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Abstract

Recently a deep neural network architecture designed to work on graph-structured data have
been capturing notice as well as getting implemented in various domains and application. How-
ever, learning representation (feature embedding) from graphical data picking pace in research
and constructing graph(s) from dataset remains a challenge. The ability to map the data to lower
dimensions further makes the task easier while providing comfort in applying many operations.
Graph neural network (GNN) is one of the novel neural network models that is catching atten-
tion as it is outperforming in various applications like recommender systems, social networks,
chemical synthesis, and many more. This thesis discusses a unique approach for a fundamental
task on graphs; node classification. The feature embedding for a node is aggregated by apply-
ing a Recurrent neural network (RNN), then a GNN model is trained to classify a node with the
help of aggregated features and Q learning supports in optimizing the shape of neural networks.
This thesis starts with the working principles of the Feedforward neural network, recurrent units
like simple RNN, Long short-term memory (LSTM), and Gated recurrent unit (GRU), followed
by concepts of Reinforcement learning (RL) and the Q learning algorithm. An overview of the
fundamentals of graphs, followed by the GNN architecture and workflow, is discussed subse-
quently. Some basic GNN models are discussed in brief later before it approaches the technical
implementation details, the output of the model, and a comparison with a few other models such
as GraphSage and Graph attention network (GAN).
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ML Machine learning
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DL Deep learning
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Mathematical Symbols

G = G(V,E) A graph
V A finite nonempty set of vertex or node
E A finite nonempty set of edge

|V |= n Number of vertices in a graph
|E| Number of edges in a graph
ei j Edge connecting vertices i and j

W (u,v) Walk in a graph
w Weight of nodes or edges in a graph

deg(v) Degree of a node v in a graph
N(v) Set of neighbor nodes v in a graph

φ One to one mapping
R Real number

A = [ai j] Adjacency matrix
B = [bi j] Incidence matrix

a{k}i j Number of walks of length k from vertex i to vertex j

hv
{k} Node or hidden or feature embedding of a node

aggv
{k} Aggregated feature vector of neighbor nodes

X Set of feature vector of a nodes
l Set of length of node features
xv Feature vector of node v
x input vector
k Time step or iteration number
K Number of layers in GNN

S(x) Binary step function
θ Slope parameter

σ = sgdθ (x) Sigmoid activation function
e = exp Exponent

ŷk Resulted output
yk Expected output

neti Activation
lk Local loss
L Loss function

LG Loss function in graph

Table 1: Mathematical symbols & notations
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Mathematical symbols & notations contd.

Q(s,a) Q value for state s and action a
η ,ψ Learning rate and step size
αi j Attention coefficient
γ Discount factor
πt Policy at time step t
λ Eigenvalue
D Diagonal matrix
I Identity matrix
Z Output embedding of a layer
h Hidden embedding or output of a hidden layer
H Number of attention head in multiattention GAT
Ha Attention head layer number
T Matrix transpose operation
||.|| Dissimilarity measure
|| Concatenation
[, ] Closed set, inclusive of boundary values
(,) open set, exclusive of boundary values
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1 Introduction

Current developments highlight the success of deep neural networks in numerous do-
mains, showing superior performance in image processing [14], natural language pro-
cessing [15], speech recognition [16], etc which motivated research further. The power
of deep learning to exploit the hidden relationship in data to extract the underlying pat-
tern is well recognized. However, with the increasing complexity of data, the represen-
tation ability of a graph provides the benefit of complete data structure representation
and the relationship of a node with the graph structure [12].

The Graph neural network (GNN) model is a deep neural network framework primarily
designed to handle graph structure data. The key idea here is to learn the representation
vector of a node, considering the graph structure along with the feature information
available. The hidden embedding of a node is learned by aggregating the feature of the
neighbor nodes and merging with the node feature, leading to a simpler representation
of the graph. [12]

Graph-structured data are omnipresent and have a wide range of uses. The task in the
graph domain can be categorized based on elementary levels: node-level embedding,
edge-level embedding, and graph-level embedding [17]. This thesis considers the node
classification problem in a graph, where all the nodes are available for training and
labels are available for only a small subset of nodes. For making effective predictions,
a crucial problem is to have an efficient node representation. Another part of this thesis
implementation also tries to test the model with a new graph that is not exposed to the
model during training.

A method proposed for node classification by Kipf et al. [18] is a graph convolution
model which scales the number of edges linearly and learns the hidden embedding
that represents local graph and node features. However, this model works only for the
transductive learning task. This model is further studied by Esmaeili et al. [19] with a
modification to add a piece of noisy side information extracted from the adjacency matrix
or feature matrix to the available data labels for training the model.

An inductive learning model using GraphSage for unseen data is proposed by William
et al. [20] for node classification. This method samples and aggregates neighbor nodes
and features to generate node embedding. This facilitates different complex aggregation
functions.

A study on graph attention networks proposed by Veličković et al. [21] is for node classifi-
cation by performing self-attention on the nodes. Here, each neighbor node is assigned
a different weight, attention layers are stacked and node embedding is calculated, re-
sulting in a promising outcome in both transductive and inductive learning tasks.
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Numerous models and further enhanced studies have been proposed for smoothening
the turnaround time and enhancing the efficacy of data learning over various data do-
mains. Recurrent neural networks (RNNs) like Gated recurrent units (GRU) and Long
short-term memory (LSTM) can act as an efficient aggregator as well as predict the out-
put. Initially, Gori et al. [22] suggested the use of a recursive neural network on various
types of graphs, [23] studied further using RNN with a gated mechanism. Weiping et
al. [24] and Wenhan et al. [25] modeled the learning environment using the Markov de-
cision process (MDP) and presented the efficacy of the model by integrating the LSTM
network and Reinforcement learning(RL) reward technique for an agent for prediction.

This thesis focuses on the problem of learning node embedding for the classification of
nodes and implementing the GNN model for graph data. A graph G(V, E), V is the set
of labeled nodes (data point with feature vector), and E is the set of pairs of vertices
representing edges (relationship between data points.). ai j is a N×N adjacent matrix
of the graph G where N is the number of vertices. Node attribute matrix X is a N×C
matrix with C number of features representing each node. The proposed neural model
aims to learn embedding hv

{k} for vertex v, considering the k layer neighborhood. This
model utilizes the node attribute and graph structure information to learn effectively and
predict classification results with minimum loss. [12]

To implement the above-stated goal, this thesis deeply focuses on the underlying con-
cepts, and the techniques followed in [24] and [25] and enhances it further. To begin
with the GNN model, this thesis attempts to arm the readers with the required concepts
and contexts to understand the following sections. In particular, graph theory is essen-
tial to represent and compute data in a graphical structure. However, it will not delve
too deeply. Prior to that, this thesis briefs on the fundamental concepts of deep learn-
ing, and the subsequent subsection provides an outlook on various recurrent neural
networks and respective functionalities followed by the basic knowledge of reinforce-
ment learning and the selected algorithm for implementation. Up next, it will discuss
the general framework of GNN and its phases, and later it explores further some of the
benchmarked models like Graph convolutional network (GCN), GraphSage, and Graph
attention networks (GAN).

Next, this thesis will elaborate on the proposed model implementation in detail, environ-
ment setup, and opted dataset for trial. Further explains a few experiments on several
datasets to assess the efficacy and turnaround time of the proposed GNN model setup.
It demonstrates two different approaches to model training and testing. In one method,
the model is trained by complete exposure to the graph dataset features and tested for
the hidden nodes. In the other one, two subgraphs are induced from the graph for train-
ing and testing. The results of both the techniques applied over all the desired datasets
are plotted and discussed in detail before concluding with the outcomes and possible
future works to extend.
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2 Fundamentals of Deep Learning and
Neural Networks

Machine learning (ML) is a field of Artificial intelligence (AI), that indulge in learning
the process of designing computer algorithms that can mimic human intelligence. The
formal definition of ML is coined as "a field of study that gives computers the ability
to learn without being explicitly programmed”. More explicitly, “A computer program is
said to learn from experience (Ex) with respect to some class of tasks (Tx) and perfor-
mance measure (P), if its performance at tasks in Tx, as measured by P, improves with
experience Ex”. [1]

