
MASTER’S THESIS

Ms.
Evgeniya Nemchinova

ML-based classification of
problems occurring on SAP

supported DB, OS and cloud
platforms

2020

Faculty of Applied Computer Sciences & Life Sciences

MASTER’S THESIS

ML-based classification of
problems occurring on SAP

supported DB, OS and cloud
platforms

Author:
Evgeniya Nemchinova

Study Programme:
Applied Mathematics for Digital Media (M.Sc.)

Seminar Group:
MA16W1-M

First Referee:
Prof. Dr. Thomas Villmann

Second Referee:
Dr. Maximilian Schmidtke

Mittweida, March 2020

I

I. Acknowledgements

I wish to express my sincere appreciation to my supervisors in SAP, Dr. Chris-
tian Cop, Dr. Arndt Effern, Dr. Maximilian Schmidtke who convincingly guided
me to be professional and kept moving along with me through the whole way of this
project. Without their persistent help, the goal of this work would not have been realized.

I wish to acknowledge my supervisor in HS Mittweida, Prof. Dr. Thomas Villmann, for
his professional insights and experienced advice.

I thank my family, Tomas, Paulina and my grandfather for their encouragement and
belief in me.

Bibliographic Information

Nemchinova, Evgeniya: ML-based classification of problems occurring on SAP supported DB,
OS and cloud platforms, 65 pages, 28 figures, 6 tables, Hochschule Mittweida, University of
Applied Sciences, Faculty of Applied Computer Sciences & Life Sciences

Master’s Thesis, 2020

Typeset by LATEX

Abstract

Anomaly Detection is a very acute technical problem among various business enterprises. In
this thesis a combination of the Growing Neural Gas and the Generalized Matrix Learning Vector
Quantization is presented as a solution based on collected theoretical and practical knowledge.
The whole network is described and implemented along with references and experimental re-
sults. The proposed model is carefully documented and all the further open researching ques-
tions are stated for future investigations.

II

II. Contents

Acknowledgements I

Contents II

List of Figures III

List of Tables IV

1 Introduction 1
1.1 Motivation . 2
1.2 Statement of the problem . 3
1.3 Thesis structure . 4

2 Basics 5
2.1 Outliers . 5
2.2 Root Cause Analysis . 5
2.3 Technical Monitoring Cockpit . 5
2.4 The Self-Organizing Maps . 5
2.5 Confusion Matrix . 6
2.6 ROC and AUC . 7
2.7 Principal Component Analysis . 7
2.8 K-Fold Cross Validation . 8

3 Growing Neural Gas (GNG) 9
3.1 Growing Neural Gas Algorithm . 9

4 Learning Vector Quantization 13
4.1 The concepts of Learning Vector Quantization 13
4.2 Milestones of learning scheme for LVQ algorithms 15
4.3 Generalized LVQ algorithm . 15
4.4 Generalized Matrix Learning Quantization 17

5 Data Preprocessing. Healthy prototypes with the GNG. 19
5.1 Data set . 19
5.2 The architecture of the built tool . 21
5.3 Healthy Data Preprocessing . 23
5.4 GNG learns Healthy Data . 25

5.4.1 Evaluation of GNG . 30

6 GMLVQ Classification of SAP IT Data 37
6.1 The GMLVQ experimental workflow . 37
6.2 Results . 40

6.2.1 Binary Classification . 40
6.2.2 Multi-class Classification . 43

II

7 Conclusion and future research 45

A List of Features 47

B Reference Implementation in MATLAB for GNG 49

Bibliography 61

III

III. List of Figures

1.1 Computer Science sub-fields . 1

1.2 The architecture of the Anomaly Detection tool. 4

2.1 Kohonen Architecture . 6

2.2 ROC-AUC curve . 7

2.3 4-Fold Cross Validation [2] . 8

5.1 A fragment of the Data with 8 out of 32 metrics shown. 20

5.2 A fragment of a SAP Productive System. 20

5.3 The architecture of the tool building. 21

5.4 Graphical interpretation of the clustering. The output pots represent Yk. 22

5.5 The definitions for the most common normalization procedures. 23

5.6 The Standard Scale on the healthy data . 24

5.7 The Standard Scale realization in Python . 24

5.8 A fragment of the neural net with 5 neurons - the yellow dots, and one data sample -

the blue dot. 27

5.9 Visualization of the adaptation strength for the neurons versus their winning rates . 28

5.10 (a)The neurons position with respect to the input signal. (b)The example of the up-

dating strength for the neurons (marked with red for BMU) 29

5.11 In the purple boxes there are Pr(L,T,ε) r different sets of hyper-parameters depicted;

Each set is tried out in each f fold of different Ytrain,Ytest subsets; for each fold one

gets r pairs of mean errors for Ytrain and Ytest . 32

5.12 Hyperparameters values against TotalErrortrain(Pi) and TotalErrortest(Pi), i = 1, ...,r. 34

5.13 ε tuning in a smaller interval . 35

5.14 Error behavior against different L and T with fixed ε = 0.035 35

5.15 Visualization of the GNG after different number of iterations. P(N = 40,L = 50,T =

50,ε = 0.035,α = 0.5,δ = 0.05,MaxIt = {25;50;75;100;125;150}) 36

6.1 The input data for clustering . 38

6.2 An example split of input data into train- and test-subsets. 39

6.3 Off-diagonal relevance matrix elements . 41

III

6.4 (a)The visualization of the training data in terms of their projection on the two leading

eigenvectors of the relevance matrix. (training over 10 validation runs with random

30% of samples left out for testing and 60 gradient descent steps). (b) ROC-AUC . 42

6.5 The importance of the data features according to GRLVQ. The features peak repeat-

edly since the time-windows were flattened into arrays. E.g. Features 3, 35, 67,...

represent disk usage . 42

6.6 2D performance of training over 10 validation runs with random 30% of samples left

out for testing and 60 gradient descent steps. blue-healthy, red-A1, green-A2, light-

blue-A3 . 44

6.7 Evolution of the mean training and test error in the course of GMLVQ-Training . . . 44

B.1 Graphical . 49

IV

IV. List of Tables

2.1 Confusion Matrix . 6

5.1 The sorting function result for 5 neurons. Here, neuron w2 is the BMU, as its winning

rank is 1. 27

6.1 GMLVQ Classifier performance after 10-folds CV for the different data set combina-

tions (healthy data samples against anomalies of three different types, number of

samples in brackets) . 40

6.2 The table illustrates the number of subjects correctly classified for each class in bold

and the overall performance in percentage as obtained in the CV 43

A.1 a) Dataset metrics of the system . 47

A.2 b) Dataset metrics of the system . 48

Chapter 1: Introduction 1

1 Introduction

Artificial Intelligence has been drawing the attention of computer scientists from all over
the world for decades [31]. People always wanted to build up modern powerful machines
and computers capable of imitating human’s physical and mental abilities. Thus, that
could ease many life problems we face every day: cleaning, cooking, collecting and
sorting rubbish, the list is endless. All of this led out into a new discipline in 1956 which
we now know as AI [31]. Many different approaches have been developed and tried out
seeking the solution to one goal - teach machines to act, make a choice and learn like
a human being[24].

Figure 1.1: Computer Science sub-fields

Before any of the approaches can be applied to teach a machine, one needs to analyze
data and transform it into information that can be processed by the machine. Thus,
there was developed a huge sub-field of AI, known as Machine Learning. It, in turn,
includes supervised, unsupervised and semi-supervised learning methods [31]. For a
better understanding of the working scope, the sub-sequence of disciplines is depicted
in Figure 1.1.
Nowadays, a lot of problems in Machine Learning are related to Anomaly Detection. For
example, how to teach a machine to distinguish healthy patients’ state and unhealthy
one according to given biometrics; or talking about business operating systems, how
a machine could monitor the normally functioning state and automatically report about
disturbances of any cause. A more detailed explanation about Anomaly Detection is
described in [24]. The most widely used approaches to treat such problems are clas-
sification and clustering. Classification belongs to supervised training, when one gives
an algorithm some input data and teaches the algorithm to return an in advance known
output (learning with a master). Whereas, clustering (or learning without a master) is
a type of Machine Learning which is used when an end-user is not aware of possible
output [11]. Algorithms learn data on their own and split them into groups in accordance

2 Chapter 1: Introduction

with a similarity measure. Normally, one does not always know the results which might
be shown after data is processed. For instance, a doctor collects patients’ anamnesis,
urine and blood samples, measures pulse and pressure. After gathering all the infor-
mation about a patient it is not always clear which diagnosis to report, as the same
symptoms may signalize to different health problems. Here we need to manage to get
an output that we can not predict beforehand, so we can not teach our algorithm to per-
form a particular, known output. That is why Unsupervised Learning finds application
in different areas more and more often. Also, sometimes we do have some available
information, that is probably not enough for solving an anomaly detection problem com-
pletely, but could be used as a start point. For instance, if we are given with examples
of healthy data, we can teach an algorithm how to distinguish this healthy state from
an unhealthy one. After a successful classification we can continue with unsupervised
learning, trying to make the machine see the differences among variety of anomalies.
Such learning approach is known as semi-supervised, because the first step includes
classification (an anomaly or not an anomaly) and the second one uses clustering (what
kind of anomaly). For more detailed explanation about semi-supervised technique see
[12]. All in all, Anomaly Detection finds its application in many spheres such as banks,
insurance companies, sales, business. People are trying to catch and patch an outlier
behavior as soon as possible in order to keep their business running, otherwise, the en-
terprises may meet financial and client loss. That is why automatic anomaly detection is
essential for middle and big ventures. If there was such a method to identify an anomaly
in a huge volume of data and even give some feedback about its root cause, many com-
panies would profit sufficiently. In spite of the topicality of the task, it is not completely
solved so far. There is plenty of algorithms, but all of them have their drawbacks, such
as poor scaling onto the bigger amount of data, the necessity of knowledge about in-
put data or hyper-parameters pre-definition, which are often to be chosen heuristically
[37]. Although it seems unlikely that one can find a universal method that would solve
arbitrary clustering or classification tasks (see [11]), we can keep investigating the algo-
rithms and their combinations in order to come up as close as possible to multipurpose
solutions.

1.1 Motivation

In this thesis we investigate how Anomaly Detection can help in Root Cause Analy-
sis (RCA) for monitoring applications, and for that we use SAP systems to build and
evaluate an anomaly detection and root cause identification model. A SAP system is
a business application that consists of application servers connected to SAP HANA
databases. The database tracks records of metrics (attributes), such as CPU load,
memory usage, and others, see Appendix A. The records are written in a time-series
manner. Each timestamp stores an array of 32 attribute values, they are being moni-
tored and analyzed manually by SAP experts when they try to find a root of an appeared
problem. For that, the SAP environment is equipped with the Technical Monitoring Cock-

Chapter 1: Introduction 3

pit (TMC) which is a built-in tool of SAP application server ABAP to quantify the impact
and locate the source of a reported problem. TMC collects data from all above men-
tioned stacks and also from underlying host. That is, given that we already know that a
problem exists because of end-user complaints or of a system landscape alert. To find
the root cause of a present problem, the TMC has access to and allows the correlation
of data from all technical stacks of an SAP system (Operating System (OS), Database
(DB) and Application Server (AS)). When facing a present problem, an expert from SAP
(support engineers) usually addresses the problem to a certain category as for example
CPU, Memory, IO, network, a.s.o. In order to help the expert in further analyzing the
RC of the present problem, the TMC provides a number of analysis scenario screens.
However, it is still difficult to find the root cause without anomaly detection, the user just
browses through the raw data, whereas having anomaly detection tool, we could offer
pre-configured analysis scenarios for a presumed anomalies class. Such an automatic
analyzing tool could support the experts in their daily routine.

1.2 Statement of the problem

It would be desirable to develop a support algorithm which can help SAP-experts detect
and classify deviant behavior of the system. With that goal in mind, we want to use
a large amount of healthy data in order to teach the healthy state of the system to an
algorithm. As soon as productive system behavior is learned, we are going to separate
healthy and abnormal data samples. Furthermore, it shall be evaluated to which degree
an automated, data-driven process can support the expert in determining the problem
category. For the investigation, we were provided with labeled data of healthy states
and anomalies of different classes, so that there are many more healthy states, those
are to be learned first in order to create prototypes that could optimally represent the
healthy data samples. Thus, the semi-supervised two-step approach was suggested.
First, the topology of the healthy data is to be learned with Growing Neural Gas[15].
Then, the binary problem is to be solved: automatically distinguish normal and abnormal
data signals. Our final goal is to detect different anomaly states and here we want to
investigate how well the Generalized Matrix Learning Quantization (GMLVQ)[32] can
perform in our case.

In Figure 1.2 we can see the structure of the Anomaly Detection Tool we want to build.
As a healthy state is extensive and unhealthy signals are sparse, we first find a repre-
sentation of that class with GNG.

4 Chapter 1: Introduction

Figure 1.2: The architecture of the Anomaly Detection tool.

Then the prototypes retrieved from the Neural Gas are used as data samples for GMLVQ
and compared with anomalous samples.

1.3 Thesis structure

The further part of this thesis is organized as follows: Chapter 2 gives some basic
definitions in ML that will be used in this work. Chapters 3,4 describe basic concepts of
the GNG and the GMLVQ. In Chapter 5 we describe our data workflow in the GNG and
evaluate the results. Chapter 6 describes he the workflow of the GMLVQ classifier with
final evaluation. This work is finished by Chapter 7, where we discuss the results and
propose a scope of open questions for possible future research.

Chapter 2: Basics 5

2 Basics

This chapter explains the main terms and concepts that we use in the following chapters
and helps to understand the following content.

2.1 Outliers

Outliers are data signals in well-structured data that deviate from the normal behaviour
[38]. In this work we will also use term anomalies because it is intuitively more clear
and used as a main term in SAP.

2.2 Root Cause Analysis

The process of discovering the ground cause of a problem, that appears in an alert
system or is reported by a user, is called RCA. The information about the root cause
helps to understand what to update in the system to prevent the occurring of the same
problem in future.

2.3 Technical Monitoring Cockpit

The TMC is is an RCA tool in SAP that shows users the full stack of SAP applications
such as databases, operating systems and application servers. Users can monitor data
in each of the connected systems in order to catch the moment of interruption and
indicate the RC of it.

2.4 The Self-Organizing Maps

In 1982 a Finnish professor Dr. Teuvo Kohonen introduced an unsupervised approach
that realize dimensionality reduction, mapping high-dimensional data onto 2D or 3D
space [4]. The approach is known as a self-organizing map (SOM). SOMs maintain a
topology of input and output spaces, guided by the fact that the input vectors that are
close in high dimensional space are also turned out to be neighboring neurons after
mapping onto the 2D space. A valuable characteristic of the learning process is that the
neurons are being organized unsupervisely (a self-organization). They group according
to the similarity between each other. The following Figure 2.1 depict the architecture of
a SOM, [4].

6 Chapter 2: Basics

Figure 2.1: Kohonen Architecture

A SOM, additionally, uses competitive learning to adjust its neurons. Only one neuron
is activated at each iteration in which the features of an input signal are presented to
the neurons network, as all vectors compete for the right to respond to the input. The
winning neuron - the Best Matching Unit (BMU) - is chosen in accordance with the
similarity, between the current input values and all the neurons in the projected space.
To get a better understanding of the concepts of SOMs, see [22]. In this thesis we
applied an unsupervised algorithm that was driven by SOM concepts: Growing Neural
Gas. It is explained in Chapter 3.

2.5 Confusion Matrix

A confusion matrix is used as a performance measure of ML classification algorithms.
For example, we are given with some data sample and we know to which class it belongs
to. Now we want our algorithm to match it to a particular class. After the algorithm run,
we can construct a confusion matrix (Table 2.1), where True Positive and True Negative
outcomes mean that our algorithm made a correct prediction about the class for a given
data signal. Otherwise, we get a miss-classification (False Negative or False Positive).
For further details, see [1].

Actual Values
+ −

Predicted Values
+ TruePositive FalsePositive
− FalseNegative TrueNegative

Table 2.1: Confusion Matrix

Chapter 2: Basics 7

2.6 ROC and AUC

When we want to visualize the performance of a multi-class classification problem, we
can use Receiver Operating Characteristics, which is a curve and the Area Under the
Curve (AUC). Thus, AUC-ROC curve is another evaluation measure for classification.
It shows how well our algorithm can distinguish among different classes. In Figure 2.1
we can see that the ROC curve is plotted with True Positive Rate against False Positive
Rate values.

Figure 2.2: ROC-AUC curve

Where we calculate
T PR(Sensitivity) =

T P
T P+FN

,

Speci f icity =
T N

T N +FP
,

Accuracy =
T P+T N

T P+T N +FP+FN
.

The most accurate model is the one that has AUC close to 1, meaning that the algorithm
performs good measure of separability. For more detailed interpretation of the ROC-
AUC see [3].

2.7 Principal Component Analysis

A PCA is a statistical method that converts a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables or so-called principal
components [21]. The conversion takes place due to an orthogonal transformation.
PCA can be used for dimensionality reduction and visualization. In this work, we will
use it to picture our 5-by-32 dimension input signals in a 2-dimension plot.

8 Chapter 2: Basics

2.8 K-Fold Cross Validation

When we need to evaluate a ML algorithm accuracy, we can use CV technique [2]. First,
the input data is split into k -sets. The k subsets are called folds. In the second step,
we iteratively fit the model k times, each time training the data on k-1 of the folds and
evaluating on the k -th fold (called the validation data). In the Figure we show an example
on 4-folds validation. The first iteration we train on the first four folds and evaluate on the
fifth. The second time we train on the first, second, third, and fifth fold and evaluate on
the fourth. We repeat this procedure 2 more times, each time evaluating on a different
fold. At the very end of training, we average the performance on each of the folds to
come up with final validation metrics for the model.

Figure 2.3: 4-Fold Cross Validation [2]

This approach is used for evaluation of the GNG in Chapter 5. For more information
about K-Fold CV see [2],[30].

Chapter 3: Growing Neural Gas (GNG) 9

3 Growing Neural Gas (GNG)

In many unsupervised algorithms learning aims at optimal representation of an input
data structure: topology learning[20], [13]. In other words, we want to discover
and represent a fundamental structure of the given data with less number of data
representers prototypes.
Assuming that we are given with P(x) - the distribution of some data (high-dimensional),
the task is to design such a topological structure that would portray the given data
distribution topology. The algorithm was driven by SOMs and was described by
Martinetz and Schulten in 1993 [26]. The approach uses the synergy of Neural Gas
(NG) [36] and ’competitive Hebbian learning’ CHL [25]. Further, an advanced approach
was described by Fritzke where NG was replaced with GNG [15]. Growing Neural Gas
is a derivative algorithm from NG and is also based on CHL.

3.1 Growing Neural Gas Algorithm

Growing Neural Gas Algorithm (GNG) is a self-organized neural net that learns the
topology of input data on the flow along with new input samples insertion. In this Master
thesis, the code was written based on the GNG algorithm given in the article [15], where
it was assumed that we have a network, (or topologically - a graph) that consists of two
sets:

• Ω - a set of reference vectors (nodes) ωc ∈ Rn.

• N - a set of non-weighted edges among pairs of the neurons.

The algorithm starts with the initialization of two randomly chosen neurons. The term
’neurons’ means some abstract objects, whilst the real numerical data that represents
the corresponding neurons in Rn) is defined as ’reference vectors’. But from now on
the two terms ’neurons’ and ’reference vectors’ in GNG will be used as equal for con-
venience. So, each reference vector is assumed to have an accumulated error variable
and a set of edges emanating out of it. Error measure is aimed to regulate the neurons’
birth. The edges reflect topological neighbors of every existing node and are assigned
with another statistical measure - an age variable. The age of a topological neigh-
borhood (node-connection) is meant to regulate removing old links, keeping a network
topology updated and preserving Delaunay triangulation [19]. Thus, we have:

In the preamble of the algorithm one sets 8 hyper-parameters which are constant in time
and whose sole role is to moderate values of errors and moving rates of the nodes.

10 Chapter 3: Growing Neural Gas (GNG)

N−maximum number of nodes;

MaxIt−maximum number of itterations;

Ł− if the index of the current data point is multiple of L, then insert a new node;

εb,εn− local eror measures for BMU and its neighbours;

α−moderate a local error;

δ −moderate the global error;

T −maximum age of an edge;

Further, there is an n-dimensional space of input signals spread according to a proba-
bility density function P(x). One signal is randomly chosen in each iteration.
The following algorithm describes an ’advanced’ variation of NG, so-called Growing
Neural Gas approach which allows to gradually generate the network structure due to
CHL without concern about the dimensionality of input data.

GNG step-by-step:

1. Insert two randomly located neurons ωc1 and ωc2 in Rn.
2. Get a random data signal x from your input set.
3. Calculate distances (a chosen similarity measure) between the neurons and x;

determine two best matching units: s1, s2.
4. Age all the edges flowing out of s1.
5. Update the squared error of the winner-unit s1 according to the chosen dissimilar-

ity measure (e.g. Euclidean distance):

∆E = d2(ωs1,x). (3.1)

6. Shift s1 and all the neurons that are directly connected to it towards the input
sample x. The adaptation rule is given below:

∆ωs1 = εs1 ∗ (x−ωs1), (3.2)

∆ωn = εn ∗ (x−ωn), (3.3)

where εs1 and εn - learning rates for ωs1 , ωn accordingly.
7. Unless the 2 best matching units s1 and s2 are connected, join them with a new

zero-aged edge. Otherwise, set the age of the already existed connection to 0.
8. The edges of age larger than the predefined value T are removed. After that,

all alone neurons that might appear after edge deleting also have to be removed
from the network.

Chapter 3: Growing Neural Gas (GNG) 11

9. If the amount of existing neurons is not exceeded and the index of the input is a
multiple of Ł, then add a new reference vector in accordance with the following
steps:

• Let wp be the neuron in the network with the maximum accumulated error.
Consider a subset Bp , a sub-graph of the net where all the neurons are
connected to wp with an edge, we call such neurons topological neighbors
of wp and Bp its neighborhood. Determine its topological neighbor r ∈ Bp,
also with the highest accumulated error. So we get ωp, ωr such that:

• Create a new reference vector ωq:

ωq =
1
2
∗ (ωp +ωr) (3.4)

• Manage the links: connect nodes q− p and q− r pairwise and disconnect
p− r

• Decrease the age of the edge p− r and initialize the error variable of q in
this manner:

E(p) = α ∗E(p),

E(r) = α ∗E(r),

E(q) = E(q).

10. Through multiplying by δ decrease all the error variables

∆E = E ∗δ . (3.5)

11. The stopping criterion may vary. It is achieved if, for example, the topology of the
network gets stable (new nodes neither appear, nor move).

All in all, with the GNG one can construct a general structure of the input data that helps
to get a better understanding of the data topology. The neurons that are created in the
net may serve as prototypes of the original data and further be used to support different
clustering techniques, for example as it is explained in [13].

12

Chapter 4: Learning Vector Quantization 13

4 Learning Vector Quantization

In this Chapter we consider different LVQ approaches, their evolution and differences.
LVQ is quite a mighty classification scheme due to its easy implementation, controllable
classifier, multi-class problems management, and explicit intuitive interpretation [33].
Therefore, the algorithm has been widely employed in different academic and commer-
cial fields, among which bio-informatics, robotics, bio-engineering and image analysis.
Despite its huge popularity among data scientists LVQ does still suffer from a number of
shortcomings, for instance, slow convergence and unstable training behavior, resulting
in unpredictable performances [35]. Thus, there have been derived several modifica-
tions of the original technique in order to beat the drawbacks up. As an example, Sato
and Yamada in their work [32] presented an approach that allows obtaining a scheme
for minimizing the cost function of the learning. It is known as the GLVQ. Then a ma-
trix version (the GMLVQ) was elaborated [34], that we consider in Section 4.4 in more
details.

4.1 The concepts of Learning Vector Quantization

LVQ was introduced by T. Kohonen in 1997 and described as a novel prototype-based
approach which belongs to supervised learning [22]. The sole purpose of the algorithm
is to outline class regions in the given data space according to the closest-neighbor rule.
Let X ⊆ Rn be input data, C = {1, ...,C} - classes, then training data X is defined as
a graph:

X = {(x,c(x)) | x ∈X ,c(x) ∈ C }.

Where x - a data sample, c(x) - a class label. One also defines a set of code-book
vectors W = {w1, ...,wN}, W ⊆ Rn such that, for each c ∈ C there exists w j with
c = c(w j). Then, introducing new data X ′ we manage the class assignment

c(x) = c(ws(x)), (4.1)

where
s(x) = argmin

j
(d(x, w j)), (4.2)

the approach is known as winner-take-all competition (WTAC) and ws(x) is the winner
prototype. Here d is a chosen distance, normally Euclidean dE(x,wk) = (x−wk)

2, but
depending on the original problem other dissimilarity measures can be chosen instead
[29]. Then the task transforms into the class assignment with the following quadratic
variant as a more general form

dΩ(x, w j) = (Ωx− w j)
2, (4.3)

14 Chapter 4: Learning Vector Quantization

we denote Ω ∈ Rnp×n as dimension data projection matrix where np the projection
dimension[9]. In case when Ω = id(x) with np = n, we get the Euclidean distance.

Learning scheme is realized by the prototypes distribution onto the projection space Rnp

in order to depict the class distributions. If we set np = n, the prototypes will live in the
same dimensional space as the original data signals. The idea of the learning, though,
is to find a lower-dimensional representation of our data (the quantization). That is why
we avoid such an assignment.

Chapter 4: Learning Vector Quantization 15

4.2 Milestones of learning scheme for LVQ algorithms

The LVQ is presented by 3 separate algorithms: LVQ 1, LVQ 2, LVQ 3, which are de-
scribed in [23] by T. Kohonen. In this section, I describe some main steps and ideas
behind the general workflow of the algorithms. In order to perform an approximation
of a Bayesian classifier, T.Kohonen proposed a heuristic learning construction. Each
randomly chosen data sample is assigned to a class label according to 4.2. In a second
step the winning code-book vector ws(x) is to be either shifted closer to the data vector
Ωx or repelled from it. Thus, the updating process is defined by

∆ws(x) = εψ(x,s(x)) � (Ωx−ws(x)), (4.4)

where

ψ(x,s(x)) =

{
1, c(x) = c(ws(x))

−1, c(x) 6= c(ws(x)),

and 0 < ε � 1 is the learning rate.

4.3 Generalized LVQ algorithm

LVQ severely suffers from reference vectors divergence. To overcome this obstacle and
to minimize the cost function, GLVQ was proposed. As before we consider labeled train-
ing data (x,c(x)), where c ∈ C = {1, ...,c} and a set of labeled prototypes (w j,c(w j))

with {w j}N
1 = W .

Notation:
w+ is the best matching prototype for (x,c(x)) among all prototypes w j with c(w j) =

c(x);
w− is the closest prototype for (x,c(x)) among all prototypes wk with c(wk) 6= c(x) (the
best incorrect prototype);
D+ = d(x,w+);
D− = d(x,w−).
Then, we define the relative distance dissimilarity µ(x):

µ(x) =
D+−D−

D++D−
, (4.5)

where−1≤ µ(x)≤ 1 and µ(x)< 0 means x is correctly assigned to the class, whereas
µ(x) < 0 signals about an incorrect classification. Under the assumption that d(x,w)

w.r.t. w+− differentiable, µ(x) is a differentiable classifier function.
Now we need a method to decrease error rates, so that µ(x) shall go down for all input

16 Chapter 4: Learning Vector Quantization

signals. Keeping this thought in mind the following learning criterion is deployed:

F =
N

∑
k=1

φ(µ(xi)), (4.6)

we set the number of training data samples N, and a monotonically increasing function
φ(µ). Normally, the identity function f (z) = z or the sigmoid function f (z) = 1/(1+ezθ)

is chosen as φ(µ). The goal is to minimize F , therefore, the units w+ and w− are to be
updated with the mean of the steepest descent method, where we additionally introduce
α = const,0 < α � 1, then we perform updating:

4w =−α
∂F

w
(4.7)

Precisely,

4w+ =+α
∂F

∂φ

∂φ

∂ µ

∂ µ

∂D+

∂D+

∂w+
(4.8)

And analogically

4w− =−α
∂F

∂φ

∂φ

∂ µ

∂ µ

∂D−
∂D−

∂w−
(4.9)

Taking dΩ = (Ωx−w j)
2, one gets the following layout:

4Ω =
∂F

∂φ

∂φ

∂ µ
· ∂ µ

∂Ω
(4.10)

∂ µ

∂Ω
=

∂ µ

∂D+
Ω
(x)
·

∂D+
Ω
(x)

∂Ω
+

∂ µ

∂D−
Ω
(x)
·

∂D−
Ω
(x)

∂Ω
(4.11)

where
∂ µ

∂D+
Ω
(x)

=
+2D−

Ω
(x)

(D+
Ω
(x)+D−

Ω
(x))2 (4.12)

and
∂ µ

∂D−
Ω
(x)

=
−2D+

Ω
(x)

(D+
Ω
(x)+D−

Ω
(x))2 (4.13)

Thus, we obtain the following GLVQ learning:

4w+ =+α
∂φ

∂ µ

D−

(D++D−)2 (x−w+) (4.14)

4w− =−α
∂φ

∂ µ

D+

(D++D−)2 (x−w−) (4.15)

We obtained (4.12) and (4.13) as components of the derivative ∂ µ

∂Ω
in (4.10). This version

of the GLVQ algorithm got known as GMLVQ which we consider further in the next
section.

Chapter 4: Learning Vector Quantization 17

4.4 Generalized Matrix Learning Quantization

The "Generalized Matrix Learning Quantization" is introduced as an important con-
cept of LVQ, which uses a full matrix of relevance in the similarity measure [34]. The
adaptation of code-book vectors wk ∈ Rn to training data is being handled in regards to
the class distribution among the training data vectors.
Mathematically speaking, the algorithm is built on a general distance form (a dissimilar-
ity evaluation).

dΛ(x, w j) = (x− w)T
Λ(x− w), (4.16)

The full N×N matrix Λ declares correlations between the features. We deploy a GSE
distance in a suitably transformed space enforcing the matrix Λ to be positive semi-
definite and symmetric. Here, we come up with the approach below

dΩ(x, w j) = (x− w)T
Ω

T
Ω(x− w). (4.17)

The substitution Λ = ΩT Ω guarantees that the above-mentioned essential constraints
on Λ are satisfied. In such a way a general form of squared Euclidean distance can
be defined in a suitable transformed space. According to well-known linear algebraic
transformations, it is shown

uT
Λu = uT

Ω
T

Ωu = (ΩT u)2 ≤ 0

for all u. The initializing of Ω one may choose a random N×N matrix. After the above-
mentioned substitution of Λ, one achieves the following SED representation

dΛ(w,x) = ∑
lmn

(xl−wl)ΩnlΩnm(xm−wm). (4.18)

The adaptation process is done through the chain of equations below and includes the
computing of derivatives with respect to w and Ω

∇wdΛ(w,x) = 2Λ(x−w) =−2Ω
T

Ω(x−w) (4.19)

as well as

∂dΛ(w,x)
∂Ωpq

= ∑
m
(xq−wq)Ωpm(xm−wm)+∑

l
(xl−wl)Ωpl(xq−wq)

= 2 · (xq−wq)[Ω(x−w)]p, (4.20)

the indexes p,q declare vectors components and one gets the equations for prototypes
adaptation:

∆w+ = ε ·2 ·φ ′(µ(x)) ·µ+(x) ·Λ · (x−w+), (4.21)

18 Chapter 4: Learning Vector Quantization

∆w− =−ε ·2 ·φ ′(µ(x)) ·µ−(x) ·Λ · (x−w−). (4.22)

In order to update the matrix elements we apply

∆Ωpq =−ε ·2 ·φ ′(µ(x))·(
µ
+(x) ·

(
(xq−w+

q)[Ω(x−w+)]p

)
−

µ
−(x) ·

(
(xq−w−q)[Ω(x−w−)]p

))
. (4.23)

In 4.21 - 4.23 we can observe the conventional Hebbian rules of LVQ, according to
which, the true-closest code-book vector is to be moved towards the considered data
sample while the false-closest prototype is shifted away from it. Therefore, the param-
eters of the matrix in 4.23 are updated accordingly to squeeze the distance between a
current data vector and its nearest prototype and enlarge the gap to the prototype which
represents another class.
The learning rates for the code-book vectors and for the metric do not depend on each
other, thus, are chosen heuristically.
Note that in order to avoid the degeneration of the algorithm Λ is to be normalized after
each adaptation step. In [34] it is achieved enforcing

∑
i

Λii = 1

by dividing all components of the matrix Λ by the raw value of ∑i Λii = 1 after each iter-
ation. Thereby, the sum of diagonal elements is fixed and amounts to the correspond-
ing sum of eigenvalues. Thus, one obtains the generalized normalization of relevance
∑i λ = 1 for a simple diagonal metric. The eigen directions of Λ can be considered
as an interim coordinate system with respect to the relevance which coincide with the
corresponding eigenvalues. As

Λii = ∑
k

ΩkiΩki = ∑
k
(Ωki)

2, (4.24)

here we maintain normalization by multiplying all components of Ω by 1/
√

∑ki(Ωki)2 =

1/
√

∑i[Ω
T Ω]ii after each adaptation. This technique is a kind of analogy to a Standard

Gradient procedure. More detailed explanation is given in [7]. The approach described
by (4.21) -(4.23) approach is termed Generalized Matrix LVQ or in short GMLVQ. In [34]
it is shown that this algorithm is faster than unsupervised fuzzy-clustering techniques
that apply a similar metric form, but requires a matrix inversion in each iteration. In addi-
tion, the metric in GMLVQ is chosen in a supervised manner, such that the optimization
of the parameters takes place according to the given classification task.

Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 19

5 Data Preprocessing. Healthy prototypes
with the GNG.

This part of the work describes the implementation and evaluation of the approaches
from the 3rd and the 4th chapters working on the data taken from SAP IT departments.
We designed an anomaly classification model that is a combination of GNG and
GMLVQ. Some evaluating and parameter tuning techniques were used during learning,
such as random search, k-cross-fold-validation, PCA. The corresponding references
are noted as needed, because the additional methods and their understanding effect
the accuracy of learning, thus, play a crucial role in the whole model.

The first section runs about the data structure, the second one introduces the created
anomaly detection tool. The third section describes the normalization of the given data.
The implementation of GNG and GMLVQ, as well as, visualization and evaluation part
of the thesis is explained in the last two sections of the chapter. For the data pre-
processing steps python frameworks scikit-learn, pyod and pandas were used, the topol-
ogy of healthy data was maintained in MATLAB with all the necessary references.

5.1 Data set

The data of a productive system was derived from SAP IT experts. The data was being
collected from May 2017 till October 2018 and represents a time-series with different
values of 32 system metrics, see Figure 5.1 for an example fragment of the records.
The first column shows the timestamp, the other 32 columns store values for different
system attributes such as CPU load, used memory, disk usage, and others.
In a production environment, SAP experts get incidents from end users (clients), where
they attach records of the 32 attributes within some time range, claiming that the system
stopped working over the mentioned period (incidents). The experts, in turn, look
through the values (e.g. CPU, MEMORY_USED, etc.) in order to capture the moment
of an anomaly and its root cause.

20 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

Figure 5.1: A fragment of the Data with 8 out of 32 metrics shown.

In essence , we can distinguish different classes by coloring them and split the records
accordingly into so-called time-windows like in Figure 5.2. The time range which is
marked green mean a healthy state, whereas, the other colors indicate anomaly classes
in the system behavior.

Figure 5.2: A fragment of a SAP Productive System.

The system state is considered as a healthy one if there was no incident and unhealthy
otherwise. The goal is to create a tool that is capable of distinguishing the states one
from another automatically.

Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 21

5.2 The architecture of the built tool

To design a model for classification task, using LVQ-based ML-algorithms, we need an
example of a labeled data set which we can train our model with. See Figure 5.3.

Figure 5.3: The architecture of the tool building.

We perform the following steps:

1. extracting healthy data;
2. learning the topology of the healthy data with GNG;
3a. solving the binary problem with GMLVQ: train the tool to distinguish between
abnormal and normal system behavior;
3b. solving the multi-variant problem with GMLVQ: train the model to additionally
recognize and cluster anomalies.

The blue arrows in Figure 5.3 mean that we also keep in mind a possible intercommu-
nication between 2 algorithms, for instance, in order to adapt the distance measure
that we use in GNG or to see how some parameter tunings might affect the further
classification.

22 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

In the end, the algorithm takes new unknown input data, and in outputs we get labeled
time-windows informing the SAP experts about a class each window belongs to. As it is
shown in Figure 5.4.

Figure 5.4: Graphical interpretation of the clustering. The output pots represent Yk.

Here, ’New unknown data’ can be seen as a set

X ∈ RN×32 : X = (x1,x2, ...,xn),

where n ∈ N and xn is an N× 32 matrix. Trained GMLVQ can be seen as a function
F : F(X) = Y, that splits the input set X into clusters:

Y = Y1
⋃

Y2
⋃

...
⋃

Yk

(with possible intersections between the subsets) and k = 1,2, ...,C - number of clusters,

Y1 +Y2 + ...+Yk−Y1Y2−Y1Y3− ...−Y1Yk−Y2Y3−Y2Y4− ...−Yk−1Yk = X

.

Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 23

5.3 Healthy Data Preprocessing

As it is described in [17], we expect a better performance and more reliable results
after normalization of the initial data. Furthermore, in cases when the values for data
features belong to different scales, one may end up with inability of such algorithms to
learn anything at all out of the data. The term ’normalization’ is broad and includes
some most common methods, see Figure 5.5.

Figure 5.5: The definitions for the most common normalization procedures.

The original data we is represented by values of different units and scales (see Figure
5.1). In order to bring it into a more consistent state and allow by that a better evaluation
and data vectors convergence Standard Scaler was chosen with reference to [17] .
According to the researches, this scaler tends to lead to the optimization of numerical
conditions and has shown reliable results with similar data [16].

Assuming that we have X = {xi j}, where i − timestamp, j −
a feature of the data sample, Standard Scaler is defined as

S j =
xi j−µ j

σ j
, (5.1)

where xi j - data vectors, µ j =
1
n ∑

n
i=1 xi j - mean value and σ j is the standard deviation

of the training samples.

24 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

Figure 5.6: The Standard Scale on the healthy data

The normalization with Standard Scaler results in the distribution with µ = 0 and σ = 1,
thus, the values are on a relatively similar scale (Figure 5.7) and ML algorithms can
perform by all means now.

Figure 5.7: The Standard Scale realization in Python

In order to avoid any misunderstanding in further chapters, it is important to keep in
mind that the data fragment represented in Figure 5.6 shows an example of healthy

Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 25

records. Those were used in GNG to learn the topology and create prototypes of normal
data samples. As the records in real life may consist of time gaps and other noise,
overlapping was performed as additional data normalization step [18]. This modification
allows ML algorithms, GNG for the research, to optimally learn on the data.

5.4 GNG learns Healthy Data

This section describes how the GNG learns the topology of the healthy data which
was scaled and normalized as described in the previous section. The main challenge
with the given data set is to enable NG to be realized on higher-dimensional input
samples. All the previous examples were applied on 1×N arrays, N ∈ R whereas our
inputs have a form of N×M, with M,N ∈ R. To begin with, 2000 normalized records of
SAP Productive System were taken and split into 5x32 matrices (time-windows). They
became the input samples for GNG.

Let N = 2000 be a number of data records, M = 32 number of data features, then X is
a matrix:

X =



x11 x12 . . . x1m

x21 x22 . . . x2m

x31 x32 . . . x3m

x41 x42 . . . x4m

x51 x52 . . . x5m

x61 x62 . . . x6m
...

.

xn1 xn2 . . . xnm,



where n ∈ N, m ∈ M. Now we split X into input 5×m matrices y = (y1,y2, ...,yi), i =
N
5 ,yi ∈ R5×M.

y1 =


x11 x12 . . . x1m

x21 x22 . . . x2m

x31 x32 . . . x3m

x41 x42 . . . x4m

x51 x52 . . . x5m

, y2 =


x21 x22 . . . x2m

x31 x32 . . . x3m

x41 x42 . . . x4m

x51 x52 . . . x5m

x61 x62 . . . x6m

,

26 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

, . . . , yi =


x(n−4)1 x(n−4)2 . . . x(n−4)m
.

.

x(n−1)1 x(n−1)2 . . . x(n−1)m
xn1 xn2 . . . xnm


and y ∈ Y , Y ⊂ Rn is the input space.

Further, we randomly initialize 2 weights (neurons):

w1 =


w1

11 w1
12 . . . w1

1m
w1

21 w1
22 . . . w1

2m
w1

31 w1
32 . . . w1

3m
w1

41 w1
42 . . . w1

4m
w1

51 w1
52 . . . w1

5m

, w2 =


w2

11 w2
12 . . . w2

1m
w2

21 w2
22 . . . w2

2m
w2

31 w2
32 . . . w2

3m
w2

41 w2
42 . . . w2

4m
w2

51 w2
52 . . . w2

5m



and after training, obtain a set of N′ prototypes of the healthy data Y :

w̃1 =


w̃1

11 w̃1
12 . . . w̃1

1m
w̃1

21 w̃1
22 . . . w̃1

2m
w̃1

31 w̃1
32 . . . w̃1

3m
w̃1

41 w̃1
42 . . . w̃1

4m
w̃1

51 w̃1
52 . . . w̃1

5m

, w̃2 =


w̃2

11 w̃2
12 . . . w̃2

1m
w̃2

21 w̃2
22 . . . w̃2

2m
w̃2

31 w̃2
32 . . . w̃2

3m
w̃2

41 w̃2
42 . . . w̃2

4m
w̃2

51 w̃2
52 . . . w̃2

5m

,

, . . . , w̃N′ =


w̃N′

11 w̃N′
12 . . . w̃N′

1m
w̃N′

21 w̃N′
22 . . . w̃N′

2m
w̃N′

31 w̃N′
32 . . . w̃N′

3m
w̃N′

41 w̃N′
42 . . . w̃N′

4m
w̃N′

51 w̃N′
52 . . . w̃N′

5m

 (5.2)

where w ∈ R5×m.

The original GNG algorithm requires initialization of 2 learning rates: εb,εn for updat-
ing the BMU and its topological neighbors accordingly. In the code which was realized
during this thesis, the learning approach was managed by means of Gaussian neigh-
borhood function h(i,σ) and the updating concerned all the neurons in the net [10]. The
function h(i,σ) is defined as

h(i,σ) = e−
winrank(wi)

2σ2 , (5.3)

Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 27

with

σ = const ∗ 1
N

(5.4)

where N - the number of neurons in the net, i ∈ N, winrank(wi) returns an array of
indices for the neurons according to the dissimilarity measure. For instance, let us
assume that we have 5 neurons and one data sample y∈Y , where Y is the input space,
see Figure 5.8.

Figure 5.8: A fragment of the neural net with 5 neurons - the yellow dots, and one data sample
- the blue dot.

Then we calculate the distances between the neurons and a given data signal, so we
can get the following table:

neuron w1 w2 w3 w4 w5
dissimilarity measure d(y,w1) d(y,w2) d(y,w3) d(y,w4) d(y,w5)

winrank 5 1 2 4 3

Table 5.1: The sorting function result for 5 neurons. Here, neuron w2 is the BMU, as its winning
rank is 1.

In the Figure 5.9 one can observe graphical visualization of h(i,σ) versus the result of
the sorting function.

28 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

Figure 5.9: Visualization of the adaptation strength for the neurons versus their winning rates

Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 29

(a) The BMU is marked with red

(b) The value of the BMU multiplier during the updating in (5.4).

Figure 5.10: (a)The neurons position with respect to the input signal. (b)The example of the
updating strength for the neurons (marked with red for BMU)

After h(i,σ) apply, one can update the neurons with regards to their winning rates.

∆wi = εb ∗h(i,σ)∗ (y−wi), (5.5)

The neuron with rank 1 (BMU) get heavily update, while the shifting of weight with rank
5 is close to zero.

Obviously, the adaptation affects all the neurons that have been created on the net. That
not only has led to faster learning but also eliminated the need to tune the additional
hyper-parameter εn responsible for the adaptation strength of topological neighbors of
the BMU.

30 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

The programming implementation is performed in Matlab and based on the code ’Re-
alization of Neural Gas network and Growing Neural Gas (GNG) network in MATLAB’
taken from "The Yarpiz Project" [27].

5.4.1 Evaluation of GNG

In order to achieve the reliable results of the GNG performance one should carefully
allocate the hyper-parameters and monitor the error behavior on the flow. For this
reason we used a validation technique which allows to calculate the optimal values
for the parameters as well as to moderate the magnitude of the error function. The
calculation process of the optimal hyper-parameters is explained below and was
implemented in MATLAB.

We proceed by splitting the input data set Y ∈ Rn into a training and a test subsets
Ytrain,Ytest the way that Ytrain∪Ytest = Y , Ytrain∩Ytest = /0.

Running GNG on Ytrain one gets a set of prototypes Wtrain = w1, ...wn, n ≤ N, N is
maximal number of neurons in the net. Each wi ∈Wtrain stores its accumulated error
acctrain(wi):

acctrain(wi) = ∆E(wi), (5.6)

where ∆E is calculated as it is explained in 3.5. For further validating procedure we also
calculate the mean error for the whole set Wtrain as it follows:

MeanEtrain = avg(acctrain(wi)) =
1
n

n

∑
i

acctrain(wi). (5.7)

Then we consider test data samples ys ∈ Ytest , s ∈ S, where S is a number of elements
in the test set. For calculating the mean error for Ytest we use the nodes wi ∈Wtrain and
compute mean test error according to the following sequence of equations:

acctest(wi) =
n

∑
i=1

argmin
i
{d(ys,wi)|s ∈ 1, ...,S}, (5.8)

MeanEtest = avg(acctest(wi)) =
1
n

n

∑
i

acctest(wi). (5.9)

Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 31

Now, we split the given data Y into train and test subsets using k-cross-fold validation.
According to the approach, the data is first partitioned into k equally (or nearly equally)
sized segments or folds. Subsequently k iterations of training and validation are per-
formed such that within each iteration a different fold of the data is held-out for validation
while the remaining k− 1 folds are used for learning [30]. Let us split the input data Y
into f -folds containing a unique pair of train and test subsets in each f as following

Y = (Y1,Y2, . . . ,Yf),

where f is the number of folds and

Yi = Ytraini ∪Ytesti,

Y = ∪Yi and ∩Yi = /0.

The next step consists of choosing reasonable values for the hyper-parameters
P(N,MaxIt,L,T,ε,α,δ). Creating representatives of the input signals means a com-
pression. Under compression we understand to take not more than 10% of the given
data; having that in mind, 400 input data vectors are taken along with a prototype set,
where N = 40. Maximum number of iteration is first deliberately set to a higher value
and then experimentally can be narrowed down or expanded so that the stable behavior
of the mean error can be achieved after a particular iteration. In this work we allo-
cate MaxIt = 100, but we can observe that after the 20th circle of running the error
value does not change or even slightly goes up. Thus, we set the final value for the
hyper-parameter equal to 25, so that the error drop to its minimum can be seen. The
moderators of local and global errors do not affect the performance in core, rather ease
the computational time, so the values for them are normally chosen in the interval be-
tween 0 and 1 (in this thesis: α = 0.5,δ = 0.005) following the example in [36]. In order
to optimize L,T and ε we used the combination of k-cross validation[30] and Random
Search [6] approaches, see Figure 5.11.

32 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

P1(L,T,ε)

P2(L,T,ε)

P3(L,T,ε)
...

Pr(L,T,ε)

Ytrain1

Ytest1

Ytrain2

Ytest2
...

Ytrain f

Ytest f

MeanEtrain1(P1)
MeanEtest1(P1)

MeanEtrain1(P2)
MeanEtest1(P2)

...

MeanEtrain1(Pr)
MeanEtest1(Pr)

MeanEtrain2(P1)
MeanEtest2(P1)

MeanEtrain2(P2)
MeanEtest2(P2)

...

MeanEtrain2(Pr)
MeanEtest2(Pr)

...
MeanEtrain f (P1)
MeanEtest f (P1)

MeanEtrain f (P2)
MeanEtest f (P2)

...

MeanEtrain f (Pr)
MeanEtest f (Pr)

Figure 5.11: In the purple boxes there are Pr(L,T,ε) r different sets of hyper-parameters de-
picted; Each set is tried out in each f fold of different Ytrain,Ytest subsets; for each
fold one gets r pairs of mean errors for Ytrain and Ytest .

With Random Search we generate r different 3-tuples of hyper-parameters
Pk = {Pk(L,T,ε)} and run the GNG with each Pk for k = 1, ...,r and every f fold, as it is
shown in Figure 5.11. As a result we will obtain r mean train- and test- errors for each

Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 33

train-/test- subset. The errors are computed according to 5.6 and 5.8. For Pi, where
i = 1, ...,r the total evaluation error is computed as following:

TotalErrortrain(P1) =
1
f

f

∑
i=1

MeanEtraini(P1)

TotalErrortrain(P2) =
1
f

f

∑
i=1

MeanEtraini(P2)

TotalErrortrain(P3) =
1
f

f

∑
i=1

MeanEtraini(P3)

...

TotalErrortrain(Pr) =
1
f

f

∑
i=1

MeanEtraini(Pr)

(5.10)

In the same way we compute the total error for test sets summing up all results for the
test error in each fold, obtaining :

TotalErrortest(P1) =
1
f

f

∑
i=1

MeanEtesti(P1)

TotalErrortest(P2) =
1
f

f

∑
i=1

MeanEtesti(P2)

TotalErrortest(P3) =
1
f

f

∑
i=1

MeanEtesti(P3)

...

TotalErrortest(Pr) =
1
f

f

∑
i=1

MeanEtesti(Pr)

(5.11)

The visualization of the values of L,T,ε against the total train and total test errors is
given in Figure 5.15. And there we can capture a dominating impact on the error behav-
ior of the learning rate ε , that is why first, the interval for this hyper-parameter is tuned
further, narrowing down the interval from which we choose the value for ε : Figure 5.13.
Then fixing ε : ε = const, where const ∈ (0.015;0.035) we tune the values for the pa-
rameters L and T . Thus,experimentally shown that the values of the parameters do not
influence the total error more than on 0.002 and can be chosen randomly without loss
of the performance results (for further learning we choose T = 50, L = 50), see Figure
5.14.

34 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

0 10 20 30 40 50 60 70 80 90 100

L

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

M
e

a
n

 E
rr

o
r

o
f

a
ll
 t

ra
in

-e
rr

o
rs

L VS Mean Error

Train

Test

(a) L against TotalErroetrain and TotalErrortest

0 10 20 30 40 50 60 70 80 90 100

T

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

M
e

a
n

 E
rr

o
r

o
f

a
ll
 t

ra
in

-e
rr

o
rs

T VS Mean Error

Train

Test

(b) T against TotalErroetrain and TotalErrortest

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Epsilon

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

M
e

a
n

 E
rr

o
r

o
f

a
ll

tr
a

in
-e

rr
o

rs

Eps VS Mean Error

Train

Test

(c) ε against TotalErrortrain and TotalErroetest

Figure 5.12: Hyperparameters values against TotalErrortrain(Pi) and TotalErrortest(Pi), i =
1, ...,r.

Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 35

Figure 5.13: ε tuning in a smaller interval

0 10 20 30 40 50 60 70 80 90 100

L

0.035

0.0355

0.036

0.0365

0.037

0.0375

0.038

0.0385

0.039

M
e

a
n

 E
rr

o
r

o
f

a
ll
 t

ra
in

-e
rr

o
rs

L VS Mean Error

Train

Test

(a) L

0 10 20 30 40 50 60 70 80 90 100

T

0.035

0.0355

0.036

0.0365

0.037

0.0375

0.038

0.0385

0.039

M
e

a
n

 E
rr

o
r

o
f

a
ll
 t

ra
in

-e
rr

o
rs

T VS Mean Error

Train

Test

(b) T

Figure 5.14: Error behavior against different L and T with fixed ε = 0.035

36 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

-3 -2 -1 0 1 2 3 4 5 6 7

-4

-3

-2

-1

0

1

2

3

(a) MaxIt = 25

-3 -2 -1 0 1 2 3 4 5 6 7

-4

-3

-2

-1

0

1

2

3

(b) MaxIt = 50

-3 -2 -1 0 1 2 3 4 5 6 7

-4

-3

-2

-1

0

1

2

3

(c) MaxIt = 75

-3 -2 -1 0 1 2 3 4 5 6 7

-4

-3

-2

-1

0

1

2

3

(d) MaxIt = 100

-3 -2 -1 0 1 2 3 4 5 6 7

-4

-3

-2

-1

0

1

2

3

(e) MaxIt = 125

-3 -2 -1 0 1 2 3 4 5 6 7

-4

-3

-2

-1

0

1

2

3

(f) MaxIt = 150

Figure 5.15: Visualization of the GNG after different number of iterations. P(N = 40,L= 50,T =
50,ε = 0.035,α = 0.5,δ = 0.05,MaxIt = {25;50;75;100;125;150})

After all the hyper parameters are defined one can run the GNG and tune N and MaxIt
achieving the minimum mean error. For this master thesis the parameters are allocated
as in Figure 5.15. The yellow dots illustrate the neurons (prototypes) of the healthy
data signals (the blue dots). As the both input vectors and weights are of forms of
5x32 matrices, the visualization on 2D space was handled with a hand of the Principal
Component Analysis and performed in MATLAB. In the end, we got the representation
of healthy data, that can we use for GMLVQ classification in the following chapter.

Chapter 6: GMLVQ Classification of SAP IT Data 37

6 GMLVQ Classification of SAP IT Data

After retrieving the prototypes of healthy data with GNG, we apply GMLVQ classifier with
the goal to find out classification accuracy of the whole anomaly-detection-root-cause-
identification model (see Figure 5.4).
The structure of the chapter: in section 6.1 the data preparation for solving two- and
four- class problems is described; section 6.2 illustrates the achieved results of the GM-
LVQ execution. All the experiments and visualizations were accomplished in MATLAB
R2019a environment and all the necessary references to additional programming tools
and functions were meticulously made.

6.1 The GMLVQ experimental workflow

This section describes the preprocessing steps of the input data. According to the data
provided by SAP experts, at least 3 different types of anomalies can be detected during
system workflow:

1. Anomalies that drive to the high CPU load (A1).

2. Anomalies associated with the amount of HANA thread handles (A2), see [14].

3. Anomalies causing CPU downtime (A3).

Some manually categorized and labeled outlying data records were collected and pre-
processed in the same manner as the healthy input set described in Section 5.3. Form-
ing the data space for the GMLVQ we consider a Z ∈ RN×P matrix with P - the num-
ber of features, N - the number of input samples such that N = H ∪A1 ∪A2 ∪A3 with
H,A1,A2,A3 representing the numbers of prototypes of healthy and anomaly classes
of type one, two and three accordingly. Each data sample is represented by a vector
z = (z1, ...,zP), an array that is formed from a time-window input sample that had a form
of a 5-by-32 matrix:

zk =


zk

11 zk
12 . . . zk

1m
zk

21 zk
22 . . . zk

2m
zk

31 zk
32 . . . zk

3m
zk

41 zk
42 . . . zk

4m
zk

51 zk
52 . . . zk

5m

, zk =
(
zk

11 zk
12 . . . zk

1m zk
21 . . . zk

5m

)

In other words, if we take as an input a healthy prototype from 5.2 and line it up, we will
get a healthy input sample w̃N′ in a form of vector:

38 Chapter 6: GMLVQ Classification of SAP IT Data

zi = w̃N′ =
(

w̃N′
11 w̃N′

12 . . . w̃N′
1m w̃N′

21 . . . w̃N′
5m

)
(6.1)

and this vector represents a healthy input data sample for the GMLVQ. We also define
the set of labels L := {1, ..., l} whereby each label l ∈L corresponds to a particular
behavior of the system (outlying or not) as described above. For instance, here we have
l = 4 for a healthy type of data samples and 3 anomalous ones.
Based on the conventions the classification task is to determine a classifier function

c : Z→L : c(z)→ l

such that a sample z is assigned in this way to a certain anomaly or to a normal state.

The generated set of whole data consists of 100 vectors with a label set L = 1,2,3,4.
For GMLVQ classifier, we run binary and four-class classification. The binary classifi-
cation involves comparing the distinct anomalous groups (A1, A2, A3) with the healthy
group (the prototypes retrieved with GNG). The multi-class classification concerns the
comparison of all the groups H versus A1 versus A2 versus A3. The goal is to deter-
mine the class membership (healthy or unhealthy) of an unknown input subject and also
determine the type of anomaly. To this extend we take 50 healthy and 50 unhealthy
samples into consideration. The 50 samples of unhealthy data vectors consist of 15
samples from A1, 15 - from A2 and 20 -from A3. A PCA-projection of the original data is
shown in Figure 6.1.

(a) The visualization of the input data for binary
classification

(b) The visualization of the input data for multi-
variate classification

Figure 6.1: The input data for clustering

In order to outline a classification system based on the GMLVQ approach one has first
to generate a training data set and subsequently to train the model. In this phase, a
set of appropriately chosen prototypes is computed from a given set of labeled example

Chapter 6: GMLVQ Classification of SAP IT Data 39

data. Relevance learning provides insight into the data in terms of weighting features
and combination of features in the adaptive distance measure [28].

In all the further presented experiments the data was split into train and test subsets with
70% to 30% proportions. The evaluation of the classification algorithm was based on
10-folds-cross-validation results. An example of the original data before classification
in 2-dimensions is depicted in Figure 6.2. Training and test sets consist of 50 data
points per class. In order to avoid the ’luckily-happened’ outcomes, the experiments are
executed on 10 statistically independent subsets. One of these data subsets is depicted
in Figure 6.2. In the following demonstrations the mean results are being illustrated for
a binary and multi classification problems, see in Figures 6.3-6.6. The visualization was
based on M.Biehl’s MATLAB script [8].

(a) For binary classification problem (b) For multivariate classification problem

Figure 6.2: An example split of input data into train- and test-subsets.

For each run a part of data (test set) is left out and GMLVQ is performed on the rest
of the data (training set). Then the test data samples are used to evaluate the trained
classifier. The sensitivity (TP rate), specificity (TN rate) and classifier accuracy are
computed. In addition, ROC curve and Nearest Prototype Classifier confusion matrix
are calculated for all the test sets [28].

The GMLVQ optimization tool requires to specify a number of prototypes per class. This
hyper-parameter depends on the number of modes of the underlying class distribution.
For our experiments, one prototype per class turned out to be sufficient to achieve reli-
able outcomes, but, obviously, increasing the number of prototypes in each class tends
to improve the classification accuracy. It is manually tuned according to the allocation
of input data. For instance, based on this thesis research and the data visualization
(Figure 6.3), vectors z ∈ A3 (class 4 marked in wine-red color) tend to be sparse and
easily confused with healthy state, that is why more than one prototype for the men-
tioned class is recommended especial in the case of the amount of data to be classified

40 Chapter 6: GMLVQ Classification of SAP IT Data

in real production environment.
A global quadratic distance measure of the form d(wk,z) = (z−wk)

T Λ(z−wk) is used to
quantify the dissimilarity of an input vector z and the prototypes. The measure is param-
eterized in terms of the positive semi-definite Λ [28]. Relevance matrix and prototypes
are optimized in the training process which is guided by a suitable cost function [28].
The GMLVQ implementation that we use realizes a batch gradient descent minimization
with automated step size control, see [5] for details. After 60 steps of gradient descent,
the training errors and cost function appeared to have converged in all considered clas-
sification problems.

6.2 Results

In this section we present the results after 10-folds CV for distinct anomalous groups
against the healthy group in the two- and four-class classification. Furthermore, we
present the percentage of correctly classified data samples (sensitivity) and the per-
centage of correctly classified healthy controls (specificity), as well as AUC and ROC
curve and correctness of overall labeling (accuracy). Additionally, the corresponding
results are visualized in terms of projections on the leading two eigenvectors of the rel-
evance matrix. This exploits the fact that GMLVQ shows a tendency to yield low-rank
matrices which correspond to low-dimensional representation of the feature space [28].
We also provide the plots of diagonal and off-diagonal matrix elements as an example
illustration.

6.2.1 Binary Classification

The objective is to observe how precise the separability is between the healthy data
samples and the anomalous groups. The results after GMLVQ are presented in Table
6.1.

Data Set (size) Accuracy (%) Sensitivity (%) Specificity (%) AUC
A1-H (30) 98 100 96 0.98
A2-H (30) 96 100 94 0.99
A3-H (40) 83 76 96 0.84

Table 6.1: GMLVQ Classifier performance after 10-folds CV for the different data set combina-
tions (healthy data samples against anomalies of three different types, number of
samples in brackets)

In the Table above Accuracy indicates the percentage of correctly classified samples
in each group. All three measures here (Accuracy, Sensitivity, Specificity) correspond
to the Nearest Prototype Classifier (NPC). As it is observed, AUC measures tend to
be relatively high, meaning that that GMLVQ weighted features are very suitable for

Chapter 6: GMLVQ Classification of SAP IT Data 41

separability of the groups.

Further, we run the algorithms giving as input all the healthy and unhealthy data sam-
ples together with a goal to achieve a separability of the healthy data signals from all
the others. The computed results are presented in the form of the confusion matrix be-
low, off-diagonal relevance matrix elements (Figure 6.3) and visualization of projected
labeled data signals after GMLVQ and ROC-AUC (Figure 6.4).

Con f usionMatrix =
(

100 0
18.2846 81.7154

)
(6.2)

According to the matrix above, all healthy data samples were classified correctly, unfor-
tunately, we still see the tendency to assign some anomalous samples to the healthy
group as well. This means that the training procedure should continue, probably know-
ing the importance of the features (see Figure 6.5), we could tune the training the way
to low miss-classification rate.

Figure 6.3: Off-diagonal relevance matrix elements

42 Chapter 6: GMLVQ Classification of SAP IT Data

(a)

0 0.2 0.4 0.6 0.8 1

false positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
u

e
 p

o
s
it
iv

e
 r

a
te

threshold-avg. test set ROC

(class 1 vs. all others)

AUC= 0.90858

NPC performance

data1

(b)

Figure 6.4: (a)The visualization of the training data in terms of their projection on the two leading
eigenvectors of the relevance matrix. (training over 10 validation runs with random
30% of samples left out for testing and 60 gradient descent steps). (b) ROC-AUC

The projecting relevance vectors in Figure 6.5 indicate that mostly three data features
significantly influence the classification: current volume of disk usage, memory con-
sumption by a service and number of open handles (see in Appendix A). Furthermore,
a relevance vectors are included in the distance measurement to scale the input dimen-
sions according to their importance with respect to the classification task. This not only
might boost the classification performance, but may also be used for feature selection
and dimensional reduction [28].

GRLVQ: relevances

0 20 40 60 80 100 120 140 160

0

5

10

15

20

25

30

X 67

Y 26.75

X 35

Y 26.73

X 3

Y 26.87

Figure 6.5: The importance of the data features according to GRLVQ. The features peak repeat-
edly since the time-windows were flattened into arrays. E.g. Features 3, 35, 67,...
represent disk usage

As observed in Table 6.2, the comparison of healthy signals against different anomalies
shows a clear separation between healthy and unhealthy groups. We can clearly see the
separability in Figure 6.4(a). Apart from a few outliers, most of the data signals cluster
around the specific prototypes. As well as, the histogram of the relevance matrix in
Figure 6.5 illustrates the features and their diagonal weights as used in the classification.

Chapter 6: GMLVQ Classification of SAP IT Data 43

Further we could analyze this information, for example, what features are weighted the
highest, meaning they carry relevant information that is important for the separability.
In fact, we should treat such features with more attention, as an idea, critically analyze
the principal component image corresponding to this feature to gain insights from the
system perspective [28].

6.2.2 Multi-class Classification

The objective here is to present the results after 10-folds CV of the GMLVQ classifier
on the four classes: labeling healthy class and all the three types of anomalies. We
run the GMLVQ with all the anomalous data sets together because we want to be able
to distinguish the three types from each other with help of the classifier. In addition,
we include healthy part of data samples because we still need to distinguish a healthy
sample from any of the other groups. The results are summarized in Table 6.2, confusion
matrix. As well as, in Figure 6.6 we depict the scatter plots that shows the training data
signals distribution in the two-dimensional projection of the feature space in a single run
of the training procedure.

GMLVQ classification H A1 A2 A3
H (50) 50 0 0 0
A1(15) 0 14 0 1
A2(15) 0 0 15 0
A3(20) 6 1 0 13
Class accuracy (%) 100 93.3 100 65
Overall performance (%) 89.5

Table 6.2: The table illustrates the number of subjects correctly classified for each class in bold
and the overall performance in percentage as obtained in the CV

The confusion matrix below carries illustrative purpose to show the mean classification
results after 10-folds CV runs.

Con f usionMatrix =


100 0 0 0
0 98.5714 0 1.4286
0 0 100 0

34.6667 2 0 63.3333

 (6.3)

We can see that healthy group and unhealthy group of type 1 have been correctly clas-
sified with accuracy 100%. None of the anomalous group A1, A2 were classified as
healthy ones. However, we observe about 34% of miss-classification of A3-data sam-
ples.

44 Chapter 6: GMLVQ Classification of SAP IT Data

The scatter plot in Figure 6.6 (a) show the training data points with respect to their
projections on the two leading eigenvectors of the relevance matrix. It can be observed
that all four groups a clearly separable from each other. There is no overlapping shown,
AUC = 0.92, all healthy samples are classified correctly. This is encouraging since we
are generally interested in distinguishing between healthy and any types of unhealthy
data samples.

(a)

0 0.2 0.4 0.6 0.8 1

false positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
u

e
 p

o
s
it
iv

e
 r

a
te

threshold-avg. test set ROC

(class 1 vs. all others)

AUC= 0.92173

NPC performance

data1

(b)

Figure 6.6: 2D performance of training over 10 validation runs with random 30% of samples
left out for testing and 60 gradient descent steps. blue-healthy, red-A1, green-A2,
light-blue-A3

To sum up, we also depict the evolution in terms of mean errors in Figure 6.7.

0 10 20 30 40 50 60

totalsteps

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

E
rr

o
r

Validation for 2-class problem

Training

Validation

(a)

0 10 20 30 40 50 60

totalsteps

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

E
rr

o
r

Validation for 4-class problem

Training

Validation

(b)

Figure 6.7: Evolution of the mean training and test error in the course of GMLVQ-Training

In preliminary experiments performed in this thesis, the GMLVQ model managed to dis-
tinguish all healthy samples correctly and also demonstrated a good separability among
outliers. The whole system can be further tuned to achieve higher results in order to
minimize anomaly miss-classification.

Chapter 7: Conclusion and future research 45

7 Conclusion and future research

In this Master thesis we set up a joint model of the Growing Neural Gas and the Gen-
eralized Matrix Learning Vector Quantization. Then, we investigated its application for
anomaly detection process in an SAP productive system. As the data that was given
for investigation consists of many healthy data records and comparably fewer records
of anomalies, we applied GNG to obtain a generalized representation of the healthy
data that further is used as signals in the healthy group in the GMLVQ classifier. There
was also created a special form of the Growing Neural Gas Algorithm that allows one
not only to perform learning straight on matrix-structure inputs, but also to automatically
calculate the suitable hyper-parameters. This pioneer enforcement helps to avoid some
data information loss and save time that one normally spends on tuning the model.
Furthermore, to distinguish the healthy prototypes from different unhealthy data signals
we performed the GMLVQ. The preliminary experiments on a single SAP system with
labeled data have shown promising results of the above mentioned algorithms com-
bination. There, we have found out that we can detect and classify different types of
anomalous states.

As the data records and anomaly types are much huger than the ones we used for this
work, further researches of the model should be undertaken before introducing the tool
to a global enterprise. Owing to the fact that for each SAP system the determination
of the GNG and the GMLVQ prototypes as well as mapping matrix Ω are better to be
calculated just ones as uniform prototypes of the model, we need to implement the algo-
rithm in some kind of productive environment, so that the results could be transferable
to other systems, where we do not have labeled data. The open question is if we can
use our trained model and hyper-parameters and just run them on another system, or
another system still requires relearning. Moreover, it is essential to proceed with other
studies focusing on the art of outlier selection. It is important to create a classifier with
high classification ability and distinguish between other possible types of anomalies that
might occur in a system.

In this work there were three anomalous groups taken into consideration, whereas in
fact the number of occurring anomaly-kinds in the system is unknown. Therefore, there
are two possible ways to continue this work: to set up the most frequently happened
classes and adjust the model to the fixed number of them. The second and more
sophisticated solution is to introduce an additional function based on the learned
distance measure to detect outliers we do not know. So that, there will be an option not
to assign a data vector to a cluster if it is drastically diverse from all the already existing
prototypes, but rather signalize about that and automatically turn the newcomer-vector
into a new prototype and create throughout a new group. The further runs executed by
the model will include the new number of clusters. In order to prevent the model from

46 Chapter 7: Conclusion and future research

extra prototypes or a cluster duplication, a kind of radius-function might be used as a
condition to merge the clusters if the prototypes happen to find themselves close to
each other.

During this study, we run the experiments with all 32 features of the given data. However,
the GMLVQ provides us with additional information. The scaling matrix

Λ = Ω
T

Ω

is the classification correlation matrix. This matrix stores the insights, which data
dimensions and permutations endow an upcoming classification performance. For the
considered anomaly detecting system such the histogram shown in Figure 6.5. The
evaluation of it can be used for dimensionality reduction and, thereby, lower compu-
tation time in overall performance of the created tool. Further research could also
include the optimization of other statistical measure, but classification errors, as well as,
the receiver operating characteristic can be optimized in case of the binary classification.

The superiority of LVQ approaches and the GMLVQ itself is in their ability to con-
duct the prototype-adaptation (learning) off-line. Thus, the time processing costs
do not play a big role in the application mode. The error computations for the
GNG topology learning and the GMLVQ classification are easily maintained and are
proven to converge in this work. So the results tend to be promising in a single system.
Hence, there is still a question how to introduce the built system into a global production.

Appendix A: List of Features 47

Appendix A: List of Features

Metric name Abbr Description
CPU CPU used CPU load
DISK_SIZE DS The total disk size
DISK_USED DU The current volume of disk used
HANDLE_COUNT HC Number of open handles
MEMORY _SIZE MS Physical memory size
MEMORY _USED MU Used memory by service

MVCC_V ERSION
_COUNT

MVC
Number of active MVCC versions. The multi
vrsion concurrency control ensures consistent
read operations

NETWORK_IN NI Bytes read from network by all processes
NETWORK_OUT NO Bytes written to network by all processs
PENDING_SESSION
_COUNT

PSC Number of pending requests

PING_T IME PT Duration of service ping request in ms
RECORD_LOCK
_COUNT

RLC Number of acquired record locks

STAT EMENT _COUNT SC Number of finished SQL statements
SWAP_IN SI Bytes read from swap by Service
SWAP_OUT SO Bytes written to swap by all processes
SY ST EM_CPU SCPU OS kernel/system CPU used by service
TOTAL_SQL_
EXECUTOR_COUNT

SQL Total number of SQLExecutors

TOTAL_T HREAD
_COUNT

TTC Total number of threads

T RANSACT ION
_COUNT

TC Number of open SQL transactions

T RANSACT ION_ID
_RANGE

TID
Range between newest and oldest active trans-
action ID

WAIT ING_SQL_
EXECUTOR_COUNT

WSQL Number of waiting SqlExecutors

AIT ING_T HREAD
_COUNT

WTC Number of waiting threads

ACT IV E_SQL_
EXECUTOR_COUNT

ASQL

The number of active SQL executors. An
SQL executor organizes the execution of op-
erations by invoking the corresponding SAP
HANA component

ACT IV E_T HREAD
_COUNT

ATC
The number of active threads from the thread
pool which are executing a runnable task pool

Table A.1: a) Dataset metrics of the system

48 Appendix A: List of Features

Metric name Abbr Description
BLOCKED
_T RANSACT ION
_COUNT

BTC Number of blocked SQL transactions

COMMIT _ID
_RANGE

CID
Range between newest and oldest active com-
mit ID. Commit IDs are simple incremented in-
tegers

CONNECT ION
_COUNT

CC
Number of open SQL connections to other
database systems

MEMORY _
ALLOCAT ION
_LIMIT

MAL MAL for service. Max-size of allowed MA

CS_MERGE
_COUNT

CSM Number of merge requests

CS_READ
_COUNT

CSR Number of read requests

CS_UNLOAD
_COUNT

CSU Number of columns unloads

CS_WRIT E
_COUNT

CSW Number of written requests

Table A.2: b) Dataset metrics of the system

Appendix B: Reference Implementation in MATLAB for GNG 49

Appendix B: Reference Implementation in
MATLAB for GNG

The combination of GNG and Random Search for hyper-parameters tuning. The code
following is organized in a ’tree’-structure, consisting of several subfunctions called one
out of another:

SplitDataIntoInputsJ.m

ObjFunJ.m

GNG_RSJ.m

Evaluation.m

scatterplots.m

Figure B.1: Graphical

 %%
%%
 %%
%%
 %%%%%%%%%%%%%%%%%%%%GNG with matrix-shaped inputs%%%%%%%%%%%%%%%%%%%
%%
 %%
%%%%%%%%
 %%
%%%%%%%%
 % Load Data

 % I call GNG on the whole data from here
 data = load('ScaledHealthyData');
 X = data.ScaledHealthyData;
 Xmin = min(X);
 Xmax = max(X);

 % Parameters from APP

 params.N = 50;% maximum # of nodes
 params.MaxIt = 300;
 % # the creterion for creating new nods (<= MaxIt), use it
 with 'ny'
 params.L = 50;
 params.epsilon_b = 0.03;% moderate BMU1 adaptation
 params.alpha = 0.5;% moderate local error
 params.delta = 0.005; % moderate global error
 params.T = 50;% maximum possible age of an edge

 net = GNGJ(X, params, true); % GNG on the whole data
 %%
%%%%%%%%%%%%%%
 %%
%%%%%%%%%%%%%%
 function net = GNGJ(X, params, PlotFlag)

 % Load Data
 % in MyAppLast.....

 % Prepare inputs
 %Y is a cell array
 % 5x32 matricies are stored in each cell
 windows = size(X,1)/5;
 %%%%%% Time Window%%%%%%%%%
 Y = cell(windows, 1);
 i = 1;
 l = 1;

 while l ~= windows + 1
 Y(l,:) = {X(i:i+4,:)}; % cells of time windows

1

50
5050 Appendix B: Reference Implementation in MATLAB for GNG 50 Appendix B: Reference Implementation in MATLAB for GNG

 i = i+5;
 l = l+1;
 end

 %Y = cell(496, 1);
 %i = 1;
 %l = 1;

 %while l ~= 497
 % Y(l,:) = {X(i:i+4,:)};
 %i = i+5;
 % l = l+1;
 %end

 nDim = size(X,2); % # of columns (32 in the
 example)
 nDataInputs = size(Y,1); % # of cells (496 in the example)

 Y = Y(randperm(nDataInputs), :);
 % Distribute data (at every new iteration we will
 %take a data sample, the samples shouldn't be
 %taken one by one as they are given, but randomly,
 %that is why we shuffle them now).

 % Parameters
 N = params.N; % maximum # of nodes
 MaxIt = params.MaxIt;
 L = params.L;
 % # the creterion for creating new nods (<= MaxIt),
 use it with 'ny'
 epsilon_b = params.epsilon_b; % moderate BMU1
 adaptation
 alpha = params.alpha; % moderate local error
 delta = params.delta; % moderate global error
 T = params.T; % maximum possible age of an edge

 % Initialization
 % Create 2 randomly located nodes, they look exactly like
 some input
 % samples
 % so, there will be 2 cells, each cell stores a 5x32
 matrix

 Ni = 2;
 W = cell(Ni,1);
 rng('default'); %%%Seeding, so the initial prototypes will
 be alawys the same
 rng(2); %%%and we can observe the error changing
 during the evaluation
 for i = 1:Ni
 W{i,:} = rand(5, nDim);
 end

2

51
 51Appendix B: Reference Implementation in MATLAB for GNG 50 51AAppendix B: Reference Implementation in MATLAB for GNG 51

 % error for each node, if we have e.g. 5 nodes, E will be
 one column with 5 rows,
 % 1st row stores an error for the 1st node, 2nd - for
 node 2 and so on.
 E = zeros(Ni,1);
 % edges between nodes, in the very beginning it is a zero
 2x2 matrix,
 % as we have 2 nodes and they are not connected , so '0'
 here means -
 % that the edge doesn't exist
 C = zeros(Ni, Ni);
 %matrix which stores age between nodes, it is of the same
 form as matrix 'C'
 % age of edges, so also 0 at first, but actually the edges
 don't exist so far,
 % so, it doesn't realy matter, the matrice can be empty as
 well
 t = zeros(Ni, Ni);

 % Loop

 ny = 0; %number of input samples

 % one of the stopping criterion, we run the Algorithm
 until the maxnumb

of itterations is reached

 for it = 1:MaxIt
 fprintf('Iteration step: %i / %i\n',it,MaxIt);
 % we run through all inputs (496 cells), take
 one at a time

 for l = 1:nDataInputs

 % Select Input
 %within 1 iteration 'it' we can create several new nodes:
 ny = ny + 1;
 % this just to count the # of input we are at and if it
 is mod of
 %L, then we insert a new node on this iteration
 y = Y{l,:}; % a 5x32 matrix of an input sample

 %THIS PART WAS CREATED TO PICTURE THE MAIN
 IDEA! SKIP all in
 %stars

 %**
 %*****d1 = norm(pdist2(y, W{1,1},
 'cosine'));**

3

52
5252 Appendix B: Reference Implementation in MATLAB for GNG

 %*****d2 = norm(pdist2(y, W{2,1},
 'cosine'));**
 %*****d = [d1 d2];
 **
 %*****[~, SortOrder] = sort(d);
 **
 %*****s1 = SortOrder(1);
 **
 %*****s2 = SortOrder(2);
 **

 %**

 % Choose metric:

 %'euclidean'
 %'minkowski'
 %'chebychev'
 %'cosine'
 %Here we calculate distances between an input and all
 nodes
 %%in d(1) will be stored distance between the
 %current input sample and the 1st node, d(2)..., etc

 d = zeros(size(W,1));
 for h = 1 : size(W,1) % from 1st to last node
 d(h) = norm(pdist2(y, W{h,1}, 'euclidean'));
 %W{h,1} - 5x32 matrix, d(h) 1xN array, where N is
 number of weights
 end

 [~, SortOrder] = sort(d); % in d we have distance values
 in each cell,

 s1 = SortOrder(1); % # of the closest node
 s2 = SortOrder(2); % # of the second - closest node

 % Explanation. Skip all in stars if everything is clear
 so far

 %***

 %***
 %*SortOrder stores indexes of the cells in d in
 ascending order.****
 %*For
 example:**
 %*d = [4 , -2, 0], so
 %*distance(w1,y) = 4;
 %*distance(w2,y) =-2;
 %*distance(w3,y) = 0

4

53

 53 Appendix B: Reference Implementation in MATLAB for GNG 53

 %*SortOrder = [2 , 3, 1] so the second node has the
 smallest dist **
 %*between y.
 **

 %***

 %***
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % Aging
 t(s1, :) = t(s1, :) + 1;
 t(:, s1) = t(:, s1) + 1;

 % Add Error
 E(s1) = E(s1) + d(s1)^2;

 % Adaptation

 W{s1,:} = W{s1,:} + epsilon_b*(y-W{s1,:}); % W{s1,:}
 - BMU, 5x32 matrix
 Ns1 = find(C(s1,:)==1); % Ns1 - neighbors of
 BMU;

 % C_Graph = graph(C);

 for j = 2:size(W,1)
 if j == Ns1
 % TopNb = neighbors(C_Graph, j);
 % Sig = 3/size(TopNb,1);
 Sig = 3/size(W,1);
 W{j,:} = W{j,:} + epsilon_b*exp(-SortOrder(j)/
(2*Sig^2))*(y-W{j,:});
 else
 Sig = 3/size(W,1);
 W{j,:} = W{j,:} + epsilon_b*exp(-SortOrder(j)/
(2*Sig^2))*(y-W{j,:});
 end
 end

 %%%
%%%%%%%%%%%%%%%%%%%%%
 %C(s1,:)==1 boolean, checks if there are 1's in the s1-
th row,
 % find(C(s1,:)==1) returns number of columns (node) in
 which we have 1
 % for j=Ns1
 % W{j,:} = W{j,:} + epsilon_n*(y-W{j,:});
 % E.g. Ns1=[2,3,7], then node2, node3, node7 are adaped
 % end
 %%%
%%%%%%%%%%%%%%%%%%%%%%

5

54
5454 Appendix B: Reference Implementation in MATLAB for GNG

 % Create Link
 C(s1,s2) = 1;
 C(s2,s1) = 1;
 t(s1,s2) = 0;
 t(s2,s1) = 0;

 % Remove Old Links
 C(t>T) = 0;
 nNeighbor = sum(C);
 %returns a row vector and show the # of neighbors for
 each node
 AloneNodes = (nNeighbor==0);% index of a node ithout
 neighbors
 C(AloneNodes, :) = []; % delete the row # AloneNodes
 from matrix C
 C(:, AloneNodes) = []; % delete the column # AloneNodes
 from matrix C
 t(AloneNodes, :) = [];
 t(:, AloneNodes) = [];
 W(AloneNodes, :) = [];%delete the cell with node #
 AloneNodes
 E(AloneNodes) = [];

 % Add New Nodes
 if mod(ny, L) == 0 && size(W,1) < N
 %ny counts the # of iteration and
 %if it is mod of L, then we insert a new node on this
 iteration
 [~, q] = max(E);
 [~, f] = max(C(:,q).*E);
 r = size(W,1) + 1;
 W{r,:} = (W{q,:} + W{f,:})/2;
 C(q,f) = 0;
 C(f,q) = 0;
 C(q,r) = 1;
 C(r,q) = 1;
 C(r,f) = 1;
 C(f,r) = 1;
 t(r,:) = 0;
 t(:,r) = 0;
 E(q) = alpha*E(q);
 E(f) = alpha*E(f);
 E(r) = E(q);
 end

 % Decrease Errors

 E = delta*E;%accumulated error
 B(it,:) = norm(E);
 end

 fprintf('Total error: %f\n', norm(E));

6

55
 55Appendix B: Reference Implementation in MATLAB for GNG 55

 % For Plot
 if PlotFlag
 figure(1);
 PlotResultsMyLast(Y, W, C)
 pause(0.01);
 end

 end

 % Export Results
 net.W = W;
 net.E = E;
 net.C = C;
 net.t = t;
 net.B = B;

 end
 %%%
%%%%%%
 %%%
%%%%%%

 %%%
%%%%%%
 %%%%%%%%%%%%%%%%%%Tuning HPs with RS%%%%%%%%%%%%%%%%%%%%%
%%%%%%
 %%%
%%%%%%

 data = load('ScaledHealthyData');
 X = data.ScaledHealthyData;

 % Create names folds: name->TrainSet->TestSet

 CfoldV = cell(10,3); % pre-allocation of folds

 for i = 1:10

 CfoldV{i,1} = sprintf('fold%i', i); % name of folds (just
 for convinient
 %reading)

 end

 % Fill in the folds splitting into 200 and 1800 set pairs
 (Test and Train)
 % Beginning%%%
%%%%%%%%%%%%%%%%%
 k = 200;
 CfoldV{1,2} = X(k+1:2000, :);% Train set 1
 CfoldV{1,3} = X(1: k,:); % Test set 1

 for i = 2:10

7

56
5656 Appendix B: Reference Implementation in MATLAB for GNG

 CfoldV{i,2} = cat(1, X(1:(i-1)*k, :), X(i*k
+1:2000,:));%TrainSets 2-10
 CfoldV{i,3} = X((i-1)*k+1: i*k,:); %T est Sets 2-10
 end
 %End%%
%%%%%%%%%%%%%%%%%
 folds = cell(10,6); % preallocation, here I store sets of
 %HPs for each epoch and Mean Errors for Train and Test
 sets
 epoch_number = 20; % random search epochs
 OptimResult = 0.05; % randomly chosen number, I want Err
 be less or so
 table_epoch = zeros(epoch_number,3);% where we record L,T,
 epsilon for
 %each epoch
 table_epoch_best = zeros(epoch_number,3); %the epochs
 where Err went down

 %%
%%%%%%%%%%%%%%%%%
 %%
%%%%%%%%%%%%%%%%%
 %%
%%%%%%%%%%%%%%%%%

 for fold = 1:10
 Xtrain = CfoldV{fold, 2};
 Xtest = CfoldV{fold, 3};

 FindMeanError = zeros(epoch_number, 1);
 FindMeanTestError = zeros(epoch_number, 1);
 MeanTrainIt = cell(epoch_number, 1);
 MeanTestIt = cell(epoch_number, 1);

 rng('default'); %%%Seed
 rng(1);
 for epn = 1:epoch_number
 L_candidate = randi([1, 100],1);
 T_candidate = randi([1, 100],1);
 rnd_n = randi(10,1,1);
 %epsilon_b_candidate = 0.5*exp(-0.5*(rnd_n-1));
 % Value of the learning rate
 epsilon_b_candidate = 0.03;
 % Record the 3-tuple [L, T, epsilon]:
 table_epoch(epn,:)=[L_candidate T_candidate
 epsilon_b_candidate];
 % L, T, epsilon_b
 end

 for epn = 1:epoch_number

8

57
 57Appendix B: Reference Implementation in MATLAB for GNG 57

 % Parameters from APP

 params.N = 50;% maximum # of nodes
 params.MaxIt = 15;%#the creterion forcreatingnewnods(<=
 MaxIt,useitwith'ny'
 params.L = table_epoch(epn,1);
 params.epsilon_b = table_epoch(epn,3);% moderate BMU1
 adaptation
 params.alpha = 0.5;% moderate local error
 params.delta = 0.005; % moderate global error
 params.T = table_epoch(epn,2);% maximum possible age of
 an edge

 [FindMeanError(epn,1),FindMeanTestError(epn,1),
 MeanTrainIt{epn,1}, ...
 ...MeanTestIt{epn,1}] = ...
 ...ObjFunJ(Xtrain, Xtest, params.L, params.T,
 params.epsilon_b);

 if FindMeanError(epn,1) <= OptimResult
 Lbest = params.L;
 Tbest = params.T;
 epsilon_best = params.epsilon_b;
 OptimResult = FindMeanError(epn,1);
 table_epoch_best(epn,:)=[Lbest Tbest
 epsilon_best];
 end
 end

 folds{fold, 1} = table_epoch;
 folds{fold, 2} = table_epoch_best;

 folds{fold, 3} = FindMeanError;
 folds{fold, 4} = FindMeanTestError;

 folds{fold, 5} = MeanTrainIt;
 folds{fold, 6} = MeanTestIt;
 end
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
 % *______ObjFunJ______* %%
 %%
 %the function calls GNG on 10 different sets %
 %and outputs Mean Error for evluation %
 %%

 function [FindMeanError,FindMeanTestError, MeanTrainIt,
 MeanTestIt] = ...
 ObjFunJ(Xtrain, Xtest,L, T, epsilon_b)

 % Parameters from APP %%

 params.N = 50;% maximum # of nodes

9

58
5858 Appendix B: Reference Implementation in MATLAB for GNG

 params.MaxIt = 15;
 % # the creterion for creating new nods
 %(<= MaxIt), use it with 'ny'
 params.L = L;
 params.epsilon_b = epsilon_b;% moderate BMU1 adaptation
 params.alpha = 0.5;% moderate local error
 params.delta = 0.005; % moderate global error
 params.T = T;% maximum possible age of an edge

 net = GNG_RSJ(Xtrain, Xtest, params, false);
 % false means there is no plot executed

 FindMeanError = mean(net.E_train);%mean(net.E);
 FindMeanTestError = mean(net.E_test);
 MeanTrainIt = net.MeanTrainError;%net.MeanError; % array
 MeanTestIt = net.MeanTestError; %array

 end
 %%
%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
 % *______GNG_RSJ______* %%
 %%
 %the function performs GNG on 10 different sets%
 %and outputs Mean Error for evluation %
 %%
 function net = GNG_RSJ(Xtrain, Xtest, params, PlotFlag)

 % Prepare inputs
 % # of Time windows in Train set, time window is an input
 windowsTrain = size(Xtrain,1)/5;
 windowsTest = size(Xtest,1)/5;

 %%%%%%Train Time Window%%%%%%%%%
 Ytrain = cell(windowsTrain, 1);
 i = 1;
 l = 1;

 while l ~= windowsTrain + 1
 Ytrain(l,:) = {Xtrain(i:i+4,:)}; % cells of time
 windows
 i = i+5;
 l = l+1;
 end

 %%%%%%Test Time Windows%%%%%%%%%
 Ytest = cell(windowsTest, 1);
 i = 1;
 l = 1;

 while l ~= windowsTest + 1
 Ytest(l,:) = {Xtest(i:i+4,:)};

10

59
 59Appendix B: Reference Implementation in MATLAB for GNG 59

 i = i+5;
 l = l+1;
 end
 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Error using evalin
Undefined function 'SplitDataIntoInputsJ' for input arguments of type
 'double'.

Published with MATLAB® R2019b

11

60

 60 60 Appendix B: Reference Implementation in MATLAB for GNG

Appendix B: Bibliography 61

Bibliography

[1] Understanding confusion matrix. URL https://towardsdatascience.com/

understanding-confusion-matrix-a9ad42dcfd62.

[2] Hyperparameter tuning the random forest in python. URL https://

towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74.

[3] Understanding auc-roc curve. URL https://towardsdatascience.com/

understanding-auc-roc-curve-68b2303cc9c5.

[4] Kohonen self-organizing maps. URL https://towardsdatascience.com/

kohonen-self-organizing-maps-a29040d688da.

[5] A no-nonsense matlab (tm) toolbox for gmlvq (2015). URL https://www.cs.rug.

nl/biehl/gmlvq.html.

[6] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. J.
Mach. Learn. Res., 13:281–305, 2012. URL http://dblp.uni-trier.de/db/

journals/jmlr/jmlr13.html#BergstraB12.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Comments on “coordination of groups
of mobile autonomous agents using nearest neighbor rules”. IEEE Transac-
tions on Automatic Control, 52(5):968–969, May 2007. ISSN 2334-3303. doi:
10.1109/TAC.2007.895885.

[8] M. Biehl. Relevance and matrix adaptation in learning vector quantization (grlvq,
gmlvq and liram lvq), 2017. URL http://matlabserver.cs.rug.nl/gmlvqweb/

web/.

[9] K. Bunte, P. Schneider, B. Hammer, F. Schleif, T. Villmann, and M. Biehl. Limited
rank matrix learning, discriminative dimension reduction and visualization. Neural
Networks, 26:159–173, Feb. 2012.

[10] F. Canales and M. Chacón. Modification of the growing neural gas algorithm for
cluster analysis. In L. Rueda, D. Mery, and J. Kittler, editors, Progress in Pattern
Recognition, Image Analysis and Applications, pages 684–693, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg. ISBN 978-3-540-76725-1.

[11] M. E. Celebi and K. Aydin. Unsupervised Learning Algorithms. Springer Publishing
Company, Incorporated, 1st edition, 2016. ISBN 3319242091.

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/kohonen-self-organizing-maps-a29040d688da
https://towardsdatascience.com/kohonen-self-organizing-maps-a29040d688da
https://www.cs.rug.nl/biehl/gmlvq.html
https://www.cs.rug.nl/biehl/gmlvq.html
http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12
http://dblp.uni-trier.de/db/journals/jmlr/jmlr13.html#BergstraB12
http://matlabserver.cs.rug.nl/gmlvqweb/web/
http://matlabserver.cs.rug.nl/gmlvqweb/web/

62 Appendix B: Bibliography

[12] O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised Learning. The MIT Press,
1st edition, 2010. ISBN 0262514125.

[13] Y. Fedorenko. Data classification based on neural gas and markov’s algorithms.
Molodezniy Nauchno-Technicheskiy Vestnik, 08 2014. doi: 004.67.

[14] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees. The sap
hana database – an architecture overview. IEEE Data Eng. Bull., 35(1):28–33,
2012. URL http://dblp.uni-trier.de/db/journals/debu/debu35.html#

FarberMLGMRD12.

[15] B. Fritzke. A growing neural gas network learns topologies. In Proceedings of the
7th International Conference on Neural Information Processing Systems, NIPS’94,
pages 625–632, Cambridge, MA, USA, 1994. MIT Press. URL http://dl.acm.

org/citation.cfm?id=2998687.2998765.

[16] J. Hale. Scale, standardize, or normalize with scikit-learn, 2018. URL https:

//www.kaggle.com/discdiver/guide-to-scaling-and-standardizing.

[17] J. Hale. Scale, standardize, or normalize with scikit-
learn, 2019. URL https://towardsdatascience.com/

scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02.

[18] A. Harri and B. W. Brorsen. The overlapping data problem. 1998.

[19] S. Hert and M. Seel. dD convex hulls and delaunay triangulations. In CGAL User
and Reference Manual. CGAL Editorial Board, 2019. URL https://doc.cgal.

org/5.0/Manual/packages.html#PkgConvexHullD.

[20] C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl. Deep learning with topological sig-
natures. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 1633–1643, Red Hook, NY, USA, 2017. Cur-
ran Associates Inc. ISBN 9781510860964.

[21] I. Jolliffe. Principal Component Analysis, pages 1094–1096. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-04898-2.
doi: 10.1007/978-3-642-04898-2_455. URL https://doi.org/10.1007/

978-3-642-04898-2_455.

[22] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, Heidelberg, 1997.
ISBN 3540620176.

[23] T. Kohonen, M. R. Schroeder, and T. S. Huang. Self-Organizing Maps. Springer-
Verlag, Berlin, Heidelberg, 3rd edition, 2001. ISBN 3540679219.

http://dblp.uni-trier.de/db/journals/debu/debu35.html#FarberMLGMRD12
http://dblp.uni-trier.de/db/journals/debu/debu35.html#FarberMLGMRD12
http://dl.acm.org/citation.cfm?id=2998687.2998765
http://dl.acm.org/citation.cfm?id=2998687.2998765
https://www.kaggle.com/discdiver/guide-to-scaling-and-standardizing
https://www.kaggle.com/discdiver/guide-to-scaling-and-standardizing
https://towardsdatascience.com/scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02
https://towardsdatascience.com/scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02
https://doc.cgal.org/5.0/Manual/packages.html#PkgConvexHullD
https://doc.cgal.org/5.0/Manual/packages.html#PkgConvexHullD
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1007/978-3-642-04898-2_455

Appendix B: Bibliography 63

[24] D. Kumar, J. C. Bezdek, S. Rajasegarar, M. Palaniswami, C. Leckie, J. Chan, and
J. Gubbi. Adaptive cluster tendency visualization and anomaly detection for stream-
ing data. ACM Trans. Knowl. Discov. Data, 11(2), Dec. 2016. ISSN 1556-4681. doi:
10.1145/2997656. URL https://doi.org/10.1145/2997656.

[25] T. Martinetz. Competitive hebbian learning rule forms perfectly topology preserving
maps. 01 1993. doi: 10.1007/978-1-4471-2063-6_104.

[26] T. Martinetz and K. Schulten. A neural network for robot control: Cooperation
between neural units as a requirement for learning. Comput. Electr. Eng., 19(4):
315–332, July 1993. ISSN 0045-7906. doi: 10.1016/0045-7906(93)90053-T. URL
http://dx.doi.org/10.1016/0045-7906(93)90053-T.

[27] S. Mostapha Kalami Heris. Neural gas network in matlab, 2015. URL http://

yarpiz.com/77/ypml111-neural-gas-network.

[28] D. Mudali, M. Biehl, K. Leenders, and J. Roerdink. LVQ and SVM Classification
of FDG-PET Brain Data, volume 428, pages pp 205–215. 01 2016. doi: 10.1007/
978-3-319-28518-4_18.

[29] D. Nebel, M. Kaden, A. Villmann, and T. Villmann. Types of (dis-) similarities and
adaptive mixtures thereof for improved classification learning. Neurocomputing,
268:42–54, Dec. 2017.

[30] P. Refaeilzadeh, L. Tang, and H. Liu. Cross-Validation, pages 532–
538. Springer US, Boston, MA, 2009. ISBN 978-0-387-39940-9.
doi: 10.1007/978-0-387-39940-9_565. URL https://doi.org/10.1007/

978-0-387-39940-9_565.

[31] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Press, USA, 3rd edition, 2009. ISBN 0136042597.

[32] A. Sato and K. Yamada. Generalized learning vector quantization. In Proceedings
of the 8th International Conference on Neural Information Processing Systems,
NIPS’95, page 423–429, Cambridge, MA, USA, 1995. MIT Press.

[33] P. Schneider, M. Biehl, and B. Hammer. Relevance matrices in lvq. In ESANN,
2007.

[34] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in learning
vector quantization. Neural Comput., 21(12):3532–3561, Dec. 2009. ISSN 0899-
7667. doi: 10.1162/neco.2009.11-08-908. URL https://doi.org/10.1162/

neco.2009.11-08-908.

https://doi.org/10.1145/2997656
http://dx.doi.org/10.1016/0045-7906(93)90053-T
http://yarpiz.com/77/ypml111-neural-gas-network
http://yarpiz.com/77/ypml111-neural-gas-network
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1162/neco.2009.11-08-908
https://doi.org/10.1162/neco.2009.11-08-908

64 Appendix B: Bibliography

[35] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in learn-
ing vector quantization. Neural Computation, 21(12):3532–3561, 2009. doi:
10.1162/neco.2009.11-08-908. URL https://doi.org/10.1162/neco.2009.

11-08-908. PMID: 19764875.

[36] T. Villmann and J. C. Claussen. Magnification control in self-organizing maps
and neural gas. Neural Comput., 18(2):446–469, Feb. 2006. ISSN 0899-
7667. doi: 10.1162/089976606775093918. URL http://dx.doi.org/10.1162/

089976606775093918.

[37] R. Xu and D. Wunsch. Clustering. Wiley-IEEE Press, 2009. ISBN 9780470276808.

[38] Y.-L. Zhang, L. Li, J. Zhou, X. Li, and Z.-H. Zhou. Anomaly detection with par-
tially observed anomalies. In Companion Proceedings of the The Web Confer-
ence 2018, WWW ’18, page 639–646, Republic and Canton of Geneva, CHE,
2018. International World Wide Web Conferences Steering Committee. ISBN
9781450356404. doi: 10.1145/3184558.3186580. URL https://doi.org/10.

1145/3184558.3186580.

https://doi.org/10.1162/neco.2009.11-08-908
https://doi.org/10.1162/neco.2009.11-08-908
http://dx.doi.org/10.1162/089976606775093918
http://dx.doi.org/10.1162/089976606775093918
https://doi.org/10.1145/3184558.3186580
https://doi.org/10.1145/3184558.3186580

Eidesstattliche Versicherung 65

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich meine Arbeit selbstständig verfasst, keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht
anderweitig für Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, 30. March 2020

HSMW-Thesis

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Statement of the problem
	1.3 Thesis structure

	2 Basics
	2.1 Outliers
	2.2 Root Cause Analysis
	2.3 Technical Monitoring Cockpit
	2.4 The Self-Organizing Maps
	2.5 Confusion Matrix
	2.6 ROC and AUC
	2.7 Principal Component Analysis
	2.8 K-Fold Cross Validation

	3 Growing Neural Gas (GNG)
	3.1 Growing Neural Gas Algorithm

	4 Learning Vector Quantization
	4.1 The concepts of Learning Vector Quantization
	4.2 Milestones of learning scheme for LVQ algorithms
	4.3 Generalized LVQ algorithm
	4.4 Generalized Matrix Learning Quantization

	5 Data Preprocessing. Healthy prototypes with the GNG.
	5.1 Data set
	5.2 The architecture of the built tool
	5.3 Healthy Data Preprocessing
	5.4 GNG learns Healthy Data
	5.4.1 Evaluation of GNG

	6 GMLVQ Classification of SAP IT Data
	6.1 The GMLVQ experimental workflow
	6.2 Results
	6.2.1 Binary Classification
	6.2.2 Multi-class Classification

	7 Conclusion and future research
	A List of Features
	B Reference Implementation in MATLAB for GNG
	Bibliography

