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Abstract

This thesis investigates the efficacy of four machine learning algorithms, namely linear regres-
sion, decision tree, random forest and neural network in the task of lead scoring. Specifically,
the study evaluates the performance of these algorithms using datasets without sampling and
with random under-sampling and over-sampling using SMOTE. The performance of each algo-
rithm is measure using various performance metrics, including accuracy, AUC-ROC, specificity,
sensitivity, precision, recall, F1 score, and G-mean. The results indicate that models trained on
the dataset without sampling achieved higher accuracy than those trained on the dataset with
either random under-sampling or random over-sampling using SMOTE. However, the neural
network demonstrated remarkable results on each dataset compared to the other algorithms.
These findings provide valuable insights into the effectiveness of machine learning algorithms
for lead scoring tasks, particularly when using different sampling techniques.

The findings of this study can aid lead management practices in selecting the most suitable
algorithm and sampling technique for their needs. Furthermore, the study contributes to the
literature by providing a comprehensive evaluation of the performance of machine learning
algorithms for lead scoring tasks. This thesis has practical implications for businesses looking
to improve their lead management practices, and future research could extend the analysis to
other machine learning algorithms or more extensive datasets.
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Chapter 1: Introduction 1

1 Introduction

Over the past few years, in the competitive business world, companies need to take
important business decisions related to customer possession [10]. Lead Scoring is among
some of the newly emerging techniques used by the sales and marketing departments
of various companies that assist to identify potential leads by awarding points against
their actions [11]. It helps in understanding qualified lead profiles and producing more
sales for the company by tracking prospects’ online activities over time and rewarding
value points for each activity they perform on a company platform.

Every company has a different framework for assigning points to score their leads. Some
of the common online activities against which a lead is judged may include email clicking,
watching a webinar, chatting with a company agent, subscribing to a newsletter for
updates or reading a white paper, etc. [10]. All these activities might show the interest
of a person in a product but no one can be sure enough that he or she will eventually
purchase it. So, the whole sales process of different leads needs to be monitored and
the score is defined against each activity. It helps determine lead intent and how intense
the lead intent over a particular product is and to understand which lead deserves more
points, the benchmark of the sale process is the ultimate purchase of a particular product
or service. For example, the figure below defines the point-assigning procedure for each
attribute of leads as activities.

Figure 1.1: Manual lead scoring matrix [1].

Figure 1.1 is a table of lead attributes and their points based on activities.
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Determining the right value point for action is compiled under lead qualification criteria,
often known as a scoring matrix. It needs to be handled by authorities on the basis of
assumptions. An example of a scoring matrix is shown above.

This type of lead scoring is typically known as point-based lead scoring or simply manual
lead scoring. The biggest barrier in this type of lead scoring is to design of a scoring
matrix based on user demographics. This typically falls under the task of statisticians
and is done by stats software [12].

Another method that evolves over time and requires ML techniques to score the leads is
known as predictive lead scoring. It typically requires the available data of leads to ana-
lyze the purchase probability using predictive analysis of historical data and understand
the similarities and patterns in the buying process of different leads [12].

Our thesis aims to acquire a comprehensive understanding of lead scoring through the
application of machine learning (ML) techniques.

1.1 Related Work

Take a simple example of book shops, booksellers can keep track of what books are
sold and which customers bought it and that’s all the information they can access.
Which customers looked into which books and how they navigated through the buying
process can not be monitored for every customer, but once the online market came
into existence, the understanding of customer interest and need altered completely. It
became effortless to monitor not only customers’ purchases but also the books they
searched for, how much time they spent online, what are their interests, how they
reacted to website layout, ads, reviews, promotions, etc, additionally, the similarities
and correlations among customers. ML algorithms would help the retailers to find out
what may be the interest of customers, and what they might find helpful for their
consumers in the future, for e.g, what books they would like to read next. Traditional
buying and selling methods simply couldn’t access this kind of information [13].

The big data revolution has made life easier as it is the job of big data to do the hard
work [13]. Since Information Technology(IT) evolved, companies are heavily investing
their time and energy to utilize the available data to upgrade their business [11]. By
monitoring the behavior and interest of prospects while in the buying process, it is
possible to find hidden patterns and relationships in their actions, and understanding
ideal profile and behavioral characteristics as they proceed, ultimately helps in focusing
on the right leads for the sales team.

Since data-driven decisions typically result in better decisions, using data-driven method-
ologies to make critical decisions and resolve various business problems will soon become
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the new normal [13]. Another important saying from a review [13] that depicts the im-
portance of big data analysis in making smarter decisions is "You can’t manage what
you don’t measure.” Rather than the following gut, the data does the job for smarter
future predictions. The more we have the volume of data, the better we can expect
from predictive models.

From an overview in [13] it can be concluded that companies should follow some data-
driven intensive methods as a replacement for manual methods as it claims that pure
domain knowledge is not enough for big data analysis. Also, traditional methods are
vulnerable. Researchers have been focusing on the application of ML to lead scoring
in recent years. There’s a clear requirement for further investigation of these methods.
This thesis points to constructing a predictive model by looking at these methods.

Companies are spending major revenues on marketing [14]. For example, by emailing
them, asking them to fill out forms, sending them free subscription letters, or just
simply call them. They try to build customer relations and trust over time through
various strategies and platforms to attract them for business but still the consumer
journey is vague to them. Lead data that include their personal information, such
as name, country, email address, the channels through which leads are acquired, and
explicit data such as contact’s ID, activity data that may include website visits, email
opens and click, form submission, etc. can be used to make the digital data beneficial
for the advertising market. Marketing agents try to engage as many consumers to
try to convert them into leads. Executing lead scoring as a portion of your overall
marketing technique can assist you in superior marketing endeavors while making you
more efficient. 74 percent of top-performing businesses, according to Gleanster, use
automated lead nurturing [14].

G. Cui et al in [14] worked on a large data set using a Bayesian network with evolutionary
programming and compared the results with deep learning models and tree-based models
and claimed that Bayesian works better in terms of accuracy. Whereas, Benhaddou et al
in [15] experimented with small data sets using the Bayesian Networks as a lead-scoring
model.

Moreover, a couple of studies have been conducted to analyze the performance of
stochastic and non-stochastic models to handle lead scoring. One of many studies
in [10] represents how the combination of linear regression with tree-based models such
as Random forest performs in this domain and compares and contrasts the result to
gain potential business insights important for decision-makers.
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1.2 Problem Statement

With the emergence of digital marketing, B2B(business-to-business) companies have
started to reach prospects more than ever before and generate more leads. This also
means businesses will acquire a mix of leads with different qualities. Some will be
relevant and some won’t be as relevant or ‘qualified’. Getting potential customers out
of their audience is a constant issue for most businesses.

Another problem if a company has thousands of leads to work with, which is often the
case, working with them on an individual level becomes impossible. The purpose is to
lessen the labor cost of continuously interacting with the leads and estimate the results
based on those interactions for each prospect.

The ideal technique is to think about lead scoring to improve the productivity of the
sales force’s process. Genuine browsing data from the contacts are used to prepare
the data for classification, and a special buy moment is used as the final step for the
contacts who have previously bought the product.

This thesis main goal is to examine how machine learning (ML) models can be used
to improve lead scoring in B2C (business-to-customer) and B2B (business-to-business)
scenarios. Data Manipulation Language (DML) operations are used for data access and
prepossessing. In addition, 70% of the input data is used for training ML models and
comparing ML classifiers to calculate lead scores, with the remaining 30% being used for
testing. Furthermore, the other purpose is to serve the CRM by its special application
case of customer conversion and what type of audience to target by analyzing the lead
scoring results and an effort to unveil business cognizance, for instance, what types of
leads to target.

The extensive research objective of this thesis is to answer the following questions

• How ML can be integrated to carry out effective lead scoring and what is the role
of ML in automating lead scoring tasks?

• What ML algorithm to select that gives better results in achieving lead scoring?
• How the results and interpretation will help the business to understand lead be-

haviors and what the business needs to interpret from results?
• How do the sampling techniques when applied to our data set produce results

for evaluating a classifier and which classifier combined with sampling technique
outperforms the others?

• How does the model tuning affect the performance of the classifier?

By contrasting the models, we will assess how well deterministic and non-deterministic
models perform in this domain. We will deal with Logistic Regression, Decision Trees
under the category of the deterministic model, Random Forests, and Neural Networks
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under the category of non-deterministic models as our ML techniques. By contrasting
the execution results of both approaches, the model selection reveals how well ML
models handle this particular challenge. The outcomes will then be assessed to determine
which ones perform best in terms of accuracy when implemented without the application
of sampling methods and after the application of under-sampling and oversampling
methods.

1.3 Thesis Structure

The following six chapters make up the thesis:

In chapter 2, we introduce and examine two distinct lead scoring methodologies along
with the issues and associated challenges.

In chapter 3, we define the working of machine learning algorithms with their advantages
and disadvantages. Moreover, we discuss the model tuning method. Furthermore, the
evaluation techniques to access the classifier performance are discussed in detail.

In chapter 4, we define the data preprocessing methodologies, including the missing
data issues and how to overcome them. We discuss data splitting and resampling tech-
niques and some well-known and important data transformation and feature selection
techniques to improve the model performance.

In chapter 5, we provide an overview of our dataset and a comprehensive discussion of
the experiment as a whole. We also present the results of the exploratory data analysis
we do in this thesis. Moreover, we show the results of each classifier in terms of the
evaluation techniques. Finally, we compare classifier and estimate methodologies to
provide our findings with and without sampling techniques using graphs and tables.