The critical part of the process of enabling the machines to learn is to make the machine
equipped with the right set of features. However, it can be tricky and complicated to iden-
tify the ideal set of features manually and comprehend which traits should be extracted
when taking into account all potential scenarios. The challenges encountered by hard-
coded knowledge-based systems indicate that AI systems must be able to learn on their
own by identifying patterns in unstructured data. Hence, using the machine learning
algorithm to learn feature representation along with delivering output from the repre-
sentation will yield lesser human effort and training time. However, abstracting highly
precise features from raw data with negligible variance turns out to be extremely diffi-
cult. Here, Deep learning (DL) facilitates the flexibility to represent the complex feature
in terms of simpler representations by composing a Deep neural network (DNN). DNN
has a complex architecture of strongly interconnected neurons with at least one hidden
layer. Further, most of the ML or DL algorithms can be categorized into supervised,
unsupervised, and semi-supervised learning according to the nature of the labeling of
data [10]. [26]

2.1 Deep Learning Approaches

Supervised learning (SL) is the process of training a model to predict the mapping of
unknown samples from a set of given pair <x,y> of input x and respective expected label
y for output. Based on the value types of data labels, SL can be divided into classifi-
cation and regression. When the target label is a discrete value type, classification is
performed. The regression method is applied for the continuous value of desired output.
Given the dataset contains only the input values without the expected labels, the learn-
ing system follows the Unsupervised learning (UL) technique. As a result, the objective
of UL is to infer structures and patterns while looking for similarities in data. Clustering
and representation of data in higher dimensional space are a few examples of UL pro-
cedure. In Semi-supervised learning (SSL), the algorithm learns with the dataset which
is partially labeled. A portion of the labeled data is used to infer the learning (hidden
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structure) of the unlabeled part of the data. [10] [1]

Figure 2.1: Deep learning algorithm types based on depending on the training data [1]

Another significant approach of DL is Reinforcement learning (RL). RL enables the
learning system to make a sequence of decisions by a penalty-reward technique based
on the actions chosen with a goal to attain maximum rewards and least penalties [10].
This training mechanism differs from SL as to infer the output for unaware scenarios, a
machine needs to learn from experience. It also can not be referred to as UL, as it tries
to obtain maximum rewards by selecting a sequence of appropriate decisions instead of
learning the hidden mapping of data. In order to learn the process of effective decision-
making for optimal reward, the agent needs to exploit the best rewarding options from
experience and/or by exploring an appropriate number of available options. [7]

2.2 Feedforward Neural Network: A neuron model

A neuron is the simplest and linear neural network model, also referred to as an infor-
mation processing unit. This model f(x,w), provided with a set of inputs x and learning
parameter weight as w, can identify linearly separable inputs into a positive or negative
outcome. The shortcoming of this model (non-linearly separable data) leads to Multi-
layer perceptron (MLP) or Feedforward neural network (FFNN), one of the most effective
approaches. MLP, a Deep neural network (DNN), consists of several neurons intercon-
nected through at least one hidden layer apart from the input and output layers. The
information propagates through each layer forward, processed together with weights
and biases assigned per layer and an activation function applied on it. The accuracy of
a model is attained by comparing the result with the expected output and optimizing the
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trainable parameters accordingly. The below image illustrates data processing from the
input layer to the output layer in a feedforward neural network. [26]

Figure 2.2: Single unit representation of information processing in MLP [2]

2.2.1 Activation Functions

An activation function is an element-wise applied differentiable operation that is required
to calculate hidden layer values, helping MLP to excel in performing complex tasks. A
few of the commonly used activation functions are discussed below [26].

Binary step function: A threshold-based non-differentiable binary classifiable step
function that activates the neuron (output = 1) if the input value exceeds the thresh-
old, otherwise deactivates (output = 0). [26]

S(x) =

{
1, if x≥ 0

0, otherwise

Sigmoid function: The sigmoid activation function is a continuously differentiable and
non-linearly separable function that squeezes the output values in the range [0,1].

sgdθ (x) =
1

1+ e−θx
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where θ > 0 controls the sharpness of the slope. The derivative of the function is

sgdθ

′
(x) = sgdθ (x)(1− sgdθ (x))

when θ tends to larger values (∞), MLP suffers from vanishing gradient problem. [26]

Rectified Linear Unit (ReLU): One of the most popular non-linear squashing functions,
denoted as ReLU generates the maximum between 0 and input x as output, max(0,x).
[26]

ReLU(x) =

{
x, if x > 0

0, otherwise

SoftMax function: The often used final layer activation function predicts the categor-
ical probability distribution of the set of input provided and the output being discrete
probability values range in (0,1). [26]

So f tMax(xi) =
e(xi)

∑
n
j=1 e(x j)

2.2.2 Gradient Descent Optimization Method:

In order to obtain the highest level of accuracy and minimum loss in a machine learning
task, one of the most commonly used optimizers is gradient descent method, which
tries to minimize the error function by iteratively updating the learning parameters based
on gradient computed through partial derivatives. In each iteration, the parameters
(weight and bias) are updated and the step size reduces tending to a stagnant state
of the cost function, which indicates saturation of learning. Stochastic gradient de-
scent learning (SGDL) is one of the variants of gradient descent optimization tech-
niques. The necessity of a gradient-based optimization function in a non-linear DNN
model is due to its non-convex cost function. A convex optimization algorithm assures
global convergence, whereas a non-convex function is highly dependent on parameter
initialization. [26]

2.2.3 Working of Feedforward Neural Network

By incorporating all the concepts mentioned above, the functionality of MLP is elabo-
rated with an illustration using figure 2.2. As the name feedforward conveys, the input
is processed forward to produce an output, and the method is called forward-pass,
whereas training the learning parameters to attain an optimal desired outcome by propa-
gating the error backward from the output layer to the input layer is known as backward-
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pass, alternatively back-propagation [26]. The significant variables of an MLP are a
set of inputs x (x1,x2, ....,xn), weight matrix w for each layer, bias b, activation function f
per neuron in a layer, an optimizer δ and learning rate η . [26]

Steps: [3] [26]
1. Initialize all the weights w with random small numbers, preferably in the range (-1,1).
2. Process a sample from training data and obtain a result ŷk.
3. Compare the result with the expected outcome yk.

net1 = w1x+b1, net2 = w2o1 +b2,

o1 = f (w1x+b1), o2 = f (net2)

net1 is the weighted sum or the activation in the first hidden layer, and f is the activation
function applied to activation. o1 is the output from the 1st layer of neurons, provided
x as input. net1 is the input for the next hidden layer and continues further. Hence,
aggregating all the terms together:

neti = ∑
j−>i

w jio j +bi

neti is the excitation of neurons for layer i, w ji is the weight matrix applied on the con-
nection from layer j to i, and bi is the bias for ith layer, and o j = x is the data presented
to the input layer.

ŷk = f (neti)

ŷk is the output from the final layer, where k is the number of neurons in the output layer
after ith layer.

lk = (yk− ŷk)

local error lk is the difference between the expected (yk) and predicted result (ŷk).

L =
1
2 ∑

k
l2
k =

1
2 ∑

k
(yk− ŷk)

2

by using mean-square error here, the total loss L of the model is calculated.

4. Using the gradient descent optimization technique, propagate the error backward.
Calculate the gradient, update the final layer associated weight w jo and bias accord-
ingly, then navigate to the previous layer and continue the same operation until the initial
layer. The process continues iteratively to attain minimum loss and maximum expected
outcome. Calculating gradient:

∆w ji =−η
∂L

∂w ji
,

w′ji = w ji +∆w ji
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b′i = bi +∆bi

∆w jo =−η(yk− ŷk)(1− ŷk)ŷkoh

∆w ji = ∆w jo is the weight update in the output layer, calculated by taking the gradient,
which is derivative of error L with respect to weight w linked from the last hidden layer
to final layer and updating the weight and bias accordingly. Bias can also be inserted
to input matrix x as x0 as figure 2.2 demonstrates, avoiding the update effort during
back-propagation. ∆bi is the change in bias and b′i is the updated bias value. [26]

Learning rate η helps in controlling the updated value or the step size, avoiding the
gradient turning out to be 0. The learning rate value ranges in (0,1), a very small positive
value. The state of gradient value close to zero and the change in weight and bias
is negligible is called vanishing gradient. In DNN, while updating the parameters in
back-propagation, earlier layers toward output get updated successfully. However, due
to the dense network containing a large number of hidden layers, the gradient tends to
zero after parameter updates for the last few layers, leading to stagnant values in the
initial layers. Hence, the model stops learning after reaching saturation for activation
function on extreme values. Artificial neural network (ANN) treats each data fed to
a neuron individually, so the connection or order of the data is lost. Sequential data
processing is one of the major drawbacks of an Artificial neural network (ANN), as the
neurons in a DNN do not contain a memory to hold and flexibility to forget irrelevant
data. To overcome the deficit of ANN, RNN and its various types stands out with the
advantages. [26]

