

MASTERARBEIT

Frau B.Sc. Lisa Lorenz-Grolle

Nutzung der Nanoporensequenzierung zur Untersuchung genetischer Varianten in Zusammenhang mit Kryptorchismus beim Altdeutschen Schafpudel

Mittweida, 2023

Fakultät Angewandte Computer- und Biowissenschaften

MASTERARBEIT

Nutzung der Nanoporensequenzierung zur Untersuchung genetischer Varianten in Zusammenhang mit Kryptorchismus beim Altdeutschen Schafpudel

Autor: Lisa Lorenz-Grolle

Studiengang: Master Genomische Biotechnologie

> Seminargruppe: GB20wM-M

Erstprüfer: Prof. Dr. rer. nat. habil. Röbbe Wünschiers

Zweitprüfer: M.Sc. Nils Schön

Mittweida, 09.06. 2023

Bibliografische Angaben

Lorenz-Grolle, Lisa: Nutzung der Nanoporensequenzierung zur Untersuchung genetischer Varianten in Zusammenhang mit Kryptorchismus beim Altdeutschen Schafpudel, **??** Seiten, 23 Abbildungen, Hochschule Mittweida, University of Applied Sciences, Fakultät Angewandte Computerund Biowissenschaften

Englischer Titel: Application of nanopore sequencing for the analysis of genetic variants related to cryptorchidism in Old German Sheep Poodle

Kurzbeschreibung

Bei Hodenhochstand, auch Kryptorchismus genannt, handelt es sich um eine der am häufigsten auftretenden Störungen der Geschlechtsentwicklung bei Hunden. Die Ursachen für diese Krankheit sind bisher unklar. Es wird davon ausgegangen, dass es multifaktorielle Auslöser gibt. Um den genetischen Hintergrund dieser Krankheit bei der Rasse Altdeutscher Schafpudel zu betrachten, wurden in dieser Studie ausgewählte Hunde einer Zucht untersucht. In diesem Zusammenhang wurde eine Visualisierung der Verwandtschaftsverhältnisse einer vorangegangenen Studie um die untersuchten Individuen ergänzt. Die Nanoporensequenzierungen wurde für die Analyse von sechs Genloci genutzt. Diese Sequenzdaten wurden anschließend auf Sequenzund Strukturvarianten untersucht. Diese Arbeit vergleicht die Resultate mit vorausgegangenen Untersuchungen, um einen Zusammenhang zwischen Kryptorchismus und einer detektierbaren genetischen Veränderung zu ermitteln.

Abstract

Undescended testicles, also called cryptorchidism, is one of the most common disorder of sexual development in dogs. The causes of this disease are still unclear. It is assumed that there are multifactorial triggers. In order to look at the genetic background of this disease in the breed Old German sheep poodle, selected dogs of a breeding were examined in this study. In this context, a visualisation of the relationships of a previous study was supplemented by the examined individuals. Nanopore sequencing was used to analyse six gene loci. This sequence data was then analysed for sequence and structural variants. This work compares the results with previous studies to determine a relationship between cryptorchidism and a detectable genetic change.

I. Inhaltsverzeichnis

In	halts	verzeichnis	I
Ał	bbildu	ungsverzeichnis	II
Та	belle	nverzeichnis	III
Ał	bkürz	ungsverzeichnis	IV
Da	anksa	agung	V
1	Einl	eitung	1
	1.1	Descensus testis	1
		1.1.1 Ablauf des <i>Descensus testis</i>	2
		1.1.2 Hormonelle Regulation des <i>Descensus testis</i>	3
	1.2	Kryptorchismus	4
		1.2.1 Folgen von Kryptorchismus	4
		1.2.2 Gründe für Kryptorchismus	5
2	Ziel	stellung	7
3	Mate	erial	8
	3.1	Geräte	8
	3.2	Chemikalien	9
	3.3	Lösungen	9
	3.4	Biologische Proben	9
	3.5	Molekularbiologische Reagenzien	10
	3.6	Oligonukleotide	11
	3.7	Software	12
4	Met	hoden	13
	4.1	Stammbaumvisualisierung	13
	4.2	Probenlagerung	13
	4.3	DNA-Extraktion	13
	4.4	Qualitätsprüfung der DNA	14
		4.4.1 Konzentrationsbestimmung mittels Qubit [™] dsDNA HS Assay Kit	15
		4.4.2 Konzentrations- und Reinheitsquotientenbestimmung mit NanoVue™	15
		4.4.3 Fragmentlängenüberprüfung durch Agarosegelelektrophorese	15
	4.5	Durchführung der PCR	16
	4.6	Aufreinigung der Fragmente	17