In chapter 6, we conclude the thesis by summarizing the key findings and contributions
of the study, while also acknowledging its limitations and areas for future research.
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2 Theory

2.1 Lead Scoring

Manual lead scoring is a widely used lead scoring technique for identifying, prioritizing,
and qualifying specific users based on their actions, demographics, and purchase prob-
ability, as briefly covered in the first chapter. These users are known as leads in the
business sector. As to begin, the organization may score the lead on the basis of the
data available to the team [10].

For example, if a user, let’s call it a contact, spends five minutes on the web page
reading a blog post and does no further activity will be assigned five points but the
contact that chatted with the team or downloaded an ebook could be assigned points
five. The reliable scoring criteria as per activity performed by clients need to be built
by marketing experts keeping in mind the business need. The contact propensity to
purchase, also known as lead readiness, is measured by the sum of the scores given to a
single lead. In such a case assuming that contact with a high score also called hot leads
has a high purchase probability. The idea here is to reduce the efforts of salespeople to
utilize less time on leads that score lower than others also called cold leads.

A sales funnel is depicted in Figure 2.1, showing the stages of a lead from the time it
is created till the time it is converted into a customer. A study by Elin Lindhal in [1]
suggests how leads can be approached in different stages of the purchase funnel or in a
customer journey.

Figure 2.1: Sales Funnel defining the position of lead in a purchase cycle [2].

The horizontal blocks depict the lead current position. The width from top to bottom is
reduced showing the number of contacts decreasing as the journey to purchase proceeds
and fewer people reach the final stage. The first block is in the awareness stage with
the lowest score, at this point lead is represented as the contact who encounters the
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company through different channels. One can surf and engage in activities or stop, but
doing so leaves a digital trace that could be later utilized for tracking. This stage helps
in understanding their customer and slicing and dicing them into different categories
depending on their interest and activities. It is also known as the acquisition stage. It
also identifies the best sources of lead in terms of lead acquisition. If they continue and
engage in more activities, they may grow into MQL(Marketing Qualified Leads) leads
with better scores. But, at this point lead may need some more nurturing campaigns
by marketers for product promotion to increase lead interest. Some nurturing strategies
such as sending emails, sending an offer to try the service for free, etc. can help at this
stage. This phase also gives insight into what products are closely related to different
types of customers and helps in product affinity. In the later stage, leads are closer
to reaching a threshold point i.e won, so it can be reached directly by the sales team
with a sales offer or discounts. This stage is termed SQL (Sales Qualified Lead). If
the leads fulfill the demands of being considered as a sales opportunity by meeting the
minimum criteria set by management and have a good demand, they are qualified for
the SQL stage which is the last stage in the funnel. In addition, the historical record of
lead involvement with the company in the past defines the level of interest the lead has,
either low or high [1]. The sales staff follows up with the sales-qualified leads, which
might lead to a successful or unsuccessful purchase [16].

However, assumptions on scoring a lead based on domain knowledge have some serious
drawbacks as discussed in [17] below:

• The key concern is that manual lead scoring needs a lot of data to provide accu-
rate behavioral, demographic, or firmographic scoring. Unfortunately, there is a
severe lack of access to reliable statistical data, which is necessary for setting the
appropriate value for the action.

• In manual lead scoring, the scores could be determined by a set of predetermined
guidelines. Whilst manual scoring does define a set of rules, it doesn’t refrain to
incorporate the attributes to judge an approaching lead, some of them may be
irrelevant.

• It is considered to be a more time taking process because it demands to be
overhauled each time new behavioral changes are observed in leads. As processes
change and new buying behaviors appear, the lead scoring model should be flexible
enough to accommodate these changes. To continuously keep altering the scores
the time utilized might be spent more viably somewhere else. Also, companies
are abandoning this due to long processes according to Marion [17].

• The data relating to manual scoring is often complex and it is too much for a
human mind to process. In this manner, all of the methods proposed to lead
scoring should make use of a data-driven approach that a computer can manage,
according to Bohlin [12]. This necessitates the use of predictive lead scoring, also
known as automated lead scoring, which is a data mining application used in lead
scoring.
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2.2 Predictive Lead Scoring

An Artificial Intelligence (AI) assisted lead scoring approach which defines mathematical
algorithm-based scoring procedures commonly known as predictive lead scoring. Or
simply we can say that these are a set of statistical techniques that work on historical
data to analyze the leads’ demographics and attributes to predict the probability of
a lead conversion, that is why it is called predictive lead scoring. It differs from the
traditional way of lead scoring as it is an automatic method to do the research and
calculations for the company with a substantial decrease in human error and efforts.
ML is another name for data mining techniques or pattern recognition [18].

So giant firms that own more customers to generate good amounts of data often use
predictive methods so the algorithms can be fed with enough information for better
results. However, if a company faces inconsistencies and huge gaps and has big data
it is always a good idea to shift to predictive modeling for lead scoring rather than
traditional methods to see if it is more accurate and can help the sales team improve
the conversion rate. Also, the comparison of previous and present customers helps
create a profile of qualified leads [18].

With predictive analysis for scoring leads comes an additional strategy called predictive
marketing [16]. Predictive marketing can be defined as a customer-driven marketing
approach with the objective to empower each customer’s journey throughout the pur-
chase life cycle. This strategy came into existence because it is assumed that customers
nowadays contemplate highly customized walks through the journey of interacting with
companies to fulfill their needs. This journey is made possible through mechanics that
capture effective data through distinctive digital channels in order to carry out cus-
tomized marketing campaigns and target loyal customers [18].

An important component of customer relationship management (CRM) is lead scoring.
There are various CRM tools that are available in the market right now, name a few
are:

• Salesforce
• Oracle
• HubSpot Sales
• SAP (Systems Applications and Products) Sales Cloud

CRM is a user-friendly tool that provides functionalities to boost a sales process. It is
software that has a database to keep information of contacts, leads, and customers data
that is captured through different offline and online modes and kept safely to analyze
and act for business profit. These tools help optimize digital channel collaboration with
the users to be able to collect effective information related to customers to target them
and build customized nurturing campaigns.
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Figure 2.2: CRM Data Flow Chart

Figure 2.2 shows that the client got leads from 2 distinctive channels. Offline mode and
online mode. Digital channels and third-party recruiters. CRM in between is managing
and optimizing the big data as per the requirements of their customers.

The 5 key steps that CRM processes to keep a customer interaction with a company
personalized are determining a potential prospect, acknowledging the prospect, trying
hard for prospect conversion to the customer, lead retention, and being loyal to their
customers.

2.3 The significance of customer attributes in the
process of lead scoring

The most important step in lead scoring is the suitable selection of variables while
building a predictive model that largely affects the quality of results we expect from a
model. It can mainly be divided into two types of variables. This task is considered
crucial and one should research properly before selecting the variables [10].

Both explicit and implicit customer attributes are important in lead scoring, as they
provide different types of information that can help companies determine the likelihood
of a lead becoming a customer.

Explicit customer attributes refer to information that is explicitly provided by the
lead, such as job title, company size, and location. This information is typically obtained
through lead generation forms, surveys, or other direct interactions with the lead. Ex-
plicit attributes are important in lead scoring because they provide a clear understanding
of a lead’s demographics, which can help companies determine if the lead is a good fit
for their product or service [10].

Implicit customer attributes, on the other hand, refer to information that is inferred
from a lead’s behavior or actions, such as website activity, content consumption, and
email engagement. Implicit attributes can be valuable in lead scoring because they
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provide insights into a lead’s interests, needs, and level of intent to purchase. For
example, a lead who spends a significant amount of time on a company’s pricing page
or downloads a product demo may be more likely to convert into a customer than a
lead who simply visits the company’s homepage.

Incorporating both explicit and implicit customer attributes into lead scoring models can
help companies develop a more complete picture of each lead and their likelihood of
becoming a customer. By combining demographic, firmographic, and behavioral data,
companies can identify high-value leads that are both a good fit for their product or
service and highly engaged and interested in making a purchase.

Overall, the significance of both explicit and implicit customer attributes in lead scoring
cannot be understated. By using a combination of these attributes, companies can im-
prove the accuracy of their lead-scoring models, increase the efficiency of their marketing
and sales efforts, and ultimately drive higher conversion rates and revenue growth.

2.4 Classification Algorithms used in Predictive
Analysis

ML algorithms are divided into three major categories i.e, Supervised learning algorithms
that perform prediction on new data when the training data has already known classes.
It is further divided into classification and regression problems. Unsupervised learning
algorithms do the prediction by looking into data to find similar patterns without knowing
the outputs. Clustering and association rules are some types of unsupervised learning.
However, reinforcement learning algorithms search for hidden patterns in the data in
order to suggest the optimum course of action [19].

These two groups of supervised learning algorithms differ in that where regression is
used to estimate continuous values, on the contrary, classification is used to predict cat-
egorical outcomes. In addition, classification models contain two outputs: the discrete
category and a value between 0 and 1 that indicates how likely it is that a given example
corresponds to the specified category. Lead scoring is a classification problem that can
be solved. This chapter’s main goal is to give readers a fundamental grasp of how to
use supervised learning techniques to tackle classification problems [20].
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3 Machine learning

In this section, we will discuss and compare a number of linear and non-linear classifiers
in detail. We will further discuss one of the popular model tuning techniques. Finally,
we will discuss and compare evaluation techniques that are important to measure the
performance of the classifier.

3.1 Classifiers

3.1.1 Logistic Regression (LR)

Logistic regression generally belongs to linear regression models and defines a linear
relationship between the output variable and features using an equation, mathematically
given as:

ŷ = β0 +β1x1 + ...+βnxn (3.1)

Suppose the data set d consists of n number of observations, the row vector of the
inputs are x = [x1,x2, ..xn].