Figure 2.3: Example of a dense MLP with 2 hidden layer [3]
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2.3 Recursive Neural Networks: Sequence modeling

Recurrent neural networks (RNNs) are a class of neural networks that are particularly
well-suited to handling sequential values as input. As the name recursive or recurrent
suggests, repetition of a step multiple times results in sharing parameters across the
DNN. The output at a time step refers to the output produced in the previous steps
and is generated using the same update rule as applied to the previous. A general
structure of an RNN and its comparison with respect to an FFNN is portrayed in the
below figure. [26]

Figure 2.4: Workflow of a FFNN and RNN [4]

The left part of the image is the basic architecture of an FFNN, and the right side of the
figure is the RNN. The activation net j(t) at time step t is the total sum of weighted (v ji)
inputs (xi), and bias θ j for the jth layer neuron contributed from all the neurons from
layer i. An activation function ( f or g) is applied to the activation to generate an output of
a layer. However, in the case of RNN, the output at time step t depends on the weighted
input at time step t−1, and the result of t−1 step relies on t−2 step, and so on. This
dependency is attained by a self-loop in the hidden state, which says the output of the
previous time step is fed as input to the hidden state for calculating result for the next
time step. The outcome of the final layer remains the same for both neural networks as
the change remains in the hidden layers. [26]

The result obtained at a time step t, acquired from partially observing the data that can
influence the output at a much later time step T+t. As the network iteratively impacts
the future outcome, it can process any length of data, even the much larger ones. The
historical data of the sequence up to the present time step can be reserved using the
hidden variables, indicating that the neural network has the potential to memorize data.
[6]

The hidden state, which is the key component of RNN, is further explored in detail. The
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hidden variable at time step t is determined by the current time step input x(t) and the
hidden variable of the previous time step. The implicit layer expression is given by [6]

ot = yk(t) = g(Wht +θk)

ht = y j(t) = f (V X(t)+Uyt−1 +θ j)

Expanding the hidden variable ht and the output variable ot , [6]

ht = f (V X(t)+U f (V X(t−1)+U f (V X(t−2)+Uyt−3 +θ j)+θ j)+θ j)....

ot = g(W f (V X(t)+Uyt−1 +θ j)+θk)....

A pictorial representation of unrolling the hidden state up to three layers is conveyed in
the below figure.

Figure 2.5: Unrolling the self-loop at hidden state in RNN [4]

As the above two images convey, the weight assigned for all the hidden layers are same
(U, here). The update in the parameters (weight and bias) during back-propagation
is a big step for each value. Therefore, the gradient calculated using the loss either
diminishes very fast or grows large leading to a vanishing gradient or gradient explosion.
Hence, a dense hidden layer is not contributing to model training. These problems can
be overcome by replacing the hidden unit with a gated memory block. Larger gradients
values are typically stored in memory to avoid gradient disappearance and setting a
threshold value can prevent gradient explosion. [6]
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2.4 Long Short-Term Memory: A gated RNN

The issue of vanishing and exploding gradients prevents standard RNNs from learning
long-term dependencies. Hence, an LSTM unit was developed by replacing the hid-
den unit with a recurrent network cell. LSTM network structure consists of three gates
(logical units): input gate, output gate, and forget gate along with a memory cell.
These gates adjust the weights at the edges of the other neural network components
connected to the memory unit to improve the error function of the selective memory
feedback with the gradient. However, they do not take part in sending their output to
other neurons. An image of the architecture of an LSTM cell unit is given below. [6] [5]

Figure 2.6: Exploration of LSTM memory cell replacing hidden state [5]

Each gate is regulated by four factors: current input, previous cell state, sigmoid activa-
tion function σ , and a multiplication operator, as in the figure above, resulting in output
between (0,1). An input unit is processed with a regular artificial neuron unit and can
also have a nonlinear squashing function for the same. The sigmoid layer output of
input gate decides the need for input data to be added to the cell state, and the tanh
function processes previous cell state contributing to the current cell state. The weight
for the self-loop of the cell state is decided by the forget gate sigmoid value, decid-
ing whether to retain or discard the previous cell state information. The updated cell
state information is stored in the memory unit. The output gate determines which cell
information to be carried as output for the current time step. [26] [6]

The vanishing and exploding gradient problem is handled by replacing the concatenated
multiplication of cell state and input value with concatenated addition. The three gates
and memory cell state ft of LSTM can be calculated by [27]

ft = σ(Wf · [ht−1,xt ]+b f ) (2.1)
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{
it = σ(Wi · [ht−1,xt ]+bi)

C̃t = tanh(Wc · [ht−1,xt ]+bc)
(2.2)

Ct = ft ∗Ct−1 + it ∗C̃t (2.3){
ot = σ(Wo · [ht−1,xt ]+bo)

ht = ot ∗ tanh(Ct)
(2.4)

Wf ,Wi,Wo,Wc,b f ,bi,bo,bc are the weight matrix and bias for forget, input, output gates,
and cell state. [ht−1,xt ] denotes summation of input data and previous cell state. Ct ,Ct−1,
C̃t are new cell state value, previous cell information, and new memory content respec-
tively. it ,ot are information collected from the input gate and output gate, whereas ht is
the hidden layer output for the current time step. [27]

2.5 Gated Recurrent Units

Gated Recurrent Units (GRU) is a modified version of RNN, extending the feature of
LSTM by removing the cell state and replacing the input and forget gate with an update
gate with combined features for an improved efficiency up to a large time step [27].
GRU contains three gates: update gate, reset gate, and learning gate [6]. A pictorial
representation of a GRU with explicit details on gates and operations is given below.

Figure 2.7: Exploration of GRU memory cell [6]

The amount to which the past and current information is kept and ignored depends on
the update gate given by zt [27]

zt = σ(Wz · [ht−1,xt ]+bz) (2.5)

The reset gate rt determines which of the previous data to be carried forward and which
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is to be discarded, given by expression [27]

rt = σ(Wr · [ht−1,xt ]+br) (2.6)

The hidden state output ht depends on the current reset gate, and input gate result
along with previously hidden state information (ht−1) and input data [27]{

h̃t = tanh(Wh · [rt ∗ht−1,xt ])

ht = (1− zt)∗ht−1 + zt ∗ h̃t
(2.7)

wz,wr,wh,bz,br are the weight matrix and bias for the update, reset gate, and weight for
the hidden state. σ and tanh are sigmoid and tanh activation functions. [27]

2.6 Reinforcement Learning:

Reinforcement learning (RL) is a goal-directed learning mechanism with an interactive
agent to learn while interacting with an uncertain environment by sequential actions,
figuring out the best action to take on a step considering the consecutive steps ahead
to optimize the numeric reward value, with an intention to attain minimum loss in terms
of penalty [7]. The reward retained here is a cumulative value of outcomes during an
infinite number of interactions. This interactive process of state-action-state is a state
transition methodology, also known as a Markov decision process (MDP). [28]

The major elements of Reinforcement learning are an agent and an environment, ac-
tion/s, state, and reward and policy, reward system, value function, and/or a model. An
agent is the learner and the decision maker. The Environment E is everything that
surrounds the agent and with which it interacts, which defines the task. An agent at
time step t and state (situation) St , performs an action At , and the environment reacts
by presenting the agent with a new state St+1 and a numerical value as reward/penalty
Rt+1. This workflow summary of an RL problem is given below. [7]

Figure 2.8: Overview of an RL problem in terms of MDP [7] [8]
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The mapping implemented by the agent from states to probabilities πt(a|s) of choosing
each potential action at each time step is called Policy πt . Policy changes are based on
the agent’s learning from experiences. A reward system helps the agent in identifying
good and bad events by providing a positive or negative number corresponding to the
selected action at a state. The reward system can act as a stochastic function of the
state, and the actions opted for. The reward for a task is a collection of all the step-wise
rewards attained throughout the state transition from start to goal. Hence, accumulat-
ing long-term rewards is more important than collecting immediate larger rewards. A
value function indicated the usefulness of a state after accounting for the states that are
anticipated to follow and the benefits offered by those states. An RL system can have
a defined model to plan and learn simultaneously by inferring the environment’s reac-
tion in the future based on the present state and actions. Otherwise, it learns from trial
and error as a model-free approach. In an RL task, if the agent-environment interaction
ends naturally due to an identified end state, then the task is known as episodic. Else if
it continues learning infinitely, then it is a continuous task. [7]