	4.7	Nanporensequenzierung	17		
		4.7.1 Amplikonpooling	17		
		4.7.2 Sequenzierung	18		
	4.8	Datenverabreitung der Sequenzdaten	19		
5	Erge	ebnisse	21		
	5.1	Stammbaumvisualisierung	21		
	5.2	Quantität und Qualität der DNA-Extraktion	22		
	5.3	Agarosegelelektrophorese nach der DNA-Extraktion	25		
	5.4	Aufreinigung der PCR-Amplikons	26		
	5.5	Agarosegelelektrophorese nach der PCR der Genloci	27		
	5.6	Sequenzierung	32		
	5.7	Bestimmung der Struktur- und Sequenzvarianten	35		
		5.7.1 Identifikation von SNVs	35		
		5.7.2 Detektion von SVs	45		
6	Disł	kussion	49		
	6.1	DNA-Extraktion	49		
	6.2	Bewertung der PCR	53		
	6.3	Sequenzierung	54		
		6.3.1 Sequenzvarianten	57		
7	Aus	blick	60		
8	Zus	ammenfassung	62		
•			-		
9	Sun	nmary	63		
Li	teratu	urverzeichnis	64		
Sŕ	Selbstständigkeitserklärung 7				
	10513	stanungkenserkiarung	12		

II. Abbildungsverzeichnis

1	Schematisch dargestellter Descensus testis beim Hundewelpen vom 53. Tag	
	der Schwangerschaft bis zum 35. Tag nach der Geburt (modifiziert nach Bau-	
	mans, Dijkstra und Wensing, 1981)	3
2	Repräsentativer Ausschnitt des erstellten Stammbaums mit Kennzeichnung der	
	entsprechenden Studie	21
3	Vergleich der DNA-Konzentration nach der Extraktion nach Herstellerprotokoll	
	und abgeänderter Arbeitsweise	23
4	Vergleich der DNA-Reinheit nach der Extraktion mit den unterschiedlichen Ex-	
	traktionsmethoden	24
5	Agarosegelelektrophorese der extrahierten DNA aller Proben	25
6	DNA-Konzentrationen aller Amplikons nach der Aufreinigung	27
7	Amplikons von RXFP2_E6-8 und RXFP2_E10-11 aufgetragen auf Agarosegel-	
	elektrophoresen	29
8	Agarosegelelektrophorese der PCR-Produkte von NCOA5_E3-5 und COL2A1_ES	9-
	16	30
9	Agarosegelelektrophorese der Amplikons von NCOA5_E7-8 und AMHR2_E7-11	31
10	DNA-Konzentration während der Sequenzierung	32
11	Vergleich der Sequenzierungsgeschwindigkeit	33
12	Verlauf der Anzahl der aktiven Poren aller Sequenzierungen	34
13	Vergleichendes Histogramm der Anzahl der Reads	34
14	Violinenplot der Read-Längen der fünf Sequenzierungen	35
15	Sequenzvarianten des Lokus AMHR2 _ E7-11	36
16	SNVs innerhalb des Gens COL2A1 an den Exons 9 bis 16	38
17	Short nuclear variants der Genregion NCOA5_E2-4	39
18	Genvarianten innerhalb des Lokus NCOA5_E7-8	40
19	Darstellung der Sequenzvarianten des Gens RXFP2 der Exons 6 bis 8	41
20	Identifizierung der Nukleotidaustausche von RXFP2 _ E10-11	42

21	Strukturvarianten des Lokus COL2A1_E9-16	45
22	Darstellung aller identifizierten SVs innerhalb von NCOA5_E7-8	47
23	Übersicht der strukturellen Varianten der Exons 6 bis 8 des Gens RXFP2	48

III. Tabellenverzeichnis

1	Pipettierschema für AMHR2_E7-11, COL2A1_E9-16, NCOA5_E3-5, NCOA5_E7-		
	8, RXFP2_E10-11 und RXFP2_E6-8	16	
2	PCR-Zyklen für alle Genloci	16	
3	Benötigte Konzentrationen für das Pooling	26	
4	Erwartete Fragmentgrößen der amplifizierten Genloci	28	
5	Übersicht der SNV-Austausche, -Positionen und -Verteilungen	43	
6	Daten zur Erstellung des Stammbaums	73	
7	Probenauswahl für die PCR mit der DNA-Konzentration und den Reinheitsquo-		
	tienten A260/A280 und A260/A230	81	
8	DNA-Konzentration der einzelnen Amplikons aller Proben	82	
9	Übersicht der Qualität der generierten Reads	85	
10	Übersicht der allgemeinen Statistiken der einzelnen Sequenzierungen	85	
11	Übersicht der allgemeinen Statistiken der einzelnen Sequenzierungen nach Fil-		
	terung des Q-Scores über 9	86	
12	Übersicht über Strukturvarianten, deren Lokus, Länge und Auftreten	87	

