels along the optimal sequence
alignment. Given the parameters, such as substitution matrix and gap cost
model, different alignments will be found optimal by the algorithm. The sum
of the reward/cost values along the optimal path in the optimization matrix
is what determines the score by which the similarity of the two sequences is
judged. Two sequences are presumably more similar, the higher this score is.

The NW, as the first example, seeks the optimal global alignment. The
amount of gaps that have to be introduced when trying to align a very short
sequence with a very long sequence will likely have a consequential effect on
the alignment score. Even if there are many matches and favored mismatches
(s(xi , yj) > 0), the gaps will outweigh them. It is ultimately a question of
whether the sequences in the dataset have similar lengths or not. If they do
not, scores of alignments between very long and very short sequences will be
very low. Accordingly, if the reference is a very long sequence, the classifier
will only be able to discriminate well between other long sequences and fail to
distinguish the short sequences. Is the reference a very short sequence, then it
is the other way round because all long sequences will have a bad score and
will not be distinguishable, other than by how big the difference in length is.
Undoubtedly, the magnitude of the effect of that presumption depends strongly
on the gap penalty model in connection with the substitution matrix.

The SW on the other hand does not, by design, yield negative scores. As
soon as the impact of gaps and/or unfavoured mismatches gains the upper
hand over the score, the algorithm will end the traceback of this path in the
optimization matrix. Thus, depending on the gap penalty model, not many
gaps and also unfavoured mismatches are allowed within the local alignment.
To clarify, if there is a dominant domain in both a very long and a very short
sequence, the score will be high nonetheless. Just as high, in fact, as if the
sequences were of equal length.
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To investigate, two datasets with length constraints were generated, as
described in section 3.1: Pfam8_L200 and Pfam8_Lhybrid . The mean accuracy,
using different sequences as the reference, is visualized in figure 4.2.

Figure 4.2: Violin plot of the average accuracies across datasets Pfam8_L200
and Pfam8_Lhybrid . NW and SW were used as the similarity measures between
sequence and reference. The dashed red line is at exactly 1/8 = 12.5% which
signifies the accuracy when the classifier might as well be guessing randomly.
The dashed green line is at 25% for reasons described in the text. The horizontal
lines of each violin plot indicate the minimal, mean and maximal values of each
configuration.

Overall, NW performed better than SW. Both alignment methods performed
worse on the Pfam8_L200 dataset, where all sequences are of similar length, than
on the Pfam8_Lhybrid dataset. With 8 uniformly distributed classes, no high
accuracy is to be expected. To be precise, with no prior knowledge, a correct pre-
diction has a probability of P(correct) = 12.5%. However, among the random
sample set of 28 = 256 references, which is equivalent to 29/213 = 3.125% of
the dataset, a maximal accuracy of 46.0%± 1.0% was achieved with NW. The
mean accuracy was 36.1%± 3.7%. Use of the SW score lead to a comparable
mean accuracy of 34.1%± 3.8%. Although that is approximately almost three
times the probability that would be achieved by random assignment of classes,
it is still quite low. Accuracy did not change much compared to only NW or SW
when both scores where taken into account. The scores seemingly held more
or less the same information about sequence similarity. The mean accuracy
rose to 40.2%± 4.8%. Some reference sequences delivered an alignment score
that made it possible for the classifier to predict over half of the data in the
validation dataset correctly. The maximal accuracy that was achieved was at
52.0%± 1.4%.

The three violins on the right show the mean accuracy distributions over
256 different references for the Pfam8_Lhybrid dataset. The performance of
the SRP-driven GLVQ model was much better than it was on the Pfam8_L200
dataset. The NW score resulted in a mean accuracy of 55.4%± 6.2%, a con-
siderable 19.3% improvement over the Pfam8_L200 dataset, and a remarkable
maximal accuracy of 67.6%± 0.8%. This means, that with only the NW
alignment score as the 1D feature input, the model was able to predict more
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than 2/3 of the validation data correctly. The mean accuracy when using the
SW score was merely increased by 5.8% to 40.5%± 3.5%. Even so, it is an
improvement and at least a few references resulted in almost 50% correct
predictions, at a maximum of 47.6%± 1.7%. Despite the claim that the SW
algorithm would produce the same score regardless of the length of each
sequence, it performed better on the dataset with differently sized sequences.
The claim only applies as long as SW aligns the same local domain.

It can not be said that the only difference between Pfam8_L200 and
Pfam8_Lhybrid is the length of its sequences, albeit the only intended difference.
The fact of the matter is that it is impossible to gage the impacts of changing
half of Pfam8_L200, besides the gain in information regarding the length of
its data. This length increase in half of the data (4 classes with 210 sequences
each) is assumed to be the principal contrast between the two datasets. It is
however also very possible that the increased performance on Pfam8_Lhybrid
does not come from the sequences length but the interplay between the
protein families. Perhaps the newly introduced sequences from protein families
PF00450, PF00464, PF00999 and PF02163 are inherently easier to discriminate,
also from the original sequences from Pfam8_L200. There is no easy way of
canceling out this potential effect, even if expert knowledge of the specific
protein families and their presumed inter-family similarity is available, because
it is undoubtedly difficult to comprehend. One thing that could be done is to
increase the sample size of protein families from the database and randomly
pool them. This process would generate datasets with different compositions.
While such a scheme was planned out, it has not yet been put into practice
due to lack of time for implementation and running of the experiments.

It should be noted that the gap penalty model plays a large role during align-
ment and strongly influences the alignment score. However, all experiments
in this work use a static gap penalty (the default for each of the substitution
matrices) to reduce complexity.

Contrary to before on Pfam8_L200, accuracy was amplified when using
both alignment scores together. The mean accuracy rose to 63.2%± 5.8%.
This is an increase of 7.8% over only using the NW score. The similarity scores
to one reference in particular even enabled the resulting GLVQ models, to
predict 76.7%± 0.6% of the data correctly. This is remarkable given that the
input only had 2 dimensions. The reference in that specific case is A0A095XZ51
from the protein family PF02361. Thus, it is present in both Pfam8_L200 and
Pfam8_Lhybrid .

Figure 4.3 shows what the SRP looks like for the 8 different protein families.
Naturally, the highest scores can be found in the violin plot of the references
own protein family. The overall maximum is the score of the alignment of
the reference sequence with itself. The reference sequence generally has a
score that is vastly greater than that of the majority of sequences because
all amino acids are matching up in that alignment. It should be pointed out
that many alignments with sequences from other protein families score higher
than the ones with the sequences in its own protein family. This is because
the membership in a protein family only requires the same protein domain
to be present in all member proteins. Around those domains, the proteins
typically look significantly different and, more importantly here, they have
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Figure 4.3: Violin plot of NW alignment scores over protein families in
Pfam8_L200. Each violin visualizes the NW alignment scores of its sequences
and the one particular reference (A0A095XZ51), which is from the PF02361
protein family. The dashed green line represents the global mean over all
protein families.

different amino acids. The NW algorithm aligns the sequences globally and
the many matches those mutual protein domains bring with them to increase
the alignment score get easily outweighed by more numerous mismatches.

Yet, the NW alignment score for only one reference already looks like it
could, for the most part, be used to separate one class from the others and appar-
ently even more than that, judging by the maximal accuracy of 46.0%± 1.0%.
The same plot for the SW score looks partly similar (see figure 4.4). The highest
score value belongs, again, to the alignment of the reference sequence with
itself. It is equal to the NW alignment, because it exclusively consists of matches
and BLOSUM62 was used as the substitution matrix in both algorithms.

Figure 4.4: Violin plot of SW alignment scores over protein families in
Pfam8_L200. Again, each violin visualizes the alignment scores, this time
produced by the SW algorithm, class-wise over all sequences. The reference
sequence belongs to PF02361 and is called A0A095XZ51. The dashed green line
marks the global mean over all protein families.
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What can be observed in both figures is that almost all of the alignment
scores with protein sequences from the same protein family are greater than the
overall mean. Over the entire Pfam8_L200 dataset, this mean score value is at
10.5± 51.6 and 65.4± 35.2 for NW and SW respectively. The mean, however,
for the alignment scores of alignments with sequences of the same protein
family (PF02361) is 110.9± 57.6 and 131.5± 53.5 respectively. This is more
than 2 standard deviations higher for both scores. This explains an observed
intra-class accuracy that almost always exceeds 90%. It is the case for both
alignment scores, that only 2 other protein families mean scores are above the
overall mean. This likely adds to the discriminative power of the feature during
classification. The violins that are representative of NW scores (figure 4.3) seem
to be higher than the SW score violins, which corresponds to the standard
deviations within each protein family.

Figure 4.5: Violin plot of NW alignment scores over protein families in
Pfam8_Lhybrid . The reference sequence, again, belongs to PF02361 and is
called A0A095XZ51. The red violins are the ones belonging to the 4 newly
substituted families. The dashed green line marks the global mean over all
protein families.

The violin plot in figure 4.5 gives a strong hint as to why the performance
with the NW score is better on the Pfam8_Lhybrid dataset. All alignments
of the 207 amino acids long reference sequence and the sequences from the
4 classes with sequences, that are all about 400 amino acids long, are far below
−200. That is because of all the gaps that need to be introduced in order
to align sequences of such unequal length globally. They lower the scores
substantially. The overall mean alignment score dropped to −166.3± 192.5.
All alignment scores with the short sequences are well above that mean, while
all alignments with longer sequences lie well below it. The standard deviation
of intra-class scores did not change for the 4 original classes that are also
in Pfam8_L200. The intra-class standard deviation of the 4 new classes is
comparable. Nonetheless, overall standard deviation increased greatly, which
explains why the discriminative power increased as well. This is not so much
the case for the SW score, as can be interpreted from the violin plot in figure 4.6.

The alignment scores of the 4 new protein families are essentially not
distributed differently to the ones that they are replacing. That is not surprising,
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Figure 4.6: Violin plot of SW alignment scores over protein families in
Pfam8_Lhybrid . The reference sequence, again, belongs to PF02361 and is
called A0A095XZ51. The 4 violins depicting the new protein families are colored
in red. The dashed green line marks the global mean over all protein families.
The violins lie very similarly to the ones of the classes in Pfam8_L200.

because the reference sequence in question does not belong to any of them.
Only PF00999 is noticeably above the mean unlike any other, besides PF02361
which contains the reference sequence A0A095XZ51. This might explain the
slight increase of accuracy on the Pfam8_Lhybrid dataset.

That the protein families with the sequences of length of≈ 400 are easier to
discriminate when both available alignment scores are used becomes apparent
in figure 4.7.

Figure 4.7: Scatter plot of NW and SW scores for the reference A0A095XZ51
from PF02361 (here in green). All alignments with the longer sequences are
colored in red and the rest is colored in blue.

The red dots can be separated perfectly from the rest in the NW-dimension.
This was evidently not possible in the SW-dimension. The original protein
families from Pfam8_L200 are also mostly separable from the references own
family. Only very few green dots are in the far right corner. They represent
the sequences that are most similar to the reference. Interestingly, but not
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surprisingly, a clear linear relationship between the two dimensions is only
perceptible in the green dots, i.e. the reference-lending class. This makes sense
seeing that the alignments of the reference to most other sequences in both
the data sets is likely nonsensical from a biological standpoint. High alignment
scores are expected only within the own protein family. With NW, alignment
scores to a random other sequence should be somewhere around zero, or
negative if the sequences are of unequal length and many gaps are introduced.
With SW, length discrepancy should not have such an effect. The observation
matched the notion that SWs score is not correlated with the lengths of the
sequences but only the lengths of the aligned domain.

And so it stands to reason that sequence length is the dominant discrim-
inating factor for the score of the Needleman-Wunsch alignment algorithm,
not merely because accuracy increased when differently sized sequences got
introduced. In order to retain the NW score for further investigations, only
Pfam8_L200 will be regarded in the following sections. Because there is such a
pronounced discriminative power in the alignment scores within the references
class, the next point to be investigated is the choice of the reference sequence.
The latest remarks focused on one single reference sequence as a showcase for
this limited case. In the following sections, more than one reference sequence
will be chosen in order to produce input features for the classifier.

4.3 Choice of references
The choice of substitution matrices could be brought forward as the next

avenue to be investigated. Substitution matrices hold, however, biological
knowledge and also bias by design. It might be that the performance that is
induced through the use of a certain substitution matrix is tied too much to a
specific case, i.e. the sequences of a specific protein family. The investigation
of a multidimensional score profile will therefore be conducted first. Each
data point in a dataset will be equipped with not only one alignment score,
such as NW or SW, but will be aligned to multiple reference sequences in
order to represent it better within the feature space. This way, such a bias of a
substitution matrix towards certain sequences or whole protein families might
be circumvented.

In an effort to facilitate reproducibility and reduce bias due to the choice
of the references, a predefined set of references was generated from which all
reference sequences are drawn. In it, all protein families are represented by an
equally large number of sequences. The set is available on https://github.com/si-
cim/SRPMastersThesis.

As discussed, the following experiments are carried out on the Pfam8_L200
dataset. To start off, the number of references was doubled. Two protein
families were chosen randomly from which two sequences were picked as the
references from the just-mentioned subset. Then the pairwise alignment scores
were calculated with NW and SW. The scores were both used independently
and together as the input to the GLVQ classifier. The dimensionality was,
thus, N = 2 and N = 4 respectively. The process was repeated 256 times for
distinctive reference subsets. The results of the experiments with only a single
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reference from the previous section are displayed alongside the new results in
figure 4.8.

Figure 4.8: Accuracy depending on the number of references n. The
violin plot shows the accuracy distributions for 256 differently sized sets of
reference sequences each for n = {1, 2, 3, 4, 8}. The different inputs are colored
differently.

The second set of violins, which shows the accuracy distributions over
256 sets of two references each, looks very similar to the first set, but shifted
upwards. The shift amounts to +19.9%, +16.8% and +21.8% from 36.1%,
34.7% and 40.2% respectively, regarding the mean accuracy achieved with each
input score. It may be remarked that virtually the entire violins experienced a
shift upwards as not only the means increased, but also the minima (respective
to each alignment method). It can be said therefore, that the second alignment
score measurement from an extra reference sequence, that is from another
protein family, consistently enhanced the performance as measured by the
accuracy of the GLVQ classifier. The results are consistent with the concept of
the SRP inasmuch as the extra measurement provided additional information
about the sequence space and therefore helped the classifier to better classify
the sequences. More importantly, the performance can be increased even
more by using an increasing number of references. Using the same subset of
predefined reference candidates for the random selection of references from the
different protein families, the violins underwent an upward shift. The average
accuracy means and accuracies with the best-performing and worst-performing
references, as well as their standard deviation, may be observed in table 4.1.
The last set of violins in figure 4.8 shows the accuracy distributions of the runs
with 8 reference sequences, 1 from each of the protein families. The accuracy
of the GLVQ classifier was nearly perfect at 98.8% on average for the NW
score input, to which the SW score evidently did not add anything in their
combined usage. The best-performing reference set with the SW score lead to
an accuracy of 99.2% while those with the inputs including NW scores even
accomplished an accuracy of 99.7%. This means that with only the alignment
scores of 1 reference sequence from each family to all others, a nearly perfect
representation of the sequence space was achieved. More importantly, the
protein families are well-separable within the sensor response feature space.
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# references characteristic NW SW NW+SW

1

maximum 46.0± 1.0 43.3± 0.9 52.0± 1.4

mean 36.1± 3.7 34.7± 3.8 40.2± 4.8

minimum 26.8± 1.2 22.5± 1.2 27.9± 1.6

2

maximum 66.8± 1.0 63.9± 1.0 74.7± 0.8

mean 56.0± 4.4 51.5± 4.5 62.0± 4.6

minimum 41.5± 1.5 41.1± 2.3 40.2± 4.8

3

maximum 79.9± 0.8 72.1± 0.7 84.2± 0.8

mean 70.3± 4.7 63.5± 5.2 75.0± 4.3

minimum 53.7± 1.2 47.2± 0.7 40.2± 4.8

4

maximum 87.6± 1.2 85.5± 0.9 90.8± 0.8

mean 80.3± 3.6 75.9± 4.6 83.2± 3.3

minimum 66.9± 0.9 59.5± 0.7 72.0± 1.5

8

maximum 99.7± 0.2 99.2± 0.2 99.7± 0.1

mean 98.8± 0.8 97.1± 1.2 98.8± 0.7

minimum 91.1± 0.9 92.0± 0.3 94.7± 0.4

Table 4.1: Table of accuracies using different number of references. Mean
accuracies, minimal and maximal average accuracies, as well as their standard
deviation, are listed in percentages for the use of n references with n =
{1, 2, 3, 4, 8}.

It should be regarded that the SW score seems to provide a feature space
that is not quite as suitable for separating the protein families as the NW is.
Accuracies with the SW score were consistently worse for this dataset and this
set of alignment parameters. The reasons for this can not be determined easily,
however, a conjecture may be hazarded. Firstly, sequences in a Pfam protein
family are all regions of proteins that contain the same domain. That makes
them quite similar, but if the domain part is much shorter than the entire
sequence (≈ 200 amino acids for Pfam8_L200), which is likely, then it is not
representative of the whole sequence. Secondly, both alignment algorithms are
likely to get relatively high scores when aligning the sequences in one protein
family, but a potentially substantial part of the sequences is probably quite
different and weakens the meaningfulness of the scores. The scores can be
observed for the example reference A0A095XZ51 in figures 4.3 and 4.4. While
NW is forced to align the entire sequence, SW tries to only align the most
similar and mostly contiguous regions, the domains. NW might therefore
reward certain other regions that are present in many intra-class sequences
that coincide with the domain of the class. Thirdly, the gap cost in combination
with BLOSUM62 is set to −4. This is also the lowest value in BLOSUM62.



Chapter 4: Experiments, results and discussion 28

Figure 4.9: Standard deviation of NW and SW scores in Pfam8_L200 dataset.
Standard deviation of both alignment scores over all references in the predefined
subset are shown. On the right is the standard deviation of reference-providing
class and on the left is the standard deviation of the respective other 7 classes,
i.e. the scores of the reference’s class are excluded on the left. The scores were
z-scaled beforehand.

Furthermore, the mean intra-family alignment scores for the A0A095XZ51
reference are only 110.9± 57.6 for NW and 131.5± 53.5 for SW. Considering
the average length in this class of 199.9± 6.0, those are surprisingly low scores.
Other random samples have shown, the same trend towards somewhat low
scores. Finally, the fact that the protein families in Pfam are built with a much
more advanced algorithm [Mistry et al., 2020] compared to NW and SW could
mean that they are not sophisticated enough to pick up on the same signals
for protein similarity that Pfams algorithm is. It might therefore be possible
that the relatively high, but at the same time unexpectedly low intra-class
alignment scores are not distinctive enough. NW might only produce more
meaningful alignment scores than SW because it is biased less by the gap
penalty, as it allows for the score to be negative without ending the alignment.
In fact, intra-class standard deviation of the SW scores is systematically smaller
than that of the NW scores for the classes that do not provide the reference.
This may be observed in figure 4.9. Standard deviation of the SW scores is
greater on average, however, within the class that provided the reference. The
mean of the standard deviations of NW scores for the protein sequences that
are not in the same class as the reference is 37.8% higher than that of SW
scores. For the reference’s class NW scores’ standard deviation is only 15.7%
less than the SW equivalent. Although this does not explain the reason for the
difference in expressiveness between the two alignment scores, it does shed
a light on possible quality measures for the scores that could be investigated
further in the future.

Moving on, it is noticeable by looking at the violins in figure 4.8 and
backed by closer inspection of the accuracies in table 4.1 that the intensity that
the performance increases levels off as the number of references rises. This
phenomenon indicates that the second measurement from another reference
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carries some redundant information present already in the first. A third
measurement has again some redundant information from the first two and so
on. It is also the case that it was already apparent in 4.3 and 4.4 that a reference
measurement does not only contain discriminative information about its own
class, but also, to a small extent, about the data in the other classes. Those
two observations support the notion that the sequence space is like a dark
room that can be illuminated by placing light sources at different locations.
One light source might not be enough to be able to make out all the objects
in the room, maybe because the objects can conceal each other. Furthermore,
two light sources that are placed right next to each other might not have a big
effect on visibility.

The following experiment demonstrates that the location of the references
in sequence space is important. Instead of randomly choosing 8 references from
8 different protein families they are all chosen from a single family or from only
2 families. The resulting performance of the GLVQ classifier on Pfam8_L200 is
visualized in figure 4.10. The exact values for mean, minimum and maximum
accuracy are listed in table 4.2.

Figure 4.10: Violin plot of accuracies with references from 1, 2 or 8 different
classes. Note that the accuracy axis begins at 0.4.

Accuracy is significantly worse when the references are all from the same
protein family. Interestingly, though only similarity scores to sequences from
one class were input for the classifier, the worst accuracies are just under
50% (49.0%± 1.1% for NW and 46.3%± 0.5% for SW). This is surprising,
considering that the worst accuracy with just a single reference, which of
course also represents only one class, was 26.8%± 1.2% and 22.5%± 1.2%
respectively for the alignment algorithms. It can be concluded from this, that
the sequences in the clusters in feature space are divers enough to increase the
amount of information that is transferred from sequence space to feature space
when more of them are used as references. This seems to be consistent over
all classes because all were chosen the same amount of times to provide the
references. Note that the best-performing set of references with both alignment
algorithms was able to provide the GLVQ classifier with enough information to
classify on average 81.0%± 0.9% of sequences correctly. That is remarkable
with such a limited selection of reference sequences.
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# origins characteristic NW SW NW+SW

1

maximum 77.1± 1.3 68.5± 0.6 81.0± 0.9

mean 65.6± 5.5 57.5± 4.5 71.7± 4.4

minimum 49.0± 1.1 46.3± 0.5 60.4± 1.3

2

maximum 85.6± 0.4 76.6± 0.8 87.4± 0.8

mean 74.8± 3.4 68.2± 3.7 79.3± 3.3

minimum 64.5± 1.1 55.7± 1.0 71.4± 0.3

8

maximum 99.7± 0.2 99.2± 0.2 99.7± 0.1

mean 98.8± 0.8 97.1± 1.2 98.8± 0.7

minimum 91.1± 0.9 92.0± 0.3 94.7± 0.4

Table 4.2: Table of accuracies using sets of 8 references from 1, 2 or 8 different
origins/protein families. Mean accuracies, minimal and maximal average
accuracies, as well as their standard deviation, are listed in percentages.

Accuracy improved consistently with the refined choice of references from
2 of the 8 protein families. As before, the SW score seemed to either hold a
little less information than the NW score, or the local alignments generate a
worse feature space for the specific classification problem.

4.4 Choice of substitution matrices
As already mentioned at the beginning of the previous section, the influence

of different substitution matrices is to be examined. The 5 default BLOSUMs in
BLAST are selected, namely BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80
and BLOSUM90. They are attached in the appendix. Because of the already
very high accuracy that was achieved with 8 references from all 8 protein
families in Pfam8_L200, the decision was made to perform the following tests
with only 4 references. The results are summarized in a violin plot in figure 4.11.

The averaged accuracies with the BLOSUM that has been used so far,
BLOSUM62, are depicted in the third set of violins. The accuracies of the
GLVQ classifier with alignment scores that used the alternative substitution
matrices are mostly equivalent to that of the previous default substitution
matrix. Two violins form visible exceptions, both using the SW algorithm,
in combination with BLOSUM80 and BLOSUM90. Like previously, this is
reflected in the standard deviations of the alignment scores with protein
sequences that are not in the same class as the reference sequence. This
is portrayed in figure 4.12. The described effect is more pronounced with both
BLOSUM80 and BLOSUM90 compared to BLOSUM62. The mean of standard
deviations of NW scores is 152.0% higher compared to the mean of the standard
deviations of SW scores for BLOSUM80. For BLOSUM90 it even amounts to a
183.9% increase of NW over SW score standard deviation. This matches the
systematically worse accuracies with those two specific substitution matrices.
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Figure 4.11: Violin plot of averaged accuracies with 5 different substitution
matrices. As before, NW score and SW score were used alone and in
combination.

Figure 4.12: Standard deviation of NW and SW scores in Pfam8_L200 dataset.
Standard deviation of both alignment scores and with 3 different substitution
matrices are shown over all references in the predefined subset. The alignment
scores of all protein sequences that are member of the reference’s class are
excluded from the calculations. The right plot corresponds to BLOSUM80, the
middle plot to BLOSUM62 and the left plot to BLOSUM90. The scores were
z-scaled beforehand.

A biological interpretation is yet to be made, but the effect is likely connected
to the Pfam8_L200 dataset and its length condition.

Apart from the two exceptions, the choice of substitution matrix seems not
to make a noticeable difference to the accuracy with the SRP approach.

4.5 Test with heterogeneous dataset
In this section, the Pfam8 dataset is revisited in order to test the SRP on a

dataset that is unrestricted regarding sequence lengths (see section 3.1). Thus,
it will become clear whether to increase the number of references also has
the same effect on an entirely different set of data. First, the experiment with
4 reference sequences from 4 different protein families was repeated for Pfam8.
The same procedure was reiterated as before, i.e. NW and SW alignment scores
to the references were used both independently and combined as the input to
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the GLVQ classifier. Like in previous experiments, accuracies from all k folds
were averaged for each set of references and the distribution of those averages
was plotted as violins in figure 4.13. The mean, minimal and maximal accuracy
values and their standard deviations are listed in table 4.3.

Figure 4.13: Violin plot of averaged accuracies on Pfam8 with 4 and 8 references
from different protein families. Like in previous experiments, NW score and
SW score were used alone and in combination.

# references characteristic NW SW NW+SW

4

maximum 90.9± 0.7 84.1± 0.6 94.2± 0.3

mean 86.0± 2.8 68.5± 6.2 87.7± 3.4

minimum 79.2± 0.4 50.8± 0.6 78.1± 1.0

8

maximum 91.6± 0.2 97.6± 0.3 96.6± 0.3

mean 89.4± 1.1 94.2± 1.7 94.9± 0.9

minimum 85.7± 0.8 88.5± 0.6 91.8± 0.4

Table 4.3: Table of accuracies on Pfam8 using different number of references.
Mean accuracies, minimal and maximal average accuracies, as well as their
standard deviation, are listed in percentages for the use of 4 and 8 references.
Note that the accuracy axis begins at 0.5.

The result of the experiment with 4 references is that the accuracy with
the NW score at a mean of 86.0%± 2.8% was comparable to the Pfam8_L200
dataset, but that is not the case with the SW score, which performed worse
with a mean accuracy of only 68.5%± 6.2%. That may be comparable to the
performance with SW on Pfam8_L200, but it is significantly worse than NW. It
seems like local alignment did not produce meaningful alignment scores for
some of the reference sets. The classifier’s worst accuracy of 50.8%± 0.6%
could be explained by alignments that were adequate only for the sequences
in the same protein family as one of the references, but lacking expressiveness
for the other half. This might be the case when the alignments are too short
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because no sensible alignments are possible. The SW does not seem to add any
information to the NW score in most cases, because the mean accuracies with
NW and with NW+SW are almost the same and within each other standard
deviation.

The runs with 8 references, 1 from each class, paint a different picture. The
SW score outperformed NW significantly with a difference of 5.5%. The NW
score, however, yielded a dependable accuracy of 89.4%± 1.1%. And so did the
combination of the two with a mean accuracy of 94.9%± 0.9%, which marks
the highest. It is however surprising to see that the SW score performed better
for some reference sets than the combination of NW and SW, because the
classifier should have performed at least equally as well if not better with both
alignment scores as inputs than with only one. The maximal accuracies differ
by 1.0%, which seems to be significant, judging by the standard deviations.
The reason for that might be the classifier that was employed, GLVQ. The input
with 2 scores for each of the 8 references was 2 ·8→ 16D. All of the 16 features
span a 16D feature space in which the prototypes are updated, a number big
enough to trigger what is called the Curse of Dimensionality [Keogh and Mueen,
2017]. For GLVQ as it is described in section 2.3, the input dimensions are
weighed equally, as remarked also in [Bohnsack et al., 2022]. Eventually, there
might be too much noise in the input features and GLVQ is not equipped to
ignore it. GMLVQ on the other hand is able to learn the importance that each
feature has for classification and may therefore circumvent the problem.

The same runs with the same sets of references were therefore repeated with
the GMLVQ classifier and the results confirm the hypothesis. The averaged
accuracies that were attained with GLVQ and GMLVQ with the same reference
sets are displayed in the violin plot in figure 4.14.

Figure 4.14: Violin plot of averaged accuracies with 8 references utilizing
different classifiers. Resulting accuracy distributions are displayed of GLVQ
on the left (same as in figure 4.13 on the right) and GMLVQ on the right.
Like in previous experiments, NW score and SW score were used alone and in
combination. The accuracy axis begins at 0.8.

Though the mean accuracy of the combined NW+SW scores remained
unchanged, the maximal achieved accuracy went up to 97.6± 0.3, which is
just slightly above the maximum of SW. That does not by itself exclude the
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possibility of a run to output a better result for SW than for NW+SW, so the
particular reference sets were compared against each other. It occurred a couple
of times that the SW score lead to a higher accuracy than NW+SW but in those
cases they were virtually the same, i.e. well within the respective standard
deviation. It is also the case that NW scores resulted in a significantly better
model accuracy with GMLVQ.

In conclusion, the SRP approach in combination with sequence similarity
sensors is a successful method of feature generation for protein sequences. The
approach has been tested on 3 datasets in total and on 1 dataset in particular.
The specifics of the configuration of the sensors with different alignment
algorithms and different substitution matrices, as well as the influence of the
number of references were examined. The application of the GMLVQ classifier
holds opportunities to further increase performance and seems to be the only
way to allow for higher numbers of features. The possibility of interpretation
and model improvement that is given by the CCM Λ appears promising in the
context of the SRP and should be investigated further.
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Chapter 5

Conclusions and future directions

There lies great potential in machine learning methods for bioinformatics,
because the available amount of data grows significantly and needs to be
analyzed and interpreted. Recent breakthroughs involving machine learning,
e.g. AlphaFold [Jumper et al., 2021], are applying mostly deep learning methods.
Those methods are not interpretable by themselves but at most explainable.
Inherently interpretable approaches should be used instead [Rudin, 2019],
e.g. variants of the prototype-based Learning Vector Quantization. Furthermore,
existing methods like median or relational LVQ are unable to handle large
amounts of data and are also much slower. A promising approach, the Sensor
Response Principle, has therefore been adapted to protein sequences data.

Firstly, the necessary building blocks were described. Among them are
two well-established but simple sequence alignment algorithms, NW and SW,
that are used in combination with substitution matrices, first and foremost
BLOSUMs. Together they yield a proximity measure for protein sequences,
which is the input into for the classifier, GLVQ, which was introduced next.
Finally, the SRP and its adaption to protein sequences was explained. Test
datasets were generated from Pfam employing different conditions and the
evaluation by means of accuracy metric discussed.

Having laid the foundation for the experiments, the methods were then
put into practice with a naïve initial attempt with the SRP on the Pfam8
dataset. This should be seen as a proof of concept, which revealed that it
is in fact possible to classify protein sequences based on their sensor response,
i.e. alignment score, to only a single reference sequence. The parameterless
NW classifier achieved classification of k-fold validation datasets with a mean
accuracy of around 55% with the NW score and over 60% with both alignment
scores as input. That is respectable for a simple algorithm on an 8-class
problem with low-dimensional input. The SRP approach was seemingly able to
effectively translate information from protein sequences to a vectorial feature
input of incredible sparsity.

The volatility of both sequence alignment algorithms regarding the diversity
of sequence length was thereupon examined with GLVQ. Two different datasets
were used: Pfam8_L200 with sequences of around 200 amino acids each and
Pfam8_Lhybrid that is a concatenation of half of Pfam8_L200 and the other
half being sequences of around 400 amino acids each. The accuracy differed
significantly between the two datasets, which was at least partly accounted to
the length discrepancy between the classes in Pfam8_Lhybrid , whose classes
were seemingly easier to separate. This can also be a side effect introduced into
Pfam8_Lhybrid by the 4 new classes that may be easier to discriminate perhaps
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because of longer sequences. Closer examination of alignment scores to one
example reference, however, suggested that at least NW is biased regarding
length, simply because of the accumulation of gap costs. Global alignment
means that there are at least as many gaps in the optimal alignment as the
difference of the sequences’ lengths. The NW score is, hence, very volatile when
sequences have very different lengths. As a result, Pfam8_L200 was chosen for
all further experiments.

The sensor measurement was up to now restricted to a single reference at
a time. Henceforth, the number of references was increased. First to 2, then to
3 and 4 and lastly to 8 references. As before, NW and SW scores were input on
their own and also combined. The accuracies of the GLVQ classifier increased
consistently with every additional reference. The rate, however, seemed to
decrease, which suggests that with every additional reference there comes some
partly redundant information. By taking one reference out of each protein
family, the data seem to be represented very well in the subsequent feature
space. Taking all things into consideration, it can at this point be argued that
SRP is very well suited as a feature extraction method for protein sequences
under the examined circumstances. With only 8 evenly spread references,
accuracies of GLVQ consistently exceed 90% with a mean of 98.8%± 0.8%
for the 8D feature vector based on the NW score. In a succeeding experiment,
the condition that the references should come from different protein families
was confirmed as necessary. The outstanding performance in classification
is only possible if the references are chosen smartly, e.g. from distinct classes.
Furthermore, it seemed as if the SW score was always suited slightly worse for
the task than the NW score. This could only be traced back to a systematically
smaller standard deviation across all tested references, at least for Pfam8_L200.

Alignments are undoubtedly influenced by substitution matrices, but ac-
cording to experiments that were carried out, involving 5 of the most-used
substitution matrices, this effect might almost be negligible for the SRP under
the given circumstances. The 5 most common BLOSUMs were put to the test
and did not result in varied accuracies. There were only 2 exceptions with SW in
combination with BLOSUM80 and BLOSUM90, but for the rest the accuracies
with identical sets of references (4 references from 4 protein families) remained
very similar.

As a last step, Pfam8 from the beginning was revisited, this time with
GLVQ and more references (4 and 8). The SRP approach worked quite well,
although the feature input via SW score seemed to need more references than
SW, perhaps due to it being more fragile with regard to nonsensical inter-class
alignments than the NW score. Intriguingly, the GLVQ classifier showed minor
indications of the adverse effect of the Curse of Dimensionality [Keogh and
Mueen, 2017]. Thus, GMLVQ was utilized and validated the hypothesis. Besides
allowing a higher number of features, be it multiple references, alignment
algorithms or substitution matrices, another advantage of GMLVQ over GLVQ
is that it can provide information about the importance of certain features
regarding the classification task. That means that it would be possible to learn
a model with a bigger set of references, each with several combinations of
alignment algorithms and substitution matrices. The CCM Λ could then be
used to judge the importance of each of the feature dimensions and give an
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insight about which combination works the best. Only those may then be
necessary to compute in order to classify a new, unknown protein sequence.
Further, it is conceivable that Λ could be interpreted in the context of a specific
dataset/problem when certain features stand out. Finally, it might be possible
to utilize Λ so as to generate new kinds of substitution matrices, which would
be rooted in existing substitution matrices and informed by the classification
task. A linear combination of the best-performing substitution matrices is
theoretically possible (private communications with Prof. Villmann). This
could possibly give rise to a family of substitution matrices that is motivated
by classification tasks instead of protein sequence alignments of homologous
proteins or protein similarity search, which have been the leading rationales so
far.

Overall, this thesis provides a starting point for further research. It is
necessary to test the adapted SRP approach on more datasets and to explore
the opportunities that lie in the CCM.
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Glossary

BLOSUM__ BLOSUM where the sequences that are clustered have a minimal
sequence identity of the given number in %

Pfam Database of protein families and domains, now part of InterPro

Pfam8 dataset with 23 · 210 = 213 protein sequences from 23 domain families

Pfam8_L200 like Pfam8, but all sequences are approximately 200 long

Pfam8_Lhybrid like Pfam8, but one half of the sequences are approximately
200 long while the other half is approximately 400 long

z-scaling Center to the mean and divide by standard deviation, thereby
normalising the data: z = x−µ

σ
with the mean µ and standard deviation

σ
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