An RL algorithm aims at attaining the policy which accumulates maximum rewards
(value function). To attain maximum approximation, certain algorithms like the Monte-
Carlo method try to leverage their experiences and navigate to the future by exploiting
already-known information to obtain rewards. However, there are certain other algo-
rithms like dynamic programming, that estimate future rewards by exploring new options.
Temporal-difference (TD) learning algorithm uses a combination of both processes by
attempting to balance the exploration and exploitation technique. On-policy methods
aim to assess or improve the policy that is used to make decisions as well as obtain
the data. On the contrary, off-policy methods aim to improve the policy-generating value
function, different from the policy controlling the agent and behavior. [7]

Q-Learning: A model-free approach
The Q-Learning method of RL is an off-policy (episodic) TD learning which follows a
model-free approach [7]. The steps followed to obtain optimal action-value function Q(s,
a) in the Q-learning algorithm are stated below. ψ and γ are small positive values, where
ψ is step-size influencing learning rate and γ is discount rate for maximal reward. [7]

Algorithm 1 : One-step Q-learning algorithm [7]
Initialize: Q(s,a),∀s ∈ S,a ∈ A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize st
Repeat (for each step of episode):

Choose at from A(s) using policy derived from Q(e.g.ε−greedy)
Take action at , observe rt , st+1
Q(st ,at) ← Q(st ,at) + ψ[rt + γ maxat+1 Q(st+1,at+1)−Q(st ,at)]
s← st+1

until s is terminal
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In the above algorithm, Q(s,a) is a table storing Q values for each state ′s′ and action ′a′

pair. It is initialized to zero before proceeding with actions and state transitions. A(s) is
the action space containing the possible actions available for each state. Select a start
state st , to begin the learning process. The start state is picked arbitrarily every time in
the initiation of an episode. After selecting a start node for the episode, evaluate and
opt for action at from action space A(s) to perform on st based on ε −greedy policy to
obtain a maximal reward. ε−greedy policy algorithm says to select the action (maxat+1)
which provides the maximum reward at the current state. Once the action at is taken,
observe the response of the environment for the action at at state st . The environment
reacts by providing a next state st+1 and a reward rt . The Q-table update rule can be
rearranged and rewritten as [7]:

Q(st ,at) ← (1−ψ)Q(st ,at)︸ ︷︷ ︸
Q value for the pair (st ,at)

+ψ[rt + γ maxat+1 Q(st+1,at+1)]︸ ︷︷ ︸
rt and estimated future reward

Q(st ,at) ← (1−ψ)Q(st ,at) + ψrt +ψγ maxat+1 Q(st+1,at+1)

(2.8)

The first term in equation 2.8 (below equation) is the discounted Q value, the second
term is the reward obtained from the environment for the action performed at state st ,
and the last term is the bootstrapped value for the best future action. [7]

Then update the present state value to st+1 and repeat the process of selecting an
action, observing the environment response, and moving to the next state. Repeat the
process until it reaches a terminal state. [7]

Later in this thesis, the Q-learning algorithm is used to optimize the size of a neural net-
work for an efficient result. GNN struggles with the problem of neighborhood expansion,
which is the endless continuation of the selection of neighbor nodes for aggregating fea-
tures. This optimization technique helps in finding an efficient size of the hidden layer. It
can also provide immense help in optimization if the scenario is studied further by set-
ting the neighborhood details stored in the adjacency matrix as environment and action
space as sampled neighbors of selective lengths. However, this study is not a part of
this thesis.
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3 Graph Neural Network Model

Data being the foundation of machine learning, can be represented in a variety of ways.
Graphs are one of the potentially effective formats for data representation. Graphs
are constructed by leveraging the structural relationships between data points. It has
been studied that graphs can be used to address problems in a range of academic
domains. [9] [29]

Graph G is denoted by an ordered pair of two finite nonempty sets (V, E), where V
represents a set of vertices or nodes, and the set of edges or connections between the
data points is denoted as E. In this thesis, the term node is used to explain the set of
data points V. Each element of V is symbolized as v and a pair of nodes (v1, v2) denotes
an edge. A connectivity that is having an edge between a pair of nodes indicates the
two nodes are adjacent to each other. A single-order graph is the simplest and most
trivial structure of a graph. However, numerous complex graphs are categorized into a
variety of groups, including directed, undirected, cyclic, simple (free of cycles and self-
loops), labeled, unlabeled, trees, and others. Based on the connectivity of the graph, it
can also be divided into disconnected, partially connected, bipartite, and fully connected
graphs. [30]

While talking about representing data in a graphical structure intuitively, an imagina-
tion can be popped, with some of the easily apprehensible examples such as chemical
bonding among the elements and social networking among people. Datasets such as
images as pixels, relationships between words in a text, connections between published
papers, and many such datasets can be depicted as graphs. Below are some examples
of data representation in terms of a graph. [9]

Figure 3.1: A sentence represented in adjacency matrix [9]

The aforementioned example illustrates how an adjacency matrix is produced from avail-
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able data (here, it is a statement). The link between the data points (words) is main-
tained by the matrix. Two examples of molecules and social network data, their adja-
cency matrices, and graphical structures are shown below.

Figure 3.2: Graphical representation, the adjacency matrix of molecules [9]

Figure 3.3: Graphical representation of the interaction between people enacting a play [9]

Figure 3.4: Interaction between players in a karate club displayed as a graph [9]

The karate club example shows how data points are presented as nodes with edges
defining their connections. Labels for the nodes are distinguished by their colors, while
edge labels are indicated by the texts highlighted over the edges.
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3.1 Graph Theory Terminologies

This section discusses the fundamental concepts of graph theory and provides defini-
tions for the helpful keywords. A graph is one of the simplest techniques for expressing
information clearly. It offers a variety of approaches to perform actions on the data.

• A graph is an ordered pair G = (V, E), where V is a finite nonempty set of vertices
and E is a 2-element subset of unordered pair of vertices. Vertex is also referred
to as a point or node, similarly lines or links for edges. When E is a set of ordered
pairs of distinct vertices, graph G is called DiGraph or Directed Graph. [30]

• A loop in graph G is an edge e(v,v) at vertex v if it connects a vertex to itself.
If multiple numbers of edges are connected between a single pair of vertices (u,
v), then the edges are called parallel edges, and such a graph G is defined as
Multigraph. [30]

• A walk W(u,v) is a sequence of vertices, a subset of V in graph G of length 0
or more, which starts from u and ends at v. The consecutive pair of vertices in
the sequence are neighbor vertices. It can visit a single node multiple times. A
cycle is a walk of length two or more that starts and ends with the same node. A
walk is a path if all the vertices covered in the sequence are distinct. The length
of a walk or path, or cycle is the number of edge covers between the start and
end vertex. [30]

• A pair of nodes (u, v) can have zero edges connecting them, the graph G is known
as a disconnected graph. There does not exist a path between any two nodes of
a graph. Such graphs contain multiple components. A fully connected graph is
a graph G having a path of length at least one between each pairs of nodes. [30]

• The size of graph G (V, E) is the number of edges in a graph |E|, and the order of
the graph is given by the number of nodes |V|. The trivial order of graph G is one,
its size is zero, and G is a single node graph or a single isolated vertex. [30]

• A pair of vertices (u, v) in graph G are adjacent or neighbor to each other if there
exists at least one edge connecting them. An edge in graph G is said to be incident
on vertex v if one end of the edge starts or ends on v. [30]

• The degree of a vertex v in graph G denoted by deg(v) is the number of edges
incident on vertex v or the number of vertices adjacent to vertex v. In a directed
graph G the number of edges coming in and out of a vertex v are denoted by
indegree and outdegree, respectively. [30]

• The neighbors N(v) of a vertex v in a graph G is a subset of V, induced by all ver-
tices adjacent to v, which is equal to the degree of a vertex v. The neighborhood
graph of a vertex v in a graph G is an induced subgraph of G composed of all
the neighbor vertices of v and only the edges connecting the vertices in the set
N(v). [30]
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• A graph G1 is a subgraph of graph G(V, E) if the vertex set of G1 is a subset of V
and the edge set of G1 is a subset of E. If both graphs G and G1 have the same
set of vertices, then Graph G1 is called the spanning tree of graph G. When the
edge set of graph G1 contains all the edges from graph G which has endpoints in
the vertex set of G1, the graph is called induced subgraph of G. [30]

• Graph G, is called labeled if the vertices of the graph are labeled. Otherwise, it is
known as an unlabeled graph. Graph G, also facilitates edge labeling based on
various parameters like distance from the source node or priority. [30]

• Two labeled graphs G1(V1,E1) and G2(V2,E2), having an one to one mapping
φ : G1− > G2 from V1 -> V2, such that an edge (u,v) ∈ E1 if and only if edge
mapping (φ(u),φ(v)) ∈ E2, then G1 is isomorphic to G2. [30]

