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Abstract

Anomaly Detection is a very acute technical problem among various business enterprises. In
this thesis a combination of the Growing Neural Gas and the Generalized Matrix Learning Vector
Quantization is presented as a solution based on collected theoretical and practical knowledge.
The whole network is described and implemented along with references and experimental re-
sults. The proposed model is carefully documented and all the further open researching ques-
tions are stated for future investigations.
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1 Introduction

Artificial Intelligence has been drawing the attention of computer scientists from all over
the world for decades [31]. People always wanted to build up modern powerful machines
and computers capable of imitating human’s physical and mental abilities. Thus, that
could ease many life problems we face every day: cleaning, cooking, collecting and
sorting rubbish, the list is endless. All of this led out into a new discipline in 1956 which
we now know as Al [31]. Many different approaches have been developed and tried out
seeking the solution to one goal - teach machines to act, make a choice and learn like
a human being[24].

Computer Science

Machine Learning

Supervised Unsupervised

Figure 1.1: Computer Science sub-fields

Before any of the approaches can be applied to teach a machine, one needs to analyze
data and transform it into information that can be processed by the machine. Thus,
there was developed a huge sub-field of Al, known as Machine Learning. It, in turn,
includes supervised, unsupervised and semi-supervised learning methods [31]. For a
better understanding of the working scope, the sub-sequence of disciplines is depicted
in Figure 1.1.

Nowadays, a lot of problems in Machine Learning are related to Anomaly Detection. For
example, how to teach a machine to distinguish healthy patients’ state and unhealthy
one according to given biometrics; or talking about business operating systems, how
a machine could monitor the normally functioning state and automatically report about
disturbances of any cause. A more detailed explanation about Anomaly Detection is
described in [24]. The most widely used approaches to treat such problems are clas-
sification and clustering. Classification belongs to supervised training, when one gives
an algorithm some input data and teaches the algorithm to return an in advance known
output (learning with a master). Whereas, clustering (or learning without a master) is
a type of Machine Learning which is used when an end-user is not aware of possible
output [11]. Algorithms learn data on their own and split them into groups in accordance
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with a similarity measure. Normally, one does not always know the results which might
be shown after data is processed. For instance, a doctor collects patients’ anamnesis,
urine and blood samples, measures pulse and pressure. After gathering all the infor-
mation about a patient it is not always clear which diagnosis to report, as the same
symptoms may signalize to different health problems. Here we need to manage to get
an output that we can not predict beforehand, so we can not teach our algorithm to per-
form a particular, known output. That is why Unsupervised Learning finds application
in different areas more and more often. Also, sometimes we do have some available
information, that is probably not enough for solving an anomaly detection problem com-
pletely, but could be used as a start point. For instance, if we are given with examples
of healthy data, we can teach an algorithm how to distinguish this healthy state from
an unhealthy one. After a successful classification we can continue with unsupervised
learning, trying to make the machine see the differences among variety of anomalies.
Such learning approach is known as semi-supervised, because the first step includes
classification (an anomaly or not an anomaly) and the second one uses clustering (what
kind of anomaly). For more detailed explanation about semi-supervised technique see
[12]. Allin all, Anomaly Detection finds its application in many spheres such as banks,
insurance companies, sales, business. People are trying to catch and patch an outlier
behavior as soon as possible in order to keep their business running, otherwise, the en-
terprises may meet financial and client loss. That is why automatic anomaly detection is
essential for middle and big ventures. If there was such a method to identify an anomaly
in a huge volume of data and even give some feedback about its root cause, many com-
panies would profit sufficiently. In spite of the topicality of the task, it is not completely
solved so far. There is plenty of algorithms, but all of them have their drawbacks, such
as poor scaling onto the bigger amount of data, the necessity of knowledge about in-
put data or hyper-parameters pre-definition, which are often to be chosen heuristically
[37]. Although it seems unlikely that one can find a universal method that would solve
arbitrary clustering or classification tasks (see [11]), we can keep investigating the algo-
rithms and their combinations in order to come up as close as possible to multipurpose
solutions.

1.1 Motivation

In this thesis we investigate how Anomaly Detection can help in Root Cause Analy-
sis (RCA) for monitoring applications, and for that we use SAP systems to build and
evaluate an anomaly detection and root cause identification model. A SAP system is
a business application that consists of application servers connected to SAP HANA
databases. The database tracks records of metrics (attributes), such as CPU load,
memory usage, and others, see Appendix A. The records are written in a time-series
manner. Each timestamp stores an array of 32 attribute values, they are being moni-
tored and analyzed manually by SAP experts when they try to find a root of an appeared
problem. For that, the SAP environment is equipped with the Technical Monitoring Cock-
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pit (TMC) which is a built-in tool of SAP application server ABAP to quantify the impact
and locate the source of a reported problem. TMC collects data from all above men-
tioned stacks and also from underlying host. That is, given that we already know that a
problem exists because of end-user complaints or of a system landscape alert. To find
the root cause of a present problem, the TMC has access to and allows the correlation
of data from all technical stacks of an SAP system (Operating System (OS), Database
(DB) and Application Server (AS)). When facing a present problem, an expert from SAP
(support engineers) usually addresses the problem to a certain category as for example
CPU, Memory, 10, network, a.s.o. In order to help the expert in further analyzing the
RC of the present problem, the TMC provides a number of analysis scenario screens.
However, it is still difficult to find the root cause without anomaly detection, the user just
browses through the raw data, whereas having anomaly detection tool, we could offer
pre-configured analysis scenarios for a presumed anomalies class. Such an automatic
analyzing tool could support the experts in their daily routine.

1.2 Statement of the problem

It would be desirable to develop a support algorithm which can help SAP-experts detect
and classify deviant behavior of the system. With that goal in mind, we want to use
a large amount of healthy data in order to teach the healthy state of the system to an
algorithm. As soon as productive system behavior is learned, we are going to separate
healthy and abnormal data samples. Furthermore, it shall be evaluated to which degree
an automated, data-driven process can support the expert in determining the problem
category. For the investigation, we were provided with labeled data of healthy states
and anomalies of different classes, so that there are many more healthy states, those
are to be learned first in order to create prototypes that could optimally represent the
healthy data samples. Thus, the semi-supervised two-step approach was suggested.
First, the topology of the healthy data is to be learned with Growing Neural Gas[15].
Then, the binary problem is to be solved: automatically distinguish normal and abnormal
data signals. Our final goal is to detect different anomaly states and here we want to
investigate how well the Generalized Matrix Learning Quantization (GMLVQ)[32] can
perform in our case.

In Figure 1.2 we can see the structure of the Anomaly Detection Tool we want to build.
As a healthy state is extensive and unhealthy signals are sparse, we first find a repre-
sentation of that class with GNG.
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Figure 1.2: The architecture of the Anomaly Detection tool.

Then the prototypes retrieved from the Neural Gas are used as data samples for GMLVQ
and compared with anomalous samples.

1.3 Thesis structure

The further part of this thesis is organized as follows: Chapter 2 gives some basic
definitions in ML that will be used in this work. Chapters 3,4 describe basic concepts of
the GNG and the GMLVQ. In Chapter 5 we describe our data workflow in the GNG and
evaluate the results. Chapter 6 describes he the workflow of the GMLVQ classifier with
final evaluation. This work is finished by Chapter 7, where we discuss the results and
propose a scope of open questions for possible future research.
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2 Basics

This chapter explains the main terms and concepts that we use in the following chapters
and helps to understand the following content.

2.1 Outliers

Ouitliers are data signals in well-structured data that deviate from the normal behaviour
[38]. In this work we will also use term anomalies because it is intuitively more clear
and used as a main term in SAP.

2.2 Root Cause Analysis

The process of discovering the ground cause of a problem, that appears in an alert
system or is reported by a user, is called RCA. The information about the root cause
helps to understand what to update in the system to prevent the occurring of the same
problem in future.

2.3 Technical Monitoring Cockpit

The TMC is is an RCA tool in SAP that shows users the full stack of SAP applications
such as databases, operating systems and application servers. Users can monitor data
in each of the connected systems in order to catch the moment of interruption and
indicate the RC of it.

2.4 The Self-Organizing Maps

In 1982 a Finnish professor Dr. Teuvo Kohonen introduced an unsupervised approach
that realize dimensionality reduction, mapping high-dimensional data onto 2D or 3D
space [4]. The approach is known as a self-organizing map (SOM). SOMs maintain a
topology of input and output spaces, guided by the fact that the input vectors that are
close in high dimensional space are also turned out to be neighboring neurons after
mapping onto the 2D space. A valuable characteristic of the learning process is that the
neurons are being organized unsupervisely (a self-organization). They group according
to the similarity between each other. The following Figure 2.1 depict the architecture of
a SOM, [4].
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Figure 2.1: Kohonen Architecture

A SOM, additionally, uses competitive learning to adjust its neurons. Only one neuron
is activated at each iteration in which the features of an input signal are presented to
the neurons network, as all vectors compete for the right to respond to the input. The
winning neuron - the Best Matching Unit (BMU) - is chosen in accordance with the
similarity, between the current input values and all the neurons in the projected space.
To get a better understanding of the concepts of SOMs, see [22]. In this thesis we
applied an unsupervised algorithm that was driven by SOM concepts: Growing Neural
Gas. It is explained in Chapter 3.

2.5 Confusion Matrix

A confusion matrix is used as a performance measure of ML classification algorithms.
For example, we are given with some data sample and we know to which class it belongs
to. Now we want our algorithm to match it to a particular class. After the algorithm run,
we can construct a confusion matrix (Table 2.1), where True Positive and True Negative
outcomes mean that our algorithm made a correct prediction about the class for a given
data signal. Otherwise, we get a miss-classification (False Negative or False Positive).
For further details, see [1].

Actual Values

+ .

+ | TruePositive | FalsePositive
— | FalseNegative | TrueNegative

Predicted Values

Table 2.1: Confusion Matrix
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2.6 ROC and AUC

When we want to visualize the performance of a multi-class classification problem, we
can use Receiver Operating Characteristics, which is a curve and the Area Under the
Curve (AUC). Thus, AUC-ROC curve is another evaluation measure for classification.
It shows how well our algorithm can distinguish among different classes. In Figure 2.1
we can see that the ROC curve is plotted with True Positive Rate against False Positive
Rate values.

ROC

TPR

AUC

FPR

Figure 2.2: ROC-AUC curve

Where we calculate
TP

TP+FN’
TN
TN+FP’
TP+TN
TP+TN+FP+FN
The most accurate model is the one that has AUC close to 1, meaning that the algorithm
performs good measure of separability. For more detailed interpretation of the ROC-
AUC see [3].

