
10

Wort-Bild-Marke
Dachmarken-
struktur

Angewandte Computer-
und Biowissenschaften

Wirtschafts-
ingenieurwesen

Soziale
 Arbeit

Medien

Ingenieur-
wissenschaften

Sie können die Wort-Bild-Marke mit
dem Namen eines Strukturbereichs
der Hochschule Mittweida ergänzen.
Die Kombination der Marke mit dem
Namen der Fakultät, eines Instituts
oder einer Verwaltungs einheit der
Hochschule wird als „Fahne“ be-
zeichnet. Die Fahne steht immer links
der Wort-Bild-Marke. Die Zuordnung
zueinander darf dabei nicht verändert
werden.

Wort-Bild-Marke_Dachmarkenstruktur

BACHELOR THESIS

Mr
Rasem Soufi

Introduction to Linear Codes &
Binary Hamming Codes

2021

Faculty of Applied Computer Sciences & Biosciences

BACHELOR THESIS

Introduction to Linear Codes &
Binary Hamming Codes

Author:
Rasem Soufi

Study Programme:
Applied Mathematics

Seminar Group:
MA18w1-B

First Referee:
Prof. Dr. rer. nat. Klaus Dohmen

Second Referee:
Prof. Dr. rer. nat. Peter Tittmann

Mittweida, September 2021

I

I. Preface

Since its foundation as an application of algebra, coding theory is obtaining a day by day
increasing importance. For instance, any communication system needs the concepts
of coding theory to function efficiently. In this thesis, reader will find an introductory
explanation to linear codes and binary hamming codes including some of the algebraic
tools devised in their applications. All the described software applications are verified
using SageMath 9.0 using Hochschule Mittweida’s JupyterHub.

I

3

Acknowledgment

First and forever, I am very grateful to God Almighty for His graces and blessings. I
thank my small and big family to their endless support and encouragement.

I would love to specially thank

Prof. Dohmen, for his support and guidance to achieve this work and other
projects by his supervision.

Prof. Tittmann, for his support, encouragement and guidance which I will be all of
my life grateful for.

I would like to thank all my teachers (Prof. Viellmann, Prof. Baaske, Prof. Zaussinger,
Dr. Nebel, Dr. Lange-Geisler, Mr. Stockmann and Mrs. Reader) for the priceless effort
they were giving to afford me and my colleges lectures in the best quality. I would like
to thank all the teaching and managerial staff of faculty of applied computer sciences &
biosciences and of Hochschule Mittweida, you were all part of my chance to catch up
again with my dreams.

To my daughter Ruba.

6

7

II. Contents

Preface . I

Contents . 7

1 Coding Theory . 9

1.1 Minimum distance decoding. 11

1.2 Equivalent Codes . 13

2 Linear Codes . 17

2.1 Construction of Finite Fields. 17

2.1.1 Software Applications. 18

2.2 Structure of Vector Spaces over Finite Fields . 20

2.2.1 Software Application . 20

2.3 Construction of Linear Codes . 21

2.4 Encoding & Parity Check Matrix . 25

2.5 Minimum Distance in Linear Codes . 26

2.6 Short Note regarding Cosets . 27

2.7 Syndrome Decoding . 28

2.8 Software Application . 33

3 Binary Hamming Codes . 37

3.1 Construction of Binary Hamming Codes. 37

3.2 Software Application . 40

Bibliography . 45

8

Chapter 1: Coding Theory 9

1 Coding Theory

Coding theory is the study of codes which apply the concepts of algebra fascinatingly
to correct errors that may occur by transmitting messages through noisy channels. It is
an applied mathematics subject that occurs in many scientific branches as information
theory, computer sciences and electrical engineering. The main mission of applying
coding theory is formulating error correcting codes to encode and decode the messages
in a manner that we overcome the errors which may occur by the transmission through
noisy channels. We will first take a look at a communication system in Figure 1.1.

Figure 1.1: Communication System [Wel04]

Definition 1.1 (cf. [Wel04]) Consider a finite set Σ which will be denoted alphabet and
its elements are symbols. Messages are sequences of symbols. A code C over Σ is a
collection of sequences of symbols from Σ. The members of C are codewords. We will
deal with codes in which the codewords are all of the same length. This type of codes
is called block codes. If the codewords of C have length n and |Σ|= q, then the code is
described as a q-ary code of length n (binary when q = 2, Σ = {0,1}, and ternary when
q = 3, Σ = {0,1,2}). The set of all n-sequences of symbols from Σ is denoted Vn(Σ).
Elements of Vn(Σ) are called vectors or words. Where it is more important to remind
the reader that Σ has q symbols we write Vn(Σ) as Vn(q), while, Vn stands for the set of
binary words of length n. A vector x ∈ Vn will be denoted x = (x1, · · · ,xn) or for brevity
x = x1x2 · · ·xn. The errors we will consider are the swap of symbols in the transmitted

10 Chapter 1: Coding Theory

codewords.

Definition 1.2 The source is supposed to produce sequences of block messages which
are elements of a non-empty already defined finite set of messages B. We will consider
that the block messages are all of the same length. This assumption is meant to ease
the encoding and decoding processes.

Definition 1.3 (cf. [Wel04]) For all x,y ∈ Vn(Σ) we define the Hamming1 distance or
distance d(x,y) between x and y to be the number of places (digits) in which x and y
differ. It can be described as

d(x,y) = |{i | 1 ≤ i ≤ n and xi ̸= yi}|

where x = (x1, · · · ,xn) and y = (y1, · · · ,yn) [HK03].

The minimum distance of a code C written d(C) = mind(ci,c j) where the minimum is
taken over all pairs of distinct codewords in C . Suppose 0 ∈ Σ, we define the weight
w(x) of a word x to be the number of nonzero digits in x. Clearly, w(x) = d(x,0n) where
0n = (0,0, · · · ,0) ∈ Vn(Σ).

In the following theorem we prove that the hamming distance satisfies the axioms of
distance function.

Theorem 1.4 Let x,y and z be words from Vn(Σ), then

1. d(x,y)≥ 0;

2. d(x,y) = 0 if and only if x = y;

3. d(x,y) = d(y,x);

4. d(x,y)≤ d(x,z)+d(z,y).

Proof: For (1), the number of different digits between x and y must be a non-negative
integer. For (2), the words x and y don’t differ in any digit if and only if x = y. The (3) is
obvious.

For (4), suppose d(x,y) = r, then x and y differ in r digits. Now suppose that r′ of these
r digits differ between x and z (then (r− r′) of these digits correspond), which implies
that d(x,z)≥ r′ since they may differ in other positions too. Then (r− r′) of the r digits

1 Named after Richard Wesley Hamming (February 11, 1915 – January 7, 1998) was an American
mathematician whose work had many implications for computer engineering and telecommunications
[https://en.wikipedia.org/wiki/Richard_Hamming].

Chapter 1: Coding Theory 11

must differ between y and z which implies that d(y,z) ≥ r − r′. Combining these two
inequalities, we obtain d(x,z)+d(z,y)≥ r = d(x,y).

Definition 1.5 (cf. [Wel04]) The e-sphere surrounding a word x denoted Se(x) is defined
by

Se(a) = {y | d(x,y)≤ e}.

Definition 1.6 The encoder is a bijective map E from the set of the block messages B
into the code C

E : B → C

We will denote the process of mapping a block message b into a codeword c by encoding
b into c.

Definition 1.7 The decoder has got two steps process. First step is connecting a
received word y ∈ Vn(Σ) to a codeword in C according to a relation R ⊆ Vn(Σ)×C in
which a received word cannot be connected with two different codewords. However, in
general we cannot assume that each received word can be connected to a codeword.
The best case is when the relation R can be considered a map such that the decoder
can decode each received word into a unique codeword. Second step is decoding the
codeword into a block message according to E−1. The exact meaning of the word
decoding should be understood from the syntax.

Since it is an information theoretic topic, we will not discuss deeply the transmission
channels with noise. We will assume that the noise of the channel may change some
symbols of the transmitted codeword. Thus, we will receive a word in Vn(Σ) in the end
of the transmission of a codeword. Further information are described in [Wel04].

1.1 Minimum distance decoding

Definition 1.8 (cf. [Wel04]) The minimum distance decoding means comparing the
received word y with all the possible codewords and then decode it into a codeword
c such that

d(y,c)< d(y,c′) for all c′ ∈ C where c ̸= c′.

The following theorem gives an idea about the importance of the minimum distance
decoding.

12 Chapter 1: Coding Theory

Theorem 1.9 (cf. [Wel04]) If a code has a minimum-distance d, the minimum distance
decoding scheme will correct up to 1

2(d −1) errors.

Proof: (cf. [Wel04]) Take e = ⌊1
2(d−1)⌋ and consider e-sphere surrounding x. Because

of the minimum distance hypothesis, if x and y are distinct codewords, then

Se(x)∩Se(y) = /0

Hence, minimum-error decoding will correct up to e errors.

If a code has M codewords of length n and has minimum distance d, then it is denoted
by (n,M,d)-code [Wel04].

Example 1.10 The repetition code repeats the symbol several times before transmitting
it through the channel [Moo05]. For example, consider a binary repetition code of length
3.

block message codeword 1-sphere
0 c1 = 000 {000,100,010,001}
1 c2 = 111 {111,110,101,011}

Notice that d(c1,c2) = 3. This code is a (3,2,3)-code.

If the message to be transmitted is 101. It will be encoded into 111000111. The decoder
may receive 110010011 from the channel. First we break the received message in
words of length 3 to obtain 110 | 010 | 011 then we decode each word after comparing
the distances with each codeword

word x d(x,c1) d(x,c2)

110 2 1
010 1 2
011 2 1

to obtain 111 | 000 | 111. Now we can decode ito the main message 101.

Decoding mistakes may occur when more than one error effects the words of length 3.
For instance, if the received message in the previous transmission is 110010001. The
decoder will break it in words of length 3 to obtain 110 | 010 | 001 and will decode it into
100 which is not the intended message.

We may notice a special property in the code used in the example 1.10. Each possible
word is an element of exactly one of the 1-spheres of the codewords. This idea motivates
the following definition.

Chapter 1: Coding Theory 13

Definition 1.11 (cf. [Wel04]) A perfect code C over Vn(Σ) for which, there exists t > 0
such that the t-spheres of the codewords are disjoint and their union contains each
possible word of Vn(Σ).

Example 1.12 Consider the binary repetition code of length 4. we will encode 0→ 0000
and 1 → 1111. This code has got a minimum distance of 4. If the decoder receives
the word 1010 which is equidistant from the two codewords. The minimum distance
decoding scheme will fail to connect this word to any of the codewords (as mentioned in
Definition 1.7).

1.2 Equivalent Codes

Definition 1.13 (cf. [Wel04]) Suppose that we have an (n,M,d)-code C . The natural
way to present it is by an M×n array whose rows are the distinct codewords.

Now suppose that π is any permutation of (1,2, · · · ,n) and that for each codeword c∈C ,
we apply the transformation π : c → c′ defined by

c′i = cπ(i) (1 ≤ i ≤ n).

We call such a transformation a positional permutation.

In the same way, if µ is any permutation of the symbols in Σ, we say that µ induces a
symbol permutation of C if, for some i, with 1 ≤ i ≤ n, and for each codeword c ∈ C , we
transform by c → c′, where c′ is defined by

c′j = c j (1 ≤ j ≤ n, j ̸= i), c′i = µ(ci).

Definition 1.14 (cf. [Wel04]) If a code C ′ can be obtained from a code C by a sequence
of positional or symbol permutations, then C ′ is called an equivalent code.

Theorem 1.15 (cf. [Wel04]) If C and C ′ are equivalent codes, then the set of distances
between the codewords of C is identical with that between the codewords of C ′.

Proof: We will show that both positional and symbol permutations do not effect distances,
hence no sequence of them does.

Suppose x = (x1,x2, · · · ,xn),y = (y1,y2, · · · ,yn) are two codewords of (n,M,d)-code C

with distance d(x,y). By applying positional permutation we obtain x′ and y′ where

x′i = xπ(i) y′i = yπ(i)

14 Chapter 1: Coding Theory

Since π is a permutation, x′i = y′i if and only if xi = yi, and x′i ̸= y′i if and only if xi ̸= yi

which implies that d(x′,y′) = d(x,y).

by applying a symbol permutation µ on the position i we obtain x′′ and y′′ where

x′′j = x j y′′j = y j for (1 ≤ j ≤ n, j ̸= i) and x′′i = µ(xi) y′′i = µ(yi)

Since µ is a permutation, x′′i = y′′i if and only if xi = yi, and x′′i ̸= y′′i if and only if xi ̸= yi

which implies that d(x′′,y′′) = d(x,y).

Theorem 1.16 (cf. [Wel04]) If C is an (n,M,d)-code and u is any n-vector over the
same alphabet, then there exists a code C ′ that contains u and is equivalent to C .

Proof: (cf. [Wel04]) The first codeword c1 of C can be transformed into u by at most n
symbol permutations.

Example 1.17 Lets denote the code mentioned in Example 1.10 by C . We can write it
in a matrix manner as follows

C =

(
c1

c2

)
=

(
0 0 0
1 1 1

)
.

The code C ′ obtained from C by applying symbol permutation π(1) = 0,π(0) = 1 on
the first column of the matrix of C ,

C ′ =

(
c′1
c′2

)
=

(
1 0 0
0 1 1

)
is equivalent to C . By applying the positional permutation π(1) = 2,π(2) = 1,π(3) = 3
on the rows of the matrix of C ′, we obtain the equivalent code C ′′ with the codewords

C ′′ =

(
c′′1
c′′2

)
=

(
0 1 0
1 0 1

)
.

We can recognise that the distance between the two codewords of any of the previous
codes is the same

Example 1.18 Now we consider a more exciting example. Consider the ternary code
C consisting of the codewords

Chapter 1: Coding Theory 15

C =

c1

c2

c3

c4

c5

c6

c7

c8

c9

=

0 0 0 0 0
0 1 1 0 2
1 0 2 1 0
1 1 0 1 2
0 2 2 0 1
2 0 1 2 0
2 2 0 2 1
1 2 1 1 1
2 1 2 2 2

.

We may apply the positional permutation π(3) = 5,π(5) = 3,π(1) = 2,π(2) = 4,π(4) =
1 on the rows of the previous matrix to obtain the equivalent code C ′ represented by the
following matrix

C ′ =

c′1
c′2
c′3
c′4
c′5
c′6
c′7
c′8
c′9

=

0 0 0 0 0
0 0 2 1 1
1 1 0 0 2
1 1 2 1 0
0 0 1 2 2
2 2 0 0 1
2 2 1 2 0
1 1 1 2 1
2 2 2 1 2

.

We may apply the symbol permutation π(0) = 2,π(1) = 0,π(2) = 1 on the second
column of the matrix of code C ′ to obtain the code C ′′ represented by the following
matrix

C ′′ =

c′′1
c′′2
c′′3
c′′4
c′′5
c′′6
c′′7
c′′8
c′′9

=

0 2 0 0 0
0 2 2 1 1
1 0 0 0 2
1 0 2 1 0
0 2 1 2 2
2 1 0 0 1
2 1 1 2 0
1 0 1 2 1
2 1 2 1 2

.

It is easy to verify that d(ci,c j) = d(c′i,c′j) = d(c′′i ,c′′j) for all i, j ∈ {1, · · · ,9}.

16

Chapter 2: Linear Codes 17

2 Linear Codes

Linear Codes overcome the problem of computing the distances between a received
word and each of the codewords of a code, specially when the code contains a huge
number of codewords [Wel04]. In this chapter we will discuss the general idea of linear
codes. However, we need first to be familiar with the algebraic structures which are used
in the construction of linear codes.

2.1 Construction of Finite Fields

Theorem 2.1 (cf. [WJu18]) For every prime p and every positive integer n, there exists
a finite field F with pn elements.

Theorem 2.1 has got another part, which shows that finite fields of the same size are
isomophic (similar in structure). Introducing the proof of this theorem requires algebraic
concepts that are out of the range of this work. Reader can find more details in [WJu18].
We will move to the algorithm of constructing finite fields of pn elements where p is prime
and n is a positive integer.