• A graph G(V, E,w) is an edge-weighted graph if there is a mapping w: E -> R,
each edge is assigned with a real value, and vertex-weighted graph if a real
number is assigned to each vertex; the weight mapping w: V -> R. [30]

• A Bi-Partite or K-Partite graph is graph G(V, E) which can be partitioned into Bi
or K parts such that each subset of vertices contains distinct values and both the
ends of edges do not belong to a single subset. A bipartite graph is a cycle-free
graph. Acyclic (cycle-free) graphs are forest. A connected acyclic graph G is a
tree if there exists a unique path between every pair of vertices. [30]

• A graph G(V,E) of order n, |V| = n and size m, |E| = m, the adjacency matrix of G
is A = [ai j], a n×n matrix defined by [30]

ai j =

{
1, if (i,j) ∈ E

0, otherwise

• A graph G(V,E) of order n, |V| = n and size m, |E| = m, the incidence matrix of G
is B = [bi j], a n×m matrix defined by [30]

bi j =


1, if vi is incident to e j; e j = (vi,vr)

−1, if G is DiGraph and e j = (vr,vi)

0, otherwise

• A graph G(V, E) of order n, |V| = n, and ai j is the associated adjacency matrix,
for any positive integer k, ai j

{k} = the number of walks of length k from vertex i to
vertex j. [30]

Figure 3.5: Example of an edge-weighted, labeled DiGraph and its adjacency matrix [10]
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3.2 Graph Neural Network

Graph neural network (GNN) is a generalized methodology to implement Deep neural
network (DNN) on graph data. The power of the graph is it elaborates on the relationship
between the points as well as its general structure. Adjacency matrices, which preserve
the connection between data points, can be used to perform DNN on graphs. The graph
can be flattened into an adjacency matrix and feed the matrix as input to the neuron
for Multi-layer perceptron (MLP). However, the output produced is limited to the order in
which nodes are chosen while generating an adjacency matrix. The produced output is
thus order-dependent which can not support the graph isomorphism problem. [11]

One of the advantages of applying DNN on graph data over regular data (array or ma-
trix format) is GNN model satisfies permutation invariant, variable data size, and non-
euclidean data space. Even though there has been much research in progress on GNN,
the generation of graphs from datasets remains a challenge. However, this thesis does
not involve graph generation from datasets. It only focuses on feature aggregation and
task prediction on graphs. The fundamental idea of graph neural networks is to contin-
uously update the node feature embedding by integrating its representation with those
of its neighbors. This strategy serves as the framework for a GNN model known as
the message-passing technique. The Neural message passing (NMP) phase and the
readout phase are the two stages that make up the GNN model architecture. [11] [12]

Message Passing: Feature information associated with a graph often is node-level at-
tributes and edge-level attributes. Neural message Passing (NMP) is a framework in
which node features (vector messages) are exchanged between the nodes to figure out
the hidden embeddings which is the representation vector corresponding to each node.
A hidden embedding hv

{k} is obtained from the aggregated information from neighbor-
hood N(v) of node v, for the time step k. The NMP approach is also known as message
passing update due to its two-step procedure, the first step is the aggregate message,
and the next is to update node embedding. The NMP update process leverages the
graph structure that can be obtained from the adjacency matrix, and node features are
indicated as X. Starting with initializing node embedding h{0} = X , the two steps are
performed in each layer of the model. [11] [12]

• Aggregate: The aggregated embedding for a node is obtained by collecting the
feature vectors of all immediate neighbor nodes. [12]

• Update: The new embedding vector for the node is updated by considering the
existing feature of the node and aggregated representation vector from neighbor
nodes. [12]

The equations below show a step-by-step mathematical depiction of the two stages,
which can be defined as the general framework of a GNN model [12].
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Algorithm 2 : Message Passing Steps [12]

Initialize: h{0} = X , For k = 1,2,··· ,K,

aggv
{k} = Aggregate{k}{hu

{k−1} : u ∈ N(v)} (3.1)

hv
{k} =U pdate{k}{hv

{k−1},aggv
{k}} (3.2)

aggv
{k} is the aggregated information for node v, from neighborhood N(v). N(v) contains

all the vertices which share an edge with v. u is known as a neighbor vertex of v if there
exists an edge euv or a path of length k between the nodes, u and v. When k=0, each
node v is initialized with its feature vector xv. With each increment of k, k=1, the updated
embedding considers the representation vector of neighbor nodes with path length one
and similarly K-hop neighbor for k=K. The kth update hv

{k} for the node v and layer k
is obtained by considering aggregated message aggv

{k} and feature embedding from
previous layer k-1 for node v, hu

{k−1}. [12]
The fore mentioned Aggregate and Update methods satisfy the fundamental require-
ment for designing neural networks since they are differentiable functions. Therefore, an
activation function can be applied to these methods to train the model, and most impor-
tantly, backpropagation and forward pass, can be performed with no hindrance. [29]

Figure 3.6: Unfolding neural message passing technique [11]

The above figure illustrates the message aggregation process implemented by a single
node in its neighborhood. The image is a depiction of a two-layer message-passing
framework. The embedding for node A is associated with the feature vectors of N(A)
= {B, C, D}, subsequently the aggregation of each node in N(A) from its neighbor node
embedding. Therefore, the node embedding update for the node v and k =2 depends
on the feature vector of nodes in N(A)={B, C, D} = N(N(B), N(C), N(D)) = {B, {A, C}, C,
{A, B, E, F}, D, {A}}. The message-passing approach in GNN unrolls the graph structure
into a tree of depth k by unraveling the neighbor nodes of the selected node.

Readout Phase: Referring to equations mentioned above in Algorithm 1, N(v) is the
collection of neighbor nodes of node v, and N(v)k is a set of all the neighbor nodes
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with path length k, starting from node v. The node representation hv
{k} is the final node

embedding where k = K, which is updated by considering the previous layer embedding
hv
{k−1} and feature embedding aggregated considering attributes of neighbors of node

v of length up to k, aggv
{k}. [12]

Once the final layer K is reached and representation embedding for Kth layer is obtained
hv
{K}, the subsequent task can be processed to train the model by applying weight and

bias on the final layer feature embedding followed by an appropriate activation function
suitable for the expected outcome. For example, as this thesis focuses on node clas-
sification, a SoftMax activation function will help in predicting the result, the loss can
be calculated using cross entropy and to achieve minimum loss, the NN is trained using
backpropagation. This process of training the model to attain the result using the feature
embedding obtained from the previous step is defined as the readout phase. [12]

3.2.1 A Basic GNN Model:

So far, the basic components of GNN are discussed abstractly as a sequence of message-
passing steps iteratively by aggregate and update functions followed by a readout layer
at the end for the conclusion. Putting them all together into implementation and building
a basic GNN by instantiating the aggregate and update methods with the parameters,
GNN representation learning is given by, [11]

hv
{k} = σ

(
Wsel f

{k}hv
{k−1}+Wneigh

{k}
∑

u∈N(v)
hu
{k−1}+b{k}

)
(3.3)

hv
{k} is the output of the message passing layer and input to the final layer for output

prediction. hv
{k} is calculated by applying the sigmoid activation function (σ ) to the

weighted aggregated value with previous embedding. The first term in the equation
is the product of the weight matrix for node v at kth layer and embedding of node v
derived from (k−1)th layer. The second term is the weighted sum of the weight matrix
for all the neighbor nodes of v at kth layer, the hidden embedding of each neighbor node
from (k−1)th layer hu

{k−1} and bias b at kth layer. Considering the example of node
classification, the output of the readout layer can be defined as [12]

ŷv = So f tMax(W {k+1}hv
{k}) (3.4)

ŷv is the estimated output of the model by applying the SoftMax activation function on
W {k+1} weight matrix for the last (K+1) layer and embedding estimated from the previous
layer. To train the GNN model, given expected labels yv,nl be the number of labeled
nodes, the loss function L can be calculated from [12]

L =
1
nl

nl

∑
v=1

crossentropyloss(ŷv,yv) (3.5)
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The output function ŷv is derived using the SoftMax activation function and loss L is
calculated using the cross-entropy loss function is an example considering the task as
node classification. Machine Learning models are designed to learn from data and pro-
duce the desired result based on the task to be solved. Therefore, the above equations
vary based on the problem to be solved. [12]

3.2.2 Graph Learning:

The prominent difference which makes GNN stand out is the data (node here) are not IID
(independent and identically distributed) which is the primary assumption for the existing
models. On the contrary, in the GNN model, the neighbor nodes share a correlation of
feature attributes. Another advantage of graph data is during the training phase of the
model, the complete graph is provided as input, keeping the test labels hidden. So,
the node features for test data available during the training phase enhance the graph
learning credibility. However, the consideration of the data for observation is decided
based on the selected learning type. The transductive learning method is exposed to
the datasets for observation, while the inductive learning process gets exposed only to
the training node features and labels. [11]

Even though this thesis has already addressed a wide range of theories and technical
aspects, one crucial aspect of machine learning has not yet been established. In ma-
chine learning, a model is designed to solve a particular type of task. Graph learning
tasks can be three kinds of problems as graphs can be analyzed at various compo-
nent levels: node, edge, and graph. For node-level embedding, the tasks can be seg-
regated in classification, clustering, regression, etc similar to existing neural network
models. For edge embedding, the possible problem to solve is edge classification and
edge prediction. At the graph level, community detection, and the relationship between
graph components are new directions along with graph classification and graph cluster-
ing. [17] [11]

Figure 3.7: Types of graph embedding (classification problem) [10]

The figure above explains the classification task on each granular level of a graph. In the
left segment, node level embedding image, the nodes are classified into three classes
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distinguished by three different colors. Similarly in the middle section, the edges are
classified into three different classes based on edge-level embedding. The final image
in the right corner displays how the graphs are categorized into different classes.