T PR(Sensitivity) =

Specificity =

Accuracy =

2.7 Principal Component Analysis

A PCA is a statistical method that converts a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables or so-called principal
components [21]. The conversion takes place due to an orthogonal transformation.
PCA can be used for dimensionality reduction and visualization. In this work, we will
use it to picture our 5-by-32 dimension input signals in a 2-dimension plot.
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2.8 K-Fold Cross Validation

When we need to evaluate a ML algorithm accuracy, we can use CV technique [2]. First,
the input data is split into k-sets. The k subsets are called folds. In the second step,
we iteratively fit the model k times, each time training the data on k-1 of the folds and
evaluating on the k-th fold (called the validation data). In the Figure we show an example
on 4-folds validation. The first iteration we train on the first four folds and evaluate on the
fifth. The second time we train on the first, second, third, and fifth fold and evaluate on
the fourth. We repeat this procedure 2 more times, each time evaluating on a different
fold. At the very end of training, we average the performance on each of the folds to
come up with final validation metrics for the model.

Total Number of Dataset

Experiment
1 Training
Experiment
2
Experiment Validation
3
Experiment
4

Figure 2.3: 4-Fold Cross Validation [2]

This approach is used for evaluation of the GNG in Chapter 5. For more information
about K-Fold CV see [2],[30].
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3 Growing Neural Gas (GNG)

In many unsupervised algorithms learning aims at optimal representation of an input
data structure: topology learning[20], [13]. In other words, we want to discover
and represent a fundamental structure of the given data with less number of data
representers prototypes.

Assuming that we are given with P(x) - the distribution of some data (high-dimensional),
the task is to design such a topological structure that would portray the given data
distribution topology. The algorithm was driven by SOMs and was described by
Martinetz and Schulten in 1993 [26]. The approach uses the synergy of Neural Gas
(NG) [36] and 'competitive Hebbian learning’ CHL [25]. Further, an advanced approach
was described by Fritzke where NG was replaced with GNG [15]. Growing Neural Gas
is a derivative algorithm from NG and is also based on CHL.

3.1 Growing Neural Gas Algorithm

Growing Neural Gas Algorithm (GNG) is a self-organized neural net that learns the
topology of input data on the flow along with new input samples insertion. In this Master
thesis, the code was written based on the GNG algorithm given in the article [15], where
it was assumed that we have a network, (or topologically - a graph) that consists of two
sets:

« Q - a set of reference vectors (nodes) w, € R".

* N - a set of non-weighted edges among pairs of the neurons.

The algorithm starts with the initialization of two randomly chosen neurons. The term
‘neurons’ means some abstract objects, whilst the real numerical data that represents
the corresponding neurons in R") is defined as reference vectors’. But from now on
the two terms ’‘neurons’ and reference vectors’ in GNG will be used as equal for con-
venience. So, each reference vector is assumed to have an accumulated error variable
and a set of edges emanating out of it. Error measure is aimed to regulate the neurons’
birth. The edges reflect topological neighbors of every existing node and are assigned
with another statistical measure - an age variable. The age of a topological neigh-
borhood (node-connection) is meant to regulate removing old links, keeping a network
topology updated and preserving Delaunay triangulation [19]. Thus, we have:

In the preamble of the algorithm one sets 8 hyper-parameters which are constant in time
and whose sole role is to moderate values of errors and moving rates of the nodes.
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N — maximum number of nodes;
MaxIt — maximum number of itterations;
L —if the index of the current data point is multiple of L, then insert a new node;
&, &, —local eror measures for BMU and its neighbours;
o — moderate a local error;
0 — moderate the global error;

T —maximum age of an edge;

Further, there is an n-dimensional space of input signals spread according to a proba-
bility density function P(x). One signal is randomly chosen in each iteration.

The following algorithm describes an ‘advanced’ variation of NG, so-called Growing
Neural Gas approach which allows to gradually generate the network structure due to
CHL without concern about the dimensionality of input data.

GNG step-by-step:

1. Insert two randomly located neurons @, and @, in R".

2. Get a random data signal x from your input set.

3. Calculate distances (a chosen similarity measure) between the neurons and x;
determine two best matching units: sy, s3.

4. Age all the edges flowing out of s;.

5. Update the squared error of the winner-unit s; according to the chosen dissimilar-
ity measure (e.g. Euclidean distance):

AE = d*( o, ,x). (3.1)

6. Shift s; and all the neurons that are directly connected to it towards the input
sample x. The adaptation rule is given below:

Awy, = &, * (x — wy,), (3.2)

Aw, = &, % (x— @), (3.3)

where &, and g, - learning rates for w;,, @, accordingly.

7. Unless the 2 best matching units s; and s, are connected, join them with a new
zero-aged edge. Otherwise, set the age of the already existed connection to 0.

8. The edges of age larger than the predefined value T are removed. After that,
all alone neurons that might appear after edge deleting also have to be removed
from the network.
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9. If the amount of existing neurons is not exceeded and the index of the input is a
multiple of L., then add a new reference vector in accordance with the following
steps:

* Let w, be the neuron in the network with the maximum accumulated error.
Consider a subset B, , a sub-graph of the net where all the neurons are
connected to w,, with an edge, we call such neurons topological neighbors
of w, and B, its neighborhood. Determine its topological neighbor r € B,
also with the highest accumulated error. So we get @,, ®, such that:

+ Create a new reference vector a,:

1
Wy =S+ (0, + o) (3.4)
* Manage the links: connect nodes ¢ — p and g — r pairwise and disconnect
p—r
» Decrease the age of the edge p — r and initialize the error variable of g in
this manner:
E(p) =axE(p),
E(r)=axE(r),
E(q) = E(q).

10. Through multiplying by & decrease all the error variables
AE = E % 6. (3.5)

11. The stopping criterion may vary. It is achieved if, for example, the topology of the
network gets stable ( new nodes neither appear, nor move).

All'in all, with the GNG one can construct a general structure of the input data that helps
to get a better understanding of the data topology. The neurons that are created in the
net may serve as prototypes of the original data and further be used to support different
clustering techniques, for example as it is explained in [13].
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4 Learning Vector Quantization

In this Chapter we consider different LVQ approaches, their evolution and differences.
LVQ is quite a mighty classification scheme due to its easy implementation, controllable
classifier, multi-class problems management, and explicit intuitive interpretation [33].
Therefore, the algorithm has been widely employed in different academic and commer-
cial fields, among which bio-informatics, robotics, bio-engineering and image analysis.
Despite its huge popularity among data scientists LVQ does still suffer from a number of
shortcomings, for instance, slow convergence and unstable training behavior, resulting
in unpredictable performances [35]. Thus, there have been derived several modifica-
tions of the original technique in order to beat the drawbacks up. As an example, Sato
and Yamada in their work [32] presented an approach that allows obtaining a scheme
for minimizing the cost function of the learning. It is known as the GLVQ. Then a ma-
trix version (the GMLVQ) was elaborated [34], that we consider in Section 4.4 in more
details.

4.1 The concepts of Learning Vector Quantization

LVQ was introduced by T. Kohonen in 1997 and described as a novel prototype-based
approach which belongs to supervised learning [22]. The sole purpose of the algorithm
is to outline class regions in the given data space according to the closest-neighbor rule.
Let 2" C R" be input data, ¥ = {1,...,C} - classes, then training data X is defined as
a graph:

X={(x,c(x)) | xe Z,c(x) €€}

Where x - a data sample, c¢(x) - a class label. One also defines a set of code-book
vectors # = {wy,...,wy}, # C R" such that, for each ¢ € ¢ there exists w; with
¢ = c(wj). Then, introducing new data .2~ we manage the class assignment

C(X) = c(ws(x))a (4.1)

where

s(x) = argmin(d(x, w;)), (4.2)

J

the approach is known as winner-take-all competition (WTAC) and w,) is the winner
prototype. Here d is a chosen distance, normally Euclidean dg (x,wy) = (x —wy)?, but
depending on the original problem other dissimilarity measures can be chosen instead
[29]. Then the task transforms into the class assignment with the following quadratic
variant as a more general form

do(x, wj) = (Qx— w;)%, (4.3)
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we denote Q € R"»*" as dimension data projection matrix where n, the projection
dimension[9]. In case when Q = id(x) with n,, = n, we get the Euclidean distance.

Learning scheme is realized by the prototypes distribution onto the projection space R"»
in order to depict the class distributions. If we set n, = n, the prototypes will live in the
same dimensional space as the original data signals. The idea of the learning, though,
is to find a lower-dimensional representation of our data (the quantization). That is why
we avoid such an assignment.
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4.2 Milestones of learning scheme for LVQ algorithms

The LVQ is presented by 3 separate algorithms: LVQ 1, LVQ 2, LVQ 3, which are de-
scribed in [23] by T. Kohonen. In this section, | describe some main steps and ideas
behind the general workflow of the algorithms. In order to perform an approximation
of a Bayesian classifier, T.Kohonen proposed a heuristic learning construction. Each
randomly chosen data sample is assigned to a class label according to 4.2. In a second
step the winning code-book vector wy,) is to be either shifted closer to the data vector
Qx or repelled from it. Thus, the updating process is defined by

AW = EWY(X,5(x)) « (QX — W), (4.4)
where
s _ 1, C(X) = c(ws(x))
w<X7 (X)> {_17 C(X) 7£ C(ws(x))a

and 0 < € < 1 is the learning rate.

4.3 Generalized LVQ algorithm

LVQ severely suffers from reference vectors divergence. To overcome this obstacle and
to minimize the cost function, GLVQ was proposed. As before we consider labeled train-
ing data (x,c(x)), where c € ¢ = {1,...,c} and a set of labeled prototypes (w;,c(w;))
with {w;}{Y = 7.

Notation:

w is the best matching prototype for (x,c(x)) among all prototypes w; with ¢(w;) =
c(x);

w™ is the closest prototype for (x,c(x)) among all prototypes wj with c¢(wy) # c(x) (the
best incorrect prototype);

DT =d(x,w");
D™ =d(x,w™).
Then, we define the relative distance dissimilarity p(x):
-2 (4.5)
KX = Db+ D '

where —1 < u(x) <1 and u(x) <0 means x is correctly assigned to the class, whereas
1 (x) < 0 signals about an incorrect classification. Under the assumption that d(x,w)
w.r.t. w; _ differentiable, u(x) is a differentiable classifier function.