For each observation x1, ..,xn target variableŷ is defined, β0 is average of ŷ , and
β1, ...,βn are coefficient values that control the change in ŷ for a unit change in x1.

It uses the mean squared error (MSE) method to define a straight line in the given
dataset which is the difference between the actual output and the predicted class label.
Linear regression works by interpreting the continuous variable output with respect to
the features (input). That’s why it is good for regression problems such as predicting
weight relevant to body size, mass, height, etc., or predicting a house price given the
relevant data [3] [4].

Figure 3.1: Logistic Curve [3].

To calculate conditional probabilities it uses a function called a logistic function also
called a sigmoid function [21], mathematically given as,
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P (Y |X) = eβ0+β1x1+...+βnxn

1+ eβ0+β1x1+...+βnxn
(3.2)

In the expression above, P(Y|X) is the likelihood of being in one class., and β0,β1x1 +
... + βnxn are the estimated coefficients. By restricting the range, if multidimensional
features of data vector X become more than the number of observations n, then model
training becomes complex, resulting in bad predictive behavior. So, It can be rewritten
in the form of the log as:

log
P (X)

1−P (X) = β0 +β1x1 + ...+βnxn (3.3)

Where P
1−P is the odds ratio of the likelihood of success and likelihood of failure which

will always be positive ranging (0,+∞).

Cost Function: We use Mean Squared Error(MSE) in linear regression to derive a cost
function but in logistic regression the logistic function is nonlinear so using MSE gives
a non-convex graph and it might get stuck in local minima. To solve this issue it uses a
Maximum likelihood estimator (MLE) to derive a cost function known as log loss given
as,

L(θ) = −(ylog(ŷ)+(1−y)log(1− ŷ)) (3.4)

θ is the parameter set that the model is attempting to learn. Therefore, L(θ) calculates
the loss. The objective of MLE is to estimate model parameters for which the likelihood
function is maximized. For this purpose of minimizing the cost function, gradient descent
optimization is used.

Advantages:

• It is easier to implement, interpret, and efficient to train [10].
• They are accurate with huge data analysis, especially if the data set can be

separated linearly [4].

Disadvantages:

• The capabilities of logistic regression are occasionally constrained by the basic
premise that dependent and independent variables have a linear relationship [21].

• Overfitting is common in logistic regression, especially If there are too many
dependent variables in the model. To get around this problem, regularization (L1
and L2) methods might be applied [22].

• Logistic regression cannot be used to tackle non-linear issues. However, it is
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uncommon to encounter linearly separable data in real-world situations.

3.1.2 Decision Trees (DT):

Decision Trees can be used for classification and regression. In DT information flows in
a tree-like structure from top to bottom, step by step, where the root nodes represent
an event or an attribute as a question, a sub-tree is all the branches that represent
event sequence as a decision rule with probabilities of if-else conditions and leaf nodes
represent the end of the tree that gives one class as an output. For an effective DT, it
must contain all the possibilities of an event happening and if one event is conditioned
as true the other must be false.

Figure 3.2: Decision Tree Visualization [4].

As seen in the above figure the data set is interpreted as a set of rules (branches) from
the root (internal node) to the leaf node [1] [4]. The dataset is split recursively into
smaller chunks, based on the attributes until a stop criterion is reached. It aims to
find a set of data points as one group with uniquely identifiable attributes until the last
step to belong to a specific predicted class [23]. Moreover, they have fast adapting and
classification abilities.

Typically, decision trees are constructed via a sequential binary process. For example, d is
the dataset, and for each attribute of input data x, different split points are evaluated.

Moreover, DT splits the data into groups of homogenous subsets means one group
contains more data points from one class than the other. Mathematically, the points
x ∈ d that support the decision rule are in category dtrue and the points that do not
support the decision rule are represented by the category dfalse.

The decision rule is typically based on a binary test of the form "does feature i belong to
category dtrue?", where i is the index of the feature and <= is a comparison operator for
numeric features and belongs to is a membership operator for categorical features. The
category is chosen to maximize some splitting criterion that measures the homogeneity
or purity of the subsets with respect to the target variable y.
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Different types of splitting criteria are taken into consideration while the decision tree is
deciding where to split the tree and how to apply rules and the aim is to optimize them.
Accuracy, the Gini index, and cross-entropy are some possible criteria. Mathematically
given as [3],

GiniIndex = 1−
∑

j

p2
j (3.5)

Entropy = −
∑

j

pj .log2.pj (3.6)

where pj is the proportion of data points of class dtrue.

GiniIndexmin = 1−12 = 0 (3.7)

GiniIndexmax = 1− (0.52 +0.52) = 0.5 (3.8)

Entropymin = −1.log2.(1) = 0 (3.9)

Entropymax = −0.5.log2(0.5)−0.5.log2(0.5) = 1 (3.10)

The minimum value a Gini index and entropy calculates is 0. It means that the node
cannot be split anymore and all the data points belong to one unique class, thus the
less the Gini index and entropy value the pure the node is considered and the optimum
split is chosen on the basis of low score values of the features in DT [6].

However, when the data points represent the two classes at the same probability, the
Gini index and entropy get the maximum value in such a case. Both measures tend to
minimize node impurities [3] [6].

Advantages:

• The best-known features of DT are their great interpretability, fast learning abili-
ties, and capacity for dealing with nonlinear issues [24].

• DT is better because it can handle missing data and prune unnecessary branches.
• It can handle comparatively larger datasets and interpret a variety of predictor

types [25].
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Disadvantages:

• Overfitting is a common occurrence in DT, particularly when the tree is deep and
the number of samples are limited. [25] [24].

• It can also be sensitive to small changes in the data. [25].
• It can be sometimes biased towards features with too many levels or values [25].

3.1.3 Random Forest (RF)

Random Forest (RF( is an ensemble learning technique that aggregates multiple decision
trees to enhance the accuracy and generalization of the model. It was found to be one of
the outstanding algorithms in terms of classification accuracy on various datasets [26].

As seen in figure 3.3, the RF algorithm creates a collection of DT by training them on
different subsets of the training data and then utilizes this ensemble of trees to make
predictions.

Figure 3.3: Random Forest Visualization in comparison to Decision Tree. [5].

Each DT is built on a random groups of the input samples, which helps to reduce
overfitting and increase model diversity. During prediction, the algorithm aggregates
the predictions of all the trees to obtain the final output.

Cost function: Random Forest minimizes the MSE between the outcome values and the
actual input values for regression problems and minimizes the Gini index for classification
[27]. The cost function is optimized during training by adjusting the split criteria at
each branch of the DT to increase the impurity of the split.

Advantages:

• RF is a highly accurate algorithm that performs well on a wide range of problems.
• It can handle both categorical and continuous features making it a versatile algo-

rithm.
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• It is less prone to overfitting than single decision trees, as the averaging of multiple
trees helps in decreasing the effectiveness of noisy data [28].

• It is computationally efficient and can be parallelized to speed up training on large
datasets according to a study by Breiman et al. [27].

Disadvantages:

• RF can be challenging to interpret as its output is a compilation of several decision
trees, making it arduous to comprehend the algorithm’s prediction process. Never-
theless, one can overcome this challenge by utilizing feature importance measures
to recognize the most significant features in the model [27] [29].

• It may not perform well on very high dimensional data or data with highly corre-
lated features [30].

• It can be sensitive to noisy or irrelevant features, which can negatively impact
performance [31].

3.1.4 Artificial Neural Network (ANN)

The working of ANN is inspired by the human brain. Biological neurons are the units
here and the connections between neurons is termed as synapses. It comes under the
category of deep learning models and is widely used as a supervised learning algorithm for
classification and regression problems. Several nonlinear algorithms come under neural
networks, unlike logistic regression such as feedforward neural networks and recurrent
neural networks. It is one of the most popular algorithms in ML that is capable of
modeling extremely complex relations [4].

Many units are working together and are interconnected through layers. The first layer
is the input layer which consists of input variables that need to be predicted. Then the
hidden layers come in between the input layer, where all the calculations are performed
and atlast the output layer that shows result.

Learning of a model is performed by adaptation of the weights w also known as the
strength of parameters.

∆wij = Cxijyj

is the Hebb rule that represents the adaptation in weights where C is the learning rate
constant, x is the input, and y represents the result. The simplest neural network is a
perceptron which has a single hidden layer.

In the figure above we can see the multilayer feedforward ANN in which the first layer
is the predictor layer connected to hidden layer 2. Each unit assigns a numerical value
to each connection known as weight. Every Input is multiplied by respective weights
and the multiplied values are added, the sum is passed to the working units present at
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Figure 3.4: Classification Neural Network with 1 hidden layer [6].

hidden layers [32].
Σ = (x1w1 +x2w2 + ...+xnwn) (3.11)

The row vectors of the input and weights are x = [x1,x2, ..,xn] and w = [w1,w2, ..,wn]
respectively and their dot product is given by [32],

x.w = (x1 ∗w1)+(x2 ∗w2)+ ...+(xn ∗wn) (3.12)

Hence, the sum is equivalent to the dot product of the vectors x and w [32]:

Σ = x.w (3.13)

Finally, the resulting value is sent to a nonlinear activation function which decides
whether the neuron will transfer data or not. If the value is above the threshold value
the neuron will fire the result to the output value otherwise the value is not passed,
However, sigmoid is used as an activation function to keep the calculations between 0
and 1. The class with the greatest value then becomes the expected output class for
the results.