Problem Statement: Formally defining the problem to be explored in this thesis, the
challenge is to learn node-level embedding for node classification using GNN. Let G =
(V, E) a graph with V as the node set and E as the edge set. With N number of nodes, C
number of features of each node, adjacency matrix A ∈ RN×N and node attribute matrix
X ∈ RN×C, the goal is to learn effective hidden embedding h∈ RN×F for nodes by taking
into account node features and graph structure where F is the size of hidden embedding.
Then, the node embedding is further used for node classification. [12]

Figure 3.8: Overview of notations used to define problem statement [12]

Further, this thesis discusses a few of the most popular GNN models, such as GCN,
GAT, and GraphSage, before proceeding with the proposed model approach for the
defined problem statement.

3.2.3 Graph Convolutional Network (GCN):

GCN is one of the simplest architecture-bearing GNN models with higher effective-
ness in various tasks, domains, and applications. This model also follows the above-
highlighted stages of GNN in each layer. Hence, a hidden embedding is calculated for
each node in each layer. The update propagation rule for learning node representation
learning in each layer is [12] [18]

h{k+1} = σ(D̂−
1
2 ÂD̂−

1
2 hKW K) (3.6)

Â = A+ I, D̂ii = ∑
j

Âi j (3.7)

Adjacency matrix A is regularized by adding self-connections to the nodes resulting in
Â and D̂ is the diagonal matrix where D̂ii is the degree of a node considering the self
connections. Self-connection is critical to consider as the aggregated feature always
considers features of the node along with the neighbor node features. Layer-specific
parameters are W K is the weight matrix, σ(.) is a non-linear activation function such as
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ReLU, and hK is the input to the layer K+1 that is the hidden embedding of the previous
layer. h0 is X, the input graph. The above equation can be reformulated considering the
aggregate and update methods of the readout phase as [12] [18]

hi
{k} = σ

(
∑

j∈N(i)∪i

Âi j√
D̂iiD̂ j j

h j
{k−1}W {k}

)
(3.8)

hi
{k} = σ

(
∑

j∈N(i)

Âi j√
D̂iiD̂ j j

h j
{k−1}W {k}

︸ ︷︷ ︸
Aggregated neighbor nodes features

+
1
D̂i

hi
{k−1}W {k}︸ ︷︷ ︸

Node features through self connection

)
(3.9)

The preceding equation 3.8 can be expanded to equation 3.9 by considering the adja-
cency matrix split. With the two terms in the later equation, it is evident that the first
term aggregates the neighbor node features, and the second term helps in updating the
node representation considering its previous layer representation. Here, i is the node
for which hidden embedding is processed, whereas j is the neighbor considered for
aggregating features. [12] [18]

The spectral convolutions on graphs can be defined as the multiplication of input
signal x of a node with a convolutional filter gθ = diag(θ), (θ is the parameter of the
filter) in the Fourier domain. [12] [18]

Normalized graph Laplacian matrix, L = IN−D−
1
2 AD−

1
2

Laplace matrix in terms of eigenvectors U, L =UΛUT

Graph convolution, gθ ∗ x =UgθUT x

λ is the diagonal matrix of eigenvalues for the eigenvector U of L, UT x is the graph
Fourier transform of x, and T is the matrix transpose. Therefore, gθ is a function of
eigenvalues (λ ) of L. Computing eigenvectors and eigenvalues of L is a quadratic poly-
nomial problem. To smoothen the quadratic problem, the laplacian matrix is rescaled to
L̂ = 2

λmax
L− IN , λmax is the largest eigenvalue of L. [12] [18]

A layer wise convolutional, non-linear model, with the fundamental notion to have at
least one hidden layer, K= 2. By considering the above-defined terms L, gθ ∗ x, and
equation 3.9, [12] [18]

gθ ′ ∗ x≈ θ
′
0x+θ

′
1(L− IN)x = θ

′
0x−θ

′
1D−

1
2 AD−

1
2 x (3.10)

gθ ∗ x≈ θ(IN +D−
1
2 AD−

1
2 )x (3.11)

The filter parameters in equation 3.10, θ
′
0,θ

′
1 are shared across the graph to effectively

convolve kth neighborhood of the graph, where k is the number of the convolutional
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layer in the neural network model. To reduce the filter parameters and operations to
be performed, it can be further processed as can be seen in equation 3.11, with θ =

θ
′
0 =−θ

′
1. Due to the rescaled value of L for normalization, the eigenvalue now ranges

in [0,2]. Hence, while optimizing the learning parameters and training the model, it
bears a risk of vanishing or exploding gradients. Therefore, another renormalization
trick is introduced by adding self-connections (IN) to adjacency matrix A and replacing
the diagonal matrix (D) with the diagonal matrix (D̂) of the new adjacency matrix (Â)
as seen before from equations 3.6 and 3.7. The new equation for the convolved signal
is [12] [18]

Z = f (X ,A) = D̂−
1
2 ÂD̂−

1
2 XΘ (3.12)

The loss function (L) with Laplacian regularization (Lreg), L = L0 +λLreg.

where, Lreg =∑i, j Ai j|| f (Xi)− f (X j)||2 = f (X)T ∆ f (X), ∆ =D−A. L0 is the super-
vised loss for known labels of the graph, ∆ is the unnormalized graph Laplacian matrix,
X is the input matrix, T is matrix transpose, f(.) is a differentiable function like an MLP or
a NN or mean, and ||.|| is used to represent a dissimilarity measure. [18]

3.2.4 Graph Attention Networks

In the process of learning node representation, the node features are processed from
one layer to the next layer until the resulting layer. In this process of learning the number
of features carried further in each layer reduces keeping the defining features intact.
One of the major challenges encountered in the GCN model for graph networks is the
missing importance of each node to all other nodes. To overcome the challenge and
maintain the efficacy throughout the layers of NN, the GAT network is built and tries
to learn the priority of each neighbor of a node based on attention mechanism by
introducing a graph attention layer. Graph attention layer leverages effective transfer
of expressive power by transforming the lower level node representation to higher level
node representation by applying a shared linear transformation on every node, which
leads to more appropriate hidden embedding transfer from (k− 1)th layer to kth layer
and higher accuracy at the end. The importance of node j to node i is defined as the
attention coefficient given by [12] [21]

ei j = a(Whi
{k−1},Wh j

{k−1}) (3.13)

W is the shared linear transformation applied to node features, and a is the shared self-
attention mechanism applied to the nodes. To implement this self-attention mechanism
in a graph network, it is important to consider the graph structure to calculate the at-
tention coefficient ei j. Therefore, ei j is calculated for all the nodes j in neighbor N(i) of
node i, which are the first-order neighbors of i. The relationship of other nodes, not in
N(i) to node i, is ignored here. The attention coefficients are typically normalized with
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the SoftMax function to make them comparable across different nodes: [12] [21]

αi j = So f tMax j({ei j}) =
exp(ei j)

∑l∈N(i) exp(eil)
(3.14)

The shared attention mechanism a is a unit layer of a feedforward neural network, in-
cluding a linear transformation with a non-linear activation function (LeakyReLU), weight
vector for the layer W2. The attention coefficient in equation 3.14 is redefined as [21]
[12]

αi j =
exp(LeakyReLU(W2[Whi

{k−1}||Wh j
{k−1}]))