Now we need a method to decrease error rates, so that (x) shall go down for all input
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signals. Keeping this thought in mind the following learning criterion is deployed:

T =Y o(u(x)), (4.6)
k=1

we set the number of training data samples N, and a monotonically increasing function
¢ (u). Normally, the identity function f(z) = z or the sigmoid function f(z) = 1/(1 +¢%9)
is chosen as ¢ (). The goal is to minimize .#, therefore, the units wT and w™ are to be
updated with the mean of the steepest descent method, where we additionally introduce
o = const,0 < o < 1, then we perform updating:

0.7

AW = —0— (4.7)
w

Precisely,
0.7 d¢ du dD*
+ = -7
AW =+« 56 9 9D" aw (4.8)

And analogically
__ 0Fd¢ du dD~

Taking dg = (Qx —wj)z, one gets the following layout:

0790 o
du _ du 'aDZg(x) du  9IDg(x)
90" aDL(x) 99 | aDg(x) 9%

(4.11)

where B
8+u _ ++2DQ(§) 4.12)
IDG(x) (DG (x) +Dg(x))?
and N
L\ (4.13)
IDG(x)  (Dg(X)+Dg(x))
Thus, we obtain the following GLVQ learning:
o D~
+_ 9% P et
Aw' = +a8u (D++D—)2<x wh) (4.14)
+
AW~ = 99 b (x—w") (4.15)

“YuDr 4Dy

We obtained (4.12) and (4.13) as components of the derivative g—g in (4.10). This version
of the GLVQ algorithm got known as GMLVQ which we consider further in the next
section.
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4.4 Generalized Matrix Learning Quantization

The "Generalized Matrix Learning Quantization" is introduced as an important con-
cept of LVQ, which uses a full matrix of relevance in the similarity measure [34]. The
adaptation of code-book vectors wy € R” to training data is being handled in regards to
the class distribution among the training data vectors.
Mathematically speaking, the algorithm is built on a general distance form (a dissimilar-
ity evaluation).

da(x, wj) = (x— w)TA(x— w), (4.16)

The full N x N matrix A declares correlations between the features. We deploy a GSE
distance in a suitably transformed space enforcing the matrix A to be positive semi-
definite and symmetric. Here, we come up with the approach below

do(x, w;) = (x— w)"QTQ(x — w). (4.17)

The substitution A = Q7 Q guarantees that the above-mentioned essential constraints
on A are satisfied. In such a way a general form of squared Euclidean distance can
be defined in a suitable transformed space. According to well-known linear algebraic
transformations, it is shown

ul Au=u" QT Qu = (QTu)*> <0

for all u. The initializing of Q one may choose a random N x N matrix. After the above-
mentioned substitution of A, one achieves the following SED representation

d™(W, %) =Y (% — W)y R (X — W) (4.18)

Imn

The adaptation process is done through the chain of equations below and includes the
computing of derivatives with respect to w and €

Vwd®(w,x) =2A(x—w) = —2Q7Q(x —w) (4.19)
as well as
dd™(w,x
% = Z(xq —Wy)Qpm (X — W) + Z(xl — W) Qi (Xg — Wy)
P4 m l

=2-(xg—Wy)[Q(x—w)],, (4.20)

the indexes p,q declare vectors components and one gets the equations for prototypes
adaptation:
AW =g-2-¢"(u(x)) - 1T (x) - A (x—wT), (4.21)
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AW = —£-2-0" (u(x)) - u=(X)-A-(x—w"). (4.22)

In order to update the matrix elements we apply

Aqu =-£-2: (P/(.LL(X))

(N+(X) . ((xq - w;)[ﬂ(x _W+)]p) -
(%) ((xq —w;)[ﬂ(x—w—np)) . 429

In 4.21 - 4.23 we can observe the conventional Hebbian rules of LVQ, according to
which, the true-closest code-book vector is to be moved towards the considered data
sample while the false-closest prototype is shifted away from it. Therefore, the param-
eters of the matrix in 4.23 are updated accordingly to squeeze the distance between a
current data vector and its nearest prototype and enlarge the gap to the prototype which
represents another class.

The learning rates for the code-book vectors and for the metric do not depend on each
other, thus, are chosen heuristically.

Note that in order to avoid the degeneration of the algorithm A is to be normalized after
each adaptation step. In [34] it is achieved enforcing

Y Ai=1
i

by dividing all components of the matrix A by the raw value of }; A;; = 1 after each iter-
ation. Thereby, the sum of diagonal elements is fixed and amounts to the correspond-
ing sum of eigenvalues. Thus, one obtains the generalized normalization of relevance
YiA =1 for a simple diagonal metric. The eigen directions of A can be considered
as an interim coordinate system with respect to the relevance which coincide with the
corresponding eigenvalues. As

Aii =Y QiQki =Y (Q)*, (4.24)
k k

here we maintain normalization by multiplying all components of Q by 1//Y4i(4)? =

Y;[QT Q;; after each adaptation. This technique is a kind of analogy to a Standard
Gradient procedure. More detailed explanation is given in [7]. The approach described
by (4.21) -(4.23) approach is termed Generalized Matrix LVQ or in short GMLVQ. In [34]
it is shown that this algorithm is faster than unsupervised fuzzy-clustering techniques
that apply a similar metric form, but requires a matrix inversion in each iteration. In addi-
tion, the metric in GMLVQ is chosen in a supervised manner, such that the optimization
of the parameters takes place according to the given classification task.
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5 Data Preprocessing. Healthy prototypes
with the GNG.

This part of the work describes the implementation and evaluation of the approaches
from the 3rd and the 4th chapters working on the data taken from SAP IT departments.
We designed an anomaly classification model that is a combination of GNG and
GMLVQ. Some evaluating and parameter tuning techniques were used during learning,
such as random search, k-cross-fold-validation, PCA. The corresponding references
are noted as needed, because the additional methods and their understanding effect
the accuracy of learning, thus, play a crucial role in the whole model.

The first section runs about the data structure, the second one introduces the created
anomaly detection tool. The third section describes the normalization of the given data.
The implementation of GNG and GMLVQ, as well as, visualization and evaluation part
of the thesis is explained in the last two sections of the chapter. For the data pre-
processing steps python frameworks scikit-learn, pyod and pandas were used, the topol-
ogy of healthy data was maintained in MATLAB with all the necessary references.

5.1 Data set

The data of a productive system was derived from SAP IT experts. The data was being
collected from May 2017 till October 2018 and represents a time-series with different
values of 32 system metrics, see Figure 5.1 for an example fragment of the records.
The first column shows the timestamp, the other 32 columns store values for different
system attributes such as CPU load, used memory, disk usage, and others.

In a production environment, SAP experts get incidents from end users (clients), where
they attach records of the 32 attributes within some time range, claiming that the system
stopped working over the mentioned period (incidents). The experts, in turn, look
through the values (e.g. CPU, MEMORY_USED, etc.) in order to capture the moment
of an anomaly and its root cause.
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TIMESTAMP CPU MEMORY_USED MEMORY_ALLOCATION_LIMIT DISK _USED NETWORK_IN SYSTEM_CPU HANDLE COUNT PING_TIME
23.05.2017 15:57 12.0 1041591736870.0 4200331102720.0 11365703680.0 18131165115.0 11.0 7114.0 76.0
23.05.2017 15:58 15.0 1022166980155.0 4200931102720.0 11365892056.0 15888920634.0 14.0 7131.0 95.0
23.05.2017 15:59 26.0 979178647009.0 4200931102720.0 11365974016.0 23081759354.0 25.0 7143.0 116.0
23.05.2017 16:00 12.0 961013653278.0 4200331102720.0 11365801984.0 7639345384.0 11.0 7130.0 84.0
23.05.2017 16:01 15.0 1008597711161.0 4200931102720.0 11365851136.0 25384724923.0 18.0 7110.0 67.0
23.05.2017 16:02 23.0 1065081991437.0 4200931102720.0 11365933056.0 33162817726.0 22.0 7115.0 113.0
23.05.2017 16:03 15.0 1031939165229.0 4200931102720.0 11366113280.0 15726460135.0 14.0 7124.0 64.0
23.05.2017 16:04 16.0 1055256343403.0 4200331102720.0 11366162432.0 12353895876.0 16.0 7126.0 67.0
23.05.2017 16:05 11.0 1009312709737.0 4200931102720.0 11366227968.0 14062384243.0 10.0 7138.0 53.0
23.05.2017 16:06 13.0 1000725420012.0 4200931102720.0 11366350848.0 9193912659.0 12.0 7125.0 67.0
23.05.2017 16:07 14.0 960031657279.0 4200331102720.0 11366430112.0 8303467849.0 13.0 7132.0 54.0
23.05.2017 16:08 15.0 969728064102.0 4200931102720.0 11366645760.0 17504762781.0 14.0 7146.0 53.0
23.05.2017 16:09 15.0 973703840767.0 4200931102720.0 11366727680.0 9951570704.0 14.0 7136.0 57.0
23.05.2017 16:10 12.0 983732942543.0 4200331102720.0 11366768640.0 13213218295.0 11.0 7123.0 56.0
23.05.2017 16:11 14.0 579688438240.0 4200931102720.0 11366793216.0 18724712165.0 14.0 7105.0 53.0
23.05.2017 16:12 21.0 980523843525.0 4200931102720.0 11366948864.0 23405352858.0 20.0 7135.0 61.0
23.05.2017 16:13 25.0 963118099732.0 4200331102720.0 11367145472.0  17145193425.0 24.0 7130.0 87.0
23.05.2017 16:14 13.0 567476548905.0 4200931102720.0 11367186432.0 17866724219.0 12.0 7137.0 77.0
23.05.2017 16:15 11.0 997932659658.0 4200931102720.0 11367211008.0 13693543668.0 11.0 7149.0 54.0

Figure 5.1: A fragment of the Data with 8 out of 32 metrics shown.

In essence , we can distinguish different classes by coloring them and split the records
accordingly into so-called time-windows like in Figure 5.2. The time range which is
marked green mean a healthy state, whereas, the other colors indicate anomaly classes
in the system behavior.