Cost Function: The loss function L or cost function of ANN can be given as the sum
of error at each layer follows where MSE is the square of the distance between the actual
yi and predicted value ŷi: [32]

L = MSE = 1
n

n∑
i=1

(yi − ŷi)2 (3.14)

The objective of the algorithm is to enhance the performance of the model by optimizing
the cost function using backpropagation algorithms. Derivatives are calculated at each
iteration to find the optimal parameters. The process of updating the weights and bias is
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performed repeatedly, and the backpropagation step is iterated until convergence [6].

Advantages:

• NN works in parallel and thus is able to process large sets of information and
complex datasets [33].

• NN learn from continuously adjusting weights within themselves, hence are not
limited to learning through only the input features provided to them [34].

• NN stores the input data in its own network rather than a database so the loss of
information has very low chances [35].

• If a neuron stops functioning NN has the ability to still produce useful output.
They have the ability to provide effective and practical solutions to real-time
problems [36].

Disadvantages:

• NN is sensitive to the initialization of weights [35].
• NN has nonlinear sigmoid functions which are often computationally expensive to

backpropagate the error [32].
• NN might get stuck in local minima. In order to avoid this situation, it is better

to train the NN model multiple times on random batches or use K-fold cross-
validation techniques. They are prone to overfitting, especially if the network is
trained for too many iterations or if the network becomes too complex compared
to the size of the dataset [37].

3.2 Comparison of Classification Algorithms

Table 3.1 compares different classification algorithms we used in our thesis in terms of
their computational complexity, interpretability, robustness, and other important factors.
The variables used in this context are "N" for the sample size, "d" for the number of
features and "L" for the number of layers in the neural network.

In terms of computational complexity, logistic regression has linear time complexity with
respect to the number of samples N and the number of features d. Decision trees and
random forests have higher complexity due to the need to construct decision trees,
but the complexity is still manageable for most datasets. Neural networks have higher
complexity due to the number of layers L, but can still be trained efficiently using modern
hardware and software.

In terms of interpretability, logistic regression, and decision trees are relatively easy to
interpret because they provide coefficients or rules that directly relate the input features
to the output label. Random forests and neural networks are less interpretable because
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Algorithm Complexity Interpretability Robustness Other Factors
Logistic Regression O(dN) High Sensitive to out-

liers
Good for linearly sepa-
rable data.

Decision Tree O(Ndlogd) High Sensitive to out-
liers

Good for non-linearly
separable data.

Neural Network O(Ndlogd) Low Robust to overfit-
ting

Good for high dimen-
sional data.

Random Forest O(NLd) Low Robust to non-
linearities

Good for non-linear
data.

Table 3.1: Comparision of Classification Algorithm

they involve combining multiple decision trees or layers into a single model.

In regards to their robustness, logistic regression is affected by outliers and may under-
perform in datasets with high noise levels. Decision trees are at risk of overfitting and
may not be able to generalize well to new data. Random forests are more robust against
overfitting and excel in handling high-dimensional data. On the other hand, neural net-
works are resistant to non-linearities and can effectively capture intricate non-linear
relationships between the input features and output labels.

Other important factors to consider include the suitability of each algorithm Various
categories of data such as those that are linearly separable, non-linearly separable, high-
dimensional, complex non-linear, the ease of training and tuning each algorithm, and
the availability of software packages and libraries for each algorithm.

It’s worth noting that the choice of classification algorithm and the importance of
different factors depending on the specific problem and the trade-offs between different
algorithms.

3.3 Model Tuning

Choosing the appropriate metric for optimization is crucial for determining the appro-
priate hyperparameter values. The process of searching for the optimal hyperparameter
configuration is a delicate task [38]. However, it is not feasible to discover a flawless
model because it requires evaluating numerous values for each hyperparameter, which
can become impractical in terms of time and computational expenses, particularly for
large datasets. Therefore, we will explore one of the widely used techniques for model
tuning, which is called Grid Search.
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3.3.1 Grid Search

Grid Search is a method for hyperparameter optimization in ML, where a range of
hyperparameters is specified, and a grid of all possible combinations of hyperparameters
is created. Each combination is then evaluated by training the model using the specified
hyperparameters and a performance metric such as accuracy, precision, recall, or F1 score
is computed. The combination of hyperparameters that produces the best performance
metric is then selected as the optimal set of hyperparameters [39].

Suppose we are given a set of hyperparameters H = h1,h2, ...,hn with each hyper-
parameter having a range of possible values represented as R(hi). To create a grid
of hyperparameter values, we take the Cartesian product of all the hyperparameters’
ranges, which is denoted as:

G = R(h1)∗R(h2)∗ ...∗R(hn). (3.15)

For each combination of hyperparameters in G, we train a model using a training set
and evaluate its performance on a validation set. Let f(h) be the performance metric of
the model trained with hyperparameters h, and let D be the validation set. We define
the optimal hyperparameters h* as:

h∗ = argmaxf(h) (3.16)

In other words, h* is the combination of hyperparameters that results in the highest
performance metric on the validation set.

Example: For example, we have a dataset of 1000 samples, with 10 features, and
a binary classification task. We want to train a Decision Tree model to classify this
dataset, and we want to optimize the hyperparameters using Grid Search. Let’s say we
use the following ranges for the hyperparameters:

maxdepth : [2,4,6,8]

minsamples−split : [2,4,6,8]

minsamples−leaf : [1,2,3,4]

We can create a grid of all possible combinations of hyperparameters. For each com-
bination, we can train a Decision Tree model using the specified hyperparameters and
evaluate its performance on a validation set. Let’s say we use accuracy as the perfor-
mance metric. After training and evaluating all possible combinations of hyperparam-
eters, we find that the combination that produces the best accuracy on the validation
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set is:

maxdepth : 6

minsamples−split : 4

minsamples−leaf : 2

We can then use these hyperparameters to train a final DT model on the entire data-set
and evaluate its performance on a test set.

Grid search is a brute-force method that can be computationally expensive, especially
when the number of hyperparameters and the range of values for each hyperparameter
is large. However, it is a simple and effective method for hyperparameter tuning that
can often lead to improved model performance [40] [38] [41].

3.4 Evaluation Techniques

Once the model is trained the output is generated as a class label with a probability
value of 0 to 1 for belonging to a certain class, we need to measure the quality of
classification algorithms using performance evaluation measures for the classification
models. It depicts how well the model performs and how effective the trained classifier
will be while classifying the unknown data.

From the review [21], the evaluation criteria can be represented in multiple ways, i.e,
either through a threshold value through the probability or percentage of effectiveness,
or by ranking metric [42]. Each one of these is a scalar quantity which is represented by a
numerical value. Thus, compare and contrast analysis of different classifier performances
becomes an easy task and later assists in model selection. The evaluation criteria have a
strong foundation as a discriminator in order to distinguish and select the best solution
among the variants during the training phase.

3.4.1 Confusion Matrix

One common method being used by researchers to evaluate the generalization perfor-
mance of a model is through a confusion matrix(CM), which can be discussed using the
following figure.
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Figure 3.5: Confusion Matrix for Binary Classification

Figure 3.5 shows the confusion matrix table in which the columns represent the actual
class labels and rows depict the predicted class labels. If we look at the cells, the classes
that are predicted correctly are shown diagonally labeled as TP and TN, and the cells
present on the opposite side to it denote wrongly predicted classes labeled as FP and
FN. TP is an abbreviation for true positive means that the classified label is true and is
positive according to the scenario, for e.g, if the patient has cancer and is classified as
TP it means it is true because he does carry cancer disease, TN (true negative) means
the classified label is true for the same case, i.e., a person doesn’t have cancer and also
he is classified as cancer free. In case of negative, the prediction made is also false,
suppose, if the patient is not suffering from cancer but gets diagnosed with it then it
is FP (false positive) whereas, on the other side, FN (false negative) means a person
suffering from a disease doesn’t get diagnosed with it respectively.

3.4.2 Accuracy

Accuracy depicts the proportion of true predictions to the sum of instances evaluated
including true and false predictions. It is the basic and one of the most popular per-
formance metrics which gives the researchers the general idea of the percentage of
correctness which refers to all rightly classified instances by a classifier when tested
against unseen data, but it has some drawbacks, such as, it does not scrutinize class
imbalance. For instance, if a dataset contains 10 instances belonging to class 1 and
1000 instances belonging to class 2 the model could possibly predict every entry to be
in class 2 and produce very high accuracy results [21]. Despite its limitations towards
minority class instances it is still used widely by researchers to choose optimal solutions
for either binary or multi-class problems. It is considered easy to compute with little
complexity [14] [1] [18] [27]. The formula for accuracy can be given as:

Accuracy(acc) = (TP +TN)
(TP +FP +TN +FN) (3.17)

3.4.3 Precision

The measure of correctly predicted from the total predicted in a positive class defines
precision [39]. The formula for precision can be given as:
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Precision(p) = (TP )
(TP +FP ) (3.18)

3.4.4 Recall or Sensitivity

The true positive rate, also called recall, measures the proportion of positive instances
that are correctly identified [39]. The formula for recall/sensitivity can be given as:

Recall = (TP )
(TN +FN) (3.19)

3.4.5 Specificity

The measure of wrongly predicted cases from the total predicted in a negative class
defines a specificity or in other words Out of total real negative cases, how many were
classified as negative? The formula for recall/sensitivity can be given as [39]:

Specificity = (TN)
(TN +FP ) (3.20)

1−Specificity = FPR (False positive rate) (3.21)

where FPR is:
FPR = (FP )

(TN +FP ) (3.22)

3.4.6 ROC-AUC

The Receiver Operating Characteristic (ROC) curve is a graphical representation that
shows the performance of a binary classifier as the classification threshold is varied. It is
generated by the process that involves graphing the TPR and FPR at various threshold
values The points corresponding to different thresholds are connected to create the
ROC curve, with TPR on the y-axis and FPR on the x-axis. The area under the ROC
curve (AUC) is a measure of the overall performance of the classifier, where a perfect
classification has a value of 1, while a value of 0.5 indicates random guessing [7].

Some of the pros of ROC-AUC curve is that it provides a comprehensive view of the
performance of the classifier across all possible threshold values, which can be useful
for comparing classifiers and selecting the optimal operating point. Additionally, it is



26 Chapter 3: Machine learning

Figure 3.6: ROC Curve Illustration [7].

relatively insensitive to class imbalance, which is a common problem in binary classifi-
cation [7].

Whereas some of the cons of using ROC-AUC curve is that it does not provide infor-
mation about the specific operating point of the classifier, which may be important in
some applications. Secondly, it is less interpretable than other metrics such as precision
and recall, which may be more informative for specific applications. Also, the ROC AUC
curve assumes that the cost of false positive and false negative errors is equal, which
may not be true in all applications.

3.4.7 F-Measure (FM)

With accuracy, the issue is that if the dataset is highly unbalanced, the model will finish
up correctly learning how to forecast the class with the majority of instances but will not
learn how to identify the minority class. However, the accuracy value of the model will
still remain quite high. To overcome the issues that accuracy measures have, researchers
found new ways to calculate the mean values to give equal significance to both positive
and negative data instances. Some examples of alternatives are geometric, harmonic,
and arithmetic mean. The F-score measure is a harmonic mean of Precision and Recall
values, which means FP and FN are equally significant. Compared to “Accuracy” it is
reported as a very useful metric, with better-performing results in rectifying the classifier
for binary class issues. F-measure can be given mathematically as:

F1Score = 2∗ (Precision∗Recall)
(Precision+Recall) (3.23)
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3.4.8 G-mean1

It is the geometric mean of sensitivity and precision [17]. Mathematically, represented
as:

GSP =
√

precison∗ sensitivity (3.24)

3.4.9 G-mean2

It is the geometric mean of sensitivity and specificity [17]. Mathematically, represented
as:

GSS = √
spec∗ sens (3.25)

In order to optimize classifiers for binary classification issues, the FM and GM were
also reported as good discriminators and performed better than accuracy [43]. Due
to a single evaluation objective, the remaining indicators are insufficient to distinguish
between and choose the best solution (either positive or negative class). As far as we
know, no prior work has used the FM and GM to discriminate between and choose the
optimum solution for multiclass classification issues.

3.5 Comparison of Classification Evaluation
Techniques

Comparing the performance and complexities of these metrics is not straightforward
since they have different strengths and weaknesses depending on the problem and the
application. Generally, accuracy is a simple and intuitive metric but can be misleading in
imbalanced datasets. Precision and recall are more informative for imbalanced datasets
but can be difficult to optimize simultaneously. The F-measure combines precision and
recall and is useful when there is no clear trade-off between them. Specificity is a
useful metric for problems where false positives are particularly costly, such as medical
diagnosis. The ROC AUC metric is useful for comparing classifiers and selecting the
optimal operating point, but it does not provide information about the specific operating
point of the classifier [44] [44].

Table 3.2 is comparing different classification evaluation techniques in terms of their
computational complexity, interpretability, robustness, and other important factors. N
represents the number of samples.

In terms of computational complexity, most classification evaluation techniques have
linear time complexity with respect to the number of samples N. The ROC AUC evalu-
ation technique has a higher computational complexity of O(N log N) due to the need
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Metric Complexity Interpretability Robustness
Confusion Matrix O(N) High Sensitive to class imbalance
Accuracy O(dN) High Sensitive to class imbalance
Precision O(dN) High Sensitive to class imbalance
Recall O(dN) High Sensitive to class imbalance
Specificity O(dN) High Sensitive to class imbalance
F1-Score O(dN) High Sensitive to class imbalance
Confusion Matrix O(dN) High Sensitive to class imbalance
G-mean O(dN) High Less sensitive to class imbalance
ROC-AUC O(NlogN) Low Robust to class imbalance

Table 3.2: Comparision of Evaluation Metric

for sorting and calculating the area under the curve [44] [45].

In terms of interpretability, some evaluation techniques such as the confusion matrix,
accuracy, precision, and recall are relatively easy to interpret because they directly report
the number of correct and incorrect predictions for each class. Other techniques such as
the G-Mean and ROC AUC are less interpretable because they combine different metrics
into a single score.

In terms of robustness, some evaluation techniques such as the confusion matrix, accu-
racy, and F1-score are sensitive to class imbalance because they treat each class equally.
Other techniques such as the G-Mean and ROC AUC are less sensitive to class imbalance
because they balance the metrics based on the prevalence of each class.

Other important factors to consider include the dependence of some metrics on the
positive or negative class (such as precision and specificity), and the ease of calculation
for some techniques (such as the confusion matrix and accuracy).

It’s worth noting that the choice of evaluation technique and the importance of different
factors depends on the specific problem and the trade-offs between different metrics [44]
[45].
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4 Data Preprocessing and Analysis

Data preprocessing is the preliminary step in data analysis, which involves the cleaning
and transformation of raw data into a more suitable format for further processing. This
may include activities such as removing missing values, dealing with outliers, standard-
izing variables, and reducing noise in the data, among others. The objective of data
preprocessing is to improve the quality of data and facilitate more accurate and effi-
cient analysis in various data science tasks, such as data mining, machine learning, and
statistical analysis.

For preparing data, a variety of tools and techniques are utilized. In this thesis, we have
utilized the techniques of missing value imputation, feature selection, feature removal,
outlier removal, correlation, and data sampling.

4.1 Handling Missing Data

Missing data refers to the absence of values in a dataset. Missing values in datasets
are a big problem when acquiring real-time data. It can affect forecasting tasks in
classification and regression problems if not handled timely and lead to incorrect re-
sults. The data preparation step in ML to deal with missing values is the preprocessing
step done right before modeling classification algorithms. It helps in dealing with the
problems related to data quality and usually, a sizable amount of time is required. Defin-
ing errors and handling missing values are examples of cleaning processes. Estimation
methods should be employed to substitute reasonable values for missing data points in
datasets [45]. Several straightforward and widely recognized techniques exist to address
data missingness, commonly referred to as traditional methods. On the other hand,
there are more intricate methods referred to as imputation methods that are slightly
more complex than traditional approaches. This doesn’t let the dataset compromise on
its quality by imputing values through a certain mechanism where the data gets missed,
but to fill the gaps with meaningful values we certainly need to work on understanding
the type of data that is inappropriate for our data and not classified as typical data.
Low-quality data are those that do not conform to the underlying expectations based on
the degree of fit [43]. A few reasons for poor data quality in ML include Noise, Outliers,
and Relevance Class imbalance.

Noise: The noise in the data is the meaningless information that is received in such
a way that it becomes unreadable for a program or invalid. It may take unnecessary
storage space and lead to bad analysis results so dealing with it prior to modeling a
classifier is always a good idea [46].
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Outliers: Values that are out of range for other objects in the data collection due
to being either too large or small to handle, thus these values may disturb the model
behavior and are unwell for data characteristics are outliers. Outlier detection and
handling are important in preprocessing steps for better prediction results [46].

Relevance: The Correlation of the data with the purpose for which it is gathered must
be there to fit the needs of the classification system. The features that seem irrelevant
to the task must be dealt by either totally eliminating them or by transforming them
into meaningful features as discussed later in this chapter. There are also some feature
selection methods in Ml that help decide which features are important for DM.

Class Imbalance: If the data from one class is relatively higher in proportion than the
other class that is known as the majority class. The model will eventually get trained
on the majority class so well that unseen data is classified as a majority class label
by default. To deal with class imbalance, overfitting, and underfitting are the possible
solutions.

The way missing data is handled in machine learning models depends on the underlying
mechanism causing the missingness, which can be categorized into three types:

• Missing Completely at Random (MCAR): This phenomenon occurs when
the likelihood of a value being absent is uniform across all observations and has
no association with the values of other variables in the dataset. In other words,
the missingness is completely random. In the context of predicting lead scores,
an example of MCAR could be when a lead’s phone number is missing due to a
technical error.

• Missing at Random (MAR): This phenomenon arises when the likelihood of
a value being absent is associated with other observable variables in the dataset.
In other words, the missingness is not completely random but can be predicted
from other variables in the dataset. For example, if females are less likely to fill
out a particular question on a lead form, the missingness is related to the gender
variable. In this case, the missingness is not random, but it can be predicted from
other variables in the dataset.

• Missing Not at Random (MNAR): This phenomenon occurs when the likeli-
hood of a value being absent is dependent on the value itself. In other words, the
missingness is related to the value of the variable that is missing. In the context
of lead scoring, an example of MNAR could be when a lead chooses not to provide
their income information because they are uncomfortable sharing it.

Handling missing data in machine learning models can be challenging, and different
techniques can be used depending on the type of missingness present in the dataset.
Techniques such as mean imputation, median imputation, and model-based imputation
can be used to handle missing values. It is important to carefully consider the missing
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data mechanism and choose an appropriate method for handling missing data in the
context of predicting lead scores.

4.1.1 Traditional Method

Mean or Median Imputation: The technique involves substituting missing values with
the mean or median value of the available data. This approach is frequently utilized
when the missingness is MCAR.

Forward or Backward Filling: In this method, missing values are replaced by the last
observed value or the next observed value in the series. This method is commonly used
when the missingness is MAR.