∑l∈N(i) exp(LeakyReLU(W2[Whi
{k−1}||Whl

{k−1}]))
(3.15)

where || represents the concatenation of two vectors. Therefore, the new hidden embed-
ding of a node is defined composedly by weights determined by the attention coefficient
attained from non-linear transformation (equation 3.15) and the neighbor node repre-
sentation: [21] [12]

h{k}i = σ

(
∑

j∈N(i)
αi jWh j

{k−1}
)

(3.16)

Instead of a shared single attention mechanism, a multi-head attention mechanism can
be applied to nodes, and the final representation for a node is finalized by concatenat-
ing all the node representations learned by different attention heads. Equation 3.16 is
reformulated for a multi-head attention mechanism with H attention heads as [12] [21]

h{k}i =

∣∣∣∣∣∣∣∣H
Ha=1

σ

(
∑

j∈N(i)
α

Ha
i j W Hah j

{k−1}
)

(3.17)

α
Ha
i j is the attention coefficient and W Ha is the linear transformation matrix attained for

Hth
a head. The hidden embedding for a node can be concluded by using any of the

other pooling techniques(mean, max) instead of concatenation feature vectors. The
node embedding can be calculated by averaging the feature vectors as: [21] [12]

h{k}i = σ

(
1
H

H

∑
Ha=1

∑
j∈N(i)

α
Ha
i j W Hah j

{k−1}
)

(3.18)

3.2.5 GraphSage:

The node representation learning dwells on the underlying principle behind node em-
bedding approaches, that is to use dimensionality reduction techniques to extract the
high-dimensional information about a node’s neighborhood into a dense vector embed-
ding. Attaining higher efficacy in performing the task using this dense embedding falls
easier when the features and the labels are known. However, it becomes challeng-
ing to generate efficient node embedding for unseen data, like in inductive learning
tasks. [20]
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Algorithm 3 GraphSage algorithm [20]

GraphSage exploits the available node features and graph structure information to ac-
quire an effectively hidden embedding. GraphSage can be stated as a 2-stage extension
of GCN. GraphSage extends the aggregate method from the mean (in GCN) operator to
pooling operators and LSTM. GraphSage replaces the sum operator by concatenation
in the update phase. This concatenated result is fed through a fully connected layer
with a non-linear activation function which transforms the vector to be used for the next
layer. To ease the computation for larger graphs, GraphSage facilitates mini-batch pro-
cessing, which can have one or more elements. It also fixes the size of neighbor nodes
to be sampled to reduce the neighborhood expansion, which might result in sampling
quality. To attain an effective representation in unsupervised conditions, a graph-based
loss function LG is applied to the output embedding zu for node u, trains the weight ma-
trix, and aggregator function parameters through SGDL. This training method leads to
similar representations for nearby nodes and higher disparity for distant nodes. [20]

LG(zu) =−log(σ(zT
u zv))−Q ·Evn∼Pn(v)log(σ(−zT

u zvn)) (3.19)

where v is the node occurring on fixed length random walk from u, T is the matrix trans-
pose operation, Pn is a negative sampling distribution and Q is the number of negative
samples. The loss function is applied on attained node embedding instead original
embedding of the node. In the GraphSage algorithm, by setting K = |V |, W = I, and
an appropriate hash function as an aggregator function, the algorithm behaves as the
Weisfeiler-Lehman isomorphism test. If the resulting embedding for two graphs turns
out to be the same, then the graphs are stated as isomorphic. [20]
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4 Experiments

Along with the increase in research work in the field of GNN, the application spreads
across various domains. Amongst the wide range of GNN applications, this thesis fo-
cuses on a specific type of dataset and learning hidden embedding of the same to per-
form node classification. The following experimental setup and the performance evalu-
ation are conducted using a citation networks and recommendation networks.

Technical specification to establish:

• Python

• PyTorch

• PyTorch geometric

• Matplotlib

• Keras

4.1 Datasets:

This thesis considers citation network datasets such as Cora, Citeseer, and PubMed
datasets for classifying academic papers into predefined categories of subjects. The
thesis also takes into account the recommendation networks such as Amazon Photos
and Amazon Computers. All of these discussed datasets contain a set of the bag of
words playing the key role in performing the task of classification. Below, the datasets
are elaborated further in detail concentrating on the important features. However, a
point to be kept in mind is the datasets are not necessarily a single component graph.
For an incident to explain, the Cora dataset consists of only one graph, a single con-
nected component whereas the Amazon Photo dataset is a disconnected multicompo-
nent graph with a single graph along with some of the isolated nodes. All the graphs
here are treated as undirected graphs.

Cora Citeseer PubMed Computers Photo
Number of Nodes 2708 3327 19717 13752 7650
Number of Edges 10556 9104 88648 491722 238162

Number of Features 1433 3703 500 767 745
Number of Classes 7 6 3 10 8

Table 4.1: Graph datasets details
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A Brief on Datasets Based on Learning Tasks:

The proposed model performs the classification task using both transductive learning
as well as inductive learning technique individually. Transductive learning technique
is applied by exposing a complete set of nodes and node features to train the model.
The node features of the validation set and test set nodes are available for the model
to learn during the training phase. However, in Inductive learning methodology, a set
of nodes and respective node features are fed to the model during the training phase
where as other nodes are not opened up to the model before the phase. This thesis has
tried to implement inductive learning by segregating the graph into 3 subgraphs based
on the node splits attained for the train-validation-test phases.

Details Of Transductive Learning On Graph Dataset

Details Of Inductive Learning On Graph Dataset
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4.2 Architecture:

The challenges this thesis has tried to concentrate on are feature aggregation using a
recurrent neural network before feeding it to GNN and optimizing the size of the hidden
layer using Q-learning. The proposed thesis model architecture is modeled in numerous
steps, which are elaborated in steps in the following sections.

4.2.1 Setting up GNN models:

Setting Up The Base Model: An initial base setup is established for the three out-
performing models Graph convolutional networks (GCN), GraphSage (Sampling and
Aggregate), and Graph attention networks (GAT), and their test accuracy percentage
along with the validation cross-entropy loss are noted. This training of this base model
is performed using the ReLU activation function for the inner layers, SoftMax for the fi-
nal layer, ADAM as an optimizer, and a constant dropout in each layer for regularization.
Two layered convolutional networks (GCN and GAT) and a three-layered convolutional
sage network (GraphSage) outputs are outlined below, followed by a tabular report of
the excellence of these models researched on the selected datasets [13]. GraphSage
is denoted as GS in the table from the referred paper.

Figure 4.1: Overview of the performances of selected models on preferred datasets [13]

The base models tried to set up, trained in mini-batches, and recorded the outcomes
for GCN, GAT, and GraphSage-mean. The preferred datasets for the execution of these
models are only the citation network Cora, Citeseer, and PubMed, the result for which
are projected below.

Figure 4.2: Performances of selected models attained on chosen datasets

4.2.2 Introducing recursive unit to GNN:

GraphSage model has the advantage of extending its aggregator as LSTM. This thesis
tried to set up a GraphSage model with an LSTM aggregator. The established model
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could not provide a promising result for the simpler networks and performed slightly well
in the moderately complex network. However, the execution time remained a challenge
for batch training. This thesis primarily focuses on extending GCN with recursive units
and optimizing the hidden layer size with Q-learning.

setting up proposed model: The model can be segregated into three parts, the first
part comprises a two-layered RNN (simpleRNN or LSTM or GRU), the second part
consist of a two convolutional layer GCN, and the last part is a Q-table optimizing the
size of the hidden layer for both RNN and GCN. The activation function used for the
inner layers is ReLU, for the final layer is SoftMax and ADAM is the optimizer for both
networks. The learning rate is provided as 0.1, the discount factor for Q-Learning is 0.9,
the dropout value for GCN is settled in [0.4, 0.6], the Q-table is initialized to zero matrix,
and the epoch count is set to 200. The model is approached in steps stated below.

Step 1: Node features are provided as input to RNN for aggregating the crucial node
features.
Step 2: Features attained in step 1 are provided to GCN as input. GCN works in two
folds. First, it aggregates node embedding by considering a subset of the neighbor
node, and then it uses the attained hidden embedding for a node classification task.
Step 3: Q-table samples the hidden layer with different sizes, and the matrix value gets
updated based on the accuracy of the network.