1 |TIMESTAMP CPU MEMORY_USED MEMORY_ALLOCATION_LIMIT DISK_USED NETWORK_IN SYSTEM_CPU HANDLE_COUNT PING_TIME
2 [23.05.2017 15:57 12.0 1041591736870.0 4200931102720.0 11365703680.0 18131169119.0 11.0 7114.0 76.0
3 [23.05.2017 15:58 15.0 1022166980155.0 4200931102720.0 11365892096.0 19888920634.0 14.0 7131.0 95.0
4 [23.05.2017 15:59 26.0 979178647009.0 4200931102720.0 11365974016.0 23081759354.0 25.0 7143.0 116.0
5 [23.05.2017 16:00 12.0 961013653278.0 4200931102720.0 11365801984.0 7639945384.0 11.0 7130.0 84.0
6 [23.05.2017 16:01 19.0 1008597711161.0 4200931102720.0 11365851136.0 25384724923.0 18.0 7110.0 67.0
7 [23.05.2017 16:02 23.0 1065081991437.0 4200931102720.0 11365933056.0 33162817726.0 22.0 7115.0 113.0
8 [23.05.2017 16:03 15.0 1031939165229.0 4200931102720.0 11366113280.0 15726460135.0 14.0 7124.0 64.0
9 [23.05.2017 16:04 16.0 1055256348403.0 4200931102720.0 11366162432.0 12353895876.0 16.0 7126.0 67.0
10| 23.05.2017 16:05 11.0 1009312709737.0 4200931102720.0 11366227968.0 14062384243.0 10.0 7138.0 53.0
11| 23.05.2017 16:06 13.0 1000729420012.0 4200931102720.0 11366350848.0 9193912659.0 12.0 7125.0 67.0
12 | 23.05.2017 16:07 14.0 960031657279.0  4200931102720.0 11366490112.0 3803467843.0 13.0 7132.0 54.0
13 | 23.05.2017 16:08 15.0 969728064102.0 4200931102720.0 11366645760.0 17504762781.0 14.0 7146.0 59.0
14| 23.05.2017 16:09 15.0 973703840767.0 4200931102720.0 11366727680.0 9951570704.0 14.0 7136.0 57.0
15 | 23.05.2017 16:10 12.0 983732942549.0 4200931102720.0 11366768640.0 13213218295.0 11.0 7123.0 56.0
16| 23.05.2017 16:11 14.0 979688438240.0 4200931102720.0 11366793216.0 18724712165.0 14.0 7105.0 59.0
17 | 23.05.2017 16:12 21.0 980523843525.0 4200931102720.0 11366948864.0 23405352858.0 20.0 7135.0 61.0
18 |23.05.2017 16:13 25.0 963118099732.0 4200931102720.0 11367145472.0 17145193429.0 24.0 7130.0 87.0
19| 23.05.2017 16:14 13.0 967476548905.0 4200931102720.0 11367186432.0 17866724219.0 12.0 7137.0 77.0
20 |23.05.2017 16:15 11.0 997932659658.0  4200931102720.0 11367211008.0 13693543668.0 11.0 7149.0 54.0
22 | 24.05.2017 09:25|11.0 1013340044304.0 |4200931102720.0 4337149415424.(11326128128.0 #FIELD! #FIELD! #FIELD!
23 | 24.05.2017 09:26|10.0 1090369056811.0 |4200931102720.0 4337145415424.(11326152704.0 (1761.0 622.0 0.0
24 |24.05.2017 09:27|11.0 1174032665206.0 |4200931102720.0 4337143415424.(11326242816.0 |1782.0 633.0 0.0
25 | 24.05.2017 09:28|10.0 1062778786234.0 |4200931102720.0 4337149415424.(11326275584.0 #FIELD! #FIELD! #FIELD!
26 | 24.05.2017 09:29|15.0 1016046987879.0 |4200931102720.0 4337149415424.(11326472192.0 |1813.0 643.0 0.0
28 | 24.05.2017 17:30 10.0 973891735353.0 4337149415424.0 11371757568.0 16910237696.0 0.0 162.0 1.0
29 | 24.05.2017 17:31 21.0 1001468502944.0 4337143415424.0 11371872256.0 16910237696.0 20.0 7161.0 64.0
30 | 24.05.2017 17:32 19.0 1036619554376.0 4337149415424.0 11371929600.0 16910237696.0 0.0 162.0 1.0
31 24.05.2017 17:33 18.0 1028930862595.0 4337143415424.0 11371995136.0 16910237696.0 0.0 162.0 1.0
32 |24.05.2017 17:34 8.0 964632394540.0  4337149415424.0 11372199936.0 16910237696.0 0.0 162.0 1.0
33

Figure 5.2: A fragment of a SAP Productive System.

The system state is considered as a healthy one if there was no incident and unhealthy
otherwise. The goal is to create a tool that is capable of distinguishing the states one
from another automatically.
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5.2 The architecture of the built tool

To design a model for classification task, using LVQ-based ML-algorithms, we need an
example of a labeled data set which we can train our model with. See Figure 5.3.

T
\_______/
O
@ @
2° o
Healthy data -— o 0| =¥ Unhealthy data
@
@ o @O
l —

GNG

GMLVQ

Figure 5.3: The architecture of the tool building.

We perform the following steps:

1. extracting healthy data;

2. learning the topology of the healthy data with GNG;

3a. solving the binary problem with GMLVQ: train the tool to distinguish between
abnormal and normal system behavior;

3b. solving the multi-variant problem with GMLVQ: train the model to additionally
recognize and cluster anomalies.

The blue arrows in Figure 5.3 mean that we also keep in mind a possible intercommu-
nication between 2 algorithms, for instance, in order to adapt the distance measure
that we use in GNG or to see how some parameter tunings might affect the further
classification.
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In the end, the algorithm takes new unknown input data, and in outputs we get labeled
time-windows informing the SAP experts about a class each window belongs to. As it is
shown in Figure 5.4.

Trained
GMLVQ

|

Figure 5.4: Graphical interpretation of the clustering. The output pots represent Y.

Here, 'New unknown data’ can be seen as a set
X e RV2: X = (x1,x2, ..., %),

where n € N and x, is an N x 32 matrix. Trained GMLVQ can be seen as a function
F: F(X) =Y, that splits the input set X into clusters:

Y=Y JY2..lYx

(with possible intersections between the subsets) and k = 1,2,...,% - number of clusters,

Yi+Yo4+ ... Y, =Y 1Yo - Y Y5— . =Y 1 Y. - Y X35— Yo XYy —...— Y 1 Y =X
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5.3 Healthy Data Preprocessing

As it is described in [17], we expect a better performance and more reliable results
after normalization of the initial data. Furthermore, in cases when the values for data
features belong to different scales, one may end up with inability of such algorithms to
learn anything at all out of the data. The term ’normalization’ is broad and includes
some most common methods, see Figure 5.5.

Normalization

scali dard Other
calin Standardization e ..
>CEna modifications
Changing the range Changing of the e.g. overlapping

of feature values. values in such a

The distribution way that standard
shape is preserved. deviation from the

mean equals to
one.

Figure 5.5: The definitions for the most common normalization procedures.

The original data we is represented by values of different units and scales (see Figure
5.1). In order to bring it into a more consistent state and allow by that a better evaluation
and data vectors convergence Standard Scaler was chosen with reference to [17] .
According to the researches, this scaler tends to lead to the optimization of numerical
conditions and has shown reliable results with similar data [16].

Assuming that we have X = {x;j}, wherei — timestamp, j —
a feature of the data sample, Standard Scaler is defined as

S; = x_"f;j“f, (5.1)

where x;; - data vectors, i; = %Z?:lxl'j - mean value and o; is the standard deviation
of the training samples.
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Input data
1 |TIMESTAMP MEMORY_ MEMORY_ MEMORY_DISK_USEI DISK_SIZE [NETWORK IETWORK SWAP_IN
2| 23.05.201715:57]12.0 104159172 420093110 433714941 11365703€ 16910237€ 181311651 $448501520.0
3| 23.05.201715:58]15.0 10221669 42009311C 433714941 11365892C 16910237€ | 9888920€ 140352662 0.0
4| 23.05.201715:59)26.0 379178647 42009311C 433714941 11365974C 1691023 7¢ 230817592 453852802 0.0
5| 23.05.201716:00{12.0 561013652 420093110 433714941 113658015 16910237€ 76399453 4076317610.0
6 | 23.05.201716:01)19.0 10085977142009311C 433714941 113658511 1691023 7€ P53847245 §535975320.0
7| 23.05.201716:02[23.0 10650819¢ 42009311C 433714941 11365933 1691023 7€ 331628177 404952152 0.0
8 | 23.05.201716:03]15.0 10319391€ 420093110 433714941 113661132 16910237€ 157264601 431814207 0.0
9 | 23.05.201716:04]16.0 105525634 420093110 433714941 113661624 16910237€ | 23538958 §808212210.0
10| 23.05.201716:05)11.0 10093127C 42009311C 433714941 11366227 1691023 7¢ 40623843 492140422 0.0
11| 23.05.2017 16:06(13.0 100072942 420093110 433714941 11366350¢ 16910237¢ 515391265 1408811420.0
12| 23.05.201716:07]14.0 560031657 420093110 433714941 113664901 16910237€ 880346784 452336952 0.0
13| 23.05.201716:08]15.0 169728064 42009311C 433714941 113666457 1691023 7€ | 75047627 30209245 0.0
14| 23.05.2017 16:09(15.0 573703840 420093110 433714941 11366727€ 1691023 7€ $9515707C J063383420.0
15| 23.05.201716:10{12.0 583732947 420093110 433714941 11366768€ 16910237€ 132132187 {1492056£ 0.0

After the normalization

0,074351
0,078362
0,080105
0,076444

| 2017-05-23 15:57:00| 0,519955 | 2,542132
| 2017-05-23 15:58:00] 1,151541 | 1,922575
| 2017-05-23 15:59:00| 3,467357 | 0,551453

2 1,343417 |2,368589
3

4

5 | 2017-05-23 16:00:00| 0,519955 | -0,02792
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T
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9

1,62786 |2,237397
2,144532 |0,925706
-0,3543 | 0,79088
0,07749 2,517203 |2,623748
0,078362 1,62786 |2,237397

o o
0 0
o o
0 ]
| 2017-05-23 16:01:00| 1,993656 | 1,48378 o 0
V] 0
0 0,080105 0} 2,144532 |0,925706
o 0
o 0
o 0
o 0
o o
o 0
o 0

2017-05-23 15:58:00{ 1,151541 | 1,922575

| 2017-05-23 15:59:00 3,467357 | 0,551453

| 2017-05-23 16:00:00 0,519955 | -0,027592
10 | 2017-05-23 16:01:00 1,993656 | 1,48578
11/ 2017-05-23 16:02:00 2,835771 | 3,291359
12 | 2017-05-23 15:59:00 3,467357 | 0,551453
13-_ 2017-05-23 16:00:00§ 0,519955 | -0,02792
14 | 2017-05-23 16:01:00) 1,993656 | 148578
15 2017-05-23 16:02:00§ 2,835771 | 3,291355

0,076444 -0,3543 | 0,79088
0,07749 2,517203 |2,623748
0,079233 3,77587 | 1,20477
0,080105 2,144532 [0,925706
0,076444 -0,3543 | 0,79088
0,07749 2,517203 |2,623748
0,079233 3,77587 | 1,20477

oo ocoo0cooCco0oCo0oooo
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Figure 5.6: The Standard Scale on the healthy data

The normalization with Standard Scaler results in the distribution with y =0 and o =1,
thus, the values are on a relatively similar scale (Figure 5.7) and ML algorithms can
perform by all means now.

CPU Before Scaling 1e-11 MEMORY_USED Before Scaling CPU and MEMORY_USED After Standard Scaler
3o
012 — CcPU —— MEMORY_USED 1 — CPU
MEMORY_USED
08
010 25
008 20 06
006 1.5
04
004 10
0.2
002 05
000 00 B 00
0 5 10 15 20 B k1] 095 100 105 110 115 6

Figure 5.7: The Standard Scale realization in Python

In order to avoid any misunderstanding in further chapters, it is important to keep in
mind that the data fragment represented in Figure 5.6 shows an example of healthy
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records. Those were used in GNG to learn the topology and create prototypes of normal
data samples. As the records in real life may consist of time gaps and other noise,
overlapping was performed as additional data normalization step [18]. This modification
allows ML algorithms, GNG for the research, to optimally learn on the data.

5.4 GNG learns Healthy Data

This section describes how the GNG learns the topology of the healthy data which
was scaled and normalized as described in the previous section. The main challenge
with the given data set is to enable NG to be realized on higher-dimensional input
samples. All the previous examples were applied on 1 x N arrays, N € R whereas our
inputs have a form of N x M, with M,N € R. To begin with, 2000 normalized records of
SAP Productive System were taken and split into 5x32 matrices (time-windows). They
became the input samples for GNG.