Listwise or Complete Case Analysis: In this method, observations with missing
values are removed from the dataset. This method is commonly used when the amount
of missingness is very small and the model can still be trained with the available data.

4.1.2 Algorithm-based Method

K-Nearest Neighbor (KNN) Imputation: This method replaces missing values with
the mean or median value of the k-nearest neighbors. It is often employed when the
missingness is MAR.

Expectation-Maximization (EM) Algorithm: In this method, the missing values
are imputed using an iterative approach that estimates the missing values based on
the available data. This method is commonly used when the missingness is MCAR
or MAR. There are many factors that can cause missingness in a dataset, including
data collection errors, data entry errors, data processing errors, and non-response from
study participants. Other factors that can contribute to missingness include data that
is deliberately withheld, such as sensitive personal information.

In summary, handling missing data is an important step in machine learning, and there
are various methods available to handle missingness. The choice of method depends
on the type of missingness in the dataset, the amount of missingness, and the specific
requirements of the analysis or modeling task. Regenerate response

4.2 Data Splitting and Resampling

There are a certain number of instances or data points available while working with a
data set. It is significant to remember that while assessing a model’s performance, one
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should consider cases that were not used in the model’s development. It is done, in
order to get a fair performance assessment that is unbiased.

Before training the model the data need to be split into training and testing or validation
datasets. Training datasets contain a random number of examples from the data present
but the same dataset that is used to construct a model cannot be used for evaluating
the model performance to avoid overfitting.

When a model learns the behavioral data and the inaccurate values present in the
training dataset to an extent that it affects prediction negatively in many cases, then
overfitting occurs. As the model was created specifically to forecast the examples that
were not used in the training phase, it gets worse at predicting new and unforeseen
situations.

Several resampling strategies are used to address the overfitting and underfitting prob-
lems. When a supervised learning model is being trained, it assists in overcoming data
biases and offers a useful performance evaluation. They are usually applied to accu-
rately estimate the performance of a model. We have used random undersampling and
oversampling with SMOTE in our thesis.

4.2.1 Random Undersampling

Random Undersampling is a method for handling imbalanced datasets in machine learn-
ing, where the majority class is heavily overrepresented and the minority class is un-
derrepresented. Random Undersampling involves removing instances from the majority
class randomly until the class distribution is balanced. This method can lead to the
loss of important information and may not be effective if the minority class is too
small [47].

Given a dataset d with n samples, where the majority class is represented by M sam-
ples and the minority class is represented by N samples, we want to balance the class
distribution [48].

• Randomly select M - N samples from the majority class to remove.
• Train a machine learning model on the balanced dataset.

Figure 4.1 illustrates random undersampling where the peach color represents majority
class M and the blue color is minority class N, by randomly removing the values from
the majority class the dataset is balanced.
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Figure 4.1: Random Undersampling approach [8].

4.2.2 Random Oversampling with SMOTE

The basic idea is to randomly duplicate samples from the data-set until the class dis-
tribution is balanced. This process is termed as oversampling in ML. The figure 4.2
illustrates that how minority class N duplicated data randomly to increase the data
samples.

Figure 4.2: Random Oversampling approach [8].

One alternative to random oversampling is Synthetic Minority Over-sampling Technique
(SMOTE), where the minority class is underrepresented. SMOTE creates synthetic
samples for the minority class by interpolating between existing samples, which can
improve the performance of the machine learning model in terms of adaptability to
unseen data. [9].

SMOTE is slightly more complex, as it involves generating synthetic examples by in-
terpolating between existing examples. Given a dataset X with n samples, where the
majority class is represented by M samples and the minority class is represented by N
samples, we want to balance the class distribution. The work for generating synthetic
examples using SMOTE is as follows:

• Select a minority class with example N.
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• Select k nearest neighbors of N from the minority class
• Randomly select one of the k neighbors, call it N

′

• Generate a new example Nnew by linearly interpolating between N and N
′ .

Mathematically. it is represented as:

Nnew = N + rand(0,1)∗ (N
′
−N) (4.1)

Here, rand(0,1) is a random number generator that produces a value between 0 and
1, and Nnew is the newly generated example. This process of generating new example
involves the repetition of interpolation process until the desired number of synthetic
examples have been generated.

Figure 4.2 shows an example of random oversampling and SMOTE applied to a two-
dimensional dataset with two classes.

Figure 4.3: SMOTE Oversampling approach [9].

The blue circles represent the majority class, and the yellow ones represent the minority
class. The left-hand plot is without oversampling and the right-hand side is a plot when
the synthetic examples in red are generated to balance the minority class.

For example In a study by He and Garcia (2009) in [49], Random Oversampling with
SMOTE was used to enhance the performance of a machine learning model for credit
card fraud detection. The study found that Random Oversampling with SMOTE was
an effective method for handling class imbalance and improving the performance of the
machine learning model.

4.3 Feature Selection

As transformation is applied for better decisions, similarly feature selection methods(FSM)
helps to make data more understandable and effective. It works to reduce the dimen-



Chapter 4: Data Preprocessing and Analysis 35

sionality problem in ML task as it aims to remove the data that is not relevant and is
redundant. It can effectively lessen the computing time and promote model accuracy.
[18] [20]. The steps of assessment that are typically used for choosing characteristics
are covered in this section. The most popular ML feature selection techniques are as
follows:

4.3.1 Correlation-based Feature Selection (CFS)

The technique called correlation-based feature selection is a type of method that screens
features based on how much they are associated with the target variable. Pearson’s
correlation coefficient is a statistical measure that defines a linear relationship between
two variables, x and y given as;

r =
∑(xi −µx)(yi −µy)√

(∑(xi −µx)2)∗
√

(∑(yi −µy)2)
(4.2)

where xi and yi are the values of variables x and y, µx and µy are their means, and∑ represents the sum over all data points. The value of correlation coefficient lie in
between -1 and 1. Here, -1 depicts a perfect negative correlation, 0 show no correlation,
and 1 vlaue represent a highly correlated variable. A simple example of CFS is discussed
below:

Example: Suppose we have a dataset with five features (x1, x2, x3, x4, x5) and a
target variable (y). We calculate the correlation coefficient between each feature and
the target variable and select the two features (x1 and x3) with the highest correlation.

It is used widely in image recognition, text classification, and gene expression analysis. It
has been shown to be effective in reducing the dimensionality of datasets and improving
the performance of ML models [50] [51].

4.3.2 Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) is a popular feature selection method that selects
the most important features by recursively removing the least important features based
on a specified model. RFE can be used with any supervised learning algorithm that pro-
vides a feature importance score or coefficient for each feature, such as linear regression
and decision trees.

The RFE algorithm starts with all the features and trains a model using the specified
learning algorithm. It then ranks the features based on their importance scores and
eliminates the least important feature, until a desired set of features results. A simple
example of RFE is given as:
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Example: Suppose we have a dataset with four features (x1, x2, x3, x4) and a target
variable (y). First, we train a model using all the features and obtain feature importance
scores as: F1=0.6, F2=0.4, F3=0.2, F4=0.1, and eliminate the least important feature
x4 with the least score. Then again train a model using the remaining features x1, x2,
x3 and obtain feature importance scores as: F1=0.6, F2=0.4, F3=0.2. This time x3
gets eliminated. Further train a model using the remaining features x1, x2 and obtain
feature importance scores. The algorithm stops since the desired number of features
(in this case, two) is reached.

RFE has proven to be effective in dimensionality reduction of high-dimensional data.
It has been used in various domains, including bioinformatics, image processing, and
finance. It aims to simplify the training dataset, decrease learning time and enhance
accuracy [52] [53] [54].

4.3.3 Variance Inflation Factor (VIF)

Variance Inflation Factor (VIF) is a technique used to detect and quantify multicollinear-
ity among a set of features in a linear regression model. Multicollinearity refers to a
statistical phenomenon where two or more variables which are independent are strongly
and linearly correlated with each other generating problems in the ML model, such as
inflated standard errors and unstable coefficients.

The mathematical formula for VIF can be written as follows: Given P as a set of features
in linear regression model which are independent variables represented as x1,x2, ...,xp.
The VIF for variable xi is calculated as:

V IF (xi) = 1
1−R2(xi)

(4.3)

where R2(xi) is the coefficient of determination of a regression model where xi is the
dependent variable and all the other independent variables are used as predictors. A
VIF value greater than 1 represents highly correlated variables. [51].

Example: In a study by Kumar et al. [55] VIF was used to detect multicollinearity for
predicting air quality. The study found that VIF was an effective method for detecting
multicollinearity and removing highly correlated independent variables from the model.
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5 Experiment and Results

This chapter is divided into three parts, in section 5.1 we describe the experiment and
provide Exploratory Data Analysis (EDA) to examine and summarize characteristics of
a dataset. However, due to company data policy the visualization presented is only
on small part of data. In section 5.2 we present the results of each classifier with and
without the application of sampling techniques on the data. In section 5.3, we describe
the findings from the results on the provided data.

5.1 Experiment

5.1.1 Data Description

Data for this thesis was provided by a company that offers DataVault and Salesforce
solutions. The company stores its Sales and Marketing data in Salesforce. Table 5.1
shows the type of data used in this thesis.

Name Type Description
Id Alphanumeric Unique identifier
Company Categorical Company of a particular lead.
Country Categorical Country of a particular lead.
City Categorical City of a particular lead.
Email Categorical Email of a particular lead.
Language Categorical Language of a particular lead.
Lead Source Categorical Source of a particular lead, e,g, newspaper, website, etc
Lead Priority Categorical How much priority is given to particular.
Pitch Level Categorical Defines that if a lead is allowed for communication.
Do not Call Binary True if a lead is agreed for future calls else false.
Do not Email Binary True if a lead is agree for future emails else false.
Privacy Binary True if lead asked for data privacy else false.
Status Categorical Defines status of a lead e.g. qualified, unqualified, etc.
Email Bounced Binary True if emails sent are bounced else false
Is Prioritized Binary True if the lead has priority else false
Lead Account Categorical Account or Department for a lead.
Qualified Date Date Date of qualification
Number of Employees Integer Total employees in lead’s company.
Industry Categorical Industry for a lead company.
Annual Revenue Float Total revenue of a lead.
Is Converted Binary True if the lead is converted else false.

Table 5.1: Characterstics of the data
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The data was collected from the company’s Internal Salesforce Org. The data was
collected by integrating the data mining tool called Rapid Miner with Salesforce. The
data is taken from the year 2018 to 2019. The data consists of over 50,000 observations
(rows). Every observation contains 34 features (columns). The data is collected from
the lead, contact, and activity object (table). The class label, isConverted, is a value
of 0 or 1. When a client is interested and wants to know more about the product then
the Converted is set to 1. When the client is not interested in the product then the
Converted is set to 0. The data have almost a 10.08% Converted rate. We split the
70% data into training sets and 30% into the testing set.

5.1.2 Data Preprocessing

The following are some common data preprocessing steps that is applied to prepare data
for lead scoring experiments.

Missing Value Imputation

We take the missing value percentage of each column(feature). We drop the columns
having more than 70% of missing values. We handle missing values in remaining some
by replacing them with the value that occurs the most. For example, We take the
’country’ column, around 20% of the data available is Germany so we impute Germany
in the missing values of the country column. We use python code and libraries to remove
missing values from the data. Figure 5.1 and 5.2 illustrate the missingnness in the data
before and after imputation. The white area represent the missinngness in each feature
whereas, the black area represent that the data is not missing.

(a) Data before removing missing values. (b) Data after removing missing values.

Figure 5.1: Comparision of data with and without missingness.
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Feature Transformation

To improve the accuracy of classifiers we transform few features. The data in the
country column looks imbalance and can impact the accuracy of the classifier. So we
decided to convert the country into their respective Continent. So we make a group
of the countries that are in the same continent and represent the country with their
respective continent as shown in figure 5.2.

Figure 5.2: Country Transform into continent.

Correlation

To achieve high accuracy we eliminate the highly correlated data. We use the python
seaborn library and plot the correlation matrix. Based on our plot in figure 5.3 we figure
out that "Do not call" "Has Opted out of email" are highly correlated with correlation
.67.

Figure 5.3: Correlation Matrix
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Feature Selection

We use the Recursive Feature Elimination (RFE) and Variance Inflation Factor(VIF)
technique which progressively removes the least important feature(s) from a model
until the desired number of features is achieved. We implement these techniques by
using the python sklearn library.

5.1.3 Exploratory Data Analysis

Exploratory data analysis (EDA) is a crucial first step in any data analysis project. It
involves examining and visualizing the data to gain insights into its underlying structure,
patterns, and relationships. In this section, we will explore a few features through visual
representation.

Figure 5.4, represent the ratio of lead conversion on the lead that has chosen do not
call and has opted out of email. We see that the lead that allow communication from
sales representative on call and email has more chances to convert than the lead who
do not allow communication on call and email.

Figure 5.4: Lead Conversion ratio for column "Do Not Call" and "Has opted out of Email". .

Figure 5.5, represent the ratio of lead conversion on the lead with their communica-
tion language. We see that the lead that communicate in German and English have
more conversion ratio compare to other language. It is also seen that the leads that
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speak Russian, Greek, Portuguese Romanian, Hungarian and Estonian languages do not
convert.

Figure 5.5: Lead Conversion ratio as per Language.

Figure 5.6, represent the ratio of lead conversion with respect to level of pitch. We
see that the lead that ask the sales reps to Asked for Permission has greater chance of
conversion. On the other hand lead that allowed communication with any medium has
also good chance of converting.

Figure 5.6: Lead Conversion ratio as per Pitch Level.
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5.2 Results and Analysis

5.2.1 Results without Sampling

Performance Evaluation of Classifiers without Sampling
Evaluation Metric Linear Regression Decision Tree Neural Network Random Forest

Accuracy 0.92 0.90 0.94 0.89
ROC-AUC 0.86 0.67 0.94 0.85
Precision 0.88 0.91 0.93 1
Sensitivity 0.34 0.13 0.52 0.08
Specificity 0.99 0.99 0.99 1
F-Measure 0.49 0.23 0.66 0.15
G-mean 1 0.54 0.34 0.69 0.28
G-mean 2 0.58 0.36 0.72 0.28

Table 5.2: Evaluation metric results for Classifier without Sampling.

Performance Evaluation of Classifiers with Grid Search
Evaluation Metric Decision Tree with Grid Search Random Forest with Grid Search

Accuracy 0.94 0.92
ROC-AUC 0.94 0.91
Precision 0.90 0.97
Sensitivity 0.49 0.30
Specificity 0.99 0.99
F-Measure 0.63 0.46
G-mean 1 0.66 0.54
G-mean 2 0.70 0.55

Table 5.3: Evaluation metric results for Classifier with model tuning technique Grid Search
on without Sampling data.

Table 5.2 present the results of the evaluation metrics for four different classifiers, namely
Linear Regression, Decision Tree, Neural Network, and Random Forest, on the dataset
with under-sampling. The evaluation metrics used in the analysis include Accuracy,
ROC-AUC, Precision, Sensitivity, Specificity, F-Measure, G-mean 1, and G-mean 2.

After examining table 5.2, evaluation metrics on data without sampling, the neural net-
work classifier appears to perform the best on most metrics, with the highest accuracy,
ROC-AUC, precision, sensitivity, F-measure, and G-mean 1 and G-mean 2 scores. The
linear regression classifier performs well, with the second-highest accuracy and precision
scores and the second-highest G-mean 1 and 2 scores, but performs relatively poorly on
sensitivity and ROC-AUC. The random forest classifier has the lowest accuracy score
among the four classifiers, but it has the highest specificity and precision scores. The
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decision tree classifier performs the worst on most metrics, with the lowest scores on
the accuracy, ROC-AUC, precision, sensitivity, F-measure, and G-mean 1 and 2.

However, it is essential to note that the choice of the best classifier ultimately depends on
the specific problem and the available data. While the neural network classifier appears
to be the best-performing classifier in this evaluation, other classifiers may be more
suitable for different data types and problems. Additionally, model tuning techniques
such as Grid Search can also improve the performance of the classifiers.

As shown in Table 5.3, after applying Grid Search to the Decision Tree and Random
Forest classifiers, both classifiers show improvements in their performance metrics. In
particular, the Decision Tree classifier with Grid Search achieves the highest accuracy
and ROC-AUC scores among all classifiers and also shows improvements in precision,
F-measure, and G-mean 1 and 2 scores. The Random Forest classifier with Grid Search
also shows improvements in precision, F-measure, and G-mean 1 and 2 scores, but still
has lower accuracy and ROC-AUC scores than the other classifiers.

Comparing the Decision Tree classifier with Grid Search to the other classifiers, it now
performs better than the neural network classifier on accuracy and ROC-AUC metrics,
but still has lower precision and sensitivity scores. On the other hand, the Random Forest
classifier with Grid Search shows improved precision and F-measure scores, but still has
lower accuracy and ROC-AUC scores than the neural network and linear regression
classifiers.

Overall, the performance improvements after applying Grid Search demonstrate the
effectiveness of this model-tuning technique in improving the performance of classifiers.
However, it is still important to carefully evaluate and compare different classifiers and
model-tuning techniques to select the best approach for a specific problem and dataset.
Figure 5.7 shows the accuracy, sensitivity, and specificity cut-off between the two best
models. Whereas Fig 5.8, shows the ROC curve for all the classifiers.

(a) Cut-off: Accuracy, sensi, speci for LR (b) Cut-off: Accuracy, sensi, speci for ANN

Figure 5.7: Cut-off for two best models i.e. Neural Network and Linear Regression Classifier
on data without sampling
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(a) ROC: Linear Regression without sampling (b) ROC: Decision Tree without sampling

(c) ROC: Neural Network without sampling (d) ROC: Random Forest without sampling

(e) ROC: Decision Tree with Grid Search without sampling (f) ROC: Random Forest with Grid Search

Figure 5.8: ROC for Classifier without sampling data.
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5.2.2 Results without Random Under Sampling

Performance Evaluation of Classifiers with Under Sampling
Evaluation Metric Linear Regression Decision Tree Neural Network Random Forest

Accuracy 0.76 0.69 0.85 0.76
ROC-AUC 0.86 0.67 0.95 0.85
Precision 0.68 0.65 0.92 0.73
Sensitivity 0.34 0.79 0.77 0.84
Specificity 0.84 0.58 0.93 69
F-Measure 0.78 0.72 0.84 0.78
G-mean 1 0.78 0.72 0.84 0.78
G-mean 2 0.76 0.68 0.85 0.76

Table 5.4: Evaluation metric results for Classifier with Under Sampling data.

Performance Evaluation of Classifiers with Grid Search
Evaluation Metric Decision Tree with Grid Search Random Forest with Grid Search

Accuracy 0.83 0.79
ROC-AUC 0.94 0.91
Precision 0.94 0.76
Sensitivity 0.79 0.87
Specificity 0.58 0.72
F-Measure 0.72 0.81
G-mean 1 0.72 0.81
G-mean 2 0.68 0.79

Table 5.5: Evaluation metric results for Classifier with model tuning technique Grid Search
on with Under Sampling data.

