
MASTER THESIS

Mr.
Mehul Bafna

Mathematical Aspects and
Challenges of the Algorand

Blockchain

2022

Faculty of Applied Computer Sciences and
Biosciences

MASTER THESIS

Mathematical Aspects and
Challenges of the Algorand

Blockchain

Author:
Mehul Bafna

Study Programme:
Applied Mathematics in Networking and Data Science

Seminar Group:
MA19w1-M

First Referee:
Prof. Dr. Klaus Dohmen

Second Referee:
Prof. Dr. Peter Tittmann

Mittweida, July 2022

Acknowledgement

I want to convey sincere and heartfelt gratitude to Prof. Dr. Klaus Dohmen and Prof. Dr.
Peter Tittmann for their kind guidance, supervision, and valuable feedback. I also would
like to thank my grandfather Mr. Bahadur Mal Dosi, parents Mr. Sanjay Bafna and Mrs.
Sapna Bafna, brother Mr. Harsh Bafna, uncle Amit Dosi and colleague Ms. Shaghik
Amirian for kind support in all my endeavors.

Bibliographic Information

Bafna, Mehul: Mathematical Aspects and Challenges of the Algorand Blockchain, 63 pages,
14 figures, Hochschule Mittweida, University of Applied Sciences, Faculty of Applied Computer
Sciences and Biosciences

Master Thesis, 2022

Abstract

With the growing market of cryptocurrencies, blockchain is becoming central to various research
areas relevant from a mathematical and cryptographic point of view. Moreover, it is capable of
transforming the traditional methods involving centralized network operations into decentralized
peer-to-peer functionalities. At the same time, it provides an alternative to digital payments in
a robust and tamperproof manner by adding the element of cryptography, consequently mak-
ing it traversable for an individual who is a part of the blockchain network. Furthermore, for a
blockchain to be optimal and efficient, it must handle the blockchain trilemma of security, de-
centralization, and scalability constraints in an effective manner. Algorand, a blockchain cryp-
tocurrency protocol intended to solve blockchain’s trilemma, has been studied and discussed. It
is a permissionless (public) blockchain protocol and uses pure proof of stake as its consensus
mechanism.

I

I. Contents

Contents . I

List of Figures . II

List of Tables . III

1 Introduction . 1

1.1 Background . 1

1.2 Structure of the Thesis . 1

2 Advanced Cryptography and Mathematical Prerequisites . 3

2.1 Blockchain . 3

2.2 Hash Functions . 4

2.3 Consensus Mechanisms . 4

2.3.1 Byzantine Agreement . 4

2.3.2 Proof of Work (PoW) . 6

2.3.3 Proof of Stake (PoS). 7

2.4 Digital Signature Scheme . 8

2.4.1 Edwards-curve Digital Signatures (EdDSA) . 9

Edwards Curves . 9

Addition of Points on Edwards Curves. 11

Twisted Edwards Curves . 11

Addition of Points on twisted Edwards Curves . 12

Process for Generating and Verifying Signatures . 14

3 Mathematical Aspects of Algorand . 16

3.1 Basic Structure of Algorand’s Public Distributed Ledger. 16

3.2 Byzantine Agreement (BA⋆) in Algorand . 18

3.2.1 Graded Consensus (GC) Protocol . 18

3.2.2 Binary Byzantine Agreement (BBA⋆) . 19

3.3 Verifiable Random Functions (VRFs) . 20

3.4 Cryptographic Sortition . 22

3.4.1 Leader Selection Process . 22

I

3.4.2 Committee Selection Process. 23

3.5 Qr-Value Computation Process . 25

3.6 Algorand Synopsis by Message Sharing Protocol . 26

3.6.1 Ephemeral Keys . 27

3.6.2 Information Exchange through Message Sharing Protocol . 28

3.7 Utility of Look-back Parameter t . 31

3.8 Honest Majority of Money Approach. 32

4 Security and Attack Analysis . 34

4.1 Possible Attacks in Blockchain . 34

4.1.1 51% Attack . 34

4.1.2 Sybil Attack . 35

4.1.3 Partitioning Attack . 35

4.2 Algorand’s Compactness in Solving the Blockchain Trilemma . 36

5 Conclusion . 38

Bibliography . 41

A Python-Code . 47

A.1 Modern Cryptography . 47

A.1.1 Primitive Roots Computation . 47

A.1.2 Discrete Logarithm Computation . 49

A.2 Byzantine Agreement Implementation. 52

A.3 Twisted Edward Curves with Finite Field . 55

B Mathematical Explanation . 58

B.1 Computation of p in Leader and Committee Selection . 58

B.2 Zero-knowledge Proofs. 59

B.3 Finite Field . 60

II

II. List of Figures

2.1 Communicating information . 5

2.2 Proof of Work methodology . 7

2.3 Proof of Stake methodology . 7

2.4 Edwards curve for d = -10 and d = 10 . 10

2.5 Twisted Edwards curve over F239 and F997 . 14

3.1 Algorand viewpoint from higher level . 18

3.2 Key generation . 21

3.3 Leader cases . 25

3.4 Ephemeral keys using Merkle Tree approach . 27

3.5 Message sharing protocol in Algorand blockchain . 30

4.1 51% Attack . 34

4.2 Sybil Attack . 35

4.3 Blockchain Trilemma . 36

5.1 Algorand summary . 38

III

III. List of Tables

2.1 Hash functions . 4

2.2 Analyzing information - Case I (Byzantine agreement) . 6

2.3 Analyzing information - Case II (Byzantine agreement) . 6

2.4 Primitive roots of 17 . 8

2.5 Ed25519 specifications . 15

5.1 Blockchain comparison . 39

B.1 Addition operation - GF(23) . 60

B.2 Multiplication operation - GF(23) . 61

Chapter 1: Introduction 1

1 Introduction

1.1 Background

Financial transactions have seen an evolution like nothing else. It has gone from the
use of metal coins to the use of bitcoins. It has given rise to myriad other cryptocur-
rencies that form a part of the digital currency world. The standout aspect of the whole
affair has been the rapid adoption of cryptocurrencies across the globe which prompts
the governments and the tech community alike to proceed with innovative solutions for
the shortcomings of these digital currencies. Moreover, these digital currencies use
blockchain technology to facilitate a supremely secure and decentralized way to trans-
act across geographies. They use two mechanisms to validate the transactions – Proof
of Work (PoW) and Proof of Stake (PoS). Both work as a consensus mechanism to se-
curely operate the network of users and validators to ensure only genuine participants
add a transaction on the blockchain.

Blockchain plays a pivotal role in diverse areas, such as cloud computing, cybersecu-
rity, fintech, healthcare, and non-fungible tokens (NFTs) [Dal21]. It relies on the fun-
damentals of peer-to-peer networking and decentralization. Use cases for blockchain
technology are increasing, which calls for continuous improvements in the technology
to keep the whole system robust and efficient. It brings us to one of the newer projects
– Algorand. This project aims to elevate the utility of cryptocurrencies by increasing
transaction speeds and reducing the time it takes for transactions to append to the net-
work [Kra20]. Algorand intends to achieve these attributes by a sound methodology
that varies from how conventional cryptocurrencies operate. A noteworthy aspect of
the Algorand is its unbiased selection process in choosing candidates with respect to a
block for verification processes, thus reducing selection bias. Moreover, it allows users
to work with smart contracts and generate tokens representing both new and existing
assets. Furthermore, the native cryptocurrency for Algorand is named ALGO. This the-
sis study provides various mathematical aspects and challenges around the Algorand
blockchain.

1.2 Structure of the Thesis

The remaining report has been structured in the following manner:

• Chapter 2 gives advanced cryptographic primitives, including blockchain, hash
functions, consensus mechanisms, and Edwards digital signature algorithm (Ed-
DSA).

2 Chapter 1: Introduction

• Chapter 3 provides the basic structure of the Algorand public distributed ledger,
verifiable random functions (VRFs), applying cryptographic sortition in the leader
and committee selection procedure, secure flow of information through message
sharing, and utility of look-back parameter for Algorand blockchain protocol.

• Chapter 4 explains the security and attack analysis for the Algorand blockchain.

• Chapter 5 provides a conclusion and some areas for future scope.

• The Appendix chapter concludes the report with the implementation of primitive
roots, discrete logarithm solution, Byzantine agreement, and Twisted Edwards
curve over a finite field Fp in Python.

Chapter 2: Advanced Cryptography and Mathematical Prerequisites 3

2 Advanced Cryptography and Mathematical
Prerequisites

2.1 Blockchain

Stuart Haber and Scott Stornetta first gave the idea of blockchain [HS91]. Later, it
gained attention when it was employed for Bitcoin by Satoshi Nakamoto [Nak08]. It
has various applications in diverse areas such as cryptocurrency, voting mechanisms,
supply chain management, and non-fungible tokens (NFTs) [Dal21]. A blockchain is
analogous to a database on a distributed basis. Hence, it is accessible by every block of
the blockchain network and works as a peer-to-peer network. The main difference that
strikes out between blockchain and other forms of technology is the ensured security of
enormous data and assured trust without the involvement of a centralized authority. A
blockchain is either permissionless (public) or permissioned (private). A blockchain is
permissioned if any user is required to go through an authorization process for joining
the blockchain. On the contrary, for a permissionless blockchain, any user is able to join
without any authorization process. Moreover, Algorand is a permissionless blockchain
[Alg22f]. Since Algorand blockchain is a cryptocurrency protocol, the blockchain gives
a digital way to store transaction information that is computationally infeasible to alter or
reverse. Therefore, it is a decentralized distributed ledger scheme. Furthermore, new
blocks are generated based on a consensus mechanism, and on validation, it joins the
verified blockchain using cryptographic methods. In general, each block comprises:

• Cryptographic hash: Consists of a hashed value of all transactions of the previous
block in a single hash using the concept of Merkle tree1

• Timestamp: Stores the information about the block creation time

• Transaction data: Details related to each transaction are stored in transaction data

The first block is termed the Genesis block. Since each subsequent block is linked to
the previous block via a secure cryptographic hash, a slight change in any of the above
transaction information would lead to inconsistency in the succeeding blocks. Hashing,
along with any of the below-discussed consensus mechanisms, makes the blockchain
more secure.

1 Merkle tree refers to a tree where each node (apart from leaf node) consists of concatenated recursive
hashing of all its child nodes concatenated together. A leaf node contains the exact transaction data
used to create the Merkle tree. The topmost node refers to the Merkle root of the tree comprising the
hash of all nodes recursively hashed together [Mer82].

4 Chapter 2: Advanced Cryptography and Mathematical Prerequisites

2.2 Hash Functions

Definition 2.1 A hash function H is described as a function that creates a map between
data of arbitrary size to fixed-size values.

H : {{Arbitrary string of any length}} −→ {{A fixed-size length output}}

The values obtained after passing through the hash function are termed hash values.

Hash functions are one-way, i.e., it is faster to compute the output from input, but the
converse is not computationally feasible. A hash function H is always collision-free
if the range set’s cardinality is greater or equal to the cardinality of the domain set.
Considering a hash function such as SHA-512 produces an output of fixed-size length
512 for an arbitrarily input length. Nevertheless, it must generate one of 2512 outputs
for each input out of a much larger set of inputs. A hash function with more inputs than
outputs is bound to have collisions, and the pigeonhole principle ensures that some
inputs hash to the same output. However, collisions are computationally hard to identify
due to uniformity in the mapping from input to output. In other words, H(x) = H(y) for
some x,y ∈ domain(H) but difficult to identify that for which x,y this holds true [SL07a].
A hash function is compact if it is faster to compute and is collision-resistant.

Cryptographic hash functions can be categorized into keyed and non-keyed crypto-
graphic hash functions [Pre94]. Keyed cryptographic hash functions involve the usage
of a secret key, while the latter does not require a secret key. Some majorly employed
non-keyed cryptographic hash functions in various cryptographic protocols are SHA-
256, SHA-512, and MD-5, with the fixed-size length output of 256, 512, and 128.

Majorly used non-keyed cryptographic hash functions
Hash function SHA-256 SHA-384 SHA-512 MD5
Output Length 256 bits 384 bits 512 bits 128 bits

Table 2.1: Hash functions

2.3 Consensus Mechanisms

2.3.1 Byzantine Agreement

Byzantine agreement problem, also referred to as Byzantine fault, occurs specifically
in distributed computing systems. On failure of one or more components, it becomes
difficult to determine whether a component is working due to the lack of sufficient infor-
mation. To make a system more resilient against such failures and attacks, the concept
of the Byzantine agreement was studied and given by M.C. Pease, R.E. Shostak, and
L. Lamport [PSL80].

6 Chapter 2: Advanced Cryptography and Mathematical Prerequisites

For I
′
3 ̸= I

′′
3 ̸= I

′′′
3 , Table 2.2 is obtained

Agreed value of components as per majority
Value for C1 Value for C2 Value for C3 Value for C4

C1 - I2 NIL I4
C2 I1 - NIL I4
C3 a b - c
C4 I1 I2 NIL -

Table 2.2: Analyzing information - Case I (Byzantine agreement)

For any other possibilities, with either two or all of I
′
3, I

′′
3 , I

′′′
3 having value x, Table 2.3 is

rendered.

Agreed value of components as per majority
Value for C1 Value for C2 Value for C3 Value for C4

C1 - I2 x I4
C2 I1 - x I4
C3 a b - c
C4 I1 I2 x -

Table 2.3: Analyzing information - Case II (Byzantine agreement)

Since C3 is faulty(malicious), a,b,c,x are random values. For every scenario the above
mentioned two properties are satisfied.

2.3.2 Proof of Work (PoW)

Cynthia Dwork and Moni Naor initiated proof of work (PoW) [DN93]. Later it gained at-
tention when it was employed as a decentralized consensus mechanism by Bitcoin,
where members (miners) involved in the network solve an arbitrary computationally
complex mathematical puzzle in order to authenticate transactions for processing and
generating a new block [Nak08]. It is based on the difficulty of finding the original value
based on the hash value, i.e., it is a one-way function. Until the status of a transaction is
confirmed, it initiates as follows. First, transactions are merged into a block. Then, the
miners check whether these transactions are authentic by hashing the block header of
the candidate block. The first miner who obtains the correct solution or a solution clos-
est to the correct one receives the monetary benefits and covers the individual miner’s
transaction fees. Finally, the validated transactions are attached to the blockchain in a
verified block. The transactions are validated in a protected peer-to-peer network with-
out the involvement of a trusted third party. Moreover, energy level surmounts as the
number of miners joining the network increases.

Chapter 2: Advanced Cryptography and Mathematical Prerequisites 7

Figure 2.2: Proof of Work methodology
[Aca19]

2.3.3 Proof of Stake (PoS)

Proof of Stake (PoS) is a consensus technique created to address the shortcomings of
proof of work. Sunny King and Scott Paul initially gave proof of stake for the peer-to-peer
cryptocurrency Peercoin [KN12]. It was further adapted as a consensus mechanism for
the Ethereum blockchain [But14]. The selection of candidates for verification of transac-
tions and generation of a new block comprises a weighted random selection where the
weights of the individual participants are obtained from the assets owned by a partici-
pant(the "stake"). After selection, transactions are verified, validated, and put together in
a block. Verifiers end up with monetary benefits in the form of a transaction fee. In order
to avoid inconsistency, the sum over all transactions fee rewarded to a validator must
not exceed the individual stake. While there have been many variations with the proof
of stake mechanism, Algorand operates on the pure proof of stake approach that com-
bines the Byzantine consensus with the traditional proof of stake mechanism, making it
more soundproof and resilient.

Figure 2.3: Proof of Stake methodology

8 Chapter 2: Advanced Cryptography and Mathematical Prerequisites

2.4 Digital Signature Scheme

The signature is physically a portion of the document or contracts to ensure that the
signer is held responsible for the details mentioned within the document. However,
since forgery is highly possible, it becomes difficult to consider such a physical signature
process. Therefore, it is required to consider methods to sign messages over a digital
medium that is functionally equivalent to a physical signature but more resilient to any
forgery or malicious attacks. Therefore, digital signatures are used for signing messages
in various cryptographic procedures.

A digital signature combines mathematical steps for validation on authentication of dig-
ital messages or documents. It ensures that the information is issued from the signer
and not altered during the exchange of information. A digital signature is authentic, i.e.,
satisfying all necessary mathematical prerequisites and ensuring a significant trust be-
tween sender and receiver. As asymmetric cryptosystems, it employs a pair of public
and private keys in signature generation and verification. Numerous digital signature
schemes are based on the difficulty of computing discrete logarithms. Below are some
definitions related to discrete logarithm [SL07b].

Definition 2.4 For a prime p, its primitive root α is defined as a number that satisfies

{1,2, · · · , p−1}= {α
1,α2, · · · ,α p−1} (mod p)

α is a primitive root of p, if and only if α is a generator of the cyclic group Z∗
p

2.

3 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1
5 5 8 6 13 14 2 10 16 12 9 11 4 3 15 7 1
6 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1
7 7 15 3 4 11 9 12 16 10 2 14 13 6 8 5 1

10 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12 1
11 11 2 5 4 10 8 3 16 6 15 12 13 7 9 14 1
12 12 8 11 13 3 2 7 16 5 9 6 4 14 15 10 1
14 14 9 7 13 12 15 6 16 3 8 10 4 5 2 11 1

Table 2.4: Primitive roots of 17

Appendix A.1.1 implements a Python program for the computation of primitive roots.

Definition 2.5 Let p be a prime with α as its primitive root. For any n∈ {1,2, · · · , p−1},
there exist an x ∈ {1,2, · · · , p−1} that satisfies

n = α
x (mod p)

2 A group that can be produced by a single element (generator) is termed a cyclic group.

Chapter 2: Advanced Cryptography and Mathematical Prerequisites 9

For every value of n, this value x is unique and is termed as discrete logarithm of n to
base α modulo p and is denoted as

x = logα n (mod p)

As an example, discrete logarithm of 9 to base 7 modulo 17, given as log7 9 (mod 17)
is 6 from table 2.4. In the Appendix A.1.2, the Python program for the computation of
discrete logarithm is implemented.

In general, the digital signature scheme comprises three procedures as given below:

• Key-generation algorithms (G): Outputs a secret (private) key with its correspond-
ing public key.

• Signing algorithm (S): Outputs a signature on the basis of the message, secret
key, and hashing.

• Verification algorithm (V): Based on the signature obtained from S and the mes-
sage and public key, the verifier responds 0 or 1. 0 represents a rejection and 1
an acceptance.

ElGamal digital signature scheme, Elliptic curve digital signature algorithm (ECDSA),
Schnorr signature scheme, and Edwards-curve digital signature algorithm (EdDSA) are
some of the commonly used signature algorithms [Bon05,JMS01,Sch89,BDL+12]. Al-
gorand blockchain employs highly secure Edwards-curve digital signature algorithm (Ed-
DSA) signatures [Alg22b].

2.4.1 Edwards-curve Digital Signatures (EdDSA)

Edwards Curves

Harold M. Edwards proposed a different form for representing elliptic curves over an
algebraically closed non-binary field K, i.e., char(K) ̸= 2 and comprises each root of
any non-constant polynomial in K[x] [Edw07] :

x2 + y2 = c2(1+ x2y2) (2.1)

These curves were further studied and presented in a newer form termed Edwards
curves by Daniel Bernstein and Tanja Lange as described in definition 2.6 [BL07].

Definition 2.6 An Edwards curve over a field K, with char(K) ̸= 2 is represented as

x2 + y2 = 1+dx2y2 (2.2)

10 Chapter 2: Advanced Cryptography and Mathematical Prerequisites

where d ∈ K \{0,1}.

For d = 0 and d = 1 a unit circle and 4 lines x = ±1 and y = ±1 are rendered respec-
tively. Below are Edwards curves over K = R for d = ±10. The following script has
been computed using Sage computer-algebra system to generate plots [DSJ+20].

R.<x, y> = QQ[]
C = Curve(x^2 + y^2 - 1 +10*x^2*y^2)
C.plot()
C = Curve(x^2 + y^2 - 1 -10*x^2*y^2)
C.plot()

Figure 2.4: Edwards curve for d = -10 and d = 10

Definition 2.7 For integers n, p, if there exists m ∈ Z such that n = m2 (mod p), then n
is described as quadratic residue modulo p.

Definition 2.8 For a prime y and integer x, the Legendre symbol for x over y is a function
defined as,

(
x
y

)
=

1 if x is a quadratic residue modulo y and y ∤ x,

0 if y | x,

-1 if x is a non-quadratic residue modulo y.

Chapter 2: Advanced Cryptography and Mathematical Prerequisites 11

Addition of Points on Edwards Curves

Suppose Ed represents a Edwards curve as -

Ed : x2 + y2 = 1+dx2y2

Let Pi = (xi,yi) ∈ Ed for i ∈ {1,2} then −Pi = (−xi,yi). Also dx1x2y1y2 ̸=±1, then the
addition of the two points is given as:

(x1,y1)+(x2,y2) = (x3,y3) = (
x1y2 + x2y1

1+dx1x2y1y2
,

y1y2 − x1x2

1−dx1x2y1y2
)

2(xi,yi) = (
2xiyi

1+dx2
i y2

i
,

y2
i − x2

i

1−dx2
i y2

i
) for i = 1,2

Here, (0,1) is the neutral element and (x3,y3) ∈ Ed .

It has been shown that for
(

d
p

)
=−1, addition formula always hold without any excep-

tions [BL07].

Example 2.9 P1 = (17,28) and P2 = (22,85). Compute P1+P2, 2P1, and 2P2 for d = 30
over F97.

P1 +P2 = (24 · [83−1]97,66 · [16−1]97) = (26,89)

2P1 = (79 · [6−1]97,10 · [93−1]97) = (94,46)

2P2 = (54 · [46−1]97,48 · [53−1]97) = (56,43)

where [a−1]b denotes modular inverse of a with respect to b.

Twisted Edwards Curves

Twisted Edwards curves are a generalized form of the curves defined in Definition 2.6
as it covers more curves over finite fields [BBJ+08].

Definition 2.10 A twisted Edwards curve over a field K, with char(K) ̸= 2 is represented
as

ax2 + y2 = 1+dx2y2 (2.3)

where a,d ∈ K \{0} and a ̸= d.

The curve reduces to the Edwards curve for a = 1. In the Appendix A.3, a Python
program is implemented plotting all points lying on Ea,d and also checks whether a point
P ∈ Ea,d or P /∈ Ea,d over a finite field Fp for p being a prime. A mathematical overview

12 Chapter 2: Advanced Cryptography and Mathematical Prerequisites

with respect to finite field has been provided in Appendix B.3.

Addition of Points on twisted Edwards Curves

Suppose Ea,d represents a twisted Edwards curve as -

Ea,d : ax2 + y2 = 1+dx2y2

Let Pi = (xi,yi) ∈ Ea,d for i ∈ {1,2} then −Pi = (−xi,yi). On the condition that
dx1x2y1y2 ̸=±1, then the addition of the two points is given as:

(x1,y1)+(x2,y2) = (x3,y3) = (
x1y2 + x2y1

1+dx1x2y1y2
,

y1y2 −ax1x2

1−dx1x2y1y2
)

2(xi,yi) = (
2xiyi

1+dx2
i y2

i
,

y2
i −ax2

i

1−dx2
i y2

i
) for i = 1,2

Here, (0,1) is the neutral element and (x3,y3) ∈ Ea,d .

Example 2.11 P1 = (1,8) and P2 = (7,3). Compute P1+P2, 2P1, and 2P2 for a= 4,d = 5
on F23.

P1 +P2 = (13 · [13−1]23,19 · [12−1]23) = (1,15)

2P1 = (16 · [22−1]23,14 · [3−1]23) = (7,20)

2P2 = (19 · [21−1]23,20 · [4−1]23) = (2,5)

where [a−1]b denotes modular inverse of a with respect to b.

The points considered in the numerical examples for addition with respect to Edwards
curves and twisted Edwards curves have been computed from the Python program at-
tached in appendix A.3.

Theorem 2.12 [BN19] Suppose Ea,d be a twisted Edwards curve defined over Fp,
where prime characteristic of Fp is greater than 2. Assume two points (x1,y1) and
(x2,y2) lie on Ea,d . Then the addition of the two points given as

(x1,y1)+(x2,y2) = (
x1y2 + x2y1

1+dx1x2y1y2
,

y1y2 −ax1x2

1−dx1x2y1y2
)

is always defined without any exceptions if

•
(

a
p

)
= 1

Chapter 2: Advanced Cryptography and Mathematical Prerequisites 13

•
(

d
p

)
=−1

Proof: Assume Ea,d be a twisted Edwards curve in Fp, where char(Fp) > 2,
(

a
p

)
= 1

and
(

d
p

)
=−1. Suppose two points (x1,y1) and (x2,y2) lie on Ea,d and on the contrary

assume that addition law does not hold, i.e, dx1x2y1y2 = ±1. Therefore, x1x2y1y2 ̸= 0.
Since, (x2,y2) lies on Ea,d , it gives

ax2
2 + y2

2 = 1+dx2
2y2

2 (mod p)

= (±1)2 +dx2
2y2

2 (mod p)

= (dx1x2y1y2)
2 +dx2

2y2
2 (mod p)

= dx2
2y2

2(dx2
1y2

1 +1) (mod p)

Also (x1,y1) lies on Ea,d , it gives

ax2
2 + y2

2 = dx2
2y2

2(ax2
1 + y2

1) (mod p)

Further we proceed as follows

(
√

ax2 ± y2)
2 = (

√
ax2)

2 + y2
2 ±2

√
ax2y2 (mod p)

= ax2
2 + y2

2 ±2
√

adx1y1x2
2y2

2 (mod p)

= dx2
2y2

2(ax2
1 + y2

1)±2
√

adx1y1x2
2y2

2 (mod p)

= dx2
2y2

2(ax2
1 + y2

1 ±2
√

adx1y1x2
2y2

2) (mod p)

= dx2
2y2

2(
√

ax1 ± y1)
2 (mod p)

Therefore, d =

(
(
√

ax2 ± y2)

x2y2(
√

ax1 ± y1)

)2

(mod p)

Assuming that (
√

ax1 ± y1) ̸= 0 (mod p), since x1x2y1y2 ̸= 0, a is non-zero as studied
in the definition and as p is a prime, [(x2y2

√
ax1 ± x2y2y1)

−1]p will always exist and

is computed through extended euclidean algorithm. This renders
(

d
p

)
= 1 that con-

tradicts our initial assumption of
(

d
p

)
= −1. Due to this contradiction, (

√
ax1 ± y1) ̸=

0 (mod p) does not hold that gives x1 = 0 (mod p) and y1 = 0 (mod p) which contradicts

dx1x2y1y2 =±1. Hence, addition law always hold for
(

d
p

)
=−1 and

(
a
p

)
= 1 [BN19].

14 Chapter 2: Advanced Cryptography and Mathematical Prerequisites

Lemma 2.13 Let Ea,d denote twisted Edwards curve over Fp where p is an odd prime.
If the number of points on the curve is n, then 4|n.

Proof: Assume (u,v) lies on the Ea,d , i.e.,

au2 + v2 = 1+du2v2(mod p)

Since, the exponent of x and y in Ea,d are even, (u,p− v) , (p− u,v) and (p− u,p− v)
will lie on the curve Ea,d as well. This holds true for each such (u,v) where u,v ∈ Fp.

Figure 2.5: Twisted Edwards curve over F239 and F997

Process for Generating and Verifying Signatures

Secret and public keys are denoted as sk and pk. A random input, when passed in the
key generation algorithm (G), produces pair (sk, pk) [MRV99].

Parameters used in the signature scheme are as follows:

• An integer m ≥ 10

• A cryptographic hash function H rendering 2m-bit output

• A prime power p such that 4|(p−1)

• An element d ∈ Fp such that d ̸= c2 (mod p) for any c ∈ Fp

• A point K lying on the curve E−1,d , other than the neutral element (0,1) over Fp

• A prime q such that 2m−4 ≤ q ≤ 2m−3 and qK gives the neutral element of E−1,d

EdDSA’s sk is a m-bit string t. Value of H(t) is denoted as h. Let h0 and h1 denotes the
first m-bits and last m-bits of h respectively. Let j denotes the integer derived from h1.
jK is considered as pk and h0 is utilized for signing message M.

Chapter 2: Advanced Cryptography and Mathematical Prerequisites 15

Signing

• Define r = H(h0 || M)

• Define R = rK

• Define S = r+H(R || pk || M) · j (mod q)

(R,S) is the signature generated.

Verification

• If R, pk ∈ E−1,d is checked initially.

• On validation of initial condition, computes v1 = 8R+8H(R || pk || M) · pk

• Then computes v2 = 8SK

If v1 = v2, signature is validated.

Why is it correct?

v1 = 8R+8H(R || pk || M) · pk

= 8rK +8H(R || pk || M) · jK

= 8K(r+H(R || pk || M) · j)

= 8SK

= v2

Algorand uses fast functioning, highly secure EdDSA as Ed25519 curves with specifi-
cations as given in the below table.

Specification Value
m 256
H SHA-512
p 2255 −19
q 27742317777372353535851937790883648493
a -1
d -121665 · [121666−1]2255−19
K (x,4 · [5−1]2255−19)

Table 2.5: Ed25519 specifications
[Ber06]

16 Chapter 3: Mathematical Aspects of Algorand

3 Mathematical Aspects of Algorand

Algorand is a permissionless cryptocurrency blockchain protocol given by Silvio Micali
in 2016 [CM16]. It is designed in a manner to solve the Blockchain trilemma [Alg21].
The three factors involved in the blockchain trilemma are:

1. Decentralization: Ensuring the operations are performed without depending on a
centralized node or server

2. Security: Network is resilient against attacks by individuals acquiring a significant
chunk of blockchain network resources

3. Scalability: Assuring that the blockchain network remains consistent while accom-
modating a vast amount of transactions and users

The blockchain system is termed Algorand since there is an element of randomness
associated with every step in the approach for end-to-end block generation. More-
over, the random computations performed are strongly resistant to mutability and re-
main unpredictable. Therefore, rather than the power being in some limited hands,
the power resides with all individuals that constitute the Algorand blockchain. Further-
more, the occurrence of forking in the Algorand blockchain is highly negligible as each
block is separately agreed upon by a committee of users and remains intact in the
blockchain [Alg22e]. Since Proof of Work (PoW) is computationally expensive and ex-
tremely complex, Algorand relies on the pure proof of stake consensus mechanism, an
amalgamation of Proof of Stake (PoS), and the Byzantine agreement protocol.

3.1 Basic Structure of Algorand’s Public Distributed
Ledger

Algorand is systematically performed in rounds denoted as r (r > 0) [CM16]. Let pubr

denote the set of public keys at the beginning of round r and amtr
j be the number of

money units held by a public key in round r for j ∈ pubr. The structure is explained in
the following steps :

• The initial status S0 of the public distributed ledger is known to everyone involved
in the system and is represented as

S0 = (pub1,amt1), · · · ,(pubn,amtn)

where n is the total initial public keys in the whole transaction system. When round

Chapter 3: Mathematical Aspects of Algorand 17

r begins, the public ledger status is represented as

Sr = {(j,amtr
j) ∀ j ∈ pubr}

where a public ledger demonstrates the respective money units held by an indi-
vidual and keeps a track of all the existing transactional records.

• Let m,n denotes two public keys at the beginning of round r with amtr
m, amtr

n
money units held respectively such that amtr

m ≥ amtr
n ≥ 0. Then an authentic

payment P , is a digital signature corresponding to amtr
m, represents the trans-

fer of x (≤ amtr
m) units from m (sender) to n (beneficiary) appended with some

additional information as:

P = Sigm(m,n,x, I,H(I))

where I contains information that is useful but insensitive whereas I comprises
useful critical information. Since I is sensitive information, it is hashed. For
generating digital signatures, Edwards curve digital signature algorithm (EdDSA)
is utilized [Alg22b].

• Digital signatures ensure that none of the information relevant to payment is coun-
terfeited by any other user. Since H is an ideal hash function, it assures that the
sensitive information I is not interpreted unless a brute force approach is ap-
plied, which is computationally infeasible. In other words, it is computationally
hard to find a I

′
such that H(I) = H(I

′
)

• The blockchain network aims to systemize all payments into an ordered arrange-
ment of blocks that are connected via a cryptographic hash and always possess
the below characteristics:

1. As the block is verified and appended to the network, it becomes common
knowledge in the blockchain network.

2. All payments existing in any block are authentic concerning each payer’s
money units as per the initial status and payments in previous blocks.

3. Every payment after being verified becomes simultaneously visible in a block.

• Blocks in the Algorand blockchain are relative to rounds. For a round r the re-
spective block Br is given as

Br = (r,PAY r,Qr−1,H(Br−1))

where PAY r refers to set of all valid payments of round r, Qr is a recursion
based value whose computation will be studied in section 3.5 and H(Br−1) repre-
sents the hash of the previous block. A block Br is termed authentic in Algorand
blockchain, if there exist a block certificate CERT r for the rth block. It comprises of
digital signatures of majority (through Algorand’s Byzantine agreement protocol)
of individuals of SV r, where SV r refers to set of verifiers for verifying the authen-

18 Chapter 3: Mathematical Aspects of Algorand

ticity of block r. Afterwards, it becomes a proven block Br.

Figure 3.1: Algorand viewpoint from higher level

3.2 Byzantine Agreement (BA⋆) in Algorand

Since many users operate on the Algorand blockchain, it is computationally inconsis-
tent and unscalable to approach the traditional BA considering every existing user on
the network. Therefore, the verification is undertaken by a considerably small set of
randomly chosen users called verifiers via an enhanced Byzantine agreement denoted
as BA⋆ where these verifiers do not share any hidden, unknown information. Although,
the initial conditions for running a BA remain unaltered for BA⋆, i.e., an honest majority
ratio that is not less than 2/3. Applying the BA⋆ protocol with a randomly selected set
of verifiers ensures the scalability parameter is solved in a feasible manner [GHM+17].
Moreover, the procedure enables higher security. Once a verifier has participated in
the Byzantine agreement, the verifier becomes insignificant since BA⋆ does not hold
any private state, making it unbiased towards any user’s participation. In other words,
it follows user replacement, i.e., for each step, new committee members are chosen,
demonstrating randomness and security within the process. BA⋆ is performed via two
stages. The first stage consists of the Graded Consensus (GC) protocol. The rendered
output on the first stage’s termination is employed as an input for running the second
stage, i.e., Binary Byzantine Agreement (BBA∗).

3.2.1 Graded Consensus (GC) Protocol

The Graded Consensus (GC) protocol was studied and given by Paul Feldman and
Silvio Micali [FM89].

Definition 3.1 Suppose P is a cooperatively terminated protocol such that the set S of
all users is universally known, and the identity for each user (the sender) is denoted as

Chapter 3: Mathematical Aspects of Algorand 19

i. In this protocol, only the sender carries a private value v. Then with every iteration
involving n players in which at most t are fraudulent, P is an (n, t)-graded consensus pro-
tocol such that each benign user output a value-grade pair (vu,gu) where gu ∈ {0,1,2}
satisfying the below properties [CM16]:

• Absolute difference between the grade of any two honest players is less than or
equal to 1.

• If the grades of two honest players are positive, it implies that they have the same
output value.

• If the sender is benign, then for every honest player u, the outputted value equals
the shared private value of the sender, i.e., v and gu = 2.

The GC protocol is performed as follows. In the first step of the graded consensus (GC)
protocol, each user u involved shares its secret input vu to all involved users. In the
second step, the first step obtained value is circulated to other participating users. If
greater than 2/3 of obtained values are identical on the second step distribution, this
obtained value is distributed. Otherwise, no information is exchanged [FM89].

The output rendered on performing the steps of first stage is (vu,gu) for every user u is
interpreted below:

• If the ratio of the number of users from whom user u has received some y from the
second step with total users involved is greater than 2/3, then vu = y and gu = 2.

• Moreover, if the ratio of the number of users from whom user u received some y
in the second step with total users involved is between 1/3 and 2/3, then vu = y
and gu = 1.

• Otherwise, vu = w and gu = 0, where w is a random distinguished string not be-
longing to range(H).

Here, gu represents a grading parameter in judging the certainty of a value that gradually
increases as the ratio grows.

3.2.2 Binary Byzantine Agreement (BBA⋆)

The Binary Byzantine agreement (BBA⋆) protocol depends on the majority of honest
users and quickly provides an output. In this protocol, individuals on repetitive basis
exchange boolean values, and different individuals leave the protocol at different times
conditioned on the majority of consensus obtained.

The BBA∗ is a 3-step protocol. It is a binary-based protocol; therefore, the values con-
sidered are either of the form 0 or 1. For each step, if the number of instances for any

20 Chapter 3: Mathematical Aspects of Algorand

binary values is greater than two-thirds of the total instances, then initial input bu is fixed
to that value. After outputting ou as the same binary value, stalls the protocol [CM16].

As per the output received from GC protocol, in BBA⋆ protocol first step, user u assigns
its private binary input bu for binary BA⋆ 3 as 0, if gu = 2 and 1 otherwise. In the next
step, every user u performs the remaining steps of binary BA⋆ protocol, till binary output
ou is obtained. Output is interpreted as ou = vu if bu = 0 and ou = w if bu = 1 [Mic17]. It
always maintains the two fundamental characteristics:

1. There exists o∈V
⋃
{w} where ou = o for all honest users u illustrating an agree-

ment among all honest users.

2. If the initial value for each honest user is v ∈ V , then o = v, thus maintaining the
consistency in the consensus of honest users.

where V , w denotes the set of the initial value of the users and a distinguished random
string not belonging to range(H) respectively.

In BA∗ protocol each participating user u performs graded consensus (GC) protocol in
order to render vu,gu. This information is employed in performing BBA∗ to obtain a
mutual consensus over the value. A BA∗ protocol utilizes the idea behind the traditional
Byzantine agreement to optimally and feasibly overcome scalability issues.

In order to determine whether a user is chosen either as a leader or verifier in the block
generation process, they are required to implement cryptographic sortition by them-
selves. Cryptographic sortition is applied using verifiable random functions (VRFs),
studied in Section 3.3.

3.3 Verifiable Random Functions (VRFs)

Verifiable random functions (VRFs) were studied and introduced by Silvio Micali, Salil
Vadhan, and Michael Rabin [MRV99]. It is employed to map a given input to a verifiable
pseudorandom output. It finds applications in numerous cryptographic procedures and
cybersecurity schemes. Moreover, with an element of pseudorandomness, it assures
more security and robustness.

For a function f , in order to be a VRF, it always maintains the below properties:

• A consistent and direct representation ensures that f is calculated efficiently.

• A consistent and indirect representation assures that f is not calculated efficiently.

The first property ensures that the individual holder of the secret key easily evaluates

3 Binary BA⋆ is derived from probabilistic binary BA initiated by Silvio Micali and Paul Feldman [FM89].

Chapter 3: Mathematical Aspects of Algorand 21

the function and generates corresponding rendered proof. While the second property
guarantees that the verifier with a linked public key and the proof can conclude whether
the evaluated value is valid or not.

A VRF comprises three algorithms, KeyGen to generate key pair, Eval for calculating
pseudorandom output with proof, and Veri f y for verifying whether the outputted value
is authentic or not, as explained below [Gor18]:

1. KeyGen(λ) - Takes a random input as λ and renders a secret and verification key
pair (sk, pk). pk and sk are linked; therefore, it is smoother to obtain pk from sk.
On the contrary, the converse is computationally infeasible. sk is analogous to
trapdoor information leading to pk. The length of the secret and verification key
for the Algorand blockchain is 256 bits [Alg22b].

Figure 3.2: Key generation
[Alg22b]

2. Eval(sk,m) - Takes message m alongwith secret key sk as input and generates a
pseudorandom output o along with a proof ω .

3. Veri f y(pk,m,o,ω) - Takes the verification key pk, message m, output o and proof
ω as input and gives the output as either 0 (invalid) and 1 (valid).

The three algorithms mentioned above constituting a V RF strengthen a cryptographic
protocol in a blockchain as a result of the following key properties:

• For a given secret key sk and message m, the outputted value o and proof ω are
always unique.

• The pseudorandomness of output o is analogous to the proof ω , i.e., it is random
to anyone unaware of the corresponding proof ω .

Although traditional digital signature schemes are akin to VRFs, it is distinguishable
based on the stronger element of pseudorandomness associated with VRFs. Algorand
implements a cryptographic sortition algorithm based on VRFs for choosing the leader
and committee.

22 Chapter 3: Mathematical Aspects of Algorand

3.4 Cryptographic Sortition

The method of sortition involves choosing a random set of officials from a larger set of
competent and qualified candidates [Sto16]. It has major applications in lottery ticket
schemes and electoral voting systems. Since, in Algorand, we require a set of verifiers
chosen randomly from a large pool of active users to verify the proposed block, the
sortition method is applied with cryptographic functioning. The cryptographic operations
performed in the Algorand blockchain remain unpredictable until the last moment and
are clear for each user in the network. Such a cryptographic sortition process assures
Algorand to be more scalable and secure [GHM+17].

From a high-level point of view, Algorand depicts selecting the official payset PAY r

among all paysets of round r to a chosen set of verifiers who verify the proposed block
via BA∗. Algorand also ensures that correct information reaches every selected veri-
fier, and after the validation, the decisions are disclosed to every user in the blockchain
network. Verifier selection is a mathematical process where a user implements cryp-
tographic sortition via verifiable random functions. After each round, a new random
committee of verifiers is chosen to ensure more resilience towards adversarial attacks.
In order to verify a block proposed by a randomly chosen Algorand user (leader), a com-
mittee of randomly chosen verifiers is selected for each step in each round such that it
satisfies the below properties:

• The collection of payments PAY r is authentic and verified by the committee mem-
bers.

• Each payment in PAY r is always a round-r payment initiated by an honest user.

Cryptographic sortition uses a weight-based computation, i.e., each user u is assigned
a weight wu depending on the money units the user acquires in the blockchain network.
W denotes the sum of all weights. For any user, the probability that user u is chosen
for a role either as a leader or verifier is directly proportional to the ratio of the individual
user weight wu and W .

3.4.1 Leader Selection Process

As discussed in section 3.1, for a public distributed ledger, block Br is given as

Br = (r,PAY r,Qr−1,H(Br−1))

Since the payset PAY r is required to be maximal, it is critical to choose a leader for
the block proposal; otherwise, it leads to a non-maximal payset because the individual
block of each honest user is unlikely to be very identical. Hence, a leader lr for round r
is chosen to proceed initially [CM19]. Afterwards, the leader proposes and publicizes its
block Br

lr . Furthermore, the set of chosen verifiers agrees to a consensus by BA∗ on Br
lr .

Chapter 3: Mathematical Aspects of Algorand 23

We denote the fixed-length of collision-resistant function H as lhash. When the round r
begins, each user has prior knowledge about the current status of the blockchain, i.e.,

B0, · · · ,Br−1

which also provides set of corresponding public keys utilized to each preceding round
as

pub1, · · · , pubr−1

The set of potential leaders L comprising of all users u represented as

L = {u | H(Sigu(r,1,Qr−1))

2lhash ≤ p}

where Sigu(r,1,Qr−1) depicts the signature generated by user, where the elements to be
signed are r,1,Qr−1. The signature scheme utilized in Algorand is unique with respect to
u and r and since H is a collision resistant hash function it thereby gives a random lhash
length output uniquely connected to u and r. For each user in the network it is checked
whether the ratio of the hashed value of signature over |range(H)| is lying in the range
[0, p] related to the money units user u holds in the network. Moreover, this process
boosts the security since only u is capable of computing its signatures and hence is
able to check for being a potential leader. Furthermore, on disclosure of its credential
σ r

u ≜ Sigu(r,1,Qr−1), u shows its credibility of a potential leader for round r.

In L, the set representing potential leaders, lr is the leader satisfying

lr = argmin
i∈L

H(σ r
i)

,i.e., the leader’s hash value H(σ r
lr) is the least of all L’s potential leaders’ hash value. In

addition to the outcome of cryptographic sortition, for a user u to be considered a leader
or verifier, it is required that u is a part of the network for at least t rounds assuring
Qr and succeeding rounds Q values being tamperproof. This proposed block will now
be authenticated by a significantly small fraction of total users via multiple steps, as
explained in Section 3.4.2.

3.4.2 Committee Selection Process

In the first step of round r, a leader lr is selected based on cryptographic sortition of
hashed credentials. For each consequent step s of round r, the block proposed by lr is
undertaken by V r,s where V r,s is a set of verifiers at step s of round r [CM19]. User u is
qualified as a verifier if its corresponding public key pku ∈ pubr−t and

H(Sigu(r,s,Qr−1))≤ p′ ·2lhash

24 Chapter 3: Mathematical Aspects of Algorand

where Sigu(r,s,Qr−1) depicts the signature generated by user u with the elements to be
signed are r,s,Qr−1.

V r,s = {u | H(Sigu(r,s,Qr−1))

2lhash ≤ p′}

V r =
⋃
s≥1

V r,s

Let HV r,s, DV r,s represents set of honest committee members and dishonest committee
members respectively. Then, it always satisfies the following:

HV r,s ∪ DV r,s =V r,s

HV r,s ∩ DV r,s = φ

Furthermore, there are two representations of Algorand denoted as Algorand1 and
Algorand2 where HV r,s and DV r,s satisfy the below properties:

• Algorand1

1. Ratio of |HV r,s| with |DV r,s| is greater than 2.

2. |HV r,s| + 4·|DV r,s| < 2·|V r,s|
• Algorand2

1. |HV r,s| is greater than e.

2. |HV r,s| + 2·|DV r,s| < 2·e
where e is a particularized threshold value.

Solving the two inequalities for each of the versions, we concluded that the 2/3 honest
majority ratio necessary for BA∗ protocol is satisfied.

Analogous to the leader selection process, only u is capable of computing its signatures
and hence checks for being a member of the verifiers’ committee. For every user in the
network, it is inspected whether the hashed value of the signature is less or equal to the
product of |range(H)| and p′, where p′ is associated with the money units user u hold
in the network. Likewise on publicizing its credentials σ

r,s
u ≜ Sigu(r,s,Qr−1), u indicates

its validation of being a potential verifier in step s for round r.

After the verification steps in round r have been conducted, depending on the block
leader lr being honest or malicious, the verified block falls under two categories as
explained below in Figure 3.3.

The committee members communicate through a message-sharing protocol where mes-
sages are of the form mr,s

c as discussed in Section 3.6.2. c denotes a committee mem-

Chapter 3: Mathematical Aspects of Algorand 25

Figure 3.3: Leader cases

ber, and r,s represents the ongoing round and current executing step of round r respec-
tively. mr,s

c carries information shared by c along with its credential σ
r,s
c . A mathematical

explanation based on Bernoulli trials and binomial distribution for computation of proba-
bility p is attached in Appendix B.1.

3.5 Qr-Value Computation Process

After verification by the committee members the new block that is appended to the
blockchain is given by either of the two forms as below:

Br : (r,PAY r,Sigi(Qr−1),H(Br−1))

or

Br : (r,PAY r,Qr−1,H(Br−1))

Both representations have a direct dependency on the value of Qr−1. Cryptographic
leader or committee selection relies on the Qr−1 quantity. It implies that the random
value Qr requires to be of common knowledge before round r is initiated. Therefore,
it is critical to compute Qr securely in order to maintain resilience against adversarial
attacks. The process for computing non-forgeable Qr-value is given below [CM16]:

26 Chapter 3: Mathematical Aspects of Algorand

Qr ≜

{
H(Qr−1|| r), if Br = Br

ε

H(Siglr(Qr−1|| r)), otherwise.

Suppose the chosen leader lr is reliable, and Qr−1 is a valid independent selected
value. Then by the definition of hash functions, the Qr value is computed in an authentic
way of fixed-size output length. Otherwise, after the termination of the BA∗ protocol, if
the agreed-upon value is w, then Qr−1 is directly considered for hashing. Furthermore,
since the potential leaders and committee members are considered from round r−t, it is
less probable for a malicious entity to manipulate the leader of round r. Hence, the look-
back parameter t is termed as a security parameter [CM16]. Briefly, in Algorand with
the below approach, cryptographic sortition using VRFs involving Qr value is operated
[Gor18]:

• Every user u present in the blockchain network utilizes its secret key sku and
computes Eval(sku,Qr−1) which gives ou with its corresponding proof ωu.

• It is checked whether 0 ≤ ou ≤ p, where p relies on the individual money units
held by user u.

• While the output ou lies in the range mentioned above, the user u confirms its
credibility as a committee member by employing the proof ωu.

3.6 Algorand Synopsis by Message Sharing Protocol

Since Algorand works in both synchronous and asynchronous settings, it is vital that
the clock functions at the same speed for every user, whether participating or non-
participating. For example, two users, u1 and u2 belong to different geographical loca-
tions and have different timings. Assuming that time at u1 and u2 location is 13:00 and
19:00, respectively. Then, without loss of generality after five minutes, the correspond-
ing time at both locations should be 13:05 and 19:05, respectively. Below are some
time-related additional notations for further analysis [CM16]:

• γ : Denotes an upper bound for time required to operate step 1, i.e., step for
propagating a block for any round r corresponding to Br in the network.

• ∆: Denotes an upper bound for time required to operate any further steps, i.e.,
verification steps via BA∗ protocol, for any round r corresponding to Br in the
Algorand blockchain network.

Chapter 3: Mathematical Aspects of Algorand 27

3.6.1 Ephemeral Keys

Prior to discussing the cyclic process involved in an end-to-end block generation, it is
required to discuss a critical factor termed ephemeral keys utilized for signing the mes-
sages. By a cyclic process, we refer to the exact process with the followed steps that
stays common for each round r and its corresponding block Br. To ensure more secu-
rity and robustness, a user u employs the public/secret key pair to render its credentials,
i.e., σ

r,s
u . On the contrary, u uses ephemeral key pair for rendering and processing the

messages mr,s
u for transferring information regarding the BA∗ protocol. For any user

u, the total number of ephemeral key pairs generated for information exchange is the
product of the number of rounds r involved with the corresponding round’s steps s per-
formed [CM19]. eskr,s

u and epkr,s
u denote ephemeral key pairs used for signing and ver-

ifying message mr,s
u respectively. After performing cryptographic sortition, u identifies

whether it belongs to V r,s or not, and on the condition that u ∈ V r,s, u signs mr,s
u with

eskr,s
u and destroys the ephemeral key eskr,s

u .

Ephemeral keys are processed by various mathematical procedures, with one of them
being a recursive approach of Merkle trees as explained in figure 3.4.

Figure 3.4: Ephemeral keys using Merkle Tree approach

The above diagram implies that for each user, epkr,s
u ≜ (i,r,s). Ru, j denotes the root

value for a user u, round j at each step involved on execution of round r steps. While

28 Chapter 3: Mathematical Aspects of Algorand

signing the message in message sharing protocol by epkr,s
u , user u circulates the ren-

dered signature with the required path. By path we refer to the route in the Merkle Tree
traversing to epkr,s

u by utilizing root value Ru. The signatures generated for some value
v by a user u employing ephemeral key epkr,s

u is denoted as esiguv. The term ESiguv
illustrates (u,v,esiguv). The ephemeral key eskr,s

u used during a step s of a round r by
user u is promptly destroyed after signing a message of form

mr,s
u = (u,V ,esigu(H(V)),σ r,s

u)

for some value V .

3.6.2 Information Exchange through Message Sharing Protocol

Below is the cyclic process for an end-to-end block Br generation consisting of authentic
payments through information exchange via messages:

• Every existing user u who participated in the Algorand blockchain network for
atleast t rounds calculates previous round’s Qr−1 value by fetching third element of
the universally known proven previous block Br−1. After functioning cryptographic
sortition, u confirms whether it is part of committee for step 1 of round r or not. As
a participating member of verifiers committee V r,1 u computes and proposes its
own individual block

Br
u = (r,PAY r

u ,Sigu(Qr−1),H(Br−1))

Then, this information is signed with ephemeral key and shared via the message
mr,1

u as:
mr,1

u = (Br
u,esigu(H(Br

u)),σ
r,1
u)

• Likewise, in step 1 of round r, user u, who is a part of the Algorand blockchain
network for at least t rounds, calculates the previous round’s Qr−1 value by fetch-
ing the third element of the universally known proven previous block Br−1. After
functioning cryptographic sortition, u confirms whether it is a part of the committee
for step 2 of round r or not. As a participating member of the verifiers’ commit-
tee V r,2 in an asynchronous environment, u waits for γ +∆ duration, i.e., time
exhausted during block proposal and circulation of the message. At the end of
the aforementioned time, u follows the first step of graded consensus (GC) pro-
tocol and determines lr by the least credential value through valid round r step 1
messages. With lr message given as

mr,1
lr = (Br

lr ,esiglr(H(Br
lr)),σ

r,1
lr)

Chapter 3: Mathematical Aspects of Algorand 29

is validated by u. Then, u fixes value Br
lr and shares mr,2

u

mr,2
u = (u,Br

lr ,esigu(H(Br
lr)),σ r,2

u)

otherwise w a psuedorandom string is fixed as value and shared message is of
the form

mr,2
u = (u,w,esigu(H(w)),σ r,2

u)

• Till a user u confirms that u ∈V r,3 same process as mentioned in previous steps
is followed. On the cryptographic sortition confirmation, and the passage of latent
time duration 3γ +∆, u for the second step of GC protocol analyses the step two
messages received from V r,2. We denote each user involved in V r,s (s ≥ 2) by k.
If a message of the form

(k,Br
lr ,esigk(H(Br

lr)),σ
r,2
k)

appears for more than 2/3 of the total verifiers V r,2 then mr,3
u is circulated as

mr,3
u = (u,Br

lr ,esigu(H(Br
lr)),σ r,3

u)

and if the mutual consensus value was set to w by V r,2 verifiers, then mr,3
u is shared

and given by
mr,3

u = (u,w,esigu(H(w)),σ r,3
u)

• Analogous to the previous steps V r,4 is formed by applying cryptographic sortition
and further employed to determine the output of GC protocol. A user u ∈ V r,4

succeeding the time lapse of 5γ +∆ sets the value vu and grade gu as H(Br
lr) and

2 respectively, if over 2/3 of the messages received from V r,3 is identical to

mr,3
k = (k,Br

lr ,esigk(H(Br
lr)),σ

r,3
k)

Furthermore, if only 1/3 of such messages are received value remains the same
but the corresponding grade alters to 1. For any other scenarios value and grade
are fixed as H(Br

ε) and 0 respectively. Br
ε represents an empty block. The as-

signed grade determines the input for BBA∗. For gu = 2, bu is fixed to 0 else, bu is
fixed to 1. Finally the message mr,4

u is shared as

mr,4
u = (ESigu(bu),ESigu(vu),σ

r,4
u)

• As explained in each previous step, a user u who has been part of Algorand
blockchain network for at least t rounds, initially verifies whether he is a partici-
pant of verifiers committee for conducting the further steps by the means of cryp-
tographic sortition. The number of steps in BBA∗ relies on the cardinality of verifier
set along with required sufficient (> 2 · |V r,s|/3) signatures. It is assumed that the
number of steps is upper-bounded by S in order to approve the leader’s proposed
block. Moreover, since four steps have already been discussed, so after waiting

30 Chapter 3: Mathematical Aspects of Algorand

up to the time-limit of all consequent steps in BBA∗ summing as (2s−3)γ +∆, u
performs as follows. If u receives 2 · |V r,s|/3+1 authentic messages as

mr,s′−1
k = (ESigk(0),ESigk(H(Br

lr)),σ
r,s′−1
k)

s′ denoting previous step, then it terminates the current step and fixes Br = Br
k

allocates to CERT r all such authentic messages mr,s′−1
k . On the contrary, If u

receives 2 · |V r,s|/3+1 authentic messages as

mr,s′−1
k = (ESigk(1),ESigk(H(w)),σ r,s′−1

k)

then it terminates the current step and fixes Br = Br
ε allocates to CERT r all such

authentic messages mr,s′−1
k .

Figure 3.5: Message sharing protocol in Algorand blockchain
[Alg22c]

Analogously, Algorand2 employs ephemeral keys for signing messages during message
sharing protocol. While in Algorand1 it is required at each step at least 2/3 verifier’s
messages for undergoing the next stage, in Algorand2 the considered cutoff value relies
on e, a specific threshold value as discussed in Section 3.4.2. On confirmation of CERT r

comprising of adequate quantity of digital signatures, block Br transforms to proven
block Br [CM16].

Chapter 3: Mathematical Aspects of Algorand 31

3.7 Utility of Look-back Parameter t

As discussed in Section 3.4, there is a dependency on the Q-value in the process of
generating the next successive block. Furthermore, to ensure that the current and all
successive Q-values remain unaltered, we consider the look-back parameter t. This
look-back parameter becomes more critical in the leader and committee selection pro-
cess. A participating user requires to be associated with the Algorand blockchain net-
work for at least t preceding rounds.

To proceed further requires undergoing the notion of a lazy-but-honest user. A user in
the Algorand blockchain network falls under the category of lazy-but-honest if it follows
the two properties:

• It conforms with every task allocated while undergoing an assigned role.

• It is needed for that user to join infrequently on being appropriately informed on a
prior basis.

A block generation in Algorand blockchain network takes approximately 4.5 minutes
[Alg22a]. On continuation with this block generation speed each day generally 320
blocks are appended to the blockchain network. If a user u is concerned with knowing
in advance whether it is chosen as a verifier for the next x days, it is required that for
a round r, verifiers are selected from round r − t−320x users through cryptographic
sortition on the basis of Qr−320x−1 [CM19]. On round r initiation, user u is already aware
about 320x round Q-values retrospectively. Therefore, u is eligible member in step s of
jth round verifiers committee if and only if it belongs to the set

V r+ j,s = {u | H(Sigu(r+ j,s,Qr+ j−320x−1))

2lhash ≤ p′}

where j ∈ {1, · · · ,320x}.

Therefore, it is required for user u to generate its credential

σ
j,s

u = H(Sigu(r+ j,s,Qr+ j−320x−1))

and confirms that for which j’s the ratio of this hash credential over 2lhash is less than or
equal to p. Since it is a probabilistic scenario, on applying cryptographic sortition, there
is a possibility that u identifies the below cases:

• For the next consecutive j rounds, it is not a part of the verifiers’ committee. Then
u is allowed to be offline or online depending on u’s choice.

• Otherwise u is selected for z rounds, where 1 ≤ z ≤ 320x. Then u is prepared to
be a verifier at the correct round.

32 Chapter 3: Mathematical Aspects of Algorand

Hence, such an approach tackles the honest users in an offline setting. This methodol-
ogy also assures complete security in the blockchain without the regular participation of
benign individuals.

3.8 Honest Majority of Money Approach

Until now, our study for both the models of Algorand, i.e., Algorand1 and Algorand2,
have been confined to the assumption of the majority of benign users at every stage.
This approach further extends to the Honest Majority of Money (HMM) methodology
assuring a more robust and unbiased procedure. The majority of benign users indicate
that the participants involved in each stage of the block generation process in the Algo-
rand blockchain network follow a strict majority of honest participants. On the contrary,
in the HMM approach, the money units belonging to the honest participants cover the
majority of the money at stake.

Based on the assumptions of regular participation of users and their associated money
units at the beginning of the round r, HMM is applied as follows [CM16]:

• Method is approached by restricting the public keys possessing money units upper
bounded by P, where P is a pre-defined value for held money units.

• The ratio of P with overall money units involved in the system is significantly small.
It assures that for a user u, pubu is not utilized more than once in a round’s exe-
cution for at least t rounds with higher probability.

The process for leader and verifiers committee selection for a user u involves crypto-
graphic sortition but with dependency on P and respective amount amtr

u at stake on
round r. Mathematically it is applied as follows:

L = {u | H(Sigu(r,1,Qr−1))

2lhash ≤ p ·amtr
u

P
}

where L is the set demonstrating potential leader and from L leader lr satisfies

lr = argmin
i∈L

H(Sigi(r,1,Qr−1))

Similarly each user u involved in verifiers committee satisfies

H(Sigu(r,s,Qr−1))

2lhash ≤ p′ ·amtr
u

P

where Sigu(r,s,Qr−1) depicts the signature generated by user u with the elements to be

Chapter 3: Mathematical Aspects of Algorand 33

signed are r,s,Qr−1.

V r,s = {u | H(Sigu(r,s,Qr−1))

2lhash ≤ p′ ·amtr
u

P
}

The process for exchanging information through message sharing protocol is identical
except with the above mathematical modification involving HMM assumption.

34 Chapter 4: Security and Attack Analysis

4 Security and Attack Analysis

4.1 Possible Attacks in Blockchain

4.1.1 51% Attack

In a 51% attack, a group of miners owns more than 50% of the network’s computing
power so that attackers are able to halt the confirmation process for queued trans-
actions. It leads to counterfeiting of transaction details, making it prone to double-
spending [SMG19].

Blockchain cryptocurrency protocols rely on a shared public distributed ledger. It com-
prises transaction records accessible to all existing users of the network, assuring that
no money units are spent twice. Every block in the blockchain network contains infor-
mation specific to transactions loaded at a certain timeframe. Block generation in a
blockchain network is processed after the passage of a certain latent time specific to
the blockchain where the process is performed. Therefore, modification after a block is
confirmed upon agreement is inconsistent. However, during this latent time passage, if a
certain malicious entity handles the majority of computing power, it leads to the manipu-
lation of transaction records in the ledger. Thus, with the major computing power, blocks
of the original blockchain are replaced with the malicious entity’s generated blocks.