Let N = 2000 be a number of data records, M = 32 number of data features, then X is
a matrix:

X11 X12 ..o Xlm
X21 X22 ... Xom
X31 X32 ... X3,
X41 X42 ... Xdm
X =
X51 X52 ... X5p
X6l X62 --- Xém
Xnl Xn2 -+ Xnm,

where n € N, m € M. Now we split X into input 5 x m matrices y = (y1,y2,...,i),i =
N _ERSXM
57yl '

X11 X12 ... Xim X21 X22 ... X2om

X21 X22 ... Xom X31 X32 ... X3
Yi=|X31 X322 ... X3m |, V2= | X41 X42 ... X4m [

X41 X42 ... Xdm X51 X52 ... X5m

X51 X532 ... X5 X61 X62 --- Xem
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X(n—4)1
y ey yi =

Xn—1)1
Xnl

andyecY,Y C R"is the input space.

Further, we randomly initialize 2 weights (neurons):

1 1 1

Wit Wi2 -+ Win
Wh Wiy .. Wi,
w1 = W.l)l W%Z e Wém
Wi Wip - Wi,
WS Wiy e Wiy,

X(n—4)2

X(n—1)2

Xn2

» W2

X(n—4)m

X(n—1)m

Xnm
2 2
N
NELE
RTINS
W51 Ws2

Wi
Wi
Wi
Wézlm
Wi

and after training, obtain a set of N’ prototypes of the healthy data Y:

~1 ~1 ~1

Wl — WS] W32 o oo W3m
~1 ~1 ~1
e L
W51 Ws2 Wsm
Y
11
!

2
7..."/VN/: W13Vl/
Wivl

where w € R,

» W2

Shitot

NN/
52

et

~2
Wim
~2
Wom

(5.2)

The original GNG algorithm requires initialization of 2 learning rates: ¢, €, for updat-
ing the BMU and its topological neighbors accordingly. In the code which was realized
during this thesis, the learning approach was managed by means of Gaussian neigh-
borhood function (i, o) and the updating concerned all the neurons in the net [10]. The

function A(i, o) is defined as

h(i,o) =

winrank(w;)

e 202




Chapter 5: Data Preprocessing. Healthy prototypes with the GNG. 27

with {

O = const N (5.4)
where N - the number of neurons in the net, i € N, winrank(w;) returns an array of
indices for the neurons according to the dissimilarity measure. For instance, let us
assume that we have 5 neurons and one data sample y € Y, where Y is the input space,
see Figure 5.8.

2D visualization of neurons and a data signal

0.7
O neurons
@ input sample
06 _D |
o
0.5
O
04 r
>
O
03r
O
0.2
0.1r1
0 1 1 1 L O 1 1 1 1
0.2 0.25 0.3 0.35 0.4 045 0.5 0.55 0.6 0.65
X

Figure 5.8: A fragment of the neural net with 5 neurons - the yellow dots, and one data sample
- the blue dot.

Then we calculate the distances between the neurons and a given data signal, so we
can get the following table:

neuron w1 w2 w3 W4 w5
dissimilarity measure d(y,w;) d(y,w2) d(y,w3) d(y,ws) d(y,ws)
winrank 5 1 2 4 3

Table 5.1: The sorting function result for 5 neurons. Here, neuron w, is the BMU, as its winning
rank is 1.

In the Figure 5.9 one can observe graphical visualization of %(i, o) versus the result of
the sorting function.
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Neighborhood function visualization
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Figure 5.9: Visualization of the adaptation strength for the neurons versus their winning rates
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2D visualization of neurons and a data signal
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(a) The BMU is marked with red

Neighborhood function visualization
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(b) The value of the BMU multiplier during the updating in (5.4).

Figure 5.10: (a)The neurons position with respect to the input signal. (b)The example of the

updating strength for the neurons (marked with red for BMU)

After h(i, o) apply, one can update the neurons with regards to their winning rates.

AW,‘ = Eh*l’l(i,G)*(y—Wi),

(5.5)

The neuron with rank 1 (BMU) get heavily update, while the shifting of weight with rank

5 is close to zero.

Obviously, the adaptation affects all the neurons that have been created on the net. That
not only has led to faster learning but also eliminated the need to tune the additional
hyper-parameter &, responsible for the adaptation strength of topological neighbors of

the BMU.
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The programming implementation is performed in Matlab and based on the code 'Re-
alization of Neural Gas network and Growing Neural Gas (GNG) network in MATLAB’
taken from "The Yarpiz Project” [27].

5.4.1 Evaluation of GNG

In order to achieve the reliable results of the GNG performance one should carefully
allocate the hyper-parameters and monitor the error behavior on the flow. For this
reason we used a validation technique which allows to calculate the optimal values
for the parameters as well as to moderate the magnitude of the error function. The
calculation process of the optimal hyper-parameters is explained below and was
implemented in MATLAB.

We proceed by splitting the input data set Y € R” into a training and a test subsets
Yirains Yiest the way that Yy ain UYiesr =Y, Yirain N Yiess = 0.

Running GNG on Y4, one gets a set of prototypes W;in = wi,..wp, n < N, N is
maximal number of neurons in the net. Each w; € W, stores its accumulated error

accrrain(Wi):

accirain(wi) = AE (wj), (5.6)

where AE is calculated as it is explained in 3.5. For further validating procedure we also
calculate the mean error for the whole set W;,;, as it follows:

12
MeankE; i, = an(aCCtmin (Wi)) = ; Zacclmin (Wi)~ (5.7)

1

Then we consider test data samples ys € Yo, s € S, where § is a number of elements
in the test set. For calculating the mean error for Y., we use the nodes w; € W, and
compute mean test error according to the following sequence of equations:

n
accrest(Wi) = Zargr_nin{d(ys,w,-)\s €l,...,S}, (5.8)

i=1 !

1 n
MeanE, . = avg(accies(wi)) = ZZaccteS,(wi). (5.9)
i
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Now, we split the given data Y into train and test subsets using k-cross-fold validation.
According to the approach, the data is first partitioned into k£ equally (or nearly equally)
sized segments or folds. Subsequently k iterations of training and validation are per-
formed such that within each iteration a different fold of the data is held-out for validation
while the remaining k — 1 folds are used for learning [30]. Let us split the input data Y
into f-folds containing a unique pair of train and test subsets in each f as following

Y =1, ),....Yy),
where f is the number of folds and
Yi - Ytrain,- U Ytest,w

Y =UY;and NY; =0.

The next step consists of choosing reasonable values for the hyper-parameters
P(N,MaxlIt,L,T,€,,8). Creating representatives of the input signals means a com-
pression. Under compression we understand to take not more than 10% of the given
data; having that in mind, 400 input data vectors are taken along with a prototype set,
where N = 40. Maximum number of iteration is first deliberately set to a higher value
and then experimentally can be narrowed down or expanded so that the stable behavior
of the mean error can be achieved after a particular iteration. In this work we allo-
cate MaxIt = 100, but we can observe that after the 20th circle of running the error
value does not change or even slightly goes up. Thus, we set the final value for the
hyper-parameter equal to 25, so that the error drop to its minimum can be seen. The
moderators of local and global errors do not affect the performance in core, rather ease
the computational time, so the values for them are normally chosen in the interval be-
tween 0 and 1 (in this thesis: o = 0.5, = 0.005) following the example in [36]. In order
to optimize L, T and € we used the combination of k-cross validation[30] and Random
Search [6] approaches, see Figure 5.11.



32 Chapter 5: Data Preprocessing. Healthy prototypes with the GNG.

MeanE;4in, (P1)
MeanE;eq, (Pr)

MeankE;qin, (PZ)
MeanE; s, (P2)

MeanE4in, (Pr)
MeanE; s, (Py)

P1 (L, T, 8) S\ Ytrain]
\ &) MeanE;qin, (Pr)

Py (L,T,e) - - Ty ) MeankE, .y, (P1)

- Ytrainz

Y
P3 (L, T, 8) test)

\ MeanEtraing (PZ)

MeanE s, (Ps)

y - Ytrainf
Pr(L7T7£) A - Ytestf

MeankEjqin, (Pr)
MeanE;eq, (Pr)

MeanEtrainf (Pl )
MeanE;,s, (P)

MeanEtrainf (PZ)
MeankE;es, (Py)

MeanEtrainf (Pr>
MeanE;eq, (P)

Figure 5.11: In the purple boxes there are P.(L,T,¢€) r different sets of hyper-parameters de-
picted; Each set is tried out in each f fold of different Y;,4in, Yiess Subsets; for each
fold one gets r pairs of mean errors for Y;,4i, and Y. .

With Random Search we generate r different 3-tuples of hyper-parameters
P ={P(L,T,€)} and run the GNG with each P, for k = 1,...,r and every f fold, as it is
shown in Figure 5.11. As a result we will obtain » mean train- and test- errors for each
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train-/test- subset. The errors are computed according to 5.6 and 5.8. For P;, where

i=1,..,

Total Error;yqin(P) =

TotalError;gin(Py) =

Total Errorsygin(P3) =

TotalError;yain(Py)

f

r the total evaluation error is computed as following:

Z MeankE;qin,(Pr)

Z MeanE;4in,(Ps)
i=1

Z MeankE;yqin, (P3)
i=1

1t
== Z MeankE;qin, (Pr)

i=1

(5.10)

In the same way we compute the total error for test sets summing up all results for the
test error in each fold, obtaining :

TotalErrories (Py) =

TotalErrories (Py) =

TotalErrories (P3) =

TotalError;es (Py)

Z MeanE; g, (P)
i=1

Z MeanE;eq,(P)
i=1

Z MeanE; e, (P3)
i=1

1L
= — Z MeanE;es; (Py)

i=1

(5.11)

The visualization of the values of L, T, e against the total train and total test errors is
given in Figure 5.15. And there we can capture a dominating impact on the error behav-
ior of the learning rate &, that is why first, the interval for this hyper-parameter is tuned
further, narrowing down the interval from which we choose the value for € : Figure 5.13.
Then fixing €: € = const, where const € (0.015;0.035) we tune the values for the pa-
rameters L and T'. Thus,experimentally shown that the values of the parameters do not
influence the total error more than on 0.002 and can be chosen randomly without loss
of the performance results (for further learning we choose T = 50, L = 50), see Figure

5.14.
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L VS Mean Error
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Eps VS Mean Error
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(d) MaxIt = 100 (e) MaxIt = 125

w
T
-
I

(f) MaxIt = 150

Figure 5.15: Visualization of the GNG after different number of iterations. P(N =40,L =50,T =
50,& =0.035,0¢ = 0.5,6 = 0.05,MaxIt = {25;50;,75;100;125;150})

After all the hyper parameters are defined one can run the GNG and tune N and MaxlIt
achieving the minimum mean error. For this master thesis the parameters are allocated
as in Figure 5.15. The yellow dots illustrate the neurons (prototypes) of the healthy
data signals (the blue dots). As the both input vectors and weights are of forms of
5x32 matrices, the visualization on 2D space was handled with a hand of the Principal
Component Analysis and performed in MATLAB. In the end, we got the representation
of healthy data, that can we use for GMLVQ classification in the following chapter.
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6 GMLVQ Classification of SAP IT Data

After retrieving the prototypes of healthy data with GNG, we apply GMLVQ classifier with
the goal to find out classification accuracy of the whole anomaly-detection-root-cause-
identification model (see Figure 5.4).