Algorithm 1 (cf. [WJu18]) To construct a field of pn elements

(1) We search for an irreducible polynomial f (x) ∈ Fp[x] of degree n,

f (x) = a0 +a1x+a2x2 + · · ·+anxn.2

(2) We assume that α is a zero of the polynomial, f (α) = 0.

(3) The set of the elements of Fpn is

Fpn = {b0 +b1α +b2α
2 + · · ·+bn−1α

n−1 | bi ∈ Fp and f (α) = 0}.

Addition and Multiplication are defined modulo p.

Example 2.2 We construct the field F32 . The polynomial f (x) = x2 + 1 is of degree 2
and irreducible in F3[x] since f (0) = 1 and f (1) = f (2) = 2. Now we assume that α is

2 Notice that the set of all polynomials with coefficients in a field F and a variable x is denoted F [x].

18 Chapter 2: Linear Codes

a zero of f (x), in other words f (α) = 0. Then the elements we are searching for are

F32 = {0,1,2,α,2α,1+α,1+2α,2+α,2+2α}.

The operations addition and multiplication modulo 3 - denoted ⊕,⊙ respectively - with
respect to α2 = 2 are obtained as in the following tables.

⊕ 0 1 2 α 2α 1+α 1+2α 2+α 2+2α

0 0 1 2 α 2α 1+α 1+2α 2+α 2+2α

1 1 2 0 1+α 1+2α 2+α 2+2α α 2α

2 2 0 1 2+α 2+2α α 2α 1+α 1+2α

α α 1+α 2+α 2α 0 1+2α 1 2+2α 2
2α 2α 1+2α 2+2α 0 α 1 1+α 2 2+α

1+α 1+α 2+α α 1+2α 1 2+2α 2 2α 0
1+2α 1+2α 2+2α 2α 1 1+α 2 2+α 0 α

2+α 2+α α 1+α 2+2α 2 2α 0 1+2α 1
2+2α 2+2α 2α 1+2α 2 2+α 0 α 1 1+α

⊙ 0 1 2 α 2α 1+α 1+2α 2+α 2+2α

0 0 0 0 0 0 0 0 0 0
1 0 1 2 α 2α 1+α 1+2α 2+α 2+2α

2 0 2 1 2α α 2+2α 2+α 1+2α 1+α

α 0 α 2α 2 1 2+α 1+α 2+2α 1+2α

2α 0 2α α 1 2 1+2α 2+2α 1+α 2+α

1+α 0 1+α 2+2α 2+α 1+2α 2α 2 1 α

1+2α 0 1+2α 2+α 1+α 2+2α 2 α 2α 1
2+α 0 2+α 1+2α 2+2α 1+α 1 2α α 2

2+2α 0 2+2α 1+α 1+2α 2+α α 1 2 2α

2.1.1 Software Applications

Fortunately, one of the applications of mathematics software systems is to help us build
complicated mathematical structures. For instance, we do not need to go through the
previous process each time we want to construct a finite field. To do so, we can use
SageMath.

In the beginning, we need to construct our finite field F using the routine GF(q,'var').
In the following example, we will form F32 using variable a.

1 sage: F = GF(9,'a');F
2 Finite Field in a of size 3^2

Chapter 2: Linear Codes 19

The arguments we passed to the routine GF are GF(Pn,variable). It is convenient to
pass the number of elements we need in F . However, it is more practical to pass the
variable you want the routine to use in the construction polynomial which we can check
as follows.

1 sage: F.polynomial ()
2 a^2 + 2*a + 2

Now we can list the elements of our field.
1 sage: L = list(F);L
2 [0, a, a + 1, 2*a + 1, 2, 2*a, 2*a + 2, a + 2, 1]

To assign an element of F to a variable, we can do as follows.
1 sage: x = F('a+1')
2 sage: y = F('2*a')
3 sage: z = F(1)
4 sage: b = F(0)

Now we can apply addition and multiplication (mod p).
1 sage: x + y
2 1
3 sage: x * y
4 a + 2

We can also calculate the additive and the multiplicative inverses.
1 sage: -x
2 2*a + 2
3 sage: y^(-1)
4 s*a + 1

Even subtraction and division are defined.
1 sage: x-y
2 2*a + 1
3 sage: x/y
4 2*a

You can even consider multiplication and addition over equivalence classes of the elements
of F . The result will be reduced to the default element of F .

1 sage: F('4*a^2') * F('5*a^3')
2 a
3 sage: F('4*a^2') + F('5*a^3')
4 2*a

Even though elements of F are of a special type in SageMath

1 sage: type(F(1))
2 <class 'sage.rings.finite_rings.element_givaro.FiniteField_givaroElement '>
3 sage: type (1)
4 <class 'sage.rings.integer.Integer '>

addition, multiplication, subtraction and division operators are overloaded to handle
operations as follows.

20 Chapter 2: Linear Codes

1 sage: F(2) + 17
2 1
3 sage: F(2*a^2) * 5
4 a + 1

The integer which occurs in such operations is taken (mod p). That is why we should
be careful specially with division.

1 sage: F(2) / 6
2 ZeroDivisionError: division by zero in finite field

For further explanation, consider [SMb].

2.2 Structure of Vector Spaces over Finite Fields

The axioms of vector space definition did not specify a special type of fields to be used
in the construction [WJu18]. With appropriate vector space operations (vector addition
and scalar multiplication) we may construct vector spaces over finite fields.

Consider the set Fm
pn where p is prime and m,n are positive integers. It can be presented

as
Fm

pn = {(x1, · · · ,xm) | xi ∈ Fpn for i = 1, . . . ,m}.

For each two elements x = (x1, . . . ,xm),y = (y1, . . . ,ym) ∈ Fm
pn we define the vector

addition by
x+y = (x1 + y1 (mod p), · · · ,xm + ym (mod p)).

For each α ∈ Fpn and x ∈ Fm
pn we define the scalar multiplication by

αx = (αx1 (mod p), · · · ,αxm (mod p)).

It is easy to show that these operations fulfil the vector space axioms.

2.2.1 Software Application

We will discuss some routines and definitions of vector spaces in SageMath. To define
a vector space, we need to know the field over which it is defined and its dimension. We
pass these arguments to the routine VectorSpace(). Lets consider the vector space
V of dimension 5 over F7.

1 sage: V = VectorSpace(GF(7) ,5)

Now we can deal with vectors of V .
1 sage: X = V([2,3,1,0,1])

The constructor is going to take the values (mod p).

Chapter 2: Linear Codes 21

1 sage: Y = V([9,19,-1,1,8]);Y
2 (2, 5, 6, 1, 1)

Now we can apply addition and subtraction between vectors.
1 sage: X+Y
2 (4, 1, 0, 1, 2)
3 sage: X-Y
4 (0, 5, 2, 6, 0)

We can also multiply the vector by a scalar
1 sage: 7*X
2 (0, 0, 0, 0, 0)

We may choose the scalar to be any element of our field.
1 sage: GF (7)(4^(-1))*X
2 (4, 6, 2, 0, 2)

In addition, we can define a subspace of V . We need only the vectors that span the
subspace W .

1 sage: W = V.subspace ([V([1,1,0,3,-1]),V([2,0,5,-5,0])]);W
2 Vector space of degree 5 and dimension 2
3 over Finite Field of size 7
4 Basis matrix:
5 [1 0 6 1 0]
6 [0 1 1 2 6]

Note that the basis computed by SageMath is row reduced. If the vectors we choose
are not linearly independent, we still can span a subspace using the same method.

1 sage: S = V.subspace ([V([1,1,0,3,-1]),V([4,4,0,12,-4]),
2 V([2 ,0 ,5 ,3 ,5])]); S
3 Vector space of degree 5 and dimension 2
4 over Finite Field of size 7
5 Basis matrix:
6 [1 0 6 5 6]
7 [0 1 1 5 0]

The documentation [SMc] is considered for further reading to apply linear algebra in
sagemath.

2.3 Construction of Linear Codes

The only condition to be able to construct and use linear codes is that the cardinality
of the alphabet Σ is a prime power pm such that we can consider Σ the finite field Fpm

and the set Vn(Σ) is the vector space of dimension n over Fpm , a typical member of
which will be denoted by x = (x1,x2, · · · ,xn), which, for brevity, will be sometimes written
x= x1 · · ·xn where xi ∈Fpm [Wel04]. Lets consider the block messages which we want to
encode to be k-sequences of symbols of Σ. Then, we can expand the block messages
to be the elements of the vector space Vk(Σ) [Wel04].

22 Chapter 2: Linear Codes

Definition 2.3 (cf. [Wel04]) A linear code C over Σ is defined to be any subspace of
Vn(pm). If C is a k-dimensional subspace, then we denote it by [n,k]-code.

Definition 2.4 (cf. [Wel04]) We define a generator matrix for a linear [n,k]-code C to
be any k×n matrix whose rows are k linearly independent codewords of C .

Theorem 2.5 (cf. [Wel04]) Suppose G is a generator matrix of C and G′ is any other
matrix obtained from G by any finite sequence of operations of the following types:

1. Permuting rows.

2. Multiplying a row by a nonzero scalar.

3. Adding to a row a scalar multiple of another row.

4. Permuting columns.

5. Multiplying any column by a nonzero multiple.

Then G′ is a generator matrix of a code C ′ which is equivalent to C .

Proof: Let C be a linear [n,k]-code generated by the k × n matrix G all defined over
the field F . Denote the row vectors of G by ri for i = 1,2, · · · ,k. We want to show that
each of the operations (1)− (5) gives a matrix G′ which is the generator matrix of an
equivalent code C ′.

For (1), the vector space spanned by the row vectors of G will not be changed by any
permutation of them.

For (2), let α ∈ F be a nonzero element. Multiplying a row vector ri of G by α is
replacing ri by r′i = αri to obtain G′. Any vector of the span of the row vectors of G′ is
obtained by

α1r1 +α2r2 + · · ·+ αir′i + · · ·+αkrk =

α1r1 +α2r2 + · · ·+ αi(αri) + · · ·+αkrk =

α1r1 +α2r2 + · · ·+ (αiα)ri + · · ·+αkrk ∈ C

where α1, · · · ,αk ∈ F .

What we actually do by applying (3) is replacing a row vector ri by a linear combination
µri +βr j = r′i to obtain G′. In the same manner as in the operation (2), any vector in
the span of the row vectors of G′ is obtained by

Chapter 2: Linear Codes 23

α1r1 + · · ·+ α jr j + · · ·+ αir′i + · · ·+αkrk =

α1r1 + · · ·+ α jr j + · · ·+ αi(µri +βr j) + · · ·+αkrk =

α1r1 + · · ·+ (α j +αiβ)r j + · · ·+ (αiµ)ri + · · ·+αkrk ∈ C

where α1, · · · ,αk ∈ F .

For instance, any finite sequence of the previous three operations will give us a k× n
matrix G′ that generates the code C ′ which is identical to C .

Now we will show that operation (4) is equivalent to the positional permutation in the full
matrix of the code. Let G be

g11 g12 · · · g1i · · · g1 j · · · g1n

g21 g22 · · · g2i · · · g2 j · · · g2n
...

...
...

...
...

gk1 gk2 · · · gki · · · gk j · · · gkn

 .

Since the code C is the span of the row vectors of G, an element in C can be described
as

c = (α1g11 + α2g21 + · · · + αkgk1,

α1g12 + α2g22 + · · · + αkgk2,

· · ·
α1g1i + α2g2i + · · · + αkgki,

· · ·
α1g1 j + α2g2 j + · · · + αkgk j,

· · ·
α1g1n + α2g2n + · · · + αkgkn)

where α1, · · · ,αk ∈ F . Without loss of generatlity, assume that we permute the columns
i and j in G to obtain G′. An element of C ′ will be obtained as follows,

c′ = (α1g11 + α2g21 + · · · + αkgk1,

α1g12 + α2g22 + · · · + αkgk2,

· · ·
α1g1 j + α2g2 j + · · · + αkgk j,

· · ·
α1g1i + α2g2i + · · · + αkgki,

· · ·
α1g1n + α2g2n + · · · + αkgkn).

Thus, columns permutation in the generator matrix is equivalent to positional permutation
of the full matrix of the code.

For (5) and by the same manner, let us multiply the column i of G by the nonzero

24 Chapter 2: Linear Codes

element α ∈ F . We obtain

G′ =

g11 g12 · · · αg1i · · · g1n

g21 g22 · · · αg2i · · · g2n
...

...
...

...
gk1 gk2 · · · αgki · · · gkn

 .

The position i in a codeword c′ ∈ C ′ will be c′i = α(ci) which is equivalent to symbol
permutation in position i.

Theorem 2.6 (cf. [Wel04]) Let G be any k×n matrix whose rows are linearly independent.
Then, by applying a sequence of operations of type (1)− (5) of Theorem 2.5 to G, it is
possible to transform G into a matrix of type [Ik,A], where Ik is the k× k identity matrix.

Proof: suppose

G =

g11 g12 · · · g1n

g21 g22 · · · g2n
...

...
. . .

...
gk1 gk2 · · · gkn

 .

We will denote the rows by ri for 1 ≤ i ≤ k and denote columns by c j for 1 ≤ j ≤ n.
We will start with g11 ∈ r1 and then we repeat the steps on the elements gll ∈ rl for
l = 2,3, · · · ,k in order.

(Step1) If g11 = 0 exchange c1 with c j such that g1 j ̸= 0,

(Step2) In the new matrix, transform r1 into g−1
11 r1 to obtain r1 = (1,g(1)12 , · · · ,g

(1)
1n),

(Step3) Transform each row ri into ri +(−gi1)r1 for 1 ≤ i ≤ k and i ̸= 1 to obtain ri =

(0,g(1)i2 , · · · ,g(1)in),

we obtain the following matrix

G(1) =

1 g(1)12 · · · g(1)1n

0 g(1)22 · · · g(1)2n
...

...
. . .

...

0 g(1)k2 · · · g(1)kn

 .

Now we repeat the previous three steps on each new matrix with respect to the elements
gll for l = 2,3, · · · ,k in order. This is possible since the rank of G is k. The matrix G(k)

is of the desired form.

Chapter 2: Linear Codes 25

2.4 Encoding & Parity Check Matrix

Now we are ready to discuss the encoding process of a linear code. Suppose that C is
a linear [n,k]-code over Fpm = Σ, and it has generator matrix G defined as

G =

r1

r2
...

rk

= [Ik,A]

where the ri are n-vectors over Fpm and A is a k × (n− k) matrix (cf. [Wel04]). The
codewords of C are all the (pm)k vectors of length n of the form

k

∑
i=1

airi where ai ∈ Fpm (cf. [Wel04]).

The basic idea of encoding is as follows. If the block message is s = (s1, · · · ,sk), we
encode s into the codeword c = (c1, · · · ,cn) where the ci are given by the rule

ci = si (1 ≤ i ≤ k), (2.1)

(ck+1, · · · ,cn) = sA (cf. [Wel04]). (2.2)

In other words,
(c1, · · · ,cn) = (s1, · · · ,sk)G.

The equations (2.1) and (2.2) can be written in the form

(s1, · · · ,sk)A = (c1, · · · ,ck)A = (ck+1, · · · ,cn)

(−c1,−c2, · · · ,−ck,0, · · · ,0︸ ︷︷ ︸
n−k

)

[
−A
In−k

]
= (0, · · · ,0︸ ︷︷ ︸

k

,ck+1, · · · ,cn)

[
−A
In−k

]

(c1, · · · ,cn)

[
−A
In−k

]
= (0, · · · ,0︸ ︷︷ ︸

n−k

) = 0n−k

so that they are equivalent to
[−AT, In−k]cT = 0T

k .

The matrix
H = [−AT, In−k] (2.3)

is called the parity-check matrix of the code (cf. [Wel04]).

What we have shown above is that a vector z is a codeword of C if and only if HzT = 0T
k

[Wel04]. In other words, the parity check matrix defines a linear map in which the kernel
is our code [WJu18]. It owes its name to the fact that what we are doing is adding on

26 Chapter 2: Linear Codes

some check digits to correct errors in the received words [Wel04]. For that reason, in an
[n,k]-code, the first k digits of a codeword are often called the message digits and the
remaining n− k are the check digits [Wel04].

Example 2.7 The code C used in Example 1.18 is a linear code over the alphabet
F3 = {0,1,2}, generated by the matrix

G =

(
1 0 2 1 0
0 1 1 0 2

)
.

The codewords c1, · · · ,c9 are generated as ci = xiG where xi for i = 1, · · · ,9 are the 9
different elements of F2

3 . In the generator matrix, we recognise the following matrix

A =

(
2 1 0
1 0 2

)
.

Now we can construct the parity check matrix

H =

1 2 1 0 0
2 0 0 1 0
0 1 0 0 1

It can be easily verified that

HcT
i =

0
0
0

 for i = 1, · · · ,9

Note that in the previous example, 2 codewords, namely(
c2

c3

)
=

(
1 0 2 1 0
0 1 1 0 2

)
,

were sufficient to generate the whole code consisting of 9 codewords. This is one of
the advantages of linear codes. They allow k codewords to describe a code consisting
of (pm)k codewords [Wel04]. This is derived from the vector spaces property that a k
dimensional subspace is completely described when we have k linearly independent
vectors from it [Wel04].

2.5 Minimum Distance in Linear Codes

After the construction of the linear code, we will discuss its minimum distance.

Chapter 2: Linear Codes 27

Lemma 2.8 Let x,y and z be vectors from vn(pm), we obtain

d(x+ z,y+ z) = d(x,y).

Proof: Let x = (x1,x2, · · · ,xn), y = (y1,y2, · · · ,yn) and z = (z1,z2, · · · ,zn). Then x+ z =
(x1 + z1, · · · ,xn + zn) and y+ z = (y1 + z1, · · · ,yn + zn). It follows,

xi + zi = yi + zi ⇔ xi = yi

xi + zi ̸= yi + zi ⇔ xi ̸= yi

}
for i = 1, · · · ,n.

Theorem 2.9 (cf. [Wel04]) The minimum distance of a linear code C is the minimum
weight of a nonzero vector in C .

Proof: (cf. [Wel04]) Let d be the minimum distance of an [n,k]-code C and suppose x
and y are codewords with d(x,y) = d. Since C is a linear subspace, the vector (x−y)
is also a codeword of C . Thus

w(x−y) = d(x−y,0n) = d(x−y+y,0n +y) = d(x,y) = d,

implies that the minimum weight is at most d. However, it cannot be strictly less than d.
Assume that z ∈ C and z ̸= 0n with w(z)< d, then we would obtain

w(z) = d(z,0n)< d

which is a contradiction since 0n ∈ C .

What we actually do by defining and encoding using linear codes is that we transform
our block messages vector space to a higher dimensional vector space where we can
distribute the codewords in a manner that we obtain greater distances between them
[WJu18]. If we know the minimum distance d of an [n,k]−code, we denote it [n,k,d]−code.
Notice that an [n,k,d]−code over Fpm is denoted in general form by (n,(pm)k,d) [Wel04].

2.6 Short Note regarding Cosets

We will deal with the concept of cosets to construct the decoding scheme of our linear
code.

Definition 2.10 (cf. [WJu18]) Let G be a group and H be a subgroup of G. Define a left
coset of H with representative g ∈ G to be the set gH = {gh | h ∈ H}. right coset can
be defined similarly by Hg = {hg | h ∈ H}.

28 Chapter 2: Linear Codes

In our work, our linear code C is a subspace, which will be considered a subgroup of
the commutative additive group (Vn(Pm),+). because of commutativity, left and right
cosets of C coincide. Thus, to work with a coset, we do not need the notation left or
right [WJu18]. Furthermore, we will describe cosets additively.

Lemma 2.11 (cf. [WJu18]) Let H be a subgroup of an additive group G and suppose
that g1,g2 ∈ G. The following conditions are equivalent.

1. g1 +H = g2 +H;

2. g2 ∈ g1 +H;

3. g1 +(−g2) ∈ H.

Proof: ((1) ⇒ (2)) If g1 +H = g2 +H then there exist h1,h2 ∈ H such that g1 + h1 =

g2 +h2. By cancellation law g2 = g1 +(h1 +(−h2)). Let h1 +(−h2) = h. It must be an
element of H. Thus, g2 = g1 +h ∈ H.

((2) ⇒ (3)) If g2 is an element of g1 + H, then, there exists h ∈ H such that g2 =

g1 +h. By cancellation law, g1 +(−g2) =−h. Since H is a subgroup, −h ∈ H and thus
g1 +(−g2) ∈ H.

((3) ⇒ (1)) Consider g1 +(−g2) ∈ H where g1,g2 ∈ G \H. Then there exists h ∈ H
such that

g1 +(−g2) = h

g1 +(−g2) = h+h1 +(−h1) for h1 ∈ H

g1 +h1 = g2 +(h+h1) by cancellation law

g1 +h1 = g2 +h2. for h+h1 = h2 ∈ H

Hence, g1 +H = g2 +H.

2.7 Syndrome Decoding

By transmitting a codeword c = (c1, · · · ,cn) through the channel, the decoder may
receive the word y = (y1, · · · ,yn). Lets take a deeper look at the digits of y and c.
Since yi,ci ∈ Fpm , then there exists ei ∈ Fpm such that yi = ci + ei for i = 1, · · · ,n and

ei = 0 if and only if yi = ci

ei ̸= 0 if and only if yi ̸= ci

By gathering the values ei in one vector, we obtain the error vector e = (e1, · · · ,en)

where y = c+ e. Our mission is to find the vector e such that we can decode y into

Chapter 2: Linear Codes 29

c = y+(−e).

Lemma 2.12 (cf. [Wel04]) If y is the received vector, then the set of possible error
vectors is the coset of C that contains the vector y.

Proof: (cf. [Wel04]) If y is received, then e is an error vector of y if and only if there exists
a codeword c ∈ C such that e = y− c. Since C is a subspace, if c ∈ C , then −c ∈ C

and thus e = y+ c′ (with c′ =−c) and e ∈ y+C .

Definition 2.13 (cf. [Wel04]) For each coset a+C , we call a vector z0 ∈ a+C a coset
leader if that coset contains no other vector with smaller weight. Unfortunately, the coset
leader is not always uniquely determined.

Theorem 2.14 (cf. [Wel04]) Two vectors y1 and y2 are in the same coset with respect
to C if and only if

HyT
1 = HyT

2 .

Proof: The vectors y1 and y2 are in the same coset if and only if there exists some
codeword c such that

y1 = y2 + c
yT

1 = (y2 + c)T = yT
2 + cT

HyT
1 = H(yT

2 + cT)

= HyT
2 +HcT.

However, HcT = 0T
k .

Definition 2.15 (cf. [Wel04]) The syndrome of the coset a+C is the vector HaT. By
Theorem 2.14, it is well defined.

Now we are ready to construct our decoding algorithm.

Algorithm 2 (cf. [Wel04])

Step(1): Formulate a look up table in which for each coset a+C we assign the syndrome
and we choose the coset leader.

Step(2): On receiving y, calculate its syndrome HyT.

30 Chapter 2: Linear Codes

Step(3): From the above look up table, read off the corresponding coset leader z0.

Step(4): Decode y as the vector y+(−z0).

Theorem 2.16 (cf. [Wel04]) Algorithm 2 is a minimum-distance decoding scheme for
the linear code C .

Proof: (cf. [Wel04]) First note that any received vector y is decoded as a codeword. This
is because y and z0 are in the same coset. Hence y+(−z0) ∈ C

Suppose that there is a codeword c with

d(y,y+(−z0))> d(y,c).

Then, equivalently,
d(z0,0n)> d(y+(−c),0n)

This means that the weight w(z0)> w(y+(−c)). However,

H(y+(−c))T = HyT +(−HcT) = HyT

since c is a codeword, so y−c has the same syndrome as y and according to Theorem
2.14, belongs to the same coset as y and has weight strictly less than that of the coset
leader z0, which is a contradiction.

Example 2.17 Consider the binary code C generated by the matrix

G =

1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

 .

The parity check matrix is

H =

1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1

 .

The block messages are the elements of F3
2 . We generate our code by multiplying each

Chapter 2: Linear Codes 31

block message by the generator matrix from the left.

000 →
100 →
010 →
001 →
110 →
101 →
011 →
111 →

C =

000000,
100110,
010110,
001011,
110011,
101110,
011101,
111000

As mentioned earlier, a codeword c consists of three message digits and three check
digits as follows

c = c1c2c3︸ ︷︷ ︸
message digits

c4c5c6︸ ︷︷ ︸
check digits

.

Now we can formulate our look up table

Coset Leader Coset Syndrome

v1 = 000000
{000000,100101,010110,001011,
110011,101110,011101,111000}

0
0
0

v2 = 100000

{100000,000101,110110,101011,
010011,001110,111101,011000}

1
0
1

v3 = 010000

{010000,110101,000110,011011,
100011,111110,001101,101000}

1
1
0

v4 = 001000

{001000,101101,011110,000011,
111011,100110,010101,110000}

0
1
1

v5 = 000100

{000100,100001,010010,001111,
110111,101010,011001,111100

1
0
0

v6 = 000010

{000010,100111,010100,001001,
110001,101100,011111,111010}

0
1
0

v7 = 000001

{000001,100100,010111,001010,
110010,101111,011100,111001}

0
0
1

v8 = 001100

{001100,101001,011010,000111,
111111,100010,010001,110100}

1
1
1

32 Chapter 2: Linear Codes

Suppose that we want to send the message 001101110. To encode this message, first
we break it in blocks of three digits

001 | 101 | 110.

We obtain the corresponding codewords by multiplying each block by the generator
matrix from the left. The result is

001011 | 101110 | 110011

which we can transmit.

Lets consider that the decoder receives 101011101110111111. First we break the
received word into blocks of length 6 to obtain

y1 = 101011 | y2 = 101110 | y3 = 111111.

We calculate the syndromes of these vectors

HyT
1 =

1
0
1

 HyT
2 =

0
0
0

HyT
3 =

1
1
1

Now we can decode the vectors y1,y2 and y3 as follows

y1 → y1 +(−v2) = 001011

y2 → y2 +(−v1) = 101110

y3 → y3 +(−v8) = 110011.

Finally, we decode each codeword into the sequence consisting of the first three digits
to obtain the main message.

Notice that we may choose the vector v8 differently. For instance, if we choose v′8 =

010001 then we would have decoded the previous received message as follows

y3 → y3 +(−v′8) = 101110

which is not the transmitted codeword. However, the minimum distance of our code is
d(C) = 3 thus, it is not expected to correct more than one error.

To overcome the scenario in which we will not be able to decode a received word
uniquely, we may choose the coset leader arbitrary from the many coset elements with
minimum weight as we have done in the previous example. Regardless this disadvantage,
linear codes are widely used since they ease the minimum distance decoding scheme
by using the syndrome decoding scheme [Wel04].

Chapter 2: Linear Codes 33

2.8 Software Application

In this section, we will implement a linear code using SageMath where numerous routines
are defined regarding coding theory.

In the beginning, we need to define the finite field over which we will define our code. In
our example, the finite field is F3.

1 sage: F = GF(3)

By this point, we already know that we need a k×n matrix over Fpm of linearly independent
rows to be the generator matrix of a code which is meant to encode block messages
of length k into codewords of length n. In our example, we will encode 3 digits block
messages into 11 digits codewords that we obtain a large minimum distance. Now we
form the row vectors of our matrix.

1 sage: u = vector(F, [1,2,0,1,0,0,3,1,1,0,0])
2 sage: v = vector(F, [0,2,1,0,1,2,0,2,0,1,0])
3 sage: w = vector(F, [2,2,0,0,0,0,1,0,2,2,1])

Then we define our matrix as follows.
1 sage: M = matrix ([u,v,w])

Now we can define our code.
1 sage: C = LinearCode(M)
2 sage: C
3 [11, 3] linear code over GF(3)
4 sage: type(C)
5 <class 'sage.coding.linear_code.LinearCode_with_category '>

Now we will see the behaviour of some attributes of the linear code class.
1 sage: C.generator_matrix ()
2 [1 2 0 1 0 0 0 1 1 0 0]
3 [0 2 1 0 1 2 0 2 0 1 0]
4 [2 2 0 0 0 0 1 0 2 2 1]
5 sage: C.parity_check_matrix ()
6 [1 0 0 0 0 0 0 0 2 0 0]
7 [0 1 0 0 0 0 0 0 1 1 0]
8 [0 0 1 0 0 0 0 0 0 2 2]
9 [0 0 0 1 0 0 0 0 2 0 2]

10 [0 0 0 0 1 0 0 0 0 2 2]
11 [0 0 0 0 0 1 0 0 0 1 1]
12 [0 0 0 0 0 0 1 0 0 0 2]
13 [0 0 0 0 0 0 0 1 2 1 0]

We can even print the codewords of our code.
1 sage: for i in C: print(i)

Maybe the most important information to know about our code is its minimum distance.
1 sage: C.minimum_distance ()
2 5

34 Chapter 2: Linear Codes

Now we know that our code can correct up to two errors.

There is a default attribute to standardize the generator matrix of a code. However,
a matrix over a finite field is in general an immutable data type. Thus, we will not be
able to use this attribute. In some cases, we will be able to use it (we will do so in
another example). To standardize our code, we shall initialize the row vectors of our
matrix before defining it. The following routines are supposed to help us formulate a
standardized matrix using the operations from Theorem 2.5.

1 sage: def vectors_initializer(i,Mat):
2 sage: if Mat[i][i] == 0:
3 sage: L = []
4 sage: LL= []
5 sage: index = 0
6 sage: for j in range(len(Mat[i])):
7 sage: L.append (0)
8 sage: for j in range(len(Mat)):
9 sage: LL.append(copy(L))

10 sage: for j in range(i,len(Mat[i])):
11 sage: if Mat[i][j] != 0:
12 sage: index = j
13 sage: for j in range(len(Mat)):
14 sage: LL[j][index] = Mat[j][i]
15 sage: LL[j][i]=Mat[j][index]
16 sage: for j in range(len(Mat)):
17 sage: for k in range(len(Mat[i])):
18 sage: if k != i:
19 sage: if k!= index:
20 sage: LL[j][k]= Mat[j][k]
21 sage: for j in range(len(LL)):
22 sage: LL[j] = vector(F,LL[j])
23 sage: Mat = LL
24 sage: if Mat[i][i] != 1:
25 sage: scalar = 1/Mat[i][i]
26 sage: for j in range(i,len(Mat[i])):
27 sage: Mat[i][j] = Mat[i][j] * scalar
28 sage: for k in range(len(Mat)):
29 sage: if k != i:
30 sage: if Mat[k][i] != 0 :
31 sage: Vector = (-Mat[k][i]) * Mat[i]
32 sage: Mat[k] = Mat[k] + Vector
33 sage: return(Mat)
34 sage: def initialate (List):
35 sage: for i in range(len(List)):
36 sage: List = vectors_initializer(i,List)
37 sage: return(List)
38 sage: def initialized_matrix(List):
39 sage: L = copy(List)
40 sage: L = initialate(L)
41 sage: return(matrix(L))

A standardized matrix, which we will use to build a code equivalent to our code, is
obtained by passing the row vectors of the main matrix as a list to the routine initialized_matrix().

1 sage: MM = initialized_matrix ([u,v,w])

Now we can use the previous matrix to build a code.
1 sage: CC = LinearCode(MM)

Chapter 2: Linear Codes 35

2 sage: CC.generatormatrix ()
3 [1 0 0 2 0 0 1 2 1 2 1]
4 [0 1 0 1 0 0 1 1 0 2 1]
5 [0 0 1 1 1 2 1 0 0 0 1]
6 sage: CC.parity_check_matrix ()
7 [1 0 0 0 0 0 0 0 2 0 0]
8 [0 1 0 0 0 0 0 0 1 1 0]
9 [0 0 1 0 0 0 0 0 0 2 2]

10 [0 0 0 1 0 0 0 0 2 0 2]
11 [0 0 0 0 1 0 0 0 0 2 2]
12 [0 0 0 0 0 1 0 0 0 1 1]
13 [0 0 0 0 0 0 1 0 0 0 2]
14 [0 0 0 0 0 0 0 1 2 1 0]

Maybe comparing the distances between the codewords of the codes C and CC is a
good practice. In our example, we will compare their weights. Further comparisons are
left for the reader. We define the following routines.

1 sage: def zeros_number (Vector):
2 sage: number = 0
3 sage: for i in Vector:
4 sage: if i==0 :
5 sage: number += 1
6 sage: return(number)
7 sage: def number_nonzeros (Vector):
8 sage: return(len(Vector) - zeros_number(Vector))
9 sage: def Hamming_weights (C):

10 sage: L = []
11 sage: for i in C:
12 sage: L.append(len(i) - zeros_number(i))
13 sage: L.sort()
14 sage: return(L)

Now we can pass a code C to Hamming_weights() to obtain a sorted list of the weights
of the codewords of C.

1 sage: CWeights = Hamming_weights(C); print(Cweights)
2 sage: CCWeights = Hamming_weights(CC); print(CCweights)
3 [0, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8,
4 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10]
5 [0, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8,
6 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10]

We recognize that both codes have the same list of weights.

Lets try to put our code CC in use. First we need to construct the channel which we use
to transmit codewords. To do so, there are many constructors. In our example, we will
construct a channel regarding the codewords vector space and the number of errors per
codeword.

1 sage: n_err = 2
2 sage: G = F^11
3 sage: Chan = channels.StaticErrorRateChannel(G,n_err)

We can use this channel to transmit codewords. Thus we want to encode a random
block message (since receiver is not supposed to know the main message until the end

36 Chapter 2: Linear Codes

of decoding process) into a codeword.
1 sage: message = vector(F,[randint (1,3), randint (1,3), randint (1 ,3)])

Now, we use the default encoder and we transmit the produced codeword. To transmit
a word, we just need to pass it as an argument to the channel which we have defined.

1 sage: CW = CC.encode(message)
2 sage: received = Chan(CW)
3 sage: print(received)
4 (0, 0, 2, 0, 2, 1, 1, 1, 2, 0, 1)

We can check if the received message is an element of our code.
1 sage: received in CC
2 False

Now we move to decoding the received word. We can decode a word into a codeword
or directly into the block message.

1 sage: decoded = CC.decode_to_code(received)
2 sage: print(decoded)
3 (2, 0, 2, 0, 2, 1, 1, 1, 2, 1, 1)
4 sage: possible_message = CC.decode_to_message(received)
5 sage: possible_message == message
6 True

By comparing the received word and the output of our decoder, we recognize that the
errors occurred in the first and the tenth positions. We can try to transmit a message
with number of errors more than that our code can correct.

1 sage: Errors = 3
2 sage: WorseChannel = channels.StaticErrorRateChannel(G,Errors)

Now by rerunning the following block of statements several times, sometimes we will
obtain a True and sometimes we will obtain a False.

1 sage: MESSAGE = vector(F,[randint (1,3), randint (1,3), randint (1 ,3)])
2 sage: CodeWord = CC.encode(MESSAGE)
3 sage: RECEIVED = WorseChannel(CodeWord)
4 sage: DECODED = CC.decode_to_message(RECEIVED)
5 sage: DECODED == MESSAGE

For further readings regarding applying linear codes in SageMath we may read [SMa].

Chapter 3: Binary Hamming Codes 37

3 Binary Hamming Codes

Figure 3.1: Mariner 9 [NASA]. A generalized hamming code was part of the concatenated code
used in Mariner Mars mission [DM70]

The Hamming code, conceived by Richard Hamming at Bell laboratories in 1950, is
the first error-correcting code to be used in applications [MMR08]. A Hamming code is
substantially a perfect linear code able to correct a single error [MMR08].

3.1 Construction of Binary Hamming Codes

Since our work is an introduction, we will restrict to the binary case. The method we
will consider in creating binary hamming codes can be understood as an inverse of the
method we used by the general form of linear codes. Suppose r is a positive integer
(this is going to be the number of check digits). Let n = 2r − 1, this is going to be the
length of the words and codewords. The block messages are binary messages of length
k = n− r. Now formulate the matrix H in which the column vectors are the transpose of
the distinct nonzero vectors of Vr. In other words

H = [aT
1 , · · ·aT

n]

where
ai ∈ Vr \{0r} for i = 1, · · · ,n and ai ̸= a j for i ̸= j.

38 Chapter 3: Binary Hamming Codes

Now we can consider H to be a parity check matrix of an [n,k]-code. This code is
called a binary [n,k]-hamming code (for brevity, we will call it an [n,k]-hamming code).
Notice that an [n,k]-hamming code is not uniquely defined. To follow the general form
we used in defining linear codes, we will rearrange H into the form [−AT, Ir]. Notice
that −AT = AT since its an r× k binary matrix. Now we can obtain the generator matrix
G = [Ik,A]. This method is obtained by combining the descriptions of [MMR08] and
[Wel04]. In the following theorem, the properties of hamming codes are summed up.

Theorem 3.1 (cf. [Wel04]) Any hamming code is a perfect single-error-correcting code.

Proof: We first show that the minimum distance of such a Hamming code C with a parity
check matrix H is at least 3. Denote the columns of H by ai for i = 1, · · · ,n. Because
C is a linear code, we know from Theorem 2.9 that the minimum distance d(C) equals
the minimum weight of a vector in C .

Suppose that C has a codeword u of weight 1 with a nonzero entry in the ith place.
Then

HuT = ai = 0T
r ,

which is obviously not true.

Suppose C has a codeword v of weight 2, with nonzero entries in the ith and jth digits.
Then

HvT = ai +a j = 0T
r .

However, this means that H has 2 identical columns which is not true. Thus, d(C)≥ 3.

Since the columns of H are the transposes of the distinct non-zero vectors of Vr which is
a vector space and a commutative additive finite group, the sum of two different columns
of H is another column of H. Lets formulate a codeword w ∈ C which contains three
1’s in positions i, j and m such that ai + a j = am. Then HwT = 0T

r . Thus, we will have
codewords of length 3 and the minimum distance of C is 3.

To show that C is perfect just notice that the 1-sphere surrounding any codeword x ∈ C

will contain 1+ n = 2r vectors. Since C contains 2k = 2(n−r) codewords, the union of
these 1-spheres is the complete set of 2n vectors of Vn which completes the proof.

Before formulating an encoding/decoding algorithm, we need to discuss the following
short note. Consider an [n,k]-hamming code C with parity check matrix H with columns
denoted ai for i = 1, · · · ,n. If the maximum number of errors in a received word is 1. We
can represent a received word by

y = c+ e

Chapter 3: Binary Hamming Codes 39

where c is a codeword in C

e = 0n if y ∈ C

e = ei is an element of the standard basis of Vn if y /∈ C

Regarding the syndrome of y, we write

HyT = H(c+ e)T

= HcT +HeT

= HeT.

If y is a codeword, then He=H0n = 0T
r and y is encoded into y. Otherwise, we conclude

that e = ei has got a 1 in position i. We can obtain this position by comparing the
syndrome of the received word with the columns of H. In other words, i is the position of
ai such that HyT = ai. This short note is a combination of the descriptions of [Wel04] and
[MMR08]. Now we are ready for the following elegant decoding algorithm for Hamming
codes.

Algorithm 3

Step(1) Rearrange H such that we obtain a parity check matrix of the standard form
H = [−AT, Ir]. denote the columns of H by ai for i = 1, · · · ,n

Step(2) Now we can formulate our generator matrix G = [In−r,−(−AT)T] = [Ik,A].

Step(3) When a vector y is received, calculate its syndrome v = HyT.

Step(4) Assuming only a single error, the syndrome decoding scheme gives:

(a) If v = HyT = 0T
r , then no error occurred, and y is a codeword.

(b) If v=HyT ̸= 0T
r , decode y by assuming an error in the ith position for which v= ai.

Example 3.2 The repetition code C which occurs in Example 1.10 is a [3,1]-hamming
code constructed by taking r = 2 and n = 22 −1 = 3 with parity check matrix

H =

(
1 1 0
1 0 1

)
and generator matrix

G =
(
1 1 1

)

40 Chapter 3: Binary Hamming Codes

Example 3.3 The [7,4]-Hamming code has parity-check matrix

H =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .

and generator matrix

G =

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

Suppose we receive the vector y = (1010110), so that HyT = (011)T. Then, on the
assumption that there is not more than a single error, we assume the error occurs in the
first position and hence decode y as c = (0010110).

Notation Even though binary hamming codes cannot correct more than 1 error per
word, the advantage is that they have a high rate of efficiency. In other word, they need
few number of check digits to decode correctly words of high length. We demonstrate
this in the following table.

Word Length n Check Digits r Message Digits k
1 1 0
3 2 1
7 3 4

15 4 11
31 5 26
63 6 57
...

...
...

Notice that to safely transmit 57 digits, we need only 6 check digits.

Because of the advantages of hamming codes, we find them used widely, specially in
the case when errors occur rarely as in computer devises (as flash memories [MMR08]).
In the following section we will enjoy applying hamming codes.

3.2 Software Application

In this section we will see a demonstration of binary hamming code in SageMath. For
instance, we will define a [15,11]−hamming code HC and then check how encoding and
decoding works. First we will define the [15,11]−hamming code over the field F2.

1 sage: F = GF(2)
2 sage: HC = codes.HammingCode(F,4)

Chapter 3: Binary Hamming Codes 41

3 sage: HC
4 [15, 11] Hamming Code over GF(2)

We can obtain the generator matrix and the parity check matrix as follows.
1 sage: GM = HC.generator_matrix ();GM
2 [1 0 0 0 0 0 0 0 0 0 0 0 0 1 1]
3 [0 1 0 0 0 0 0 0 0 0 0 0 1 0 1]
4 [0 0 1 0 0 0 0 0 0 0 0 0 1 1 0]
5 [0 0 0 1 0 0 0 0 0 0 1 0 0 0 1]
6 [0 0 0 0 1 0 0 0 0 0 1 0 0 1 0]
7 [0 0 0 0 0 1 0 0 0 0 1 0 1 0 0]
8 [0 0 0 0 0 0 1 0 0 0 1 0 1 1 1]
9 [0 0 0 0 0 0 0 1 0 0 1 0 1 1 0]

10 [0 0 0 0 0 0 0 0 1 0 1 0 1 0 1]
11 [0 0 0 0 0 0 0 0 0 1 1 0 0 1 1]
12 [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]
13 sage: PCM = HC.parity_check_matrix (); PCM
14 [1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]
15 [0 1 1 0 0 1 1 0 0 1 1 0 0 1 1]
16 [0 0 0 1 1 1 1 0 0 0 0 1 1 1 1]
17 [0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]

Notice that the generator matrix slightly differs from the one we defined in the construction
method. The previous parity check matrix differs completely from ours. For this code,
we can use the default decoders and encoder as we have done by the linear codes.
However, we will build our encoding/decoding scheme. We will depend on some default
routines. Thus, the encoding decoding scheme will not be identical to what we discussed
earlier. Lets first transform our code into the standard form.

1 sage: HCSF = HC.standard_form ()
2 sage: HCSF = HCSF [0]
3 sage: HCSF
4 [15, 11] linear code over GF(2)

According to the knowledge of SageMath, what we obtained is a linear code in the
general form (not a hamming code). However, we already know that it is a member of
the hamming codes family.

1 sage: SFGM = HCSF.generator_matrix (); SFGM
2 [1 0 0 0 0 0 0 0 0 0 0 0 0 1 1]
3 [0 1 0 0 0 0 0 0 0 0 0 0 1 0 1]
4 [0 0 1 0 0 0 0 0 0 0 0 0 1 1 0]
5 [0 0 0 1 0 0 0 0 0 0 0 1 0 0 1]
6 [0 0 0 0 1 0 0 0 0 0 0 1 0 1 0]
7 [0 0 0 0 0 1 0 0 0 0 0 1 1 0 0]
8 [0 0 0 0 0 0 1 0 0 0 0 1 1 1 1]
9 [0 0 0 0 0 0 0 1 0 0 0 1 1 1 0]

10 [0 0 0 0 0 0 0 0 1 0 0 1 1 0 1]
11 [0 0 0 0 0 0 0 0 0 1 0 1 0 1 1]
12 [0 0 0 0 0 0 0 0 0 0 1 0 1 1 1]
13 sage: SFPCM = HCSF.parity_check_matrix (); SFPCM
14 [1 0 1 0 1 0 1 0 1 0 0 1 1 0 1]
15 [0 1 1 0 0 1 1 0 0 1 0 1 0 1 1]
16 [0 0 0 1 1 1 1 0 0 0 1 0 1 1 1]
17 [0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]

42 Chapter 3: Binary Hamming Codes

Notice that the parity check matrix differs from the one we built. However, the generator
matrix is of the form which is familiar for us. This is going to help us in decoding the
codewords into block messages. Now we will define a routine to help us generate block
messages.

1 sage: def message_builder (K,d):
2 sage: message = []
3 sage: for i in range (0,d):
4 sage: message.append(randint (0 ,1))
5 sage: return(vector(K,message))

Here is another routine to help encode a block message into a codeword.
1 sage: def encode (vector , M):
2 sage: return(vector*M)

Here is the decoding routine which decodes a received word into a codeword using a
hamming code parity check matrix.

1 sage: def decode (vect , PCM):
2 sage: Corrector = []
3 sage: for i in PCM.columns ():
4 sage: Corrector.append (0)
5 sage: position = -1
6 sage: for i in PCM.columns ():
7 sage: position += 1
8 sage: if C.syndrome(vect) == i:
9 sage: Corrector[position]= 1

10 sage: print("Corrector = ", Corrector)
11 sage: return(vect+vector(F,Corrector))

In addition, we need a routine which decodes a codeword into a block message depending
on the number of check digits. Notice that in our decoding process, we are considering
the codeword to be generated by a generator matrix of the standard form.

1 sage: def message_decoder (K,check ,vect):
2 sage: vect = list(vect)
3 sage: vect = vect [0:2^ check -1-check]
4 sage: return(vector(K,vect))

We will define our channel and then put all of these routines in use.
1 sage: n_err = 1
2 sage: G = F^(r^2-1)
3 sage: Chan = channels.StaticErrorRateChannel(G,n_err)

We generate a random block message which is unknown for us.
1 sage: message = message_builder(F,2^r-1-r)

Now we encode our block message into a codeword using our generator matrix in
standard form.

1 sage: encoded = encode(message ,SFGM)

We transmit the encoded message through the channel which we defined.
1 sage: received = Chan(encoded); received

Chapter 3: Binary Hamming Codes 43

2 (0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0)

We decode the received word into a codeword.
1 sage: decoded = decode(received ,SFPCM)
2 Corrector = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
3 sage: decoded
4 (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0)

The decoded word can be decoded into a block message.
1 sage: Exp_message = message_decoder(F,r,decoded)
2 sage: Exp_message == message
3 True
4 sage: Exp_message
5 (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1)

For further readings [SMa].

44

Chapter 3: Bibliography 45

Bibliography

[DM70] Bernbard Dorscb and Warner H. Miller. NASA Technical Note, Error Controling
Using a Concatenated Code. National Aeronautics and Space Adminstration,
1970, pp. 12,13.

[HK03] Toyokazu Hiramatsu and Günter Köhler. Coding Theory and Number Theory.
Springer Science+Business Media Dordrecht, 2003, pp. 1-7.

[MMR08] Rino Micheloni, Alessia Marelli, and Roberto Ravasio. Error Correcting Codes
for Non-Volatile Memories. Springer Science+Business Media B.V., 2008, pp. 35-
38, 145-165.

[Moo05] Todd K. Moon. Error Correcting Coding, Mathematical Methods and
Algorithms. John Wiley & Sons, Inc, 2005, p. 28.

[NASA] National Aeronautics and Space Adminstration. Mariner 9 Image. https:

//www.jpl.nasa.gov/missions/mariner-9-mariner-i. Accessed: 5. Sept.
2021.

[SMa] The Sage Development Team. Sage 9.3 Reference Manual: Coding Theory.
2021, pp. 3-31.

[SMb] The Sage Development Team. Sage 9.4 Reference Manual: Finite Rings,
Release 9.4. 2021, pp. 39-61.

[SMc] The Sage Development Team. Sage Constructions, Release 9.4. 2021, pp. 31-
41.

[Wel04] Dominic Welsh. Codes and Cryptography. Oxford Science Publications, 2004,
pp. 1-63.

[WJu18] Tohman W. Judson. Abstract Algebra Theory and Application. Orthogonal
Publishing l3c, 2018, pp. 88-94, 108-136, 233-257, 313-321, 322-363.

46

Erklärung 47

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, 14. September 2021

HSMW-Thesis