Figure 4.1: 51% Attack
[But19]

Since Algorand utilizes the pure PoS consensus mechanism, a 51% attack is analo-
gous to holding more than 50% of the stake. Generally, for any proof of stake reliant
mechanism, the sum of all transaction fees rewarded to a validator does not exceed the
individual stake. Hence, in case of any attempt towards counterfeiting, the majority held
stake is lost.

Chapter 4: Security and Attack Analysis 35

4.1.2 Sybil Attack

A Sybil attack refers to an attack over a blockchain network where an individual attempts
to control the network by executing operations through various fake nodes or public
keys [Dou02]. The term "Sybil" dates back to a study and analysis around a woman
named Shirley Mason diagnosed with Dissociative Identity Disorder, also referred to as
Multiple Personality Disorder [MD13].

To conduct a Sybil attack in a blockchain network, an attacker or a group of attackers
influences and overpowers the honest members of the network by infusing sufficient
fake accounts (or Sybil accounts). Consequently, the series of actions involve the refusal
to receive or transmit block requests, thus restraining other honest users in the network.
A Sybil attack with a larger impact relates to a 51% attack as with a huge number of fake
identities, a major fraction of computing power is obtained.

Figure 4.2: Sybil Attack
[JR22]

For the Algorand blockchain network, with HMM approach, Sybil attacks are restricted
since, for a user u, pubu is chosen as a leader or committee member for verification on
applying successful self cryptographic sortition, that depends on amtr

u held by pubu for
round r.

4.1.3 Partitioning Attack

A partitioning attack occurs in a blockchain network either by a natural calamity or a ma-
licious entity. In a partitioning attack, the network is segmented into multiple networks,
and intra-communication between participants belonging to one part of the network ex-
ists. However, inter-communication between participants belonging to distinct network

36 Chapter 4: Security and Attack Analysis

parts is disabled. Under this attack, the malicious entity controls the exchange of infor-
mation among the participants. Subject to the duration of such an attack, the malevolent
entity assures that the users of distinguished parts agree to accept different blocks at
the same length of the blockchain.

In the Algorand blockchain network, the probability of a fork occurrence is significantly
negligible [CM16]. Therefore, for a malicious entity to make an agreement among users
in various parts under a partitioning attack is computationally infeasible. Furthermore,
in Algorand, while message sharing protocol is in progress, if there are no further ad-
vancements on the passage of latent time, then the network nodes progress to partition
recovery mode. With this additional feature in the Algorand blockchain network, it re-
covers rapidly from the existing partitions [Alg22d].

4.2 Algorand’s Compactness in Solving the
Blockchain Trilemma

With the elevation in the use cases of blockchain in the domain of cryptocurrencies, it
is vital that the performance parameters of blockchain perform efficiently and optimally.
Therefore, the performance parameters resemble the three elements of the blockchain
trilemma, i.e., decentralization, scalability, and security. While every blockchain network

Figure 4.3: Blockchain Trilemma
[Nem22]

aims to solve the blockchain trilemma, benefits and repercussions are associated with
maintaining each of the three performance parameters.
In the absence of a centralized authority, the consensus is reached, thus maintaining

Chapter 4: Security and Attack Analysis 37

trust. Furthermore, since the dependency on a single entity is circumvented, it reduces
system failures. The scalability parameter is a measure demonstrating how many trans-
actions a blockchain network holds feasibly. With large-scale users involved in a cryp-
tocurrency protocol, satisfying the parameters of the blockchain trilemma is an arduous
task, thus making way for trade-offs. Such trade-offs refer to a compromise with one
of the blockchain trilemma parameters. In other words, optimizing any two parameters
reduces the efficiency with respect to the third parameter.

Algorand tends to solve the blockchain trilemma and satisfies the three performance
parameters simultaneously, as given below [Alg21]:

• Decentralization: By the self cryptographic sortition algorithm, verifiers are chosen
randomly, removing the element of biasedness or dependency over a specific set
of users in the network. In the Algorand blockchain, each user is selected for
either proposing or verifying a block at a certain point in time, implying there is no
reliance on a particular group of users.

• Scalability: On performing a fast self cryptographic sortition algorithm, an individ-
ual becomes aware of its participation in validating a block. Since the cardinality
of the set of verifiers is a significantly smaller fraction of the total active users,
transaction verification and block validation are rapidly performed, thus maintain-
ing scalability.

• Security: Since the selection of candidates for verifying the transactions and val-
idating the blocks is obtained through self cryptographic sortition algorithm, no
one in the system is aware of the next set of validators. Hence, this property guar-
antees more robustness and assures that the performance parameter security is
resolved effectively.

38 Chapter 5: Conclusion

5 Conclusion

This thesis research provides an overview of mathematics and cryptography behind the
Algorand blockchain network. It is observed that during each phase of operation in
Algorand, there is a high degree of randomness linked to each activity, making it distin-
guishable from how other blockchains operate. Furthermore, the pure PoS consensus
mechanism ensures that while mutually undergoing validation and verification, the oc-
currence of counterfeit or alteration in the information transferred through the communi-
cation is minimal. The pure PoS consensus mechanism involves computations through
the GC and the BBA∗ protocols. Since considering all active users for the protocol is
highly complex from a computational viewpoint, a significantly low proportion of ran-
domly selected active users is considered for the protocol implementation. Rather than
depending on a central authority for assigning any role or task, an individual runs cryp-
tographic sortition based on VRFs on its own to be sure of whether it has a role to play
in the whole cycle of block generation.

The key pair employed for signature purposes are sectioned into two categories en-
suring more reliability and security. The first category of public-private keys is used
perpetually to generate participating users’ credentials at each step of every round. On
the contrary, the other category, ephemeral key pair, is used to sign a message in the
message sharing protocol.

A mathematical association between the honest majority of users and the Honest Ma-
jority of Money (HMM) approach has also been discussed. HMM is synonymous with
the discrete participation of honest individuals without impacting the robustness of the
blockchain network. Some common attacks relative to blockchain and how Algorand
copes with it have also been studied. Figure 5.1 below summarizes various phases of
the Algorand blockchain for an end-to-end secure block generation process.

Figure 5.1: Algorand summary

Chapter 5: Conclusion 39

Comparison with Bitcoin and Ethereum Blockchains

Below is a comparison of the Algorand blockchain with Bitcoin and Ethereum cryp-
tocurrency blockchain protocol across various mathematical and computational param-
eters.

Aspect Bitcoin Ethereum Algorand
Hash function SHA-256 Keccak-256 SHA-256

Consensus mechanism PoW PoS Pure PoS
Signature scheme Schnorr ECDSA EdDSA

Native cryptocurrency BTC ETH ALGO
Smart contracts × ✓ ✓
Transaction/sec 3 13 1000
Transaction cost 1.1$ 1.7$ 0.0004$

Market Capitalization 370B $ 130B $ 2.2B $

Table 5.1: Blockchain comparison
[Alg22a,Sta22,Eth22,Ych22,Ran22]

Scope for Future Work

• Comparison of currently used EdDSA signature scheme with other applicable op-
timal schemes

• Robustness and security of the blockchain network can be escalated by incorpo-
rating Zero-Knowledge Proofs [GMW86]. A basic overview of Zero-Knowledge
Proofs is provided in Appendix B.2.

• Machine learning-based time-series analysis and forecasting algorithms involv-
ing deep learning frameworks in monitoring critical blockchain aspects such as
transaction per second (TPS), block generation time, and financial analysis

40

Chapter 5: Bibliography 41

Bibliography

[Aca19] Ledger Academy. What is Proof-of-Work. https://www.ledger.
com/academy/blockchain/what-is-proof-of-work, 2019. Accessed:
23/03/2022.

[Alg21] Algorand. How Does Algorand Solve the Blockchain Trilemma?
- An Explanation by Silvio Micali on the Lex Fridman Podcast.
https://www.algorand.com/resources/blog/silvio-micali-lex-
fridman-algorand-and-the-blockchain-trilemma, 2021. Accessed:
26-04-2022.

[Alg22a] Algorand. Algorand Blockchain. https://www.algorand.com/, 2022. Ac-
cessed: 03-07-2022.

[Alg22b] Algorand. Algorand Developer Docs: Account Details. https://
developer.algorand.org/docs/get-details/accounts/, 2022. Ac-
cessed: 14-04-2022.

[Alg22c] Algorand. Algorand Developer Docs: Algorand Consensus.
https://developer.algorand.org/docs/get-details/algorand_
consensus/, 2022. Accessed: 16-05-2022.

[Alg22d] Algorand. Algorand Security. https://www.algorand.com/technology/
security, 2022. Accessed: 23-05-2022.

[Alg22e] Algorand. Algorand’s Immediate Transaction Finality. https://www.
algorand.com/technology/immediate-transaction-finality,
2022. Accessed: 10-01-2022.

[Alg22f] Algorand. Frequently Asked Questions. https://www.algorand.com/
technology/faq, 2022. Accessed: 05-04-2022.

[BBJ+08] D.J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Ed-
wards Curves. In International Conference on Cryptology in Africa, pages
389–405. Springer, 2008.

[BDL+12] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.Y. Yang. High-Speed
High-Security Signatures. Journal of cryptographic engineering, 2(2):77–
89, 2012.

[Ber06] D.J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Inter-

42 Chapter 5: Bibliography

national Workshop on Public Key Cryptography, pages 207–228. Springer,
2006.

[BL07] D.J. Bernstein and T. Lange. Faster Addition and Doubling on Elliptic
Curves. In International conference on the theory and application of cryp-
tology and information security, pages 29–50. Springer, 2007.

[BL17] G. Birkhoff and S.M. Lane. A Survey of Modern Algebra. AK Peters/CRC
Press, 2017.

[BN19] M. Boudabra and A. Nitaj. A new public key cryptosystem based on Edwards
curves. Journal of Applied Mathematics and Computing, 61(1):431–450,
2019.

[Bon05] D. Boneh. Elgamal Digital Signature Scheme, pages 182–183. Springer
US, 2005.

[But14] V. Buterin. Ethereum : A Next Generation Smart Contract and Decentralized
Application Platform. 2014.

[But19] A. Butler. Ethereum classic attacked! how does the 51% at-
tack occur? https://medium.com/hackernoon/ethereum-classic-
attacked-how-does-the-51-attack-occur-a5f3fa5d852e, 2019. Ac-
cessed: 23-05-2022.

[CM16] J. Chen and S. Micali. Algorand, 2016.

[CM19] J. Chen and S. Micali. Algorand: A secure and efficient distributed ledger.
Theoretical Computer Science, 777:155–183, 2019.

[Dal21] S. Daley. 34 Blockchain Applications and Real-World Use Cases Disrupt-
ing the Status Quo. https://builtin.com/blockchain/blockchain-
applications, 2021. Accessed: 01-04-2022.

[DN93] C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail. In
Advances in Cryptology — CRYPTO’ 92, pages 139–147. Springer Berlin
Heidelberg, 1993.

[Dou02] J.R. Douceur. The Sybil Attack. In Peer-to-Peer Systems, volume 2429,
pages 251–260. Springer Berlin Heidelberg, 2002.

[DSJ+20] The Sage Developers, W. Stein, D. Joyner, D. Kohel, J. Cremona, and
E. Burçin. Sagemath, version 9.0, 2020.

Chapter 5: Bibliography 43

[Edw07] H. Edwards. A Normal Form for Elliptic Curves. Bulletin of the American
mathematical society, 44(3):393–422, 2007.

[Eth22] Etherscan. The Ethereum Blockchain Explorer. https://etherscan.io/,
2022. Accessed: 03-07-2022.

[FM89] P. Feldman and S. Micali. An Optimal Probabilistic Algorithm For Syn-
chronous Byzantine Agreement. In International Colloquium on Automata,
Languages, and Programming, pages 341–378. Springer, 1989.

[GHM+17] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scal-
ing Byzantine Agreements for Cryptocurrencies. page 51–68. Association
for Computing Machinery, 2017.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of
Interactive Proof-Systems (Extended Abstract). In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Provi-
dence, Rhode Island, USA, pages 291–304. ACM, 1985.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Release Mini-
mum Knowledge. In Mathematical Foundations of Computer Science 1986,
pages 639–650, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

[Gor18] S. Gorbunov. Algorand Releases First Open-Source Code: Verifiable Ran-
dom Function. https://medium.com/algorand/algorand-releases-
first-open-source-code-of-verifiable-random-function-
93c2960abd61, 2018. Accessed: 15-04-2022.

[GS82] G.R. Grimmett and D.R. Stirzaker. Probability and random processes. 1982.

[HS91] S. Haber and W.S. Stornetta. How to Time-Stamp a Digital Document.
In Advances in Cryptology-CRYPTO’ 90, volume 537, pages 437–455.
Springer Berlin Heidelberg, 1991.

[JMS01] D. Johnson, A. Menezes, and S.Vanstone. The Elliptic Curve Digital Sig-
nature Algorithm (ECDSA). International journal of information security,
1(1):36–63, 2001.

[JR22] G. Jethava and U.P. Rao. User behavior-based and graph-based hybrid
approach for detection of Sybil Attack in online social networks. Computers
and Electrical Engineering, 99:107753, 2022.

[KN12] S. King and S. Nadal. Ppcoin: Peer-to-Peer Crypto-Currency with Proof-of-
Stake. self-published paper, August, 19(1), 2012.

44 Chapter 5: Bibliography

[Kra20] Kraken. What is Algorand? (ALGO) A Beginner’s Guide. https://www.
kraken.com/learn/what-is-algorand-algo, 2020. Accessed: 20-03-
2022.

[MD13] P.M. Coons MD. Sybil in Her Own Words: The Untold Story of Shirley
Mason, Her Multiple Personalities and Paintings, by P. Suraci. Journal of
Trauma & Dissociation, 14(3):359–361, 2013.

[Mer82] R.C. Merkle. Method of providing digital signatures, 1982. US Patent
4,309,569.

[Mic17] S. Micali. Fast and furious Byzantine agreement. In Proceedings of the
Innovations in Theoretical Computer Science (ITCS) Conference, 2017.

[MRV99] S. Micali, M. Rabin, and S. Vadhan. Verifiable Random Functions. In
40th annual symposium on foundations of computer science (cat. No.
99CB37039), pages 120–130. IEEE, 1999.

[Nak08] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentral-
ized Business Review, page 21260, 2008.

[Nem22] M. Nemack. Infographic: What is the Blockchain Trilemma?
https://www.coinpro.ch/infografik-was-ist-das-blockchain-
trilemma/, 2022. Accessed: 27-05-2022.

[Pre94] B. Preneel. Cryptographic Hash Functions. European Transactions on
Telecommunications, 5(4):431–448, 1994.

[PSL80] M.C. Pease, R.E. Shostak, and L. Lamport. Reaching Agreement in the
Presence of Faults. J. ACM, 27:228–234, 1980.

[Ran22] Randlabs. Why Algorand? https://www.randlabs.io/algorand, 2022.
Accessed: 03-07-2022.

[Sch89] C.P. Schnorr. Efficient Identification and Signatures for Smart Cards. In
Conference on the Theory and Application of Cryptology, pages 239–252,
1989.

[SL07a] M. Stamp and R.M. Low. Hash functions. In Applied Cryptanalysis, pages
193–264. John Wiley & Sons, Ltd, 2007.

[SL07b] M. Stamp and R.M. Low. Public Key Attacks, chapter 7, pages 315–360.
John Wiley Sons, Ltd, 2007.

Chapter 5: Bibliography 45

[SMG19] S. Sayeed and H. Marco-Gisbert. Assessing Blockchain Consensus and
Security Mechanisms against the 51% Attack. Applied Sciences, 9(9), 2019.

[Sta22] Statoshi.info - Realtime Bitcoin Node Stats. https://statoshi.info/
?orgId=1, 2022. Accessed: 03-07-2022.

[Sto16] P. Stone. Sortition, voting, and democratic equality. Critical Review of Inter-
national Social and Political Philosophy, 19(3):339–356, 2016.

[Ych22] Ycharts. Ethereum Average Transaction Fee. https://ycharts.com/
indicators/ethereum_average_transaction_fee, 2022. Accessed:
03-07-2022.

46

Appendix A: Python-Code 47

Appendix A: Python-Code

A.1 Modern Cryptography

A.1.1 Primitive Roots Computation

1 # Calculation of Primitive roots for a number
2 import numpy as np
3 import math
4

5 # Greatest common divisor of two numbers
6

7 class primitive:
8

9 def __init__(self ,N):
10 self.N = N
11

12 def gcd(a,b):
13 if a == 0 or b==0:
14 if a + b == 0:
15 print(’GCD does not exist ’)
16 else:
17 return a + b
18 else:
19 return primitive.gcd(b%a,a)
20

21 #Euler Totient function
22 def euler_phi(n):
23 count = 0
24 for i in range(1,n+1):
25 if primitive.gcd(i,n)==1:
26 count = count + 1
27 return count
28

29 # Function check for prime numbers
30 def prime_check(n):
31 if n<=1:
32 return False
33 for i in range(2,int(math.sqrt(n))+1):
34 if primitive.gcd(n,i)==1:
35 continue
36 else:
37 return False
38 break
39 return True
40

41 # Computation of primitive roots
42 def prim(self):

48 Appendix A: Python-Code

43 n = abs(self.N)
44 t = np.zeros ((n-2,n-2))
45

46 if primitive.prime_check(n)==False:
47 # Creates a matrix where each row consists of (i^j)%n.
48 for i in range(2,n):
49 for j in range(2,n):
50 x = pow(i,j,n)
51 t[i-2][j-2] = x
52

53 b = []
54 y = []
55 for k in range(0,n-2):
56 # Check cardinality of unique elements in a row.
57 b = t[k]
58 if len(np.unique(b))== primitive.euler_phi(n):
59 if primitive.gcd(k+1,n)!=1:
60 y.append(k+2)
61 return y
62

63 else:
64 # Creates a matrix where each row consists of (i^j)%n.
65 for i in range(2,n):
66 for j in range(2,n):
67 x = pow(i,j,n)
68 t[i-2][j-2] = x
69

70 b = []
71 y = []
72 for k in range(0,n-2):
73 # Check whether all elements in a row are unique.
74 b = t[k]
75 if len(np.unique(b))==n-2:
76 y.append(k+2)
77 return y
78

79 if __name__==’__main__ ’:
80 x = int(input(’Enter no : ’))
81 obj = primitive(x)
82 print(obj.prim())

Listing A.1: Primitive roots computation

Appendix A: Python-Code 49

A.1.2 Discrete Logarithm Computation

1 #Computation of discrete logarithm using baby -step -giant -step -
algorithm

2

3 import math
4 import numpy as np
5

6 class discrete_log:
7

8 def __init__(self ,p,k,n):
9 self.p = p

10 self.k = k
11 self.n = n
12

13 @staticmethod
14 def is_prime(n):
15 if n<=1:
16 return False
17 for i in range(2,int(math.sqrt(n))+1):
18 if n%i!=0:
19 continue
20 else:
21 return False
22 break
23 return True
24

25 #Computing GCD
26 @staticmethod
27 def gcd(a,b):
28 if a == 0 or b==0:
29 if a + b == 0:
30 print(’GCD does not exist ’)
31 else:
32 return a + b
33 else:
34 return discrete_log.gcd(b%a,a)
35

36 #Euler Totient function
37 @staticmethod
38 def euler_phi(n):
39 count = 0
40 for i in range(1,n+1):
41 if discrete_log.gcd(i,n)==1:
42 count = count + 1
43 return count
44

45 # Computation of primitive roots
46 @staticmethod
47 def prim(N):
48 n = abs(N)
49 t = np.zeros ((n-2,n-2))

50 Appendix A: Python-Code

50 if discrete_log.is_prime(n)==False:
51 return []
52

53 elif discrete_log.is_prime(n)==False:
54 # Creates a matrix where each row consists of (i^j)%n

for j belongs to {2,...,n-1}.
55 for i in range(2,n):
56 for j in range(2,n):
57 x = pow(i,j,n)
58 t[i-2][j-2] = x
59 b = []
60 y = []
61 for k in range(0,n-2):
62 b = t[k]
63 # Check whether cardinality of unique elements in a

row is unique or not.
64 if len(np.unique(b))== discrete_log.euler_phi(n):
65 if discrete_log.gcd(k+1,n)!=1:
66 y.append(k+2)
67 return y
68

69 else:
70 # Creates a matrix where each row consists of (i^j)%n

for j belongs to {2,...,n-1}.
71 for i in range(2,n):
72 for j in range(2,n):
73 x = pow(i,j,n)
74 t[i-2][j-2] = x
75

76 b = []
77 y = []
78 for k in range(0,n-2):
79 b = t[k]
80 # Check whether all elements in a row is unique or

not.
81 if len(np.unique(b))==n-2:
82 y.append(k+2)
83 return y
84

85 def babystepgiantstep(self):
86

87 if discrete_log.is_prime(self.p)==True and self.k in
discrete_log.prim(self.p):

88 m = math.ceil(math.sqrt(self.p-1))
89 x = pow(self.k,m,self.p)
90

91 # Creates Giant step list
92 Q = []
93 for i in range(0,m):
94 q = pow(x,i,self.p)
95 Q.append(q)
96

Appendix A: Python-Code 51

97 R = []
98 for i in range(1,self.p+1):
99 if (i*self.k)%self.p==1:

100 z = i
101 break
102

103 # Creates Baby step list
104 for d in range(0,m):
105 r = (self.n*(pow(z,d,self.p)))%self.p
106 R.append(r)
107

108 # For checking the values of q and r such that f(r) = h
(q)

109 for t in Q:
110 if t in R:
111 return Q.index(t)*m + R.index(t)
112

113 if __name__==’__main__ ’:
114 p = int(input(’Enter prime: ’))
115 k = int(input(’Enter base(primitive root of above given prime):

’))
116 n = int(input(’Enter number: ’))
117 obj = discrete_log(p,k,n)
118 print(obj.babystepgiantstep ())

Listing A.2: Discrete logarithm computation

52 Appendix A: Python-Code

A.2 Byzantine Agreement Implementation

1 from collections import Counter
2 from itertools import product
3 import random
4 from tabulate import tabulate
5 from fractions import Fraction as frac
6

7 class byzantine_agreement:
8

9 def __init__(self ,n):
10 self.n=n
11

12 def byzantine_agreement_r1(self):
13 m = random.randint(0,int((self.n-1)/3))
14 if self.n>=3*m+1:
15 # List of permutations of length 2 for pairwise

exchange of information.
16 x = list(product(list(range(1,self.n+1)),repeat =2))
17 # List denoting private information of each user.
18 y = [0]* len(list(range(self.n)))
19 for i in range(len(y)):
20 w = random.randint(1,self.n+1)
21 if w not in y:
22 y[i]= random.randint(1,self.n+1)
23 # List for storing private information of user i

corresponding to pairwise permutation.
24 z = [0]* len(x)
25 # Malicious or faulty users list
26 M = []
27 for i in range(m):
28 if random.choice(list(range(1,self.n+1))) not in M:
29 M.append(random.choice(list(range(1,self.n+1)))

)
30 # Sharing of information on one -by -one basis.
31 for i in range(len(z)):
32 for j in range(0,self.n):
33 if x[i][0]==j+1:
34 z[i]=y[j]
35 if x[i][0] in M:
36 z[i]= random.randint(1,self.n)
37 # List storing each information shared.
38 R1 = []
39 R1.append([’User i’,’User j’,’User i -> User j ’])
40 for i in x:
41 for j in range(0,len(z)):
42 if x.index(i)==j:
43 R1.append ([i[0],i[1],z[j]])
44

45 for i in range(1,len(R1),self.n+1):
46 R1[i][2]= ’ Same user.’
47

Appendix A: Python-Code 53

48 print(’ Communicating information ’)
49 print()
50 print(tabulate(R1,headers=’firstrow ’,tablefmt =" pretty ")

)
51 return R1,M
52 else:
53 return ’Byzantine agreement prerequisite not satisfied

.’
54

55 @staticmethod
56 def byzantine_agreement_r2(L,n):
57

58 if L ==’Initial byzantine agreement prerequisite not
satisfied.’:

59 return L
60 else:
61 print()
62 print(’ Shared information analysis ’)
63 print()
64 # Creating vector of information obtained from each

user
65 # j by each user i and i!=j
66 M = []
67 M.append([’User i’,’Value of other user(s) denoted as [

j,v] where user j has value v (as per user i) ’])
68 for j in range(1,n+1):
69 N = []
70 for i in L[0]:
71 if L[0]. index(i) >0:
72 if i[1]==j and i[0]!=i[1]:
73 N.append ([i[0],i[2]])
74 M.append ([j,N])
75

76 print(tabulate(M,headers=’firstrow ’,tablefmt =" pretty "))
77 P=[]
78

79 for i in M:
80 if M.index(i) >0:
81 for j in i[1]:
82 P.append(tuple(j))
83

84 # Concluding final correct value obtained by majority
85 # and thus rendering malicious users.
86 R2 = []
87 R2.append((’User ’,’Agreed value ’,’Fraction of users

agreed with value ’))
88 Y = []
89 W = []
90 for k,v in Counter(P).items ():
91 if n==4:
92 if v/(n-1) >=2/3:
93 R2.append ((k[0],k[1],frac(v-len(L[1]) ,(n-1)

54 Appendix A: Python-Code

)))
94 W.append(k[0])
95 else:
96 if k[0] not in Y:
97 Y.append(k[0])
98

99 elif n>4:
100 if v/(n-1) >2/3:
101 R2.append ((k[0],k[1],frac(v-len(L[1]) ,(n-1)

)))
102 W.append(k[0])
103 else:
104 if k[0] not in Y:
105 Y.append(k[0])
106 print()
107 Z = []
108 for i in Y:
109 if i not in W:
110 Z.append(’User ’+str(i)+’ is malicious.’)
111 R2.append ((i,’NIL ’,1-frac(len(L[1])-v,(n-1))))
112

113 print(tabulate(R2, headers=’firstrow ’,tablefmt =" pretty "))
114 print()
115 if len(Z)!=0:
116 return Z
117 else:
118 return ’All users are honest.’
119

120 if __name__==’__main__ ’:
121 n = int(input(’Enter number of users: ’))
122 print()
123 if 0<n<3:
124 print(str(n)+’ are honest.’)
125 elif n<=0:
126 print(’Enter valid quantity.’)
127 else:
128 obj = byzantine_agreement(n)
129 x = obj.byzantine_agreement_r1 ()
130 print(byzantine_agreement.byzantine_agreement_r2(x,n))

Listing A.3: BA agreement

Appendix A: Python-Code 55

A.3 Twisted Edward Curves with Finite Field

1 import math
2 import matplotlib.pyplot as plt
3

4 class ed_curves:
5 def __init__(self ,a,d,p):
6 self.a = a
7 self.d = d
8 self.p = p
9

10 def gcd(a,b):
11 if a == 0 or b==0:
12 if a + b == 0:
13 print(’GCD does not exist ’)
14 else:
15 return a + b
16 else:
17 return ed_curves.gcd(b%a,a)
18

19 def prime_check(n):
20 if n<=1:
21 return False
22 for i in range(2,int(math.sqrt(n))+1):
23 if ed_curves.gcd(n,i)==1:
24 continue
25 else:
26 return False
27 return True
28

29 def mod_inverse(n,p):
30 if ed_curves.prime_check(p):
31 for i in range(1,p):
32 if (i*n)%p==1:
33 return i
34 else:
35 return str(p)+’ is not prime.’
36

37 def curve_plot(self):
38 if ed_curves.prime_check(self.p) and self.a*self.d*(self.a-

self.d)!=0:
39 C = []
40 if ed_curves.prime_check(self.p):
41 for i in range(1,self.p):
42 for j in range(1,self.p):
43 if (self.a*pow(i,2)+pow(j,2) -1-self.d*pow(i

,2)*pow(j,2))%self.p==0:
44 C.append ((i,j))
45 if len(C)!=0:
46 plt.scatter (*zip(*C),s=10)
47

48 plt.title(f’Points lying on twisted edwards curve with

56 Appendix A: Python-Code

{self.a}x^2 + y^2= 1 + {self.d}x^2y^2 over $F_{{p}}$(p =
{self.p}) ’)

49 return C
50

51 else:
52 return []
53

54 def check_point(self ,P):
55 if ed_curves.prime_check(self.p) and self.a*self.d*(self.a-

self.d)!=0:
56 if len(P[0]) ==1:
57 x = int(P[0][0])%self.p
58 if len(P[1]) ==1:
59 y = int(P[1][0])%self.p
60 if (x,y) in ed_curves.curve_plot(self):
61 return True
62 else:
63 return False
64 else:
65 nu = int(P[1][0])%self.p
66 de = int(P[1][1])%self.p
67 if ed_curves.gcd(d,self.p)==1:
68 y = (nu*ed_curves.mod_inverse(de,self.p))%

self.p
69 if (x,y) in ed_curves.curve_plot(self):
70 return True
71 else:
72 return False
73 else:
74 return False
75 else:
76 nu = int(P[0][0])%self.p
77 de = int(P[0][1])%self.p
78 if ed_curves.gcd(de ,self.p)==1:
79 x = (nu*ed_curves.mod_inverse(de,self.p))%self.

p
80 if len(P[1]) ==1:
81 y = int(P[1][0])%self.p
82 if (x,y) in ed_curves.curve_plot(self):
83 return True
84 else:
85 return False
86 else:
87 nu = int(P[1][0])%self.p
88 de = int(P[1][1])%self.p
89 if ed_curves.gcd(d,self.p)==1:
90 y = (nu*ed_curves.mod_inverse(de,self.p

))%self.p
91 if (x,y) in ed_curves.curve_plot(self):
92 return True
93 else:
94 return False

Appendix A: Python-Code 57

95 else:
96 False
97 else:
98 return False
99 else:

100 return False
101

102

103 if __name__==’__main__ ’:
104 a = int(input(’Enter a - ’))
105 d = int(input(’Enter d - ’))
106 p = int(input(’Enter prime - ’))
107 obj = ed_curves(a,d,p)
108 print(’Points on twisted edwards curve - ’,obj.curve_plot ())
109 P = []
110 for _ in range (2):
111 x = tuple(input ().split(’/’))
112 P.append(x)
113 print(obj.check_point(P))

Listing A.4: Twisted Edwards curve

58 Appendix B: Mathematical Explanation

Appendix B: Mathematical Explanation

B.1 Computation of p in Leader and Committee
Selection

Below are some relevant definitions [GS82].

Definition B.1 Bernoulli’s trial is described as a random event E with the existence of
only two outcomes, either a success or failure, such that whenever the event E occurs,
the probability of either outcome remains identical.

Definition B.2 Binomial distribution concerning the parameters n and p is the probabil-
ity distribution for the number of successes or failures for n-independent Bernoulli trials
for an event E.

Assume there are a total of k users and L monetary units in the Algorand blockchain
network. Let monetary units held by each user u is Lu. Then,

L1 + · · ·+Lk = L

initially we conduct an experiment E with respect to these L monetary units as follows:

E : Coin flipping experiment

Without loss of generality, we assume that heads represent success and tails represent
failure. So on each coin flip

p(success) =
q
L

p(f ailure) = 1− p(success)

where q is a specific parameter of the Algorand blockchain network utilized in the deter-
mination of cardinality of the verifiers’ committee. Since the probability of success can
be altered w.r.t the parameter q, it is analogous to a biased outcome.

Now we relate this with respect to each monetary unit existing in the system. In other
words, for each monetary unit, we flip the coin and map its outcome o to the correspond-
ing monetary unit l. It can be represented as (l,o(E)). As we discussed before, each
monetary unit is held by a user in the network, i.e.,

∃ i ∈ {1, · · · ,k} such that l ∈ Li

Appendix B: Mathematical Explanation 59

Therefore, for any user u holding Lu monetary units, the total number of successful
outcomes lies in the range [0,Lu]. For determining the probability of the total number of
successes or failures, a random variable R is defined, illustrating the count of successes
out of Lu trails. Hence,

R ∼ Bin(Lu, p)

where Bin(Lu, p) denotes binomial distribution with parameters Lu and p.

So, the probability for m successes for a user u is given as

P(R = m) =

(
Lu

m

)
pm(1− p)Lu−m

where
(Lu

m

)
represents binomial coefficient given as:(

Lu

m

)
=

Lu!
(Lu −m)! ·m!

Since p is sufficiently small due to large L, the cryptographic sortition algorithm ensures
optimum selection while choosing the leader and verifiers committee.

B.2 Zero-knowledge Proofs

Zero-knowledge proofs are an enhancement of interactive proof systems. These inter-
active proof systems were first studied and given by Shafi Goldwasser, Silvio Micali,
and Charles Rackoff [GMR85]. In an interactive proof system, a prover demonstrates its
credibility to a verifier by circulating messages. The credibility here refers to the prob-
ability of success or failure in proving a statement such that the below two properties
hold:

• Completeness: The probability of success in proving a correct statement is signifi-
cantly high.

• Soundness: The probability of success in proving an incorrect statement is signifi-
cantly low.

Zero-knowledge proofs were studied and given by Oded Goldreich, Silvio Micali, and
Avi Wigderson [GMW86]. A zero-knowledge proof is an efficient methodology where
a prover demonstrates that a statement holds without disclosing any extra information
apart from the statement’s validity. Moreover, apart from the soundness and complete-
ness property of interactive proof systems, it follows one additional significant prop-
erty:

• Zero-Knowledge: The corresponding proof renders no extra information apart from
the theorem’s validity, but the verifier is still convinced about the statement’s validity.

60 Appendix B: Mathematical Explanation

B.3 Finite Field

A finite field, also termed Galois field, is a field with a finite number of elements. The
order of a finite field is either a prime or a prime power. For a prime number p and every
positive integer k, there exists fields of order pk, all of which are isomorphic. In other
words, for pk, there is a field of order pk which is unique up to isomorphism. These
fields are denoted either as GF(pk) or Fpk [BL17].

Steps involved in formation of GF(pk):

1. Select an irreducible polynomial f (x) of degree k with coefficients belonging to Zp.

2. Choose an element β /∈ Zp such that f (β)=0.

3. Obtain each element of the GF(pk) in the form of a polynomial with the degree
less than k.

Example B.3 GF(23)

Irreducible polynomial : f (x) = x3 + x2 +1 ∈ Z2[x]

Select β /∈ Z2 such that β 3 +β 2 +1 = 0

β
3 ≡ β

2 +1

β
4 ≡ β ·β 3 ≡ β · (β 2 +1)≡ β

3 +β ≡ β
2 +β +1

β
5 ≡ β

3 ·β 2 ≡ (β 2 +1) ·β 2 ≡ β
4 +β

2 ≡ β +1

β
6 ≡ β

3 ·β 3 ≡ (β 2 +1) · (β 2 +1)≡ β
4 +1 ≡ β

2 +β

+ 0 1 β β 2 β 3 β 4 β 5 β 6

0 0 1 β β 2 β 2+1 β 2 + β+1 β+1 β 2+β

1 1 0 1+ β 1+β 2 β 2 β 2 + β β β 2+β +1
β β β+1 0 β+ β 2 β 2 + β + 1 β 2 + 1 1 β 2

β 2 β 2 β 2+1 β+ β 2 0 1 β + 1 β 2 + β + 1 β

β 3 1+ β 2 β 2 1+ β+ β 2 1 0 β β 2 + β β+1
β 4 1+ β+ β 2 β 2 + β 1+ β 2 1 + β β 0 β 2 1
β 5 1+ β β 1 β 2 + β+1 β 2+ β β 2 0 1+ β 2

β 6 β 2+ β β 2 + β+1 β 2 β 1+β 1 β 2 +1 0

Table B.1: Addition operation - GF(23)

Appendix B: Mathematical Explanation 61

× 0 1 β β 2 β 3 β 4 β 5 β 6

0 0 0 0 0 0 0 0 0
1 0 1 β β 2 1+ β 2 β 2 + β+1 β+1 β 2+β

β 0 β β 2 1+ β 2 β 2 + β+1 β+1 β 2+β 1
β 2 0 β 2 1+ β 2 β 2 + β+1 β+1 β 2+β 1 β

β 3 0 1+ β 2 β 2 + β+1 β+1 β 2+β 1 β β 2

β 4 0 β 2 + β+1 β+1 β 2+β 1 β β 2 β 2+ 1
β 5 0 β+1 β 2+β 1 β β 2 β 2+ 1 1+ β+ β 2

β 6 0 β 2+β 1 β β 2 β 2+ 1 1+ β+ β 2 1+β

Table B.2: Multiplication operation - GF(23)

62

Erklärung 63

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, im July 2022