IV. Abkürzungsverzeichnis

AMHR2	Anti-Mullerian Hormone Receptor Type 2
AMHR2_E7-11	Gen AMHR2, Exon 7 bis 11
AWK	Aho, Weinberer, Kernighan; Namen der Entwickler dieser Programmier- sprache
BAM	Binary Alignment Map
bp	Basenpaare
CFA	Cyclopropane-fatty-acyl-phospholipid synthase
COL2A1	Collagen Type II Alpha 1 Chain
COL2A1_9-16	Gen COL2A1, Exon 9 bis 16
CSV	Comma-separated values
DMSO	Dimethylsulfoxid
EDTA	Ethylendiamintetraessigsäure
ESR1	Estrogen Receptor 1
fwd	Forward
GNRHR	Gonadotropin Releasing Hormone Receptor
HOXA10	Homeobox A10
IGV	Integrative Genomic Viewer
INSL3	Leydig Insulin-like protein
kb	Kilobasen
Mb	Megabase
NCBI	National Center for Biotechnology Information
NCOA5	Nuclear Receptor Coactivator 5
NCOA5_E2-4	Gen NCOA5, Exon 3 bis 5
NCOA5_E7-8	Gen NCOA5, Exon 7 bis 8
NR5A1	Nuclear Receptor Subfamily 5 Group A Member 1
nt	Nukleotide
NTC	No Template Control
PCR	Polymerase chain reaction
Q-Score	Phred quality score

rev Reverse

rpm Rounds per minute

RXFP2 Relaxin Family Peptide Receptor 2

RXFP2_E10-11 ... Gen RXFP2, Exon 10 bis 11

RXFP2_E6-8 Gen RXFP2, Exon 6 bis 8

SAM Sequence Alignment Map

SNP Short nucleotide polymorphism

SNV Single nucleotide variant

SRY Sex determining region Y

SV Strukturvariante

TAE Trisacetat Ethylendiamintetraessigsäure

VCF Variant Call Format

V. Danksagung

Zunächst möchte ich allen Personen danken, welche mich bei der Durchführung meiner Arbeit unterstützt, geholfen und motiviert haben.

Ein großes Dankeschön möchte ich an Professor Röbbe Wünschiers richten, der es mir erst möglich gemacht hat, an meinen liebsten Haustieren zu forschen. Des Weiteren stand er mir immer für Fragen zur Verfügung und motivierte mich stets mit aufmunternden Worten sowie seinem wissenschaftlichem Enthusiasmus.

In diesem Zusammenhang möchte ich mich auch bei Nils Schön bedanken, der mir stets mit seiner fachlichen Expertise im Labor und am Computer zur Seite stand.

Ebenso spielte auch Mechthild Jennissen-Tibbe eine wichtige Rolle bei meiner Forschung. Zum einen sorgt sie mit unerschöpflicher Energie für die Realisierung dieses Projektes und die Bereitstellung der Blutproben. Außerdem überraschte sich mich mit ihrer Herzlichkeit und ihrer Einladung zum Kennenlernen der Rasse Schafpudel.

Zwei Personen möchte ich für ihre Organisation der Labore und des Studiums ganz besonders danken: Sandra Feik und René Kretschmer. Die gesamte Fakultät *Biotechnologie und Chemie* und im Besonderen die Forschungsgruppe *WunschAG* sorgte für ein Forschen in toller Atmosphäre. Besonders Lisa Prudnikow bereicherte meine Zeit mit der Organisation von betrieblichen Ausflügen, ihrer Expertise und vielen Gesprächen.

Birgit und Mareike, zwei Kommilitoninnen, standen mir während des Studiums bei fachlichen, aber auch alltäglichen Situationen immer zur Seite. Auch Jana gilt mein Dank für ihre unerschütterliche Geduld und die vielen langen Gespräche. Danke Euch! Zum Schluss möchte ich mich bei meiner Familie für ihre Unterstützung in allen Lebenslagen bedanken. Besonders meinem Mann Bernd gilt mein größter Respekt. Er schafft es immer mir den Rücken zu stärken und die richtigen Worte zu finden, auch wenn ich manchmal mehr Zeit mit dieser Arbeit, als mit ihm verbrachte.

Danke Euch Allen!

1 Einleitung

Bereits vor 20.000 bis 40.000 Jahren begann die Domestizierung des Hundes [Botigué et al., 2017]. Heutzutage gibt es mehr als 400 unterschiedliche Hunderassen [Bateson, 2010]. Die Zucht ging jedoch auch häufig mit Inzucht einher, welche dazu diente, Merkmale zu fixieren. Diese Verpaarung enger Verwandter birgt jedoch auch Risiken hinsichtlich der Gesundheit [Bateson, 2010]. Um beispielsweise die Gesundheit der Rassen und der einzelnen Individuen zu erhalten oder zu verbessern, erforschen viele Studien die Genetik von Hunden [Jeong et al., 2014; Thorsrud und Huson, 2021; Oberbauer et al., 2006; Hülsmeyer et al., 2015].

Eine Untersuchung, welche sich mit den genetischen Ursachen für Hodenhochstand (Kryptorchismus) bei dem Altdeutschen Schafpudel beschäftigt, wird an der Hochschule Mittweida durchgeführt. Die Forschungsgruppe um Professor Röbbe Wünschiers erforscht in Kooperation mit dem Institut für ganzheitliche Schafpudelzucht ausgewählte Genregionen, welche in Zusammenhang mit Kryptorchismus gebracht werden. In diesem Rahmen wurde auch diese Studie durchgeführt.

Bei Hodenhochstand handelt es sich um eine der häufigsten Störungen der Geