

Faculty of Applied Computer Sciences and Biosciences

MASTER THESIS

Building a trustless connection
between the Lightning Network and

EVM-compatible blockchains

Author:
Tim Käbisch

Course of Study:
Blockchain & Distributed Ledger Technologies

Seminar Group:
BC20w1-M

First Examiner:
Prof. Dr.-Ing. Andreas Ittner

Second Examiner:
M.Sc. Erik Neumann

Submission:
Mittweida, 14/05/2023

Defense/Evaluation:
Mittweida, 2023

Bibliographic Description

Käbisch, Tim: Building a trustless connection between the Lightning Network and EVM-
compatible blockchains, 51 pages, Mittweida, Hochschule Mittweida – University of Applied
Sciences, Faculty of Applied Computer Sciences and Biosciences.
Master Thesis, 2023

Abstract

As the cryptocurrency ecosystem rapidly grows, interoperability has become increasingly
crucial, enabling assets and data to interact seamlessly across multiple chains. This work
describes the concept and implementation of a trustless connection between the Bitcoin
Lightning Network and EVM-compatible blockchains, allowing the transfer of assets between
the two ecosystems. Establishing such a connection can significantly contribute to the growth
of both ecosystems as they can benefit from each other’s advantages and emerge new pos-
sibilities.

Contents I

Contents

Contents I

List of Figures III

Listings IV

1 Introduction 1

2 Fundamentals 3
2.1 EVM-compatible Blockchains . 3

2.1.1 EVM . 3
2.1.2 Gas . 4
2.1.3 Nonce . 5

2.2 Lightning Network . 6
2.2.1 Scaling Bitcoin . 7
2.2.2 Invoices . 8
2.2.3 WebLN . 10

3 Concept 13
3.1 Pre-signed Transaction . 13

3.1.1 Protocol . 13
3.1.2 Problems . 16
3.1.3 Evaluation . 19

3.2 Atomic Swaps . 19
3.2.1 HTLC . 19
3.2.2 Protocol . 20
3.2.3 Evaluation . 23

4 Implementation 25
4.1 HTLC in Solidity . 26
4.2 Lightning - Native Coin . 31
4.3 Lightning - ERC-20 Token . 35
4.4 Native Coin - Lightning . 38
4.5 ERC-20 Token - Lightning . 41

5 Further Considerations 44
5.1 Faucet . 44
5.2 Taro . 45
5.3 Supported Wallets . 46
5.4 ERC-721 . 49

6 Conclusion 51

A Implementation 52

Bibliography 53

Contents II
Eidesstattliche Erklärung 55

List of Figures III

List of Figures

2.1 Lightning Network Capacity [13] . 8
2.2 WebLN Provider Functionality [18] . 10
2.3 Alby Approve Payment and Create Invoice . 12
3.1 Protocol: Pre-signed Transaction . 14
3.2 Protocol: Atomic Swap . 21
3.3 Locking and Unlocking HTLC . 22
4.1 User Interface . 25
4.2 Protocol: Lightning - Native Coin . 32
4.3 User Interface: Offer Buy Coin . 34
4.4 User Interface: Claim Coin . 35
4.5 Protocol: Lightning - ERC-20 Token . 36
4.6 User Interface: Buy ERC-20 Token . 37
4.7 Protocol: Native Coin - Lightning . 38
4.8 User Interface: Offer Sell Coin . 39
4.9 User Interface: Waiting for Operator . 40
4.10 Protocol: ERC-20 Token - Lightning . 41
4.11 User Interface: Approve ERC-20 Token . 42
5.1 User Interface: Faucet . 45
5.2 User Interface: Wallet Connect [33] . 47
5.3 User Interface: Display Lightning Invoice . 48

Listings IV

Listings

2.1 LNbits Invoice Creation . 9
2.2 WebLN sendPayment . 11
2.3 WebLN makeInvoice . 11
3.1 Smart Contract transferETH Function . 14
3.2 Create Pre-signed Transaction . 15
4.1 HTLC Struct + Mapping . 26
4.2 HTLC haveContract . 27
4.3 HTLC newContract . 27
4.4 HTLC getContract . 28
4.5 HTLC withdraw . 29
4.6 HTLC refund . 30
5.1 HTLC Struct for ERC-721 . 50

Chapter 1: Introduction 1

1 Introduction

The cryptocurrency ecosystem has grown significantly and evolved in recent years, with
numerous new ideas and blockchain platforms emerging. However, two ecosystems continue
to stand out as the pillars of the entire ecosystem: Ethereum and Bitcoin. This work aims to
build a trustless connection enabling asset transfer between the two ecosystems.
The introduction of smart contracts by the Ethereumnetwork [1] revolutionized the blockchain
industry, enabling the development of various decentralized applications (dApps) across dif-
ferent domains, such as insurance, decentralized finance (DeFi), social platforms, and games.
However, scalability issues have remained a persistent challenge for the Ethereum network,
leading to the emergence of several other blockchain ecosystems, such as Binance Smart
Chain, Polygon, and Avalanche [2]. Despite their differences, these ecosystems share the
common feature of utilizing the Ethereum Virtual Machine (EVM) to change the state of their
networks, enabling them to be compatible with the broader Ethereum ecosystem and facili-
tating interoperability. [3]
The second pillar, Bitcoin [4], is a widely-used global system that maintains a record of trans-
actions on a publicly available ledger. The system’s scalability faces challenges as each par-
ticipating computer is responsible for validating, observing, and storing every transaction. In
response to this scalability issue, Joseph Poon and Thaddeus Dryja proposed a solution in
their paper The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments [5]. The Lightning
Network is a second layer on top of Bitcoin. It introduces off-chain payment channels en-
abling users to transact even the smallest amounts, i.e., micropayments, without publishing
them to the Bitcoin blockchain. The concept was initially proposed in 2015, followed by the
first implementation of the protocol in 2018. Despite being in its early stages, the Lightning
Network has already drawn significant attention from developers and investors, with many
applications currently under development. [6, p. 9-12]
As the cryptocurrency ecosystem continues to grow and evolve, the need for interoperability
has become increasingly crucial. Interoperability in the context of blockchain technology
refers to the ability of assets and data to interact across multiple chains seamlessly. When
two parties use the same blockchain platform, such as Bitcoin, exchanging data and value
is straightforward. However, this becomes more challenging when the parties use different
blockchain platforms. EVM-compatible blockchains and the Bitcoin Lightning Network have
unique advantages in their respective use cases. Enabling interoperability between the two
could open up new possibilities and use cases, making it a significant area of research and
development. [7]
There have been previous attempts to establish a trustless connection between the Lightning
Network and EVM-compatible blockchains, as evidenced by various prototypes available on
GitHub [8, 9]. However, most of these prototypes require the user to run a separate Lightning
node, making them inaccessible to many. This work aims to connect the two ecosystems

Chapter 1: Introduction 2
while prioritizing security, speed, and user experience. Establishing such a connection can
contribute to the growth of both ecosystems as they can benefit fromeach other’s advantages
and emerge new possibilities.
This work is organized into six chapters. In this chapter, the context and motivation of this
work were introduced. Chapter two provides an overview of the necessary fundamentals of
EVM-compatible blockchains and the Bitcoin Lightning Network. Based on these fundamen-
tals, chapter three presents two concepts for achieving a trustless connection between these
ecosystems. The implementation of the more promising concept, namely so-called atomic
swaps, is presented in chapter four. Chapter five provides additional considerations for the
protocol and its implementation, primarily focusing on potential extensions. Finally, chapter
six concludes this work with a summary and an outlook on future development.

Chapter 2: Fundamentals 3

2 Fundamentals

The following chapter deals with the necessary fundamentals of EVM-compatible blockchains
and the Lightning Network.
2.1 EVM-compatible Blockchains

The Ethereum network was the first to introduce the concept of smart contracts, revolu-
tionizing the blockchain industry. However, the network has struggled with scalability issues,
leading to the emergence of other blockchain ecosystems, such as Binance Smart Chain, Poly-
gon, and Avalanche. Despite their differences, these ecosystems have one thing in common:
they remain compatible with Ethereum by utilizing the Ethereum Virtual Machine (EVM) to
change the state of their networks. This allows developers to write smart contracts that can
run on multiple blockchains, creating a more connected and interoperable ecosystem. As
the demand for blockchain technology continues to grow, the importance of interoperability
and compatibility with Ethereum will only continue to increase. [3]
2.1.1 EVM

In the context of software development, programmers typically write code in high-level pro-
gramming languages, such as Java, Python, or C++. While this code is understandable to
humans, a computer’s central processing unit (CPU) cannot execute it directly. Therefore, the
code must be translated into machine-executable code, which is achieved through a process
known as compilation. A compiler is a software program that translates the code written in
a high-level programming language into bytecode, which is a low-level, machine-readable
format. Once compiled, the CPU can execute the bytecode, allowing the computer to run
the program as intended. Compiling is fundamental to software development, enabling
developers to write code in a human-readable and machine-executable format. [3]
Blockchain networks, such as Ethereum, are decentralized networks that run on nodes dis-
tributed worldwide. This distributed architecture makes the so-called "world computer"
unique compared to traditional computing systems, as it does not rely on a single central
processing unit (CPU) to execute programs. Instead, the Ethereum network leverages the
Ethereum Virtual Machine (EVM) as a software-based CPU to execute bytecode on each net-
work node. Therefore, allowing developers to write smart contracts in high-level program-
ming languages, such as Solidity, and compile them into bytecode that can be executed by
the EVM. This approach to executing code enables the Ethereum network to operate without
a central control point. [3]
Deploying a smart contract on a blockchain network results in a copy being distributed to
every node in the network. Users can submit transactions to modify the contract’s global
state, and each node executes the transaction within its EVM and saves the resulting output,
reflecting the changed state. This mechanism creates a distributed statemachine where each

Chapter 2: Fundamentals 4
node maintains a copy of the global state. The EVM functions as the core component of the
distributed state machine, orchestrating the execution of transactions to ensure the state
remains consistent across all nodes in the network. [10, p. 297]
With the significant growth in the number of users on the Ethereum network, the cost of
using the network has become prohibitively expensive. To address this issue, sidechains
have emerged, typically code forks of Ethereum with different consensus mechanisms [11].
Sidechains offer faster and cheaper transaction processing, enabling developers to build
decentralized applications that are more cost-effective for users. To ensure compatibility
with Ethereum, sidechains leverage the Ethereum Virtual Machine (EVM) to change the state
of their networks, enabling developers to reuse existing solutions and protocols rather than
building them from scratch. Additionally, users are already familiar with the workings of the
EVM, allowing them to utilize their preferred applications across different chains. [10, p. 297]
2.1.2 Gas

Gas is a critical component of EVM-based blockchains, providing a mechanism for measuring
the computational and storage resources required to perform actions on the network. Unlike
Bitcoin, whose transaction fees only account for the size of a transaction in kilobytes, the open-
ended computation model in networks like Ethereum requires more extensive metering to
avoid denial-of-service attacks or inadvertent resource-devouring transactions. Gas controls
the number of resources a transaction can use, preventing them from consuming more than
intended or necessary. This disincentivizes attackers from sending spam transactions, as
they must pay for every computational step. [10, p. 106]
Gas is a separate virtual currency besides, e.g., ether on Ethereum. This separation is nec-
essary to protect the system from the volatility that may arise from rapid changes in ether’s
value and tomanage the sensitive ratios between the costs of various resources that gas pays
for, including computation, memory, and storage. Each operation performed by a transaction
or smart contract code execution costs a fixed amount of gas, which results in a variation of
gas costs per transaction, depending on the complexity of the operations. [10, p. 106]
Essentially, four terms have to be taken into account when dealing with gas [10, p. 100]:

• Gas Cost: The amount of gas required to execute a transaction.
• Gas Price: The amount of ether the sender is willing to pay for each gas unit.
• Gas Limit: The max. amount of gas that the sender is willing to pay for a transaction.
• Block Gas Limit: The max. amount of gas that can be used in a block.

The gas cost of a transaction is determined by the number of computational steps required
to execute the transaction. For example, simple payments that transfer ether between two
accounts cost 21,000 gas. The gas price is the amount of ether the sender is willing to pay for
each gas unit. The current network conditions determine a suitable gas price. During periods
of high demand, the price of gas may increase, while during periods of low demand, the price
of gas may even be zero, i.e., a transaction at zero cost. The gas limit is the maximum amount
of gas that the sender is willing to pay for a transaction. If the transaction consumes more

Chapter 2: Fundamentals 5
gas than the gas limit, the transaction will fail and revert. This might happen if the gas limit
is too low or the transaction is more complex than expected. In such cases, the sender will
still be charged because the computational work already occurred. The block gas limit is the
maximum amount of gas that can be used in a block. If the block gas limit is reached, the
transactions not included in the block will be queued and included in one of the following
blocks. [10, p. 314-317]
Understanding the concept of gas in EVM-compatible blockchains is essential for the following
two things: First, it is crucial to understand the gas costs of transactions, as they are the main
cost factor for using the network. For a service that programmatically creates transactions, it
is essential to estimate the costs of transactions. This would allow the service to pass on the
transaction fees incurred to its customers, for example. The web3.js library allows to estimate
a transaction’s gas costs and retrieve the current gas price. Due to that, a programmatic
estimation of the gas costs is enabled. [10, p. 314-317]
Second, gas plays a crucial role in the confirmation speed of a transaction. Usually, trans-
actions with a higher fee are included in a block faster (if the miners behave in a rational
economic manner). This is especially important for time-critical transactions. For example,
if a user sends a transaction to a smart contract to execute a specific action at a particular
time. In that case, the transaction must be included in a block before the time is reached.
Otherwise, the action will not be executed. In this case, the user has to pay a higher fee to
ensure that the transaction is included in a block before the time is reached. [10, p. 314-317]
2.1.3 Nonce

The term nonce stands for number used once. In general, it is a number only used once for a
specific purpose. A distinction must be made between two nonces: One used as part of the
proof-of-work (PoW) consensus algorithm and one used for transactions in EVM-compatible
blockchains. In the PoW consensus algorithm, miners repeatedly change the nonce and
recalculate the hash value to find a value that meets specific criteria [12]. The nonce in the
context of this work always refers to the nonce used for transactions in EVM-compatible
blockchains.
A transaction nonce is a value generated dynamically "by counting the number of confirmed
transactions that have originated from an address" [10, p. 101]. It is used to ensure that trans-
actions sent from a specific address are unique and processed in the correct order. Although
the nonce is an attribute of the sender’s address, it is not explicitly stored in the blockchain’s
state of accounts. The transaction nonce is critical for an account-based blockchain proto-
col, in contrast to the Unspent Transaction Output (UTXO) mechanism used by the Bitcoin
protocol. [10, p. 101]
The influence of the nonce on the correct transaction sequence can be seen in the following
scenario: A user attempts tomake two transactions in the Ethereumnetwork, one for six ether
and another for eight ether, but has only ten ether in their account. The user broadcasts the 6-
ether transaction first, expecting it to be processed before the 8-ether transaction. However,

Chapter 2: Fundamentals 6
due to the decentralized nature of the Ethereum network, some nodes may receive the 8-
ether transaction first, potentially causing the 6-ether transaction to fail. The transaction
nonce ensures that the transactions are processed in the correct order, based on their nonce
values, even if they arrive out of order to different nodes on the network. By including a
nonce in the transactions, the first transaction sent will have a nonce value lower than the
second transaction and, thus, will be processed first. [10, p. 101]
The nonce also plays a crucial role in preventing so-called replay attacks. A replay attack
is when an attacker attempts to use a transaction the network has already processed. The
following scenario illustrates how the nonce prevents such attacks: A user has an account
with 100 ether and sends two ether to another account to purchase a product. Without
a nonce value in the transaction, a malicious actor could copy and replay the transaction
multiple times, potentially resulting in the loss of all the user’s ether. However, by including
a nonce value in the transaction data, every transaction is unique, even when sending the
same amount of cryptocurrency to the same recipient address multiple times. This ensures
that no one can duplicate a payment made by the user. [10, p. 101]
This results in two essential consequences that are relevant to the concept of this work: First,
transactions are processed based on their nonce value, leading to sequential processing of
transactions. If a transaction with a higher nonce value is broadcast before one with a lower
nonce value, the latter is held in the mempool until the missing nonce is received. To fill the
gap, a valid transaction with the missing nonce should be broadcast, which allows previously
held transactions to be included. Transactions can unintentionally create gaps in the nonce
sequence due to invalidity or insufficient gas, causing subsequent transactions to be held in
themempool until a valid transaction with themissing nonce is broadcast. Once a transaction
with the missing nonce is validated, the transactions with higher nonces become valid. [10,
p. 104]
Second, in case of a nonce duplication, such as transmitting two transactions with the same
nonce but different transaction data, one of the transactions will be confirmedwhile the other
will be rejected. The confirmation of the transaction will be determined by the sequence
in which they arrive at the first validating node that receives them, resulting in a random
selection of which transaction is confirmed. These consequences are discussed in more
detail in section 3.1.2. [10, p. 104]
2.2 Lightning Network

The Lightning Network is a transformative protocol revolutionizing how individuals exchange
value online. It operates as a second-layer technology on top of Bitcoin, facilitating fast, cheap,
and scalable transactions between users. The Lightning Network uses Bitcoin in a novel way
that enables micropayments, making it possible to transact even the smallest of amounts.
The concept was originally introduced in 2015, and the first implementation of this protocol
was released in 2018. Despite still being in its infancy, the Lightning Network has attracted
significant attention from developers and investors, and many applications are being built
today. [6, p. 1]

Chapter 2: Fundamentals 7
2.2.1 Scaling Bitcoin

Bitcoin is a widely-used global system that keeps a record of transactions on a publicly avail-
able ledger. Each transaction is validated, observed, and stored by each participating com-
puter, posing challenges for scalability. The rise in popularity of Bitcoin and the demand for
transactions have led to an increased number of transactions in each block. This resulted in
reaching the block size limit regularly. Extra transactions are left to queue when blocks are
full, and the fee competition increases. Consequently, lower-value transactions may become
unprofitable to include during times of high demand. The block size limit could be raised to
address this problem, providing additional space for transactions. Nevertheless, this would
shift the expenses to node operators, necessitating increased resources to validate and save
the blockchain. The larger the block size, the more critical the bandwidth, processing, and
storage requirements for the network participants. As a result, the system becomes more
centralized since fewer people can operate a node. [6, p. 9]
In terms of scalability, Bitcoin is often compared to Visa, which processes around 40,000
transactions per second at peak usage [6, p. 9]. For Bitcoin to process as many transactions
as Visa, a block size limit of around eight gigabytes would be required. With a block being
mined every 10 minutes on average, this results in more than one terabyte of transaction
data daily. Operating a node could not be done by everyday people at home anymore but
would exclusively be feasible for large companies with the necessary resources. Additionally,
the capacity to process 40,000 transactions per second is only equivalent to the capacity
of traditional financial payment networks. However, it may not be sufficient to meet future
demands due to the emergence of new technologies such asmicrotransactions andmachine-
to-machine payments. [6, p. 9-10]
The paper The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments by Joseph Poon
and Thaddeus Dryja proposes a solution for Bitcoin’s scalability problem. The proposed Light-
ning Network is a second layer on top of Bitcoin, introducing off-chain payment channels
which allow users to make transactions without publishing them to the Bitcoin blockchain.
This enables users tomake asmany payments as they want without waiting for confirmations
or paying transaction fees. The payments are instead conducted off-chain in payment chan-
nels, which can be created and closed with a transaction on the Bitcoin blockchain. During
the lifespan of a payment channel, users can make unlimited payments, subject only to the
bandwidth and computing power available to them. Furthermore, payments can also be
conducted between users that do not operate a payment channel with each other. This can
be achieved by routing payments through the Lightning Network using other participants’
payment channels. [6, p. 10-12]
Payment channels on theBitcoin LightningNetwork are implemented as 2-of-2multi-signature
addresses, which are a type of Bitcoin address that requires two signatures to authorize a
transaction. The multi-signature address is funded with the opening transaction of the pay-
ment channel, and both participants hold one key of the multi-signature address. Payments
on the Lightning Network are executed by signing a transaction that spends from the multi-
signature address. However, the transaction is not broadcast to the Bitcoin blockchain but
is kept by the channel partners. This allows the channel partners to conduct a series of pay-
ments, negotiating the balance of the channel. The latest transaction in the series defines

Chapter 2: Fundamentals 8
how the balance is split between both participants. Therefore, making a payment on the
Lightning Network is equivalent to updating the balance of the payment channel by moving
funds from one participant to the other. Closing the channel is done by broadcasting the
latest transaction to the Bitcoin blockchain, which is then included in a block, and the funds
are transferred to the participants accordingly. [6, p. 40]
The Lightning Network has experienced significant growth since its release in 2018. One
significant indicator of this growth is the steady increase in cumulative Bitcoin capacity across
all channels of the Lightning Network. This trend can be observed in figure 2.1, where the
red line represents the total capacity of Bitcoin, while the blue line shows the capacity of the
Lightning Network in USD. Bitcoin’s all-time high at the end of 2021 also led to a record-high
capacity in the Lightning Network in USD. At the time of writing, the Lightning Network has a
capacity of nearly 5,500 Bitcoin, valued at approximately 120 million USD. [13]

Figure 2.1: Lightning Network Capacity [13]
The Lightning Network’s ability to facilitate instant payments with minimal fees has drawn
the attention of developers interested in building applications on top of the network, known
as Lightning Applications (LApps). One important use case for LApps would be pay-per-use,
allowing users to pay only for the specific service they utilize rather than being charged for a
subscription plan. This model could benefit newspaper subscriptions, where the user only
pays for the articles they read, or for music streaming services, where they only pay for
the songs they listen to. In addition, lightning payments could be used for everyday goods,
such as coffee at a restaurant or snacks from a vending machine. Compared to traditional
payment methods such as cash or credit cards, lightning payments offer faster and cheaper
transactions, which could benefit both consumers and providers. [14, 15]
2.2.2 Invoices

Bitcoin transactions can be sent to the receiver’s Bitcoin address, which only the owner of
the corresponding private key can access. Furthermore, a Bitcoin address can be used an
unlimited number of times. In contrast, the Lightning Network primarily utilizes invoices to
initiate payments. Such invoices can only be used once since the recipient must reveal a
secret to complete the payment. Once the secret is revealed, it should not be used again to
prevent other participants from potentially stealing the funds. Payments on the Lightning
Network are always atomic, meaning either the payment is completed or not, without any in-
between state where the payment is partially successful. After being created by the recipient,
an invoice can be transmitted to the payer using any communication channel, such as email,
chat, or even a physical paper. [6, p. 55, 336]

Chapter 2: Fundamentals 10
2.2.3 WebLN

WebLN is a collection of guidelines intended for Lightning apps and client providers, designed
to enable secure communication between web apps and users’ Lightning nodes. The pro-
grammatic interface offered by WebLN enables applications to request payments from users,
generate invoices to receive payments, and perform other related functionalities. The We-
bLN specifications, first published in 2018, are based on the web3.js concept, which allows
developers to interact with a local or remote Ethereum node using HTTP, IPC, or WebSocket
protocols [17]. Over time, several Lightning applications and client providers have been built
using this standard. The way WebLN fits into the Lightning ecosystem is illustrated in figure
2.2. [18]

Figure 2.2:WebLN Provider Functionality [18]
By allowing for programmatic interactions, WebLN reduces the friction between Lightning
apps and users’ wallets, eliminating the need to switch contexts to scan a QR code or sign
a message to prove ownership of a wallet. Additionally, when a WebLN client supports
auto-payments, users can send payments with a single click without prompts. WebLN is
a specification that describes the interaction with Bitcoin Lightning wallets and does not
require third-party libraries. Over the years, it has become a recognized standard within the
community. Initialization and execution of WebLN only require a few lines of JavaScript code,
a widely used language for creating web apps. [18]
LNURL is an associated standard with WebLN, which provides amanual option for interacting
with the Lightning Network. The correct implementation of WebLN can significantly enhance
the user experience of Lightning apps. In instances where a user lacks a WebLN provider,
LNURL can serve as an alternative option. [18]
One provider of WebLN is the versatile and open-source browser extension Alby. It has been
specifically designed to enable deep integration of the Bitcoin Lightning Network with web
applications. The primary focus of this extension is to facilitate the web payment process by
implementing the WebLN standard as an interface between websites and Lightning Network
nodes. This interface has enabled a seamless user experience for payments, authentication
flows, and other related functionalities. With Alby, it is possible to set a budget for each
website, allowing users to spend money without switching apps or constantly confirming
payments while ensuring they do not overspend. [19]

Chapter 2: Fundamentals 12

Figure 2.3: Alby Approve Payment and Create Invoice
Based on the fundamentals presented in this chapter, the following chapter describes two
concepts for establishing a trustless connection between the Lightning Network and EVM-
compatible blockchains.

Chapter 3: Concept 13

3 Concept

This chapter presents two concepts for establishing a trustless connection between the Bit-
coin Lightning Network and EVM-compatible blockchains. The objective is to transfer assets
between the two ecosystems without the involvement of any third party. Each concept is
described in detail, followed by an evaluation of its feasibility for implementation. The more
promising of the two concepts is selected for implementation, which will be described in
chapter 4.
3.1 Pre-signed Transaction

In the context of EVM-based blockchains, signing transactions without publishing them is
possible, resulting in a valid transaction being held back. This transaction can be sent to the
network to be mined anytime. This section presents a concept that aims to use pre-signed
transactions that will only become valid once a payment has been made on the Lightning
Network. This concept will be examined in detail, along with the challenges that arise during
its implementation. Finally, the concept’s suitability for implementation will be evaluated and
assessed.
3.1.1 Protocol

The protocol is based on the idea of pre-signed transactions. A pre-signed transaction is a
transaction that the sender has signed but not yet published to the network. The transaction
can be published at any time and will be mined as soon as it is published. It does not have to
be published by the sender itself but can instead be published by anyone else. Furthermore,
this concept is based on the fact that upon a successful payment on the Lightning Network,
the sender acquires the preimage linked to that payment. The payment hash of a payment is
derived by applying the SHA256-algorithm to the preimage, as described in section 2.2.2. The
approach of this concept is to use a pre-signed transaction that will only become valid with
the knowledge of the preimage, i.e., after a successful payment on the Lightning Network.
Figure 3.1 illustrates the protocol of this concept, which is described in detail below.
The protocol involves a customer seeking to purchase a certain amount of ether and pay via
the Lightning Network. The operator manages a smart contract on the Ethereum network,
which is used to transfer the requested ether to the customer. The core part of the smart
contract is the transferETH function, which can be seen in code snippet 3.1. It can only
be called by the operator of the smart contract due to the onlyOperator modifier. This
modifier checks whether the transaction’s sender is the operator or not. Essentially, the
operator generates a pre-signed transaction that executes the transferETH function. This
function requires four parameters: the receiver of the ether, the amount of ether to be sent,
a payment hash, and the corresponding preimage to the payment hash. The function checks
if the preimage and the payment hash belong together by applying the SHA256-algorithm to
the preimage. It also checks if the specified amount of ether is available in the contract. If
this is the case, the specified receiver will get their specified amount of ether.

Chapter 3: Concept 16
With simple string manipulation, the operator can remove the preimage from the raw trans-
action, as shown in code snippet 3.2. The 32 bytes preimage is replaced by 32 bytes of other
characters, e.g., the X. Now the transaction is invalid and will not be valid again until the
preimage is appropriately reinserted, i.e., replacing the 32 bytes of X’s with the preimage
again. The raw transaction now appears as follows (with the preimage replaced by X’s):
0xF9013481B18504A817C800828FB3946D7771FE079B0A3B9719052DA4F0C0E19A6023D6880

DE0B6B3A7640000B8C43B9472B40000000000000000000000007BA055861DC7DB3BC36FE1ED

D4D5CA06D8B5CAC00

F42400080AC01DC

CD146ECB131AA617337C85BA2EB01CB5E4DC3F2DFF46467915C554F8ED00000000000000000

00020XXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX820A96A0D22BB820BAF739808E5C9F75714C156A

E6917A0522CEE4952D9140E67BC13782A07FE42E856DB9A1204BE9DA0EB8A0940FF720B8BB8

7018764AF3A61A1B49902A5

In response to the customer’s HTTP request, the operator forwards the raw transaction and
lightning invoice. Subsequently, the customer pays the invoice on the Lightning Network,
leveraging tools such as WebLN, as illustrated in section 2.2.3. After a successful payment,
the customer receives the preimage, which permits them to substitute the X’s in the raw
transaction with the preimage. Thus, making the transaction valid again. The customer sub-
mits the transaction to the Ethereum network, which upon mining, triggers the transferETH
function to transfer the appropriate amount of ether to the customer. Assuming that the
customer paid the invoice and supplied the correct preimage, they should receive the desired
amount of ether. If the customer provides an incorrect preimage, the transaction will not
succeed, leading to the customer not receiving the requested ether.
3.1.2 Problems

At first observation, the proposed concept of utilizing pre-signed transactions to acquire ether
with Bitcoin through the Lightning Network seems feasible and practical. However, a closer
examination reveals several significant issues discussed in this section.
Missing Nonce

Transactions in EVM-based blockchains are processed sequentially based on their nonce
value. Invalid or missing transactions may create gaps in the nonce sequence, causing sub-
sequent transactions to be held in the mempool until a valid transaction with the missing
nonce is broadcast, as explained in more detail in section 2.1.3.
This circumstance presents an opportunity for the operator to potentially deceive the cus-
tomer. For instance, an operator may send a pre-signed transaction to a customer with a
nonce value that does not immediately follow the operator’s latest transaction, such as a
pre-signed transaction with a nonce of 12 when the operator’s latest transaction has a nonce
of 10. The customer may then pay the invoice and submit the transaction to the network,
only to find that the transaction is not mined due to the missing nonce value of 11. The

Chapter 3: Concept 17
transaction will remain in the mempool until the operator creates a new valid transaction
with nonce 11. At this point, the operator could withhold broadcasting the new transaction,
causing the pre-signed transaction to remain stuck in themempool indefinitely due to the gap
in the nonce sequence. Thus, the customer would not receive the requested ether despite
the operator receiving the lightning payment.
One potential way to address this issue is by implementing the following approach: The
most recent nonce value associated with an account is publicly accessible. By verifying the
operator’s latest nonce value, the customer can ensure that the nonce of the pre-signed
transaction immediately follows the nonce of the most recent transaction. If this is not the
case, the customer may choose not to pay the invoice, preventing the risk of being deceived
by the operator. In response to such a situation, the customer could request a new pre-signed
transaction with a valid nonce or discontinue using this service.
Duplicated Nonce

If two transactions with the same nonce but different transaction data are sent, one will
be confirmed, and the other will be rejected. The transaction confirmation will depend on
the order in which they arrive at the first validating node that receives them, resulting in a
random selection of which transaction is confirmed, as explained in more detail in section
2.1.3.
In the context of the presented concept, the operator can deceive the customer by intention-
ally sending a pre-signed transaction with a nonce already in use. As transactions can be
held back, the customer cannot verify if there is no second transaction with the same nonce
about to be published. The customer may pay the invoice and publish the transaction, while
at the same time, the operator publishes a second transaction with the same nonce. The
second transaction will likely be confirmed faster if the operator pays a high gas price, as
explained in section 2.1.2. Thus, making the transaction published by the customer invalid.
In this scenario, the customer will not receive the requested ether, as the transaction will be
rejected, even though they have paid the invoice.
To address the issue of possible nonce duplication, the protocol could be extended as follows:
all operators must register themselves in a registry smart contract and deposit a specified
amount of ether as a stake, ensuring they act honestly. In case of malicious activity, their
stake will be taken. After creating the pre-signed transaction, the operator must commit
to not using the same nonce for another transaction. Following creating the pre-signed
transaction, the operator is aware of its hash, which is the transaction’s unique identifier.
Now the commitment can be created, essentially a digital signature of the transaction’s hash,
the used nonce, and a timeout timestamp. This commitment ties the transaction hash to the
nonce. If the operator creates a second transaction with the same nonce, the transaction’s
hash will differ from the one in the commitment. The timeout timestamp signals how long
the commitment is valid. If the customer does not pay the invoice and thus does not publish
the transaction, the operator can use the nonce for a different transaction after the timeout
has passed. This commitment is sent along with the invoice and the pre-signed transaction
to the user.

Chapter 3: Concept 18
The registry contract acts as a decentralized court. If the operator tries to deceive the cus-
tomer by using the same nonce for a different transaction, the customer can call the court
function of the registry. In this function, the customer provides the operator’s commitment
and the second transaction where the operator uses the nonce again. The court function
verifies the signature of the operator and the second transaction to determine if the operator
acted maliciously (i.e., they used the nonce for another transaction while the commitment
tied the nonce to the transaction sent to the customer). If the operator is found to have acted
maliciously, the customer can penalize them by taking their stake. As a result, the operator
is economically incentivized to act honestly. Their stake is at risk of being taken away if they
attempt to deceive the customer using the same nonce for a different transaction.
Available Funds

In the presented concept, funds are not locked in any way during the swapping process,
raising the possibility of the operator sending the customer a pre-signed transaction with a
higher value than the available funds in the smart contract. This would result in an invalid
transaction, and the customer would not receive the requested ether. To mitigate this risk,
the customer could verify the available funds in the smart contract before paying the invoice.
However, a certain amount of time passes between the customer’s verification and the publi-
cation and processing of the transaction, during which anything could happen. For example,
the operator may withdraw the funds from the smart contract after receiving the payment
on the Lightning Network, leading to insufficient funds for the transaction. Consequently, the
customer may pay the invoice and submit the transaction, only to find that the transaction is
not mined due to the lack of funds in the smart contract.
One critical drawback of the presented concept is the lack of a locking mechanism to ensure
the security and reliability of the transaction process. Specifically, the customer requires the
assurance that they will receive the requested ether after paying the invoice, which is not
guaranteed without a proper locking mechanism. Without such a mechanism, the customer
must rely on trust in the operator regarding the availability of funds in the smart contract.
However, this work aims to build a trustless solution.
Transaction Validation

The customer can verify the signature of the pre-signed transaction by utilizing the operator’s
public key. However, the operator may deceive the customer by signing a transaction with
the wrong preimage, which does not match the payment hash associated with the invoice.
Although this transaction would still be valid, it would fail when calling the transferETH

function due to the mismatch between the preimage and payment hash. The customer
could not verify the transaction’s validity beforehand since they only receive the preimage
after paying the invoice. Thus, the customer once again must rely on trust in the operator to
ensure the validity of the transaction sent, which is not in line with the principles of a trustless
solution.

Chapter 3: Concept 19
3.1.3 Evaluation

The presented concept is a promising approach to connecting the LightningNetwork and EVM-
based blockchains. It utilizes pre-signed transactions that are only valid upon a successful
payment on the Lightning Network. This is possible because the preimage is known to the
sender after a successful payment. However, the concept also has some significant issues,
as shown in the previous section. The issue with the duplicated nonce could be solved as
stated, but it requires a complex protocol and much effort. Moreover, there are two issues
that cannot be solved with the presented concept. Firstly, the customer cannot verify that the
requested funds will be available after paying the invoice on the Lightning Network. Secondly,
the customer cannot verify the validity of the pre-signed transaction. As a result, the concept
is not fully trustless and, therefore, does not meet the requirements of this work.
The use of pre-signed transactions has been shown to have significant issues that make a
fully trustless implementation unfeasible. Therefore, a new concept needs to be designed to
meet the requirements of an utterly trustless solution. The new concept must ensure that
the funds are locked for a specific period so that the customer can verify that they can claim
their funds after paying the invoice on the Lightning Network. Additionally, it must allow the
customer to create transactions independently, eliminating any potential problems related
to the nonce. Finally, the relationship between the customer and the operator must be fully
trustless, meaning neither party should rely on the other. Such a concept is presented in the
next section.
3.2 Atomic Swaps

The concept of atomic swaps allows for a trustless exchange of values between different
blockchains. This is achieved due to the use of hashed timelock contracts (HTLCs). The follow-
ing section presents an atomic swap-based concept for establishing a trustless connection
between the Lightning Network and EVM-compatible blockchains. This includes an explana-
tion of HTLCs, a detailed description of the protocol of the concept, and an evaluation of the
feasibility of implementing this concept.
3.2.1 HTLC

Hashed timelock contracts (HTLCs) are a type of smart contract that establishes a transac-
tional agreement to produce conditional payments between two parties. HTLCs combine
two concepts - hashlock and timelock - to ensure that the transaction takes place as per
the agreed terms. A hashlock is a restraint that restricts the spending of an output until a
specified kind of data is available, while a timelock locks out a transaction until a preset or
pre-determined time is reached. In simple terms, HTLCs involve a sender of a transaction,
locking cryptocurrency up in a contract, and sharing a secret with the recipient. If the recip-
ient can provide the correct secret before a set deadline, they can spend the funds. If not,
the funds go back to the sender. HTLCs benefit users looking for alternative ways to interact
with others without intermediaries, as they are efficient, trustless, and offer validation. [21]

Chapter 3: Concept 20
Hashed timelock contracts (HTLCs) can be implemented both on-chain and off-chain. On-
chain HTLCs are executed on the blockchain itself, while off-chain HTLCs are executed outside
of the blockchain. Such off-chain HTLCs are used in the Lightning Network to process pay-
ments. It uses payment channels, which are smart contracts between two parties. These
payment channels can be used to route payments across multiple channels, and HTLCs are
used to ensure the secure transfer of funds without the risk of intermediaries stealing them.
Routing across multiple channels is an essential part of the Lightning Network because it
is not optimal for users to open a payment channel with everyone they transact with. This
is why the sender of a payment knows the preimage after payment: the HTLCs along the
payment route must be unlocked to settle the payment. This unlocking process necessitates
the payment receiver disclose the preimage, which is then transmitted along the route to the
sender, making it a proof of payment as described in section 2.2.2. [22]
HTLCs are also used for cross-chain transactions, so-called atomic swaps, enabling users to
transfer funds across different currently isolated blockchain ecosystems without requiring
centralized exchanges as intermediaries. The only limitation is that both blockchains must be
compatible with the same hashing algorithm. Because the Lightning Network utilizes the SHA-
256 hashing algorithm, and EVM-compatible blockchains also support this algorithm, atomic
swaps can establish a trustless and seamless connection between the Lightning Network and
EVM-compatible blockchains.
3.2.2 Protocol

This protocol involves a customer seeking to purchase a certain amount of ether and pay
via the Lightning Network. The operator, in this case, deployed a smart contract on the
Ethereum network that implements hashed timelock contracts (HTLCs). This contract allows
the creation of new HTLCs, which lock up a certain amount of ether with a hashlock and
a timelock. The funds can only be spent if someone provides the correct secret before a
deadline. If no one provides a correct secret, the person that created the HTLCs receives
their funds back by withdrawing them from the contract.
The process, illustrated in figure 3.2, begins with the customer initiating an HTTP request
to the operator, which includes the specific amount of ether requested and the Ethereum
address of the customer. The operator then retrieves the current price of ether in Bitcoin from
a suitable API to calculate the amount of Bitcoin required to purchase the requested amount
of ether. Once the operator calculates the amount, a lightning invoice for the calculated
amount of Bitcoin is created. Upon generating the invoice, the operator acquires both the
payment hash and preimage associated with the payment. Notably, while the creator of an
invoice knows the preimage, this information remains unknown to any other party. With all
the necessary information, namely the payment hash, the receiver, and the amount of ether,
the operator can create the HTLC in the smart contract on the Ethereum network, effectively
locking up the requested amount of ether. The following describes the selection of both the
hashlock and the timelock for the HTLC.

Chapter 3: Concept 21

Customer

Customer

Operator

Operator

Smart Contract

Smart Contract

Lightning Network

Lightning Network

Request (Receiver, Amount)

Create Invoice

Create HTLC

HTLC ID

Invoice + HTLC ID

Fetch HTLC (ID)

HTLC

Check HTLC

Pay Invoice

Receive Preimage

Withdraw (HTLC ID, Preimage)

Receive Ether

Figure 3.2: Protocol: Atomic Swap
The timelock component of the HTLC mechanism is a crucial aspect of its design. It acts as a
protection measure to prevent the funds from being locked up indefinitely if the customer
fails to complete the swap. The operator can choose an appropriate timelock period, such
as 15 minutes, to ensure the customer has enough time to complete the transaction. This
time window strikes a balance between providing enough time for the customer to complete
the transaction and preventing the funds from being locked up for an extended period. If
the customer fails to complete the transaction, the operator can withdraw the funds from
the smart contract and use them for swaps with other customers.
The second crucial aspect of HTLCs is the hashlock. It is a cryptographic constraint that
restricts the spending of the locked ether until the preimage to that hashlock is provided. The
hashlock of an HTLC in this concept is the payment hash of the lightning invoice generated for
the swap. The payment hash of an invoice is derived by applying the SHA256-algorithm to the
preimage of this payment. Furthermore, the preimage of a payment is known to the sender
after a successful payment, as explained in section 2.2.2. To unlock an HTLC, the presentation
of the corresponding preimage to the hashlock is required, which is essentially a value that
produces the hashlock when hashed using the SHA256-algorithm. Given that the hashlock
used in the HTLC is the payment hash of the lightning invoice, the preimage of the lightning

Chapter 3: Concept 23
The customer should also confirm the following aspects: if the recipient address specified in
the HTLC corresponds to the customer’s address. If it does not match, the customer cannot
claim the funds. Furthermore, the customer should ensure that the timelock of the HTLC is
set to a few minutes in the future, allowing adequate time to pay the invoice and claim the
funds. Given the possibility of high blockchain utilization, it is not uncommon for transactions
to require some time before being mined. At such periods claiming the funds from the HTLC
could take a significant amount of time. If the timelock is set too close, the customer may
pay the lightning invoice, which transfers the bitcoin to the operator. However, they may
be unable to withdraw their funds due to the transaction taking too long to be confirmed.
Meanwhile, the HTLC may have already expired. Even if the timelock is set sufficiently in the
future, the customer should select a high gas fee when initiating the claiming transaction
to mitigate the risk of the transaction being stuck in the mempool for an extended period.
As discussed in section 2.1.2, high gas fees generally lead to quicker transaction processing
times, thereby minimizing the potential delay in claiming the funds.
If any of the verification checks fail, the customer will decline to pay the invoice, which results
in the cancellation of the swap. In this case, the operator will keep their ether while the
customer retains their Bitcoin. Thus, no trust is required from either party as all relevant
details can be verified prior to transferring funds, ensuring the safety of both parties’ funds.
Assuming the operator acts honestly, all verification checks by the customer should be suc-
cessfully passed. Consequently, the invoice can be paid without the risk of deception. Upon
payment of the invoice, the customer obtains the preimage used for the payment. As the
hashlock of the HTLC is equivalent to the invoice’s payment hash, obtaining the invoice’s
preimage also results in possessing the preimage for the HTLC. Therefore, the customer can
claim the funds by calling the withdraw function (see 4.1) of the smart contract, providing
the HTLC identifier and preimage. The smart contract then verifies the preimage for the cor-
responding HTLC by applying the SHA256-algorithm, ensuring that it matches the hashlock.
If the customer has provided the correct preimage, the smart contract transfers the funds to
the customer’s specified address.
Finally, the customer has obtained their requested ether, while the operator has received
the Bitcoin. Hence, the customer has effectively exchanged their Bitcoin for ether in a trust-
less manner. The presented concept leverages atomic swaps to enable fast and secure
cross-chain swaps between the Lightning Network and EVM-compatible blockchains without
requiring the parties involved to place trust in one another.
3.2.3 Evaluation

The presented concept offers a solution to the issues faced by the pre-signed transaction
concept, as described in section 3.1.2. One of the key advantages of the proposed approach
is that the customer initiates the transaction to claim the funds themselves, eliminating the
difficulties associated with the nonce. Additionally, the operator locks the funds for a specific
period, allowing the customer to verify the funds’ availability before paying the lightning
invoice. The utilization of hashed timelock contracts effectively resolves all the issues that
render the pre-signed transaction concept unfeasible.

Chapter 3: Concept 24
The proposed approach ensures that no party is required to trust one another. Beforemaking
any payments, the customer can retrieve the hashed timelock contract (HTLC) from the
smart contract and verify all the relevant information, e.g., whether the hashlock matches the
payment hash of the invoice. Only when all verification checks are passed will the customer
pay the invoice, with the assurance that they can claim the funds afterward. If the operator
attempts to deceive the customer, the customer would detect this during the verification
checks and decline to pay the invoice, resulting in the cancellation of the swap. Conversely,
the customer cannot claim the funds without paying the invoice, protecting the operator
from fraud. If the operator chooses the preimage randomly, the customer cannot guess
or compute it since the SHA256-algorithm is irreversible. If the customer cancels the swap,
i.e., not paying the invoice although the verification checks passed, the operator can retrieve
their funds back from the HTLC after the timelock expires. Thus, ensuring that the operator
is not exposed to any risks of being deceived by the customer. Notably, the swap is atomic,
meaning that once one party receives their funds, the other party also receives their funds,
or neither party receives any funds. [23]
Using WebLN enables the development of a seamless user experience. The presented ap-
proach does not require the users to run their own lightning node or a node on their desired
EVM-compatible blockchains. Furthermore, it allows for abstracting away the complexity
associated with the process, thus making it easy to use for everyone. Finally, the security
level of this approach is high since it eliminates the need for a complicated smart contract
architecture, and the smart contract only contains funds during ongoing swaps.
The proposed approach is ideal for creating a trustless connection between the Lightning
Network and EVM-compatible blockchains. The next chapter will provide a comprehensive
description of the implementation of this concept.

Chapter 4: Implementation 25

4 Implementation

This chapter describes the implementation of the proposed concept in section 3.2 in detail.
At its core, the implementation consists of three components:

• User Interface (Customer)
• Backend (Operator)
• Smart Contract (HTLC)

In order to effectively interact with an EVM-compatible blockchain and the Lightning Network,
a suite of tools is necessary. Customersmust utilize two browser extensions connected to the
user interface, as shown in figure 4.1. Namely, Alby is utilized for interaction with the Light-
ning Network, while Metamask is employed for interaction with EVM-compatible blockchains.
Conversely, the operator utilizes LNbits to create and pay invoices on the Lightning Network
and leverages the web3.js-library to interact with EVM-compatible blockchains.

Figure 4.1: User Interface
The smart contract can be deployed onto any EVM-compatible blockchain, facilitating con-
nectivity between the Lightning Network and the respective blockchain. It is important to
distinguish between the native coin of a blockchain and tokens. The native coin is the cur-
rency of the blockchain system, such as ether on Ethereum, BNB on Binance Smart Chain, or
MATIC on Polygon. Conversely, tokens do not possess their blockchain but function on top
of other blockchains. These tokens are typically established following a particular standard,
such as the ERC-20 standard. An example of such a token is Tether (USDT) on the Ethereum
blockchain, which represents the value of one US dollar. [24, 25]

Chapter 4: Implementation 31
In order to handle ERC-20 tokens, the struct from code snippet 4.1 must be extended by
one element: the tokenAddress. This element must store the ERC-20 token address asso-
ciated with the HTLC. The token address and the number of tokens must be passed to the
newContract function when creating the HTLC. Unlike native coins, ERC-20 tokens cannot
be sent along with a transaction. Therefore, the smart contract must collect the tokens from
the creator of the HTLC when creating the HTLC. To accomplish this, a feature of the ERC-20
standard must be used that allows others to spend one’s tokens. Thus, the creator of the
HTLC must grant permission for the smart contract to spend a certain amount of tokens
before calling the newContract function. If the so-called allowance exists, the smart contract
transfers the specified amount of ERC-20 tokens from the creator of the HTLC to the smart
contract upon creating a new HTLC, effectively locking them up.
The withdraw and refund functions remain mostly unchanged from those for native coins.
The only modification required is in the way the funds are transferred. To transfer ERC-
20 tokens, the smart contract must call the transfer function of the corresponding ERC-
20 token contract. This function transfers the specified amount of ERC-20 tokens to the
intended recipient. The same checks and conditions that apply to the native coin version
of these functions also apply to their ERC-20 counterpart, such as verifying the existence of
an HTLC with the given ID, checking whether the caller is authorized to withdraw or refund
the funds, and ensuring that the funds have not already been withdrawn or refunded. Once
these checks are completed, the smart contract transfers the appropriate number of ERC-20
tokens to the intended recipient.
The two smart contracts, one for HTLCs involving native coins and one for HTLCs involving
ERC-20 tokens, are among the core components of this implementation, along with the user
interface and the backend. The interaction between all these components is described in
detail in the following sections.
4.2 Lightning - Native Coin

This section outlines the scenario where a customer purchases native coins using Bitcoin on
the Lightning Network. The protocol for this scenario is illustrated in figure 4.2 and will be
described in detail in this section.
Before initiating the swap, the customermust have theirMetamask and Albywallet connected
to the user interface. To begin the process, the customer selects the network and desired
amount of coins they wish to purchase with Bitcoin on the Lightning Network. Next, they
send an HTTP POST request to the operator at the offerCoinBuy endpoint, which includes the
desired amount of coins, the customer’s address, and the desired network.
Before conducting a swap, the operator sends the customer an offer for that swap. The
offer contains a lightning invoice that the customer must pay to accept the offer. Although
this adds complexity to the protocol, it is necessary to protect the operator from spam. The
operator incurs gas costs for creating the HTLC andmay incur additional costs if the customer
does not conduct the swap. In this case, the operator has to pay extra gas fees for a refund.
Without this additional step with the additional invoice, a customer could request a swap

Chapter 4: Implementation 32
Customer

Customer

Operator

Operator

L ghtn ng Network

L ghtn ng Network

Smart Contract

Smart Contract

HTTP-POST offerCoinBuy(
amount
receiver
network)

Create Offer + Invoice Offer

HTTP-Response(
ID tota Price fee
timeout invoice)

WebLN sendPayment(invoice)

Preimage

HTTP-POST swapCoinBuy(ID)

Create Invoice Swap

newContract(receiver hash ock time ock)

contractId

HTTP-Response(
contractId invoice)

getContract(contractId)

sender receiver amount hash ock
time ock withdrawn refunded preimage

Check HTLC

WebLN sendPayment(invoice)

Preimage

withdraw(contractId preimage)

boo true on success

Figure 4.2: Protocol: Lightning - Native Coin
without any intention of conducting it, leaving the operator to pay for two transactions and
lose liquidity for some time. To prevent fraud, the operator sends the customer an offer and
a lightning invoice that must be paid to accept the offer.
The operator creates an offer for the customer by fetching the current exchange rate of the
requested coin to Bitcoin, which is used to calculate the price for the swap. Next, the operator
estimates the gas costs for creating a new hashed timelock contract (HTLC) and the refund
for that HTLC. This can be done programmatically using the web3.js library, as described in
section 2.1.2. The sum of the costs for the creation and refund is the amount of the lightning
invoice the customer must pay to accept the offer. This protects the operator from losses
even if the customer accepts the offer but does not fully conduct the swap, which requires the
operator to refund the funds from the HTLC. However, if the customer successfully conducts

Chapter 4: Implementation 33
the swap, they would pay for the refund transaction, although this transaction would not
take place in a successful swap scenario. This has to be considered in the price calculation,
which can be illustrated using the following example.
Assuming the following numbers: the customer requests one coin that costs 100 sats1, the
costs for creating and refunding the HTLC are ten sats each, and the operator charges a fee of
1 percent for each swap. Asmentioned earlier, the cost of accepting the offer is the combined
expenses for creating and refunding the HTLC. In this scenario, it would be 20 sats. The total
price of the swap amounts to 100 sats plus a 1% fee, resulting in a total of 101 sats. If the
customer pays the calculated price, the swap will be conducted successfully, and the refund
transaction will not be necessary for the operator. However, the customer has already paid
for the refund transaction in the invoice for accepting the offer. To make the price fair for
both parties, the costs of the refund transaction (10 sats in this scenario) can be subtracted
from the total price. In this case, the total price for the requested coin would be 91 sats. In
total, the customer paid 111 sats, 100 sats for the coin, ten sats for the creation of the HTLC,
and one sat in fees.
The offer also includes a timeout typically set for a few minutes. This timeout is designed to
provide enough time for the customer to consider the offer while preventing the operator
from committing to a specific exchange price for an extended period. If the timeout were
set for a longer period, the customer could wait for the exchange rate between the coin and
Bitcoin to improve before conducting the swap, potentially resulting in a better exchange
rate for the customer. Finally, the operator saves the offer to their database and sends it to
the customer. The offer includes an identifier, the total price, the fee, the timeout, and the
lightning invoice that must be paid to accept the offer.
The offer is displayed to the customer in the user interface, as shown in figure 4.3. The cus-
tomer may accept the offer within the given timeout by clicking the Accept Offer button. This
action opens the connected Alby wallet and prompts the user to pay the invoice, equivalent
to the costs for creating and refunding the HTLC (20 sats in this scenario). The customer
has to approve the payment within the wallet, and the Lightning Network will process the
payment.
Upon payment of the lightning invoice, the user interface sends an HTTP POST request to the
swapCoinBuy endpoint of the operator, containing the identifier (ID) of the offer to initiate
the creation of the hashed timelock contract (HTLC). The operator performs several checks,
including verifying if an offer exists for the given ID (i.e., looking for an offerwith the given ID in
their database), if the customer responded within the specified timeout, and if the customer
paid the invoice. If all conditions aremet, the operator proceeds to create the lightning invoice
in the amount of the total price. The payment hash of the invoice is used as the hashlock for
creating the HTLC, as described in detail in section 3.2.2. The operator creates a new HTLC by
executing the newContract function of the smart contract. This function returns a 32-byte
identifier for the HTLC, referred to as the contractId. The user interface receives the lightning
invoice and the contractId as a response to the HTTP request.

1Satoshis [the smallest unit of Bitcoin]

Chapter 4: Implementation 34

Figure 4.3: User Interface: Offer Buy Coin
Before paying the lightning invoice, the customer must ensure the integrity of the hashed
timelock contract (HTLC). The user interface fetches the HTLC from the smart contract using
the getContract function. This function returns all relevant information associated with
the HTLC, including the creator and receiver of the HTLC, the amount, the hashlock, the
timelock, and two boolean values indicating whether the HTLC has already been withdrawn
or refunded. Furthermore, the preimage of the HTLC is returned, which is an empty string
at this point. In addition to fetching the HTLC information, the user interface decodes the
lightning invoice to reveal the payment hash, among other details.
The user interface performs several verification checks before prompting the customer to pay
the lightning invoice. These checks include verifying whether the payment hash of the invoice
matches the hashlock of the HTLC, if the timelock of the HTLC is more than five minutes in
the future, if the locked amount in the HTLC corresponds to the requested amount, and if
the receiver of the HTLC is the customer’s address. The verification checks are described in
more detail in section 3.2.2.
After ensuring the integrity of the HTLC, the customer is ready to pay the lightning invoice
by clicking on the Pay Invoice button on the user interface. This opens the Alby wallet and
prompts the customer to confirm the payment. Once the Lightning Network successfully
processes the payment, the preimage of the payment is known to the customer and is dis-
played on the user interface. The customer uses this preimage to withdraw their requested
coins from the HTLC. By clicking on the Claim button, the user interface creates a transaction
and prompts the customer to confirm it in their MetaMask wallet, as shown in figure 4.4.
The transaction calls the withdraw function of the smart contract, submitting the identifier
of the HTLC and the preimage. The smart contract then verifies if the preimage matches
the hashlock of the HTLC, as described in more detail in 4.1. Finally, the smart contract

Chapter 4: Implementation 35
transfers the coins locked in the HTLC to the customer, completing the swap. As a result,
the customer received their requested coins, and the operator received their Bitcoin on the
Lightning Network in exchange.

Figure 4.4: User Interface: Claim Coin
In this section, the protocol for conducting a successful swap has been described. However,
it should be noted that not all swaps may be successfully conducted. If the customer fails to
accept the offer, the operator will delete the offer once the timeout period has expired. The
customer cannot accept the offer after the timeout has elapsed. If the customer accepts the
offer but fails to pay the invoice for conducting the swap, the operator must wait for the HTLC
to expire due to timelock. Once it expires, the operator can initiate a refund by calling the
refund function of the smart contract. In this scenario, the only funds lost are the gas fees
for creating and refunding the HTLC. However, as previously described, the fees associated
with the creation and refund of the HTLC are paid by the customer upon acceptance of the
offer.
4.3 Lightning - ERC-20 Token

In addition to buying native coins, customers can also purchase ERC-20 tokens that the
operator on the relevant network supports. The protocol for buying ERC-20 tokens requires
several modifications compared to native coins. The modified protocol is illustrated in figure
4.5. The necessary changes are discussed in detail in this section, while aspects of the protocol
that remain unchanged from buying native coins are only briefly addressed.
Every blockchain only has one native coin, but it may support many ERC-20 tokens, which
are specified by their unique address. Therefore, the customer’s first step is to select their
desired ERC-20 token. To achieve this, the user interface provides a drop-down menu that

Chapter 4: Implementation 36
Customer

Customer

Operator

Operator

Lightning Network

Lightning Network

Smart Contract

Smart Contract

ERC 20 Token

ERC 20 Token

HTTP POST offerErc20Buy(
amoun receiver
ne work okenAddress)

Crea e Offer + nvoice Offer

HTTP Response(
D o alPrice fee
imeou invoice)

WebLN sendPaymen (invoice)

Preimage

HTTP POST swapErc20Buy(
D)

Crea e nvoice Swap

approve(spender amoun)

bool rue on success

newCon rac (receiver hashlock imelock
okenAddress amoun)

ransferFrom(
sender
recipien
amoun)

bool rue
on success

con rac d

HTTP Response(
con rac d
nvoice Swap)

ge Con rac (con rac d)

sender receiver okenCon rac amoun hashlock
imelock wi hdrawn refunded preimage

Check HTLC

WebLN sendPaymen (invoice)

Preimage

wi hdraw(con rac d preimage)

ransfer(
receiver
amoun)

bool rue
on success

bool rue on success

Figure 4.5: Protocol: Lightning - ERC-20 Token
displays all supported tokens for the particular network, as shown in figure 4.6. Once the
customer has selected the token and the desired amount, they initiate the buying process by
sending an HTTP POST request to the offerErc20buy endpoint of the operator. Compared
to the request for buying native coins, this request contains one additional parameter: the
address of the desired ERC-20 token.

Chapter 4: Implementation 37

Figure 4.6: User Interface: Buy ERC-20 Token
At this point, the protocol is the same as the one for buying native coins. The operator fetches
the current exchange rate between Bitcoin and the ERC-20 token and creates an offer along
with a lightning invoice to be paid by the customer. The offer and lightning invoice are then
sent to the customer in response to the HTTP request, and the customer pays the lightning
invoice to accept the offer. Upon payment, the user interface sends an HTTP POST request
to the swapErc20Buy endpoint of the operator, containing the identifier (ID) of the offer to
initiate the creation of the hashed timelock contract (HTLC).
First, the operator creates the lightning invoice for the swap, as the payment hash is needed
to create the HTLC. Creating an HTLC for ERC-20 tokens differs from native coins in a few
key ways. As discussed in section 4.1, unlike native coins, ERC-20 tokens cannot be sent
along with a transaction. Therefore, the smart contract must collect the ERC-20 tokens from
the operator upon creating a new HTLC. To accomplish this, the operator must create an
allowance for the smart contract by calling the approve function of the ERC-20 token. After
creating the allowance, the operator can call the newContract function, which collects the
tokens from the operator using the transferFrom function of the ERC-20 token and locks
them up in an HTLC. The operator receives an identifier, the contractId, for the newly created
HTLC, which is sent to the user interface along with the lightning invoice for the swap in
response to the HTTP request.
The remaining steps of the protocol are essentially the same as for buying native coins with
Bitcoin on the Lightning Network. The customer fetches and verifies the HTLC, pays the
lightning invoice, and calls the withdraw function to claim their ERC-20 tokens. However, the
withdraw function differs slightly for ERC-20 tokens because they cannot be sent along with
a transaction. Instead, the tokens must be transferred to the customer using the transfer

Chapter 4: Implementation 38
function of the ERC-20 token. Once the transfer is complete, the customer has successfully
obtained their requested ERC-20 tokens, and the operator has received their Bitcoin on the
Lightning Network in exchange.
4.4 Native Coin - Lightning

The presented approach in section 4.2 can be used in reverse, allowing the customer to sell
their native coins for Bitcoin on the Lightning Network, illustrated in figure 4.7.

Customer

Customer

Operator

Operator

Lightning Network

Lightning Network

Smart Contract

Smart Contract

HTTP-POST offerCo nSe (
amount, network)

Create Offer

HTTP-Response(
ID, rece ver, fee,
tota Pr ce, t meout)

Create Invo ce

newContract(rece ver, hash ock, t me ock)

contractId

HTTP-POST swapCo nSe (
ID, contractId, nvo ce)

getContract(contractId)

sender, rece ver, amount, hash ock,
t me ock, w thdrawn, refunded, pre mage

Check HTLC

HTTP-Response(status)

LNb ts Payment(nvo ce)

Pre mage

w thdraw(contractId, pre mage)

boo true on success

Figure 4.7: Protocol: Native Coin - Lightning
The customer initiates the process by selecting the desired amount of tokens they want to sell.
The user interface for this looks the same as the one shown in figure 4.1. The customer then
requests an offer from the operator by sending an HTTP POST request to the offerCoinSell
endpoint. This request contains the amount the customer wants to sell and the desired
network. The operator fetches the current exchange rate between the coin and Bitcoin to

Chapter 4: Implementation 39
create an offer. The operator can then calculate how much they will pay for the number of
coins the customer wants to sell. The amount the operator is willing to pay is slightly lower
than the actual exchange rate due to a fee that the operator raises. Furthermore, the operator
chooses how long they will pay this amount by setting the timeout accordingly. Finally, the
operator sends the offer to the customer in response to the HTTP request. This response
contains an identifier for the offer, the operator’s address, the fee, the amount of Bitcoin the
customer receives for their coins, and the timeout for the offer. The operator’s address is
required to create the hashed timelock contract (HTLC) because the operator unlocks the
HTLC later, i.e., is the receiver of the HTLC’s funds.
Upon receiving the offer from the operator, the customer can review it in the user interface,
as shown in figure 4.8. If the customer accepts the offer, they must do so within the given
timeout. To initiate the swap, the customer must create the lightning invoice and HTLC
accordingly. The lightning invoice is created using Alby by clicking the Accept offer (Create
Invoice) button. The invoice amount is the price the operator is willing to pay, which was sent
with the offer. The customer can confirm the creation of the lightning invoice by clicking the
Confirm button.

Figure 4.8: User Interface: Offer Sell Coin
After creating the lightning invoice, the customer has everything they need to proceed with
the creation of the HTLC. The operator is set as the receiver of the HTLC, with the payment
hash of the prior created lightning invoice serving as the hashlock. The HTLC timeout is set
to a few minutes in the future. The user interface then prompts the customer to confirm
the creation of a new HTLC by executing the newContract function of the smart contract
via their Metamask wallet. Upon execution, the function returns a 32-byte identifier for the
HTLC, referred to as the contractId.

Chapter 4: Implementation 40
Upon creation of the hashed timelock contract (HTLC), the user interface sends an HTTP POST
request to the swapCoinSell endpoint of the operator, which includes the ID of the offer, the
contractId, and the lightning invoice. To ensure the integrity of the HTLC, the operator fetches
the HTLC from the smart contract using the contractId and performs several verification
checks. These include verifying if the hashlock of the HTLC matches the payment hash of the
lightning invoice and performing other checks, as described in more detail in section 3.2.2.
If all checks are passed, the operator sends a positive status update to the user interface in
response to the HTTP request. The user interface then updates accordingly, informing the
customer that they must wait for the operator to pay the invoice and claim their funds from
the HTLC, which can be seen in figure 4.9.

Figure 4.9: User Interface: Waiting for Operator
After the operator successfully pays the lightning invoice using LNbits, they receive the preim-
age of the invoice. This preimage allows the operator to claim their funds from the HTLC
by calling the withdraw function of the smart contract and providing the contractId and the
preimage. The user interface listens for an event on the blockchain, signaling that the op-
erator claimed their funds. Once the operator has claimed their funds, the user interface
informs the customer accordingly, and the swap is considered complete. The operator has
received their coins, and the customer has received their Bitcoin on the Lightning Network.
However, if the operator does not act within the specified timeout period, the customer must
refund their funds from the HTLC. This can be achieved by clicking the Refund button on
the user interface and confirming the transaction in the Metamask prompt. This transaction
calls the refund function of the smart contract, effectively transferring the coins back to the
customer.

Chapter 4: Implementation 41
4.5 ERC-20 Token - Lightning

The customer can also sell ERC-20 tokens for Bitcoin on the Lightning Network. The protocol,
illustrated in figure 4.10, differs slightly from selling native coins. The necessary changes are
discussed in detail in this section, while aspects of the protocol that remain unchanged from
selling native coins are only briefly addressed.

Customer

Customer

Operator

Operator

Lightning Network

Lightning Network

Smart Contract

Smart Contract

ERC 20 Token

ERC 20 Token

HTTP POST offerErc20Sell(
amount network
tokenAddress)

Create Offer

HTTP Response(
D receiver fee
totalPrice timeout)

Create nvoice

approve(spender amount)

bool true on success

newContract(receiver hashlock timelock tokenAddress amount)

transferFrom(
sender
recipient
amount)

bool true
on success

contract d

HTTP POST swapErc20Sell(
D
contract d
invoice)

getContract(contract d)

sender receiver tokenAddress
amount hashlock timelock
withdrawn refunded preimage

Check HTLC

HTTP Response(status)

LNbits Payment(invoice)

Preimage

withdraw(contract d preimage)

transfer(
receiver
amount)

bool true
on success

bool true on success

Figure 4.10: Protocol: ERC-20 Token - Lightning

Chapter 4: Implementation 42
In the process of selling ERC-20 tokens for Bitcoin on the Lightning Network, the customer
starts by choosingwhich ERC-20 token theywant to sell from the drop-downmenu. Afterward,
they choose the amount they wish to sell. Upon selecting the desired token and amount,
the customer initiates the process by sending an HTTP POST request to the offerErc20Sell
endpoint of the operator. This request contains an extra parameter, the address of the
desired ERC-20 token, compared to the request for selling native coins.
Like the protocol for selling native tokens, the operator obtains the current exchange rate
between the ERC-20 token and Bitcoin and calculates the price they are willing to pay for
the number of tokens the customer wants to sell. Notably, the price is lower than the actual
exchange rate due to the operator’s fee. The operator sends the offer to the customer in
response to the HTTP request, which includes the offer identifier, the operator’s address, the
fee, the amount of Bitcoin the customer will receive for their ERC-20 tokens, and the offer’s
timeout period. Upon receiving the offer, the customer reviews it in the user interface and
creates a lightning invoice using Alby. As shown in figure 4.8, the customer only needs to
click the Confirm button in the Alby prompt to create the lightning invoice.
The subsequent step in the protocol differs from the one for selling native coins. As previously
stated, ERC-20 tokens cannot be sent along in a transaction, and thus, the approve and
transferFrom functions of the ERC-20 token have to be used. Therefore, before creating
a new HTLC, the customer must authorize the smart contract to transfer their token (the
number of tokens they want to sell). The customer can do so by clicking the Create Token
Allowance button on the user interface, which can be seen in figure 4.11. This generates a
transaction that calls the approve function of the ERC-20 token andmust be confirmed by the
user in the Metamask prompt. After the transaction is successfully processed, the customer
can proceed with creating the HTLC.

Figure 4.11: User Interface: Approve ERC-20 Token

Chapter 4: Implementation 43
After the lightning invoice and the allowance for the smart contract have been created, the
newContract function of the smart contract is used to create a newHTLC. During the creation
of the HTLC, the smart contract utilizes the transferFrom function of the ERC-20 token to
transfer the token to the smart contract and lock it up in the HTLC. If the HTLC creation is suc-
cessful, the customer receives a unique identifier for the HTLC, referred to as the contractId.
The remaining steps of the protocol for selling ERC-20 tokens for Bitcoin on the Lightning
Network largely follow the same steps as selling native coins. The user interface sends an
HTTP POST request to the swapErc20Sell endpoint of the operator, which contains the offer
identifier, the contractId of the HTLC, and the lightning invoice. The operator fetches the HTLC
from the smart contract using the contractId and performs the verification checks described
in 3.2.2. If all checks pass, the operator sends a positive status update to the user interface,
informing the customer that they must wait for the operator to pay the invoice and claim
their funds from the HTLC. Afterward, the operator pays the lightning invoice using LNbits
to obtain the preimage of the payment. Knowing the preimage allows the operator to claim
their ERC-20 tokens by calling the withdraw function of the smart contract. The withdraw
function leverages the transfer function of the ERC-20 token to transfer the tokens to the
operator. As a result, the customer received their Bitcoin on the Lightning Network, and the
operator received their ERC-20 tokens. However, if the operator does not act in time, as
described in the previous section, the customer has to use the refund function to claim their
funds back.