The structure of the chapter: in section 6.1 the data preparation for solving two- and
four- class problems is described; section 6.2 illustrates the achieved results of the GM-
LVQ execution. All the experiments and visualizations were accomplished in MATLAB
R2019a environment and all the necessary references to additional programming tools
and functions were meticulously made.

6.1 The GMLVQ experimental workflow

This section describes the preprocessing steps of the input data. According to the data
provided by SAP experts, at least 3 different types of anomalies can be detected during
system workflow:

1. Anomalies that drive to the high CPU load (A).
2. Anomalies associated with the amount of HANA thread handles (A;), see [14].
3. Anomalies causing CPU downtime (A3).

Some manually categorized and labeled outlying data records were collected and pre-
processed in the same manner as the healthy input set described in Section 5.3. Form-
ing the data space for the GMLVQ we consider a Z € R¥*? matrix with P - the num-
ber of features, N - the number of input samples such that N = H UA| UAy UA3 with
H,A{,A,,As representing the numbers of prototypes of healthy and anomaly classes
of type one, two and three accordingly. Each data sample is represented by a vector
z=(z1,..,2p), @n array that is formed from a time-window input sample that had a form
of a 5-by-32 matrix:

Zlfl ZI{Z lecm
ZI§1 2152 Zlﬁm
%k = ZI§1 Zgz Zém ’Zk:(zlfl Z]fz Zlfm Zlil Zlgm)
Zﬁl Zﬁz Zﬁm
ZI§1 Zl§2 Zlgm

In other words, if we take as an input a healthy prototype from 5.2 and line it up, we will
get a healthy input sample wy» in a form of vector:
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e — (N SN ~N'  ~N' ~N'
Z,—WN/—(WH Wiy oo W Wy ... w5m> (6.1)

and this vector represents a healthy input data sample for the GMLVQ. We also define
the set of labels . := {1, ...,1} whereby each label / € .# corresponds to a particular
behavior of the system (outlying or not) as described above. For instance, here we have
[ = 4 for a healthy type of data samples and 3 anomalous ones.

Based on the conventions the classification task is to determine a classifier function

c:Z—ZL:c(z) —>1

such that a sample z is assigned in this way to a certain anomaly or to a normal state.

The generated set of whole data consists of 100 vectors with a label set . = 1,2,3,4.
For GMLVQ classifier, we run binary and four-class classification. The binary classifi-
cation involves comparing the distinct anomalous groups (A1, A2, Az) with the healthy
group (the prototypes retrieved with GNG). The multi-class classification concerns the
comparison of all the groups H versus A; versus A; versus As. The goal is to deter-
mine the class membership (healthy or unhealthy) of an unknown input subject and also
determine the type of anomaly. To this extend we take 50 healthy and 50 unhealthy
samples into consideration. The 50 samples of unhealthy data vectors consist of 15
samples from Ay, 15 - from A, and 20 -from A3. A PCA-projection of the original data is
shown in Figure 6.1.

PCA vizualization of the input data PCA vizualization of the input data
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(a) The visualization of the input data for binary (b) The visualization of the input data for multi-
classification variate classification

Figure 6.1: The input data for clustering

In order to outline a classification system based on the GMLVQ approach one has first
to generate a training data set and subsequently to train the model. In this phase, a
set of appropriately chosen prototypes is computed from a given set of labeled example
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data. Relevance learning provides insight into the data in terms of weighting features
and combination of features in the adaptive distance measure [28].

In all the further presented experiments the data was split into train and test subsets with
70% to 30% proportions. The evaluation of the classification algorithm was based on
10-folds-cross-validation results. An example of the original data before classification
in 2-dimensions is depicted in Figure 6.2. Training and test sets consist of 50 data
points per class. In order to avoid the ’luckily-happened’ outcomes, the experiments are
executed on 10 statistically independent subsets. One of these data subsets is depicted
in Figure 6.2. In the following demonstrations the mean results are being illustrated for
a binary and multi classification problems, see in Figures 6.3-6.6. The visualization was
based on M.Biehl's MATLAB script [8].

PCA visualization of the input data PCA visualization of the input data
split into train and test sets split into train and test sets
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(a) For binary classification problem (b) For multivariate classification problem

Figure 6.2: An example split of input data into train- and test-subsets.

For each run a part of data (test set) is left out and GMLVQ is performed on the rest
of the data (training set). Then the test data samples are used to evaluate the trained
classifier. The sensitivity (TP rate), specificity (TN rate) and classifier accuracy are
computed. In addition, ROC curve and Nearest Prototype Classifier confusion matrix
are calculated for all the test sets [28].

The GMLVQ optimization tool requires to specify a number of prototypes per class. This
hyper-parameter depends on the number of modes of the underlying class distribution.
For our experiments, one prototype per class turned out to be sufficient to achieve reli-
able outcomes, but, obviously, increasing the number of prototypes in each class tends
to improve the classification accuracy. It is manually tuned according to the allocation
of input data. For instance, based on this thesis research and the data visualization
(Figure 6.3), vectors z € A3 (class 4 marked in wine-red color) tend to be sparse and
easily confused with healthy state, that is why more than one prototype for the men-
tioned class is recommended especial in the case of the amount of data to be classified
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in real production environment.

A global quadratic distance measure of the form d(wy, z) = (z—wi)T A(z—wy) is used to
quantify the dissimilarity of an input vector z and the prototypes. The measure is param-
eterized in terms of the positive semi-definite A [28]. Relevance matrix and prototypes
are optimized in the training process which is guided by a suitable cost function [28].
The GMLVQ implementation that we use realizes a batch gradient descent minimization
with automated step size control, see [5] for details. After 60 steps of gradient descent,
the training errors and cost function appeared to have converged in all considered clas-
sification problems.

6.2 Results

In this section we present the results after 10-folds CV for distinct anomalous groups
against the healthy group in the two- and four-class classification. Furthermore, we
present the percentage of correctly classified data samples (sensitivity) and the per-
centage of correctly classified healthy controls (specificity), as well as AUC and ROC
curve and correctness of overall labeling (accuracy). Additionally, the corresponding
results are visualized in terms of projections on the leading two eigenvectors of the rel-
evance matrix. This exploits the fact that GMLVQ shows a tendency to yield low-rank
matrices which correspond to low-dimensional representation of the feature space [28].
We also provide the plots of diagonal and off-diagonal matrix elements as an example
illustration.

6.2.1 Binary Classification

The objective is to observe how precise the separability is between the healthy data
samples and the anomalous groups. The results after GMLVQ are presented in Table
6.1.

Data Set (size) | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC
A1-H (30) 98 100 96 0.98
A2-H (30) 96 100 94 0.99
A3-H (40) 83 76 96 0.84

Table 6.1: GMLVQ Classifier performance after 10-folds CV for the different data set combina-
tions (healthy data samples against anomalies of three different types, number of
samples in brackets)

In the Table above Accuracy indicates the percentage of correctly classified samples
in each group. All three measures here (Accuracy, Sensitivity, Specificity) correspond
to the Nearest Prototype Classifier (NPC). As it is observed, AUC measures tend to
be relatively high, meaning that that GMLVQ weighted features are very suitable for
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separability of the groups.

Further, we run the algorithms giving as input all the healthy and unhealthy data sam-
ples together with a goal to achieve a separability of the healthy data signals from all
the others. The computed results are presented in the form of the confusion matrix be-
low, off-diagonal relevance matrix elements (Figure 6.3) and visualization of projected
labeled data signals after GMLVQ and ROC-AUC (Figure 6.4).

100 0
' L 2
Con fusionMatrix <18,2846 81 .7154) 9

According to the matrix above, all healthy data samples were classified correctly, unfor-
tunately, we still see the tendency to assign some anomalous samples to the healthy
group as well. This means that the training procedure should continue, probably know-
ing the importance of the features (see Figure 6.5), we could tune the training the way
to low miss-classification rate.

T o
50 IR 0.02

SR TEREESE 0
o I
150 REIESEERIRS 0.04

50 100 150
off-diag. el.

Figure 6.3: Off-diagonal relevance matrix elements
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Figure 6.4: (a)The visualization of the training data in terms of their projection on the two leading
eigenvectors of the relevance matrix. (training over 10 validation runs with random
30% of samples left out for testing and 60 gradient descent steps). (b) ROC-AUC

The projecting relevance vectors in Figure 6.5 indicate that mostly three data features
significantly influence the classification: current volume of disk usage, memory con-
sumption by a service and number of open handles (see in Appendix A). Furthermore,
a relevance vectors are included in the distance measurement to scale the input dimen-
sions according to their importance with respect to the classification task. This not only
might boost the classification performance, but may also be used for feature selection
and dimensional reduction [28].

GRLVQ: relevances
T

X 67
Y 26.75

. 1 kol 1 L
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Figure 6.5: The importance of the data features according to GRLVQ. The features peak repeat-
edly since the time-windows were flattened into arrays. E.g. Features 3, 35, 67,...
represent disk usage

As observed in Table 6.2, the comparison of healthy signals against different anomalies
shows a clear separation between healthy and unhealthy groups. We can clearly see the
separability in Figure 6.4(a). Apart from a few outliers, most of the data signals cluster
around the specific prototypes. As well as, the histogram of the relevance matrix in
Figure 6.5 illustrates the features and their diagonal weights as used in the classification.
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Further we could analyze this information, for example, what features are weighted the
highest, meaning they carry relevant information that is important for the separability.
In fact, we should treat such features with more attention, as an idea, critically analyze
the principal component image corresponding to this feature to gain insights from the
system perspective [28].

6.2.2 Multi-class Classification

The objective here is to present the results after 10-folds CV of the GMLVQ classifier
on the four classes: labeling healthy class and all the three types of anomalies. We
run the GMLVQ with all the anomalous data sets together because we want to be able
to distinguish the three types from each other with help of the classifier. In addition,
we include healthy part of data samples because we still need to distinguish a healthy
sample from any of the other groups. The results are summarized in Table 6.2, confusion
matrix. As well as, in Figure 6.6 we depict the scatter plots that shows the training data
signals distribution in the two-dimensional projection of the feature space in a single run
of the training procedure.

GMLVQ classification H Aj Ay | Ajz
H (50) 50 0 0 0
A1(15) 0 14 0 1
Ay (15) 0 0 15 | 0
A3(20) 6 1 0 13
Class accuracy (%) 100 | 93.3 | 100 | 65
Overall performance (%) | 89.5

Table 6.2: The table illustrates the number of subjects correctly classified for each class in bold
and the overall performance in percentage as obtained in the CV

The confusion matrix below carries illustrative purpose to show the mean classification
results after 10-folds CV runs.

100 0 0 0
. : 0 98.5714 0  1.4286
ConfusionMatrix = 0 0 100 0 (6.3)

34.6667 2 0 63.3333

We can see that healthy group and unhealthy group of type 1 have been correctly clas-
sified with accuracy 100%. None of the anomalous group A, A, were classified as
healthy ones. However, we observe about 34% of miss-classification of Asz-data sam-
ples.
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The scatter plot in Figure 6.6 (a) show the training data points with respect to their
projections on the two leading eigenvectors of the relevance matrix. It can be observed
that all four groups a clearly separable from each other. There is no overlapping shown,
AUC = 0.92, all healthy samples are classified correctly. This is encouraging since we
are generally interested in distinguishing between healthy and any types of unhealthy
data samples.
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Figure 6.6: 2D performance of training over 10 validation runs with random 30% of samples
left out for testing and 60 gradient descent steps. blue-healthy, red-A;, green-A,,
light-blue-A3

To sum up, we also depict the evolution in terms of mean errors in Figure 6.7.