The given results present the evaluation metrics for four different classifiers, namely
Linear Regression, Decision Tree, Neural Network, and Random Forest, on the dataset
with under-sampling. The evaluation metrics used in the analysis include Accuracy,
ROC-AUC, Precision, Sensitivity, Specificity, F-Measure, G-mean 1, and G-mean 2.

Based on the results, the Neural Network classifier performed the best with the highest
accuracy of 0.85, highest ROC-AUC of 0.95, highest precision of 0.92, and highest
sensitivity of 0.77. The Decision Tree classifier had the highest sensitivity of 0.79, but
it had a lower accuracy of 0.69 and ROC-AUC of 0.67 compared to other classifiers.

The Random Forest and Linear Regression classifiers had the same accuracy of 0.76,
while the Random Forest had a higher ROC-AUC of 0.85 compared to Linear Regres-
sion’s ROC-AUC of 0.86. The Precision, F-measure, and G-mean values of the Random
Forest classifier were higher than those of Linear Regression.
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In Table 5.5, the evaluation metrics for Decision Tree and Random Forest classifiers
with Grid Search model tuning technique on under-sampled data are presented. The
results show that the Decision Tree classifier with Grid Search had a higher accuracy of
0.83 and ROC-AUC of 0.94, while the Random Forest classifier with Grid Search had a
higher Precision of 0.76 and Sensitivity of 0.87. The G-mean 1 and G-mean 2 values
were also higher for both classifiers with Grid Search than those without Grid Search.

In summary, the Neural Network classifier performed the best in the initial analysis,
while the Decision Tree and Random Forest classifiers with Grid Search had improved
performance in the second analysis. It is important to note that the choice of evaluation
metric depends on the problem’s specific requirements, and different metrics can provide
different insights into the classifier’s performance.

Figure 5.9 shows the accuracy, sensitivity, and specificity cut-off between the two best
models. Whereas Fig 5.10, shows the ROC curve for all the classifiers on under-sampling
data.

(a) Cut-off: Accuracy, sensi, speci for LR (b) Cut-off: Accuracy, sensi, speci for ANN

Figure 5.9: Cut-off for Linear Regression and Neural Network Model on under-sampling data.
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(a) ROC: Linear Regression with under sampling (b) ROC: Decision Tree with under sampling

(c) ROC: Neural Network with under sampling (d) ROC: Random Forest with under sampling

(e) ROC: Decision Tree with Grid Search without sampling (f) ROC: Random Forest with Grid Search

Figure 5.10: ROC for Classifier with under-sampling data.
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5.2.3 Results without Random Over Sampling with SMOTE

Performance Evaluation of Classifiers with Over Sampling
Evaluation Metric Linear Regression Decision Tree Neural Network Random Forest

Accuracy 0.77 0.69 0.86 0.75
ROC-AUC 0.86 0.67 0.95 0.85
Precision 0.71 0.62 0.87 0.70
Sensitivity 0.93 0.95 0.84 0.90
Specificity 0.62 0.43 0.88 0.61
F-Measure 0.80 0.75 0.86 0.78
G-mean 1 0.81 0.77 0.86 0.79
G-mean 2 0.76 0.64 0.86 0.74

Table 5.6: Evaluation metric results for Classifier with Over Sampling with SMOTE.

Performance Evaluation of Classifiers with Grid Search
Evaluation Metric Decision Tree with Grid Search Random Forest with Grid Search

Accuracy 0.86 0.84
ROC-AUC 0.95 0.94
Precision 0.86 0.83
Sensitivity 0.85 0.86
Specificity 0.86 0.82
F-Measure 0.86 0.85
G-mean 1 0.86 0.85
G-mean 2 0.86 0.84

Table 5.7: Evaluation metric results for Classifier with model tuning technique Grid Search
on Over Sampling data with SMOTE.

The given results present the evaluation metrics for four different classifiers, namely
Linear Regression, Decision Tree, Neural Network, and Random Forest, on the dataset
with over-sampling using SMOTE. The evaluation metrics used in the analysis include
Accuracy, ROC-AUC, Precision, Sensitivity, Specificity, F-Measure, G-mean 1, and G-
mean 2.

Based on the results, the Neural Network classifier performed the best with the highest
accuracy of 0.86, highest ROC-AUC of 0.95, highest precision of 0.87, and highest
sensitivity of 0.84. The Decision Tree and Random Forest classifiers had the same
accuracy of 0.75 and 0.69, respectively, and their Sensitivity values were also lower than
those of Neural Network and Linear Regression.

The Linear Regression classifier had a higher Sensitivity value of 0.93, but its other
evaluation metrics were lower compared to other classifiers. The Precision, F-measure,
and G-mean values of the Neural Network classifier were also higher than those of other
classifiers.
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In Table 5.7, the evaluation metrics for Decision Tree and Random Forest classifiers with
Grid Search model tuning technique on over-sampled data using SMOTE are presented.
The results show that both classifiers with Grid Search had improved performance,
with the Decision Tree classifier having a higher accuracy of 0.86, ROC-AUC of 0.95,
Precision of 0.86, and Sensitivity of 0.85. The Random Forest classifier with Grid Search
had a higher Sensitivity of 0.86 and Specificity of 0.82.

In summary, the Neural Network classifier performed the best in the initial analysis,
while the Decision Tree and Random Forest classifiers with Grid Search had improved
performance in the second analysis. It is important to note that the choice of eval-
uation metric depends on the problem’s specific requirements, and different metrics
can provide different insights into the classifier’s performance. The use of SMOTE
over-sampling technique improved the classifiers’ performance, but Grid Search tuning
technique further enhanced their performance.

Figure 5.11 shows the accuracy, sensitivity, and specificity cut-off between the two best
models. Whereas Fig 5.12, shows the ROC curve for all the classifiers on over-sampling
data.

(a) Cut-off: Accuracy, sensi, speci for LR (b) Cut-off: Accuracy, sensi, speci for ANN

Figure 5.11: Cut-off for Linear Regression and Neural Network Model on over-sampling data.
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(a) ROC: Linear Regression with over sampling (b) ROC: Decision Tree with over sampling

(c) ROC: Neural Network with over sampling (d) ROC: Random Forest with over sampling

(e) ROC: Decision Tree with Grid Search with over sampling (f) ROC: Random Forest with Grid Search

Figure 5.12: ROC for Classifier with over sampling data by SMOTE.
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5.3 Findings

Comparing the results of the three tables 5.2, 5.4, and 5.6, we can observe that. The
models trained on the dataset without sampling achieved higher accuracy than those
trained on the dataset with either random under-sampling or random over-sampling
using SMOTE. The Random Forest classifier outperformed the other classifiers in terms
of accuracy, ROC-AUC, and specificity in all three tables. The Neural Network classifier
achieved the highest precision and sensitivity values in all three tables. The Decision
Tree classifier achieved the highest F-measure and G-mean2 values in the table with
random under-sampling, while the Neural Network classifier achieved the highest F-
measure and G-mean2 values in the table with random over-sampling. The G-mean1
values were highest for the Neural Network classifier in the table with random under-
sampling and for the Linear Regression classifier in the table without sampling and with
random over-sampling.
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6 Conclusion and Future Work

Lead scoring is a crucial process for businesses to identify high-quality prospects and
prioritize sales efforts. Traditional rule-based lead scoring methods have limitations,
such as requiring manual adjustments and often producing inconsistent results. Ma-
chine learning offers a promising approach to lead scoring, enabling the automation
of the process and the utilization of large amounts of data to uncover complex pat-
terns and relationships. This thesis aims to explore the effectiveness of various machine
learning algorithms for lead scoring, including logistic regression, decision trees, and
random forest to investigate the impact of different feature selection techniques and
data sampling strategies on the performance of the models. The study will evaluate
the accuracy, efficiency, and interpretability of the models and provide insights into the
practical implementation of machine learning-based lead-scoring systems in real-world
business settings.

6.1 Conclusion

In this thesis, we have explored the use of machine learning for lead scoring in the
context of data sampling. The results have demonstrated that neural networks, logistic
regression, and random forest with grid search are effective methods for lead scoring
and can outperform traditional rule-based methods. Furthermore, we have shown that
feature selection and hyperparameter tuning can significantly impact the performance
of the tree based models.

However, there are also several limitations and challenges associated with machine
learning-based lead scoring, such as the need for high-quality data, the potential for
biasness, and the trade-off between accuracy and interpretability. Therefore, the devel-
opment and implementation of lead-scoring systems using machine learning should be
carefully considered and evaluated in the context of specific business needs and goals.

Overall, this study contributes to the growing body of research on lead scoring using ma-
chine learning and highlights the potential benefits and challenges of this approach. We
hope that the findings and future research directions presented in this thesis can inform
and inspire further advancements in this important area of data-driven marketing.

6.2 Future Work

Based on the findings and limitations of this study, there are several areas for future
research on lead scoring using machine learning. First, one potential direction is to
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explore the use of more advanced techniques for handling imbalanced data, such as
cost-sensitive learning, data resampling, and ensemble methods. These techniques could
improve the performance of the models and reduce the bias towards the majority class.
Second, it may be valuable to investigate the transferability and generalization of the
models to different domains and contexts. This could involve testing the models on new
datasets with different characteristics and comparing their performance to other state-
of-the-art methods. Third, there is an opportunity to investigate the potential impact of
explainable AI techniques on the interpretability and trustworthiness of the lead-scoring
models. This could involve the use of feature importance measures, partial dependence
plots, and other techniques to help users understand the factors that contribute to the
predictions.
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