The model is run in two phases, one enabling all the nodes and connections in the train-
ing stage. While in the next phase, the graph is divided into two induced-subgraphs as
train and test. The model is trained using a train graph and tested with a test graph. The
nodes and links of the test graph are hidden from the model in the training stage. The
result of both stages is recorded in terms of loss and accuracy plots along with an anal-
ysis in the confusion matrix. This model training and testing is performed using all the
fore mentioned datasets, Cora, Citeseer, PubMed , AmazonPhoto, and AmazonCom-
puters. RNN-GCN-RL notation used for suggested model, ’Tr Acc’ for training accuracy,
Val for validation. Trans- transductive, Induct- Inductive.

Figure 4.3: Transductive-Inductive learning results - Planetoid (Cora, Citeseer and PubMed )
datasets

Figure 4.4: Transductive-Inductive learning results - Amazon (Computers and Photo)
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Discussing Results: This section will enable the user to understand the charts of re-
sults flooded here. Before discussing and analyzing the plots, a few factors to consider
are: a) the loss result plotted are cross-entropy values, b) the accuracy value is normal-
ized in the range [0,1] to plot, but noted in percentage for tabular representation (figure
4.3 4.4). Accuracy charts are plotted on a plane with the number of epochs on the
x-axis and a range from zero to maximum accuracy attained on the y-axis. Training loss
is charted for loss in the y-axis attained for the number of epochs on the x-axis. The
confusion matrix is drawn by comparing the actual labels on the y-axis and the predicted
labels on the x-axis.

It can be seen from the model’s results, which are shown in tables from figures 4.3 and
4.4, that the transductive learning setup of the model performed competitively well. The
transductive learning process managed to achieve an average test accuracy of 80%
with a deviation of 1%. However, the inductive model could not perform similarly and
managed to attain an average of 55% with a deviation of 1%. The loss during training
remained consistent in both processes.

Figure 4.5: Transductive learning accuracy result- Cora dataset

Figure 4.6: Inductive learning accuracy result- Cora dataset

Cora Dataset Results: The model ran on the Cora dataset, attained a training accuracy
closer to 90%, and performed quite well with an accuracy of 83−84% which can be seen
in figure 4.5. The learning growth and reduction in the loss was exponential in the initial
phase of training until the 100-125 epoch, post which the gradient became smaller and
the learning of the model became stagnant, which can be seen in figures 4.5 - 4.7. As
can be seen in figure 4.6, the inductive learning model resulted in an accuracy of 55%,
the learning growth was reduced after 100 epochs. The confusion matrix shows, the
count of correctly classified data and the deviation in wrongly classified data in various
categories. Figure 4.8, the right side image significantly displays an inclination of test
results towards the higher number of training samples based on categories.
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Figure 4.7: Training Loss- Cora dataset (L-Transductive, R-Inductive)

Figure 4.8: Confusion matrix result- Cora dataset (L-Transductive, R-Inductive)

That conveys, if a class has higher training samples compared to other classes, the
majority of the incorrectly classified data are identified to that label. The Cora dataset
has seven predefined categories of data, the numeric values representing the categories
labeled in the range [0,6] (axis values of confusion matrix).

Figure 4.9: Transductive learning accuracy result- Citeseer dataset

Citeseer Dataset Results: The model executed for the Citeseer dataset resulted al-
most similar to the Cora dataset, attained a transductive learning test accuracy closer
to 76% and inductive learning test accuracy closer to 55%, which can be seen in figures
4.9 4.10. The stagnant phase is attained after training of 100-125 epochs for induc-
tive learning, whereas for the transductive process, it is attained in a lesser number
of epochs as seen in figure 4.11. The confusion matrix in figure 4.12 shows a similar
deviation to the result attained for Cora.
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Figure 4.10: Inductive learning accuracy result- Citeseer dataset

Figure 4.11: Training Loss- Citeseer dataset (L-Transductive, R-Inductive)

Figure 4.12: Confusion matrix result- Citeseer dataset (L-Transductive, R-Inductive)

Figure 4.13: Transductive learning accuracy result- PubMed dataset

PubMed Dataset Results: Although the PubMed dataset is sufficiently large and com-
plex with comparatively more node features, due to a lesser number of categories in
data, the model performed distinctively well in both transductive learning with test ac-
curacy closer to 85% and inductive learning test accuracy closer to 77% which can be
seen in figures 4.13 4.14. The stagnant phase is attained (loss = 0.49) after training of
50-75 epochs for inductive learning, whereas for the transductive process, it is attained
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Figure 4.14: Inductive learning accuracy result- PubMed dataset

Figure 4.15: Training Loss- PubMed dataset (L-Transductive, R-Inductive)

Figure 4.16: Confusion matrix result- PubMed dataset (L-Transductive, R-Inductive)

earlier as seen in figure 4.15. The confusion matrix in figure 4.16 shows a lesser devia-
tion in the inductive phase compared to the results attained earlier, conveying that with
lesser categories the model performs equally well for unseen data.

Figure 4.17: Transductive learning accuracy result- AmazonComputers dataset

AmazonComputers Dataset Results: AmazonComputers dataset with the increased
complexity of graph, large and strongly connected nodes with higher node features, the
model performed admirably in transductive learning with test accuracy closer to 79%
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Figure 4.18: Inductive learning accuracy result- AmazonComputers dataset

Figure 4.19: Training Loss- AmazonComputers dataset (L-Transductive, R-Inductive)

Figure 4.20: Confusion matrix - AmazonComputers (L-Transductive, R-Inductive)

and inductive learning test accuracy closer to 60% which can be seen in figures 4.17
4.18. The stagnant phase is attained after training of 100-125 epochs for inductive
learning, whereas for the transductive process, the learning remained in progress until
the last epoch. The slope of the loss in inductive learning was initially higher and flat
later, as seen in figure 4.19. The confusion matrix in figure 4.20, the left image for the
transductive process shows increased accuracy and lesser variation.

Figure 4.21: Transductive learning accuracy result- AmazonPhoto dataset
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Figure 4.22: Inductive learning accuracy result- AmazonPhoto dataset

Figure 4.23: Training Loss- AmazonPhoto dataset (L-Transductive, R-Inductive)

Figure 4.24: Confusion matrix - AmazonPhoto dataset (L-Transductive, R-Inductive)

AmazonPhoto Dataset Results: AmazonPhoto, another complex dataset with the in-
creased complexity of graph, large number of nodes, and strongly connected graph with
higher node features, the model displayed excellent performance in transductive learn-
ing with test accuracy closer to 79% and managed to attain test accuracy closer to 60%
in inductive learning, which can be seen in figures 4.21 4.22. The learning task for
the model took longer time for the inductive model compared to the transductive model
as per figures 4.21 4.22. The slope of the loss in inductive learning was small in the
initial phase and higher throughout training later, as seen in figure 4.23. The confusion
matrix in figure 4.24, the left image for the transductive process displays an excellent
performance of the model with minute deviation in actual and predicted values.
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5 Conclusion

Despite the suggested model implementation not being as efficient as the expert mod-
els and papers referred to, the initial setup performed similarly to the state-of-the-art
model’s output. However, the enhancement performed on GCN together with recur-
rent units and Q-learning produced comparable outcomes. The results achieved for
the transductive learning method are impressive compared to the inductive learning ap-
proach. Nevertheless, the inductive learning tests could manage to exceed the result
for the PubMed dataset. The model performance was evaluated considering five differ-
ent datasets, namely Cora, Citeseer, PubMed, AmazonComputers, and AmazonPhoto.
With a limitation in technical setup and established setup with considerable parameters,
the suggested model performance for Cora, Citeseer, and PubMed datasets exceeded
the expectation of competent results for transductive learning. The result attained for
AmazonComputers, and AmazonPhoto datasets in the transductive learning technique
are also remarkable. The inductive learning method test results could not attain a com-
mendable result which could be worked further in broader aspects in future work.

5.1 Expanding Ideas For Further Study

Although the model achieved competitive results, it can be further studied to check if the
model satisfies Weisfeiler-Lehman isomorphism test. This thesis does not evaluate the
model’s ability to handle permutation invariance, which is one of the crucial characteris-
tics of graph learning. This aspect can also be selected for study further. To enhance
the efficacy of the model, it can also be expanded further by experimenting with the fea-
sibility of LSTM as an aggregator for GCN and fixing the size of the neighbor loader for
LSTM. Another exciting scenario to study further is applying a Q-learning algorithm for
attaining appropriately hidden embedding by setting the environment to an adjacency
matrix and action to select the neighbors randomly but keeping a tracker not to revisit
the visited nodes, keeping the cycle of smaller diameter as one entity and updating the
Q-table accordingly. This thesis work does not consider the direction of the graphs,
which is also one significant trait to consider further. Although the implementation in-
cludes the edge weight to evaluate the importance of the connection between nodes,
this can be enhanced further by adding a weight matrix for the critical features and node
importance.
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