Validation for 2-class problem Validation for 4-class problem

Error
S
2

Error
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totalsteps totalsteps
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Figure 6.7: Evolution of the mean training and test error in the course of GMLVQ-Training

In preliminary experiments performed in this thesis, the GMLVQ model managed to dis-
tinguish all healthy samples correctly and also demonstrated a good separability among
outliers. The whole system can be further tuned to achieve higher results in order to
minimize anomaly miss-classification.
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7 Conclusion and future research

In this Master thesis we set up a joint model of the Growing Neural Gas and the Gen-
eralized Matrix Learning Vector Quantization. Then, we investigated its application for
anomaly detection process in an SAP productive system. As the data that was given
for investigation consists of many healthy data records and comparably fewer records
of anomalies, we applied GNG to obtain a generalized representation of the healthy
data that further is used as signals in the healthy group in the GMLVQ classifier. There
was also created a special form of the Growing Neural Gas Algorithm that allows one
not only to perform learning straight on matrix-structure inputs, but also to automatically
calculate the suitable hyper-parameters. This pioneer enforcement helps to avoid some
data information loss and save time that one normally spends on tuning the model.
Furthermore, to distinguish the healthy prototypes from different unhealthy data signals
we performed the GMLVQ. The preliminary experiments on a single SAP system with
labeled data have shown promising results of the above mentioned algorithms com-
bination. There, we have found out that we can detect and classify different types of
anomalous states.

As the data records and anomaly types are much huger than the ones we used for this
work, further researches of the model should be undertaken before introducing the tool
to a global enterprise. Owing to the fact that for each SAP system the determination
of the GNG and the GMLVQ prototypes as well as mapping matrix Q are better to be
calculated just ones as uniform prototypes of the model, we need to implement the algo-
rithm in some kind of productive environment, so that the results could be transferable
to other systems, where we do not have labeled data. The open question is if we can
use our trained model and hyper-parameters and just run them on another system, or
another system still requires relearning. Moreover, it is essential to proceed with other
studies focusing on the art of outlier selection. It is important to create a classifier with
high classification ability and distinguish between other possible types of anomalies that
might occur in a system.

In this work there were three anomalous groups taken into consideration, whereas in
fact the number of occurring anomaly-kinds in the system is unknown. Therefore, there
are two possible ways to continue this work: to set up the most frequently happened
classes and adjust the model to the fixed number of them. The second and more
sophisticated solution is to introduce an additional function based on the learned
distance measure to detect outliers we do not know. So that, there will be an option not
to assign a data vector to a cluster if it is drastically diverse from all the already existing
prototypes, but rather signalize about that and automatically turn the newcomer-vector
into a new prototype and create throughout a new group. The further runs executed by
the model will include the new number of clusters. In order to prevent the model from
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extra prototypes or a cluster duplication, a kind of radius-function might be used as a
condition to merge the clusters if the prototypes happen to find themselves close to
each other.

During this study, we run the experiments with all 32 features of the given data. However,
the GMLVQ provides us with additional information. The scaling matrix

A=QTQ

is the classification correlation matrix. This matrix stores the insights, which data
dimensions and permutations endow an upcoming classification performance. For the
considered anomaly detecting system such the histogram shown in Figure 6.5. The
evaluation of it can be used for dimensionality reduction and, thereby, lower compu-
tation time in overall performance of the created tool. Further research could also
include the optimization of other statistical measure, but classification errors, as well as,
the receiver operating characteristic can be optimized in case of the binary classification.

The superiority of LVQ approaches and the GMLVQ itself is in their ability to con-
duct the prototype-adaptation (learning) off-line. Thus, the time processing costs
do not play a big role in the application mode. The error computations for the
GNG topology learning and the GMLVQ classification are easily maintained and are
proven to converge in this work. So the results tend to be promising in a single system.
Hence, there is still a question how to introduce the built system into a global production.
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Appendix A: List of Features

Metric name Abbr | Description
CPU CPU | used CPU load
DISK SIZE DS The total disk size
DISK USED DU The current volume of disk used
HANDLE _COUNT HC Number of open handles
MEMORY _SIZE MS Physical memory size
MEMORY_USED MU Used memory by service
MVCC VERSION Number of active MVCC versions. The.multl
MVC | vrsion concurrency control ensures consistent
_COUNT .
read operations
NETWORK_IN NI Bytes read from network by all processes
NETWORK_OUT NO Bytes written to network by all processs
PENDING_SESSION .
COUNT PSC | Number of pending requests
PING _TIME PT Duration of service ping request in ms
RECORD_LOCK :
COUNT RLC | Number of acquired record locks
STATEMENT COUNT SC Number of finished SQL statements
SWAP_IN Sl Bytes read from swap by Service
SWAP_OUT SO Bytes written to swap by all processes
SYSTEM_CPU SCPU | OS kernel/system CPU used by service
TOTAL _SQL
EXECUTOR COUNT SQL | Total number of SQLExecutors
TOTAL THREAD
COUNT TTC | Total number of threads
TRANSACTION ,
COUNT TC Number of open SQL transactions
TRANSACTION_ID TID Range between newest and oldest active trans-
_RANGE action ID
WAITING _SQL "
EXECUTOR COUNT WSQL| Number of waiting SqlExecutors
AITING _THREAD "
COUNT WTC | Number of waiting threads
The number of active SQL executors. An
ACTIVE_SQL ASQL SQL executor organizes the execution of op-
EXECUTOR _COUNT erations by invoking the corresponding SAP
HANA component
ACTIVE _THREAD ATC The number of active threads from the thread

_COUNT

pool which are executing a runnable task pool

Table A.1: a) Dataset metrics of the system
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Metric name Abbr | Description
BLOCKED
_TRANSACTION | BTC | Number of blocked SQL transactions
_COUNT
COMITID | 1y | T ot il ot .
_RANGE : p
tegers
CONNECTION cC Number of open SQL connections to other
_COUNT database systems
MEMORY _
ALLOCATION MAL | MAL for service. Max-size of allowed MA
_LIMIT
CS MERGE
_COUNT CSM | Number of merge requests
CS READ
_COUNT CSR | Number of read requests
CS UNLOAD
_COUNT CSU | Number of columns unloads
CS WRITE ,
_COUNT CSW | Number of written requests

Table A.2: b) Dataset metrics of the system
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Appendix B: Reference Implementation in
MATLAB for GNG

The combination of GNG and Random Search for hyper-parameters tuning. The code
following is organized in a 'tree’-structure, consisting of several subfunctions called one
out of another:

SplitDatalIntolnputsJ.m
| ObjFunJ.m
|_GNG_RSJ.m
Evaluation.m
scatterplots.m

Such a table is created for all 10 folds , the 1% column is identical for all of the folds, the others differ of course.

Figure B.1: Graphical
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wwwwwwwwwwwwww IS SN YO88088088088080888080
%0
9BBBBBBBOBBBARENG W th matri x-shaped i nput s%88888008888888880888/

% |

% Load Dat a

call GNG on the whole data from here

data = | oad(' Scal edHeal t hyData');

'y’

X = dat a. Scal edHeal t hyDat a;
Xmn = mn(X);
Xmax = max(X);

% Par aneters from APP

paranms. N = 50; % nmaxi mnum # of nodes
parans. Maxlt = 300;
% # the creterion for creating new nods (<= Maxlt), use it

paranms. L = 50;

parans. epsilon_b = 0.03; % noderate BMJ1 adaptation
parans. al pha = 0.5; % noderate | ocal error

parans. delta = 0.005; % noderate gl obal error
parans. T = 50; % naxi num possi bl e age of an edge

% GNG on t he

who

a

function net = GNQA(X, parans, PlotFlag)

% Load Data
% in MyAppLast.....

% Prepare inputs
% is a cell array
% 5x32 matricies are stored in each cell
wi ndows = size(X 1)/5;
9888846 Ti me W ndoweRBe8s8880

Y = cell (wi ndows, 1);
i = 1;
| = 1;
while | ~= windows + 1

Y(I,:) = {X(i:i+4,:)}; %cells of tinme w ndows
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i = i+5;
I = 1+1;
end
% = cell (496, 1);
% = 1;
% = 1;
%hile | ~= 497
% Y(l,:) = {X(i:i+4,:)};
% = i+5;
%1 = |+1;
%end
nDi m = size(X 2); % # of colums (32 in the

exanpl e)
nDat al nputs = size(Y,1); %# of cells (496 in the exanple)

Y = Y(randpern(nDat al nputs), :);

% Di stribute data (at every new iteration we wll
% ake a data sanple, the sanples shouldn't be

% aken one by one as they are given, but randomy,
% hat is why we shuffle them now).

% Par anmet er s

N = parans. N, % maxi num # of nodes

Maxlt = parans. Maxlt;

L = parans.L;

% # the creterion for creating new nods (<= Maxlt),
use it with 'ny'

epsilon_b = params. epsilon_b; % noderate BMJ1
adapt ati on

al pha = parans. al pha; % noderate | ocal error

delta = parans.delta; % noderate gl obal error

T = parans. T; % naxi mum possi ble age of an edge

% Initialization
% Create 2 randonmy | ocated nodes, they | ook exactly I|ike
sone i nput
% sanpl es
% so, there will be 2 cells, each cell stores a 5x32
mat ri x

Ni = 2;
W= cell (N, 1);
rng(' default'); %A@®eeding, so the initial prototypes will
be al awys the sane

rng(2); %8@and we can observe the error changing
during the eval uation
for i = 1:Ni
Wi,:} = rand(5, nbn;

end
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% error for each node, if we have e.g. 5 nodes, E will be
one colum with 5 rows,
% 1st row stores an error for the 1st node, 2nd - for
node 2 and so on.
E = zeros(N, 1);
% edges between nodes, in the very beginning it is a zero
2x2 matri X,
% as we have 2 nodes and they are not connected , so 'O
here neans -
% that the edge doesn't exist
C = zeros(N, N);
%ratri x which stores age between nodes, it is of the sane
formas matrix 'C
% age of edges, so also O at first, but actually the edges
don't exist so far,
% so, it doesn't realy matter, the matrice can be enpty as
wel |
t = zeros(Ni, N);

% Loop
ny = 0; %wunber of input sanples

% one of the stopping criterion, we run the Al gorithm
until the maxnumnb

of itterations is reached

for it = 1:Maxlt
fprintf('Iteration step: % / %\n',it, Maxlt);
% we run through all inputs (496 cells), take
one at a time

for | = 1:nDatal nputs

% Sel ect | nput

%vthin 1 iteration "it' we can create several new nodes:

ny = ny + 1;