Chapter 5: Further Considerations 44

5 Further Considerations

This chapter serves to provide additional considerations for the protocol as a whole. Firstly,
implementing a faucet is described, which could improve customer onboarding by providing
customers with a small number of native coins to begin interacting with the protocol. Sec-
ondly, the significance of Taro is outlined, as Taro aims to bring stablecoins and assets in
general to Bitcoin and the Lightning Network. Thirdly, supporting other wallets beyond Meta-
mask and Alby is discussed, which would increase accessibility and attract a broader range
of users to the platform. Finally, the extension of the protocol to include ERC-721 tokens is
described, which would allow for buying and selling non-fungible tokens on the platform.
5.1 Faucet

A faucet is a mechanism in the cryptocurrency space that is used to distribute small amounts
of coins or tokens to users. In the early days of Bitcoin, faucets were used to distribute Bitcoin
ownership widely. Faucets are an easy way for new users to receive their first coins or tokens
without registering at an exchange or any other platform. Nowadays, faucets are widely
used to distribute coins and tokens on test networks. This allows developers and new users
to start using the network without much effort, thus facilitating the process of testing and
experimentation. [28]
Creating transactions on any EVM network requires a certain amount of gas fee to be paid in
the coin of the corresponding network, such as ether in the case of Ethereum, as explained
in section 2.1.2. Customers wishing to use the platform introduced in chapter 4 are expected
to create transactions for claiming their funds or creating new hashed timelock contracts
(HTLCs). Therefore, customers must have certain coins on the desired network to cover the
gas fees. While customers already using the EVM ecosystem should have some coins, this
may not be the case for new customers.
The entry barrier for new customers is relatively high, as they need to acquire coins on their
desired network before using the presented platform. Typically, this requires much effort
as they need to register at an exchange or a similar service. Furthermore, they only need a
small amount of coins to be able to pay for their gas fees. To address this issue and make
the platform easier accessible for new users, the platform could be extended by a faucet
operated by the operator that sells small amounts of coins on the supported networks. New
customers could use this service to acquire small amounts of coins on their desired network
to start using the platform immediately, lowering the entry barrier for new customers.
The faucet could be included in the user interface, as shown in figure 5.1. This would al-
low customers to paste their address and the desired amount they want to receive. The
user interface would suggest a specific amount based on the current network conditions for
the customer to be able to pay the gas fees for at least one transaction (e.g., a transaction
that executes the withdraw function). The operator would fetch the current exchange rate

Chapter 5: Further Considerations 45
between the coin and Bitcoin, following which a lightning invoice would be created for the
requested coins’ value. After the customer paid the invoice, the operator would send the
desired amount of coins to the customer.

Figure 5.1: User Interface: Faucet
This proposed solution of including a faucet to acquire small amounts of coins has one
downside in terms of trust. The customermust fully trust that the operator will send the coins
after paying the lightning invoice. However, there are several reasonswhy this solutionmakes
sense. Firstly, it is optional for the customer and only serves as a convenience. Secondly,
the faucet’s number of coins is usually minimal, i.e., only a few cents. Even if the operator
acts dishonestly, the customer will lose only a tiny amount. Thirdly, if the operator cheats
on their customers, their reputation would be damaged, leading to loss of future customers
and earnings. Thus, the operator is incentivized to behave honestly. While the faucet does
require trust from the customer, it is essential to note that the rest of the platform remains
trustless.
The main goal of the faucet is to simplify the process of obtaining small amounts of coins for
new customers. By offering this service, customers can start using the platform immediately,
even if they are unfamiliar with the ecosystem. Once they have acquired enough coins to pay
the gas fees for a single transaction, they can purchase additional coins in a trustless manner,
as described in section 4.2. They only require enough coins to execute the withdraw function
and claim their funds from the hashed timelock contract (HTLC).
5.2 Taro

Taro is a newly introduced Taproot-powered protocol that enables the issuance of assets
on the Bitcoin blockchain that can be transferred over the Lightning Network. The platform
introduced in chapter 4 takes advantage of the security and stability of the Bitcoin network

Chapter 5: Further Considerations 46
as well as the speed, scalability, and low fees offered by Lightning. Taro employs Taproot,
the most recent upgrade of Bitcoin, to create a tree structure that allows developers to
embed arbitrary asset metadata within an existing output. The assets issued on Taro can
be diverse and can represent stablecoins, tickets, shares, art, or ownership rights, among
others. Depositing Taro assets into Lightning Network payment channels enables users to
hold a balance in their wallet different from BTC, such as a stablecoin, and transact instantly.
At the time of writing, Taro’s development focuses primarily on the stablecoin use case. [29]
A stablecoin is a cryptocurrency designed to maintain a stable value relative to another asset
or group of assets, such as a fiat currency or commodity. This is achieved by pegging the
value of the stablecoin to the value of the chosen asset or assets. Stablecoins offer several
benefits, such as holding and transferring value without being subject to the volatility of
other cryptocurrencies and offering a potential alternative to traditional payment systems.
There are several types of stablecoins, including fiat-collateralized, crypto-collateralized, and
algorithmic stablecoins. [30]
As of today, the stablecoin ecosystem predominantly relies on EVM-compatible blockchains.
At the time of writing, stablecoins contribute to approximately ten percent of the global cryp-
tocurrency market capitalization. Most stablecoin market capitalization, i.e., approximately
55%, is based on Ethereum. The remaining is distributed over various other blockchain net-
works like Tron and Polygon. The widespread use and adoption of stablecoins demonstrate
their significant influence and importance in the broader cryptocurrency ecosystem. [31]
The development of the Taro protocol has brought the prospect of stablecoins on the Bitcoin
blockchain and the LightningNetwork. This can be seen as amilestone because the stablecoin
ecosystem is currently predominantly based on EVM-compatible blockchains. This develop-
ment may result in a demand for transferring stablecoins from an EVM-based blockchain
to the Lightning Network. The platform developed in this work could be an alternative for
users not wanting to use a centralized exchange. It offers a solution for users to transfer
their stablecoins quickly, cheaply, and in a trustless manner.
The Lightning Network and EVM-compatible blockchains offer distinct advantages in the
crypto space. While the Lightning Network is well-suited for instant, low-cost payments for
everyday goods, the EVM ecosystem provides users with a wide range of decentralized appli-
cations. As such, users may want to swap funds back and forth between the two ecosystems
depending on their needs. This creates a demand for a trustless connection between the
Lightning Network and EVM-compatible blockchains, which the platform developed in this
work aims to provide.
5.3 Supported Wallets

A suite of requisite tools is necessary to interact with an EVM-compatible blockchain and
the Lightning Network effectively. The implementation presented in chapter 4 utilizes the
browser add-on Metamask to interact with EVM-compatible blockchains, while the browser

Chapter 5: Further Considerations 47
extension Alby is used for the interaction with the Lightning Network. However, customers
who do not have Metamask or Alby installed cannot use the platform. Thus, supporting
multiple wallet options would increase accessibility and attract more users to the platform.
There are a variety of wallets available for interaction with EVM-compatible blockchains. Wal-
letConnect can be utilized to support multiple wallets without the need for individual imple-
mentation of each wallet. It offers a toolkit that enables the connection of decentralized
applications (dApps) to multiple blockchain wallets. At the time of writing, more than 170
different wallets are supported. By integrating WalletConnect, only this one integration is
required to support all these wallets. [32]
WalletConnect provides support for mobile wallets, desktop wallets, and hardware wallets.
For mobile wallets that support WalletConnect, the customer scans the QR code shown in
figure 5.2 to connect their wallet. After a successful connection, the customer can confirm
transactions in their mobile wallet. Similarly, desktop and hardware wallets can also be
connected. The benefit of leveraging WalletConnect is that the customers are not restricted
to using a specific wallet, such as MetaMask, but still have access to the platform presented
in chapter 4.

Figure 5.2: User Interface: Wallet Connect [33]
The implementation presented in chapter 4 utilizes the WebLN standard for interaction with
the Lightning Network, which is explained in detail in section 2.2.3. Alby, a browser-based
lightning wallet, is used for the implementation, as it supports the WebLN standard. Addition-
ally, other wallets, including Joule, Kollider, and BlueWallet, also support the WebLN standard.
Customers without a wallet that supports WebLN cannot use the platform and would need to
set up a corresponding wallet first, which can be a significant obstacle. Therefore, supporting
all widely used lightning wallets would reduce the entry barrier for customers to use the
platform. [18]

Chapter 5: Further Considerations 48
In order to purchase native coins and ERC-20 tokens on the platform, customers must pay
lightning invoices. The current implementation leverages the WebLN sendPaymentmethod,
which prompts users in their Alby wallet to confirm the payment. The user interface must
display the lightning invoice to support other wallets, as shown in figure 5.3. For customers
with mobile wallets, the lightning invoice can be paid by scanning the displayed QR code.
Alternatively, the customer can copy the lightning invoice into their clipboard and paste it
into their desired wallet to pay the invoice. The lightning invoice can now be paid using any
lightning wallet.

Figure 5.3: User Interface: Display Lightning Invoice
After paying the lightning invoice, the customer must claim their funds from the hashed
timelock contract (HTLC) as described in section 4.2. The preimage from the successfully
paid lightning invoice is required to claim the funds. Hence, the user must manually copy
the preimage from the lightning wallet they used to pay the invoice into the user interface.
Typically, the preimage is revealed in the payment details following a successful payment.
However, this process can lead to a poor user experience, as the customer must manually
handle the preimage. The customer may also have to use third-party software to transfer
the preimage between their lightning wallet and the user interface. In contrast, the WebLN
standard simplifies the process significantly, as the customer only needs to click one button
to confirm the payment. The preimage is automatically handled programmatically in the
background.
Selling native coins and ERC-20 tokens requires the customer to create a lightning invoice,
which can be done programmatically using the makeInvoice method in WebLN. The cus-
tomer only needs to confirm the creation of the invoice by clicking one button. However,
supporting any lightning wallet means the customer must manually create the lightning in-

Chapter 5: Further Considerations 49
voice and paste it into the user interface. Similar to buying native coins and ERC-20 tokens,
this creates a poor user experience for selling, especially when compared to the seamless
experience offered by WebLN.
Supporting all commonly used lightningwallets can be accomplishedwith somemodifications
to the implementation. However, this approach has one significant drawback: the user
experience will be notably worse than using the WebLN standard. Moreover, there is an
increased probability of errors during the manual copy-pasting of the preimage to the user
interface or while manually creating the lightning invoice. With the WebLN standard, the user
does not need to perform manual actions but only confirm payments and invoice creations
with a button click. The rest is handled in the background, invisible to the customer. Therefore,
careful considerationmust be given to determine if supporting other lightningwallets is worth
sacrificing the seamless user experience offered by the WebLN standard.
In order to increase accessibility and attract a broader range of customers to the platform,
supporting other wallets besides Metamask and Alby is a valuable consideration. WalletCon-
nect is particularly useful in this regard, as it allows customers to use not only Metamask but
also a variety of other wallets for interacting with EVM-compatible blockchains. The imple-
mentation of WalletConnect is straightforward and provides substantial benefits. Therefore,
it should be considered for future development of the platform. However, the support of
lightning wallets apart from WebLN-compatible wallets must be well considered. Although
such support would offer advantages in terms of accessibility to customers without WebLN-
compatible wallets, it would also result in a significantly worse user experience due to the
need for manual intervention. Hence, it may be preferable to onboard customers to WebLN-
compatible wallets to retain a seamless user experience. For instance, in Alby, existing wallets
can be added, allowing customers to continue using their current wallet while also being able
to access the platform with the WebLN-compatible Alby wallet.
5.4 ERC-721

Like ERC-20 tokens, ERC-721 tokens are a type of digital asset that exists on a blockchain
like Ethereum. However, while ERC-20 tokens are fungible, meaning each token is inter-
changeable with another token of the same type and value, ERC-721 tokens are non-fungible,
meaning each token is unique and has its distinct value. Each token can be traced back to
its original owner, making it ideal for representing assets such as digital art, collectibles, and
event tickets. [34]
The platform introduced in chapter 4 can be extended to support ERC-721 tokens. Since
these tokens are similar to ERC-20 tokens, only a few modifications to the smart contract
are required. Supporting ERC-721 tokens provides a range of use cases and makes the
platform more appealing to a broader audience. For instance, if an event issues tickets on
the Ethereum blockchain, one can purchase a ticket using the Lightning Network in a fast
and trustless manner.

Chapter 6: Conclusion 51

6 Conclusion

In thiswork, a trustless connection between theBitcoin LightningNetwork and EVM-compatible
blockchains has been developed, enabling asset transfer between the two ecosystems. The
proposed solution is highly versatile, as it can establish a connection between Bitcoin Light-
ning and any blockchain that supports the EVM. After describing the necessary fundamentals,
two concepts were proposed to achieve this connection. Finally, the protocol for the more
promising concept, using atomic swaps, was described in detail and implemented. It is now
possible to buy and sell native coins and ERC-20 tokens for Bitcoin on the Lightning Network
in a trustless manner. The prioritized objectives for the solution - security, speed, and user
experience - have been achieved.
The focus of this work has been on the technical aspects of the solution. However, to operate
the developed platform in production, some non-technical aspects still need to be clarified,
including economic and security considerations. To ensure the platform can operate ade-
quately, enough liquidity must be available on both the Bitcoin Lightning Network and the
EVM-compatible blockchain side. Furthermore, a rebalancing mechanism is required to pre-
vent situations where customers are unable to complete their trades due to a lack of available
assets on one side. Additionally, the development of a suitable monetization model is a cru-
cial aspect of operating the platform sustainably. One possible option is to charge a fee for
every swap, such as a percentage of the swapped amount. However, the exact fee structure
must be carefully considered to ensure that it remains competitive in themarket and remains
attractive to customers. Finally, an in-depth analysis of the costs of using the platform for
both the customer and operator is required. The costs depend on the payment route on the
Lightning Network and the level of demand on the corresponding EVM blockchain.
The security of atomic swaps relies on the use of hashed timelock contracts (HTLCs) which
ensure that neither party can cheat. The implementation of HTLCs in Solidity is straightfor-
ward and not very complex, which contributes to the high level of security of this solution.
Furthermore, the smart contract never holds a large number of funds, only the funds that are
involved in an ongoing swap. Thus, in the event of a security vulnerability in the smart con-
tract, there would only be a small number of funds accessible to a potential attacker. Apart
from the smart contract, the operator has to consider common security-relevant aspects
when running a service, such as denial of service (DoS) protection.
This work provides a foundation for developing a production-ready service that enables a
trustless connection between the Bitcoin Lightning Network and EVM-compatible blockchains
using atomic swaps. Initially, the service could begin with a limited scope, e.g., by supporting
only native coins on Ethereum. Once the service is considered stable, it can be expanded
to include other networks and ERC-20 tokens. Furthermore, the service can be expanded
to include a faucet for better user onboarding, support ERC-721 tokens, and support other
wallets, as described in chapter 5. By establishing such a service, this work can contribute
to the growth of both ecosystems and open up new possibilities for both of them to benefit
from each other’s advantages.

Appendix A: Implementation 52

Appendix A: Implementation

The implementation can be found on the CD that accompanies this work.

Bibliography 53

Bibliography

[1] Ethereum.org. “What is Ethereum?” (2023), [Online]. Available: https://ethereum.
org/en/what-is-ethereum. (last visted on 09/05/2023).

[2] Kearney, Leal. “What are EVM Compatible Blockchains? A Guide to the Ethereum Virtual
Machine”. (2023), [Online]. Available: https://blog.thirdweb.com/evm-compatibl
e-blockchains-and-ethereum-virtual-machine/. (last visted on 09/05/2023).

[3] GoCrypto. “What are EVM-compatible blockchains?” (2022), [Online]. Available: https:
//medium.com/eligma-blog/what-are-evm-compatible-blockchains-64f91c9

7038e. (last visted on 23/02/2023).
[4] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. (2008), [Online].

Available: https://bitcoin.org/bitcoin.pdf. (last visted on 09/05/2023).
[5] Joseph Poon, Thaddeus Dryja. “The Bitcoin Lightning Network: Scalable Off-Chain In-

stant Payments”. (2016), [Online]. Available: https://lightning.network/lightni
ng-network-paper.pdf. (last visted on 09/05/2023).

[6] Andreas Antonopoulos, Olaoluwa Osuntokun, René Pickhardt, Mastering the Lightning
Network. O’Reilly Media, Inc., 2021, ISBN: 978-1-492-05486-3.

[7] Cointelegraph. “What is blockchain interoperability: A beginner’s guide to cross-chain
technology”. (2023), [Online]. Available: https://cointelegraph.com/learn/what-
is - blockchain - interoperability - a - beginners - guide - to - cross - chain -

technology. (last visted on 19/04/2023).
[8] Leon Do. “submarine-swaps”. (2020), [Online]. Available: https://github.com/leon-

do/submarine-swaps. (last visted on 26/04/2023).
[9] Aleksey Bykhun. “ln-eth-swap”. (2018), [Online]. Available: https://github.com/

caffeinum/ln-eth-swap. (last visted on 26/04/2023).
[10] Andreas Antonopoulos, Dr. Gavin Wood, Mastering Ethereum. O’Reilly Media, Inc., 2018,

ISBN: 978-1-491-97194-9.
[11] Ethereum.org. “Sidechains”. (2013), [Online]. Available: https://ethereum.org/en/

developers/docs/scaling/sidechains/. (last visted on 09/05/2023).
[12] Data Conomy. “Unlocking the secrets of the blockchain nonce”. (2022), [Online]. Avail-

able: https://dataconomy.com/2022/12/15/blockchain-nonce-explained/.
(last visted on 09/05/2023).

[13] Bitcoin Visuals. “Lightning Network Capacity”. (2023), [Online]. Available: https://
bitcoinvisuals.com/ln-capacity. (last visted on 09/03/2023).

[14] Blocktrainer. “Bitcoin zum Anfassen: Der Lightning-Snackautomat”. (2023), [Online].
Available: https://www.blocktrainer.de/bitcoin-zum-anfassen-der-lightni
ng-snackautomat. (last visted on 09/03/2023).

[15] Coincharge. “Payment per newspaper article with Bitcoin Lightning”. (2023), [Online].
Available: https://coincharge.io/en/payment-per-newspaper-article-with-
bitcoin-lightning. (last visted on 09/03/2023).

Bibliography 54
[16] LNbits. “Free Open-Source Bitcoin Lightning Accounts System with Extensions”. (2023),

[Online]. Available: https://lnbits.com. (last visted on 09/03/2023).
[17] web3.js. “web3.js - Ethereum JavaScript API”. (2023), [Online]. Available: https :/ /

web3js.readthedocs.io/en/v1.8.2/. (last visted on 10/05/2023).
[18] Alby. “WebLN Guide”. (2023), [Online]. Available: https://github.com/getAlby/

webln-guide. (last visted on 06/03/2023).
[19] Alby. “lightning-browser-extension”. (2023), [Online]. Available: https://github.com/

getAlby/lightning-browser-extension#lightning-web-extension. (last visted
on 06/03/2023).

[20] Joule Labs. “WebLN Developer Documentation”. (2023), [Online]. Available: https://
webln.dev. (last visted on 07/03/2023).

[21] Minima. “Understanding Hashed Time-locked Contracts (HTLCs)”. (2022), [Online]. Avail-
able: https://www.minima.global/post/understanding-hashed-time-locked-
contracts-htlcs. (last visted on 17/03/2023).

[22] Lightning Labs. “Hashed Timelock Contract (HTLC)”. (2023), [Online]. Available: https:
//docs.lightning.engineering/the-lightning-network/multihop-payments/

hash-time-lock-contract-htlc. (last visted on 17/03/2023).
[23] Muhammad Zubair. “How is SHA-256 used in blockchain, and why?” (2023), [Online].

Available: https://www.educative.io/answers/how- is- sha- 256-used-in-
blockchain-and-why. (last visted on 17/03/2023).

[24] Liquid. “Crypto Coin vs. Token: Understanding the Difference”. (2023), [Online]. Avail-
able: https://blog.liquid.com/coin-vs-token. (last visted on 22/03/2023).

[25] Tether. “Tether Token USDT”. (2023), [Online]. Available: https://tether.to/en. (last
visted on 22/03/2023).

[26] Truffle Suite. “Ganache - One Click Blockchain”. (2023), [Online]. Available: https://
trufflesuite.com/ganache/. (last visted on 10/05/2023).

[27] C. Hatch. “hashed-timelock-contract-ethereum”. (2021), [Online]. Available: https://g
ithub.com/chatch/hashed-timelock-contract-ethereum. (last visted on 26/04/2023).

[28] Binance Academy. “Crypto Faucet”. (2022), [Online]. Available: https://academy.bin
ance.com/en/articles/what-is-a-crypto-faucet. (last visted on 13/04/2023).

[29] Lightning Labs. “Taro”. (2023), [Online]. Available: https://docs.lightning.engine
ering/the-lightning-network/taro. (last visted on 14/04/2023).

[30] Investopedia. “Stablecoins”. (2022), [Online]. Available: https://www.investopedia.
com/terms/s/stablecoin.asp. (last visted on 14/04/2023).

[31] DefiLlama. “DefiLlama - Stables - Chains”. (2023), [Online]. Available: https://defill
ama.com/stablecoins/chains. (last visted on 14/04/2023).

[32] WalletConnect Docs. “What is WalletConnect?” (2023), [Online]. Available: https://
docs.walletconnect.com/2.0. (last visted on 17/04/2023).

[33] WalletConnect Twitter. “advertisement Post”. (2023), [Online]. Available: https://twit
ter.com/WalletConnect/status/1636427862096969735. (last visted on 17/04/2023).

[34] OpenZeppelin Docs. “ERC721”. (2023), [Online]. Available: https://docs.openzeppe
lin.com/contracts/3.x/erc721. (last visted on 17/04/2023).

Eidesstattliche Erklärung 55

Eidesstattliche Erklärung

Hiermit versichere ich – Tim Käbisch – an Eides statt, dass ich die vorliegende Arbeit selb-
stständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt
habe.
Sämtliche Stellen der Arbeit, die im Wortlaut oder dem Sinn nach Publikationen oder Vorträ-
gen anderer Autoren entnommen sind, habe ich als solche kenntlich gemacht.
Diese Arbeit wurde in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde
vorgelegt oder anderweitig veröffentlicht.

Mittweida, 14.05.2023
Ort, Datum Tim Käbisch