%this just to count the # of input we are at and if it
is nod of

%., then we insert a new node on this iteration

y = Y{I,:}; %a 5x32 matrix of an input sanple

% H S PART WAS CREATED TO PI CTURE THE MAI N
IDEAl SKIP all in
st ars

%*********************************************

W ****dl = norm(pdist2(y, W1, 1},
'cosine'));**
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W ****d2 = norm(pdist2(y, W2, 1},
'cosine'));**
O ***xxd = [d]_ d2]7

* %
o ****[~, SortOrder] = sort(d);
% ****s1 = SortOrder(1);

* %
O ****s2 = SortOrder(2);

* %

%*********************************************

% Choose netri c:

% eucl i dean'

% m nkowski '

% chebychev

% cosi ne'

%ere we cal cul ate di stances between an input and al
nodes

Whn d(1l) will be stored distance between the

%urrent input sanple and the 1st node, d(2)..., etc

d = zeros(size(W1));
for h =1 : size(W1) %fromilst to | ast node
d(h) = norn(pdist2(y, Wh, 1}, 'euclidean'));
%N h, 1} - 5x32 matrix, d(h) 1xN array, where Nis
nunber of weights
end

[~, SortOrder] = sort(d); %in d we have di stance val ues

in each cell,

sl = SortOrder(1); % # of the closest node

s2 = SortOrder(2); %# of the second - closest node

% Expl anation. Skip all in stars if everything is clear
so far

%k******************************************************************

%******************************************************************

% Sort Order stores indexes of the cells indin
ascendi ng order. ****
9% For

B R I I R S I R S S R I R I I R S R I R I R O I S
exanpl e:

wd =14, -2, 0], so

% di stance(wl,y) = 4;
% di stance(w2,y) =-2;
% di stance(w3,y) =0




54 Appendix B: Reference Implementation in MATLAB for GNG

%WSortOrder = [2, 3, 1] so the second node has the
smal | est dist **
% bet ween .

O/‘Ol'******************************************************************

O/ % % o ok ok ok ok ok ok ok K ok ok ok ok ok ok ok o ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok K ok K ok ok K ok ok K ok kK ok
LD L LD LD LR LA LA LA LA L AL

% Agi ng
t(sl, :) =t(s1, :) + 1;
t(:, s1l) =t(:, sl) + 1;

% Add Error
E(sl) = E(sl1l) + d(sl)"2;

% Adapt ation

Ws1,:} = Ws1,:} + epsilon b*(y-Ws1,:}): % Ws1,:}
- BMJ, 5x32 matri x
Ns1l = find(C(sl,:)==1); % Nsl1l - neighbors of
BM;

% C _Gaph = graph(C;

for j = 2:size(W1)
if j == Nsl
% TopNb = nei ghbors(C _Graph, j);
% Sig = 3/size(TopNb, 1);
Sig = 3/size(W1);
Wj,:} = Wj,:} + epsilon_b*exp(-SortOrder(j)/
(2¢Sig"2))*(y-Wj,:});
el se
Sig = 3/size(W1);
Wj,:} =Wj,:} + epsilon_b*exp(-SortOrder(j)/
(2*Sig"2))*(y-Wj,:});
end
end

=1 bool ean, checks if there are 1's in the sl-

th row,

% find(C(sl,:)==1) returns nunber of colums (node) in
whi ch we have 1

% for j=Nsl

%Wj,:} = Wj,:} + epsilon_n*(y-Wj,:});

% E.g. Ns1=[2,3,7], then node2, node3, node7 are adaped

% end
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L

% Create
C(s1,s2)
C(s2,s1)
t(sl,s2)
t(s2,sl)

e

% Renpbve A d Links

each node
nei ghbors
frommatrix C

frommatrix C

Al oneNodes

iteration

C(t>T) = 0;
nNei ghbor = sun( Q) ;
% eturns a row vector and show the # of nei ghbors for

Al oneNodes = (nNei ghbor==0); % i ndex of a node ithout

C( Al oneNodes, :) % del ete the row # Al oneNodes

[1;

C(:, AloneNodes) = []; %delete the columm # Al oneNodes
t (Al oneNodes, :) =1];
t(:, Al oneNodes) = [];

=[]

W Al oneNodes, :) ; el ete the cell with node #

E( Al oneNodes) = [];

% Add New Nodes

i f nmod(ny, L) 0 & size(W1) < N
%y counts the # of iteration and

%f it is nod of L, then we insert a new node on this
[~ da] = max(E);
[~ f] = mx(C(:,q).*E);
r = size(W1l) + 1;
Wr,:} = (Wa,:} + Wf,:})/2;
C(q,f) =0;
cf,q) =0;
g, r) =1,
cr,q) =1,
cr,f) =1,
C(f,r) = 1;
t(r,:) = 0;
t(:,r) = 0;
E(q) = al pha*E(q);
E(f) = al pha*E(f);
E(r) = E(aq);

end
% Decrease Errors

E = delta*E;, Y%accunul ated error

B(it,:) = norm(E);
end
fprintf(' Total error: %\n', normE));
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Pl ot
if PlotFlag

% For

figure(l);

w Q

Pl ot Resul t sMyLast (Y,

pause(0.01);

end

end

Resul ts

W

% Export
net. W

net.E = E;

=1,

net .t

net.B = B;

:

%8888

%8888

%8880

%0880

)

Scal edHeal t hyDat a'

= | oad("

dat a

X = dat a. Scal edHeal t hyDat a;

>Tr ai nSet - >Test Set

nanme

Create nanes fol ds:

%

al l ocation of folds

% pr e-

3);

= cell (10

Cf ol dV

= 1:10

for

i); %nane of folds (just

sprintf('fold%"',

Crol dV{i, 1}

convi ni ent

for

% eadi nQ)

end

inthe folds splitting into 200 and 1800 set pairs

% Fill

(Test and Train)

T A G B A A A A A AL L L L L L L L L

0,

% Begi nni ng

%B808888888888080

k = 200;

= X(k+1:2000, :);% Train set 1
% Test set 1

Crol dV{ 1, 2}

0

Chol dV{1,3} = X(1: k,

= 2:10

for
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CfoldV{i, 2} = cat( 1, X(1l:(i-1)*k, :), X(i*k
+1: 2000, :)); %rainSets 2-10
CloldW{i,3} = X((i-1)*k+1: i*k,:); % est Sets 2-10

folds = cell (10,6); % preallocation, here | store sets of
%1Ps for each epoch and Mean Errors for Train and Test

sets

epoch_nunber = 20; % random search epochs

OptinResult = 0.05; % randomy chosen nunber, | want Err
be less or so

tabl e_epoch = zeros(epoch_nunber, 3); % where we record L, T,
epsilon for

%ach epoch

t abl e_epoch_best = zeros(epoch_nunber, 3); % he epochs
where Err went down

for fold =
Xtrain
Xtest = CfoldV{fold, 3};

1: 10
= GfoldV{fold, 2};

Fi ndMeanError = zeros(epoch_nunber, 1);

Fi ndMeanTest Error = zeros(epoch_nunber, 1);
MeanTrainlt = cell (epoch_nunber, 1);
MeanTestIt = cell (epoch_nunber, 1);

rng(' default'); %®8Geed
rng(1);
for epn = 1:epoch_nunber
L_candidate = randi ([ 1, 100],1);
T_candidate = randi ([1, 100],1);
rnd_n = randi (10, 1, 1);

%epsil on_b_candi date = 0.5*exp(-0.5*(rnd_n-1));

% Val ue of the learning rate

epsil on_b_candi date = 0. 03;
% Record the 3-tuple [L, T, epsilon]:
tabl e_epoch(epn, :)=[L_candi date T_candi date
epsi |l on_b_candi dat e];

%L, T, epsilon_b

end

for epn = 1:epoch_nunber
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% Par arret ers from APP

paranms. N = 50; % maxi mnum # of nodes

parans. Maxlt = 15; %t he creterion forcreati ngnewnods(<=
Maxl t, usei twi th' ny'

parans. L = tabl e_epoch(epn, 1);

parans. epsilon_b = tabl e_epoch(epn, 3); % noderate BMJL
adapt ati on

paramns. al pha = 0.5; % noderate | ocal error

parans. delta = 0.005; % noderate gl obal error

paranms. T = tabl e_epoch(epn, 2); % maxi mum possi bl e age of
an edge

[ Fi ndMeanError (epn, 1), Fi ndMeanTest Error (epn, 1),
MeanTrai nlt{epn, 1}, .
...MeanTestIt{epn, 1}] = ...
... Obj FunJ(Xtrain, Xtest, params.L, parans.T,
par ans. epsi |l on_b);

i f FindMeanError(epn,1) <= OptinResult
Lbest = parans.L;
Thest = parans. T,
epsi | on_best = parans. epsil on_b;
Opti nResult = FindMeanError(epn,1);
t abl e_epoch_best (epn, :) =[ Lbest Tbest
epsil on_best];
end
end

fol ds{fold, 1}
fol ds{fold, 2}

t abl e_epoch;
t abl e_epoch_best;

folds{fold, 3}
folds{fold, 4}

Fi ndMeanError;
Fi ndMeanTest Error;

folds{fold, 5} = MeanTrainlt;
folds{fold, 6} = MeanTestlIt;
end

function [FindMeanError, Fi ndMeanTestError, MeanTrainlt,
MeanTestlt] = ...
oj FunJ(Xtrain, Xtest,L, T, epsilon_b)

% Par aneters from APP %%

paranms. N = 50; % mexi num # of nodes




Appendix B: Reference Implementation in MATLAB for GNG 59

params. Maxlt = 15;

% # the creterion for creating new nods

% <= Maxlt), use it with 'ny’'

params. L = L;

parans. epsilon_b = epsilon_b; % noderate BMJL adaptation
parans. al pha = 0.5; % noderate | ocal error

parans. delta = 0.005; % noderate gl obal error

parans. T = T; % nmexi num possi bl e age of an edge

net = GNG RSJ(Xtrain, Xtest, parans, false);
% fal se neans there is no plot executed

Fi ndMeanError = mean(net. E_train); %ean(net.E);

Fi ndMeanTest Error = nean(net. E test);

MeanTrai nlt = net.MeanTrai nError; %et. MeanError; % array
MeanTestlt = net.MeanTestError; %array

wi ndows

on perforns GNG on 10 d
s Mean Error for evluat

0
ot Fl ag)

% Prepare inputs
% # of Time windows in Train set, tine window is an input
wi ndowsTrain = size(Xtrain,1)/5;
wi ndowsTest = size(Xtest,1)/5;

%B88B8MMAT ai n Ti me W ndowdR8884884880
Ytrain = cell (wi ndowsTrain, 1);

i 1;

I 1;

while | ~= windowsTrain + 1
Ytrain(l,:) = {Xtrain(i:i+4,:)}; %cells of tine
i
I

i +5;
| +1;
end
WeB/RBest Ti ne W ndows%88888808%6
Ytest = cell (w ndowsTest, 1);

i = 1;

I = 1;

while | ~= windowsTest + 1
Ytest(l,:) = {Xtest(i:i+4,:)};
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= i +5;
= | +1;

Error using evalin

i nput argurments of type

for

Undefined function 'SplitDatalntol nputsJ'

"doubl e'.

Published with MATLAB® R2019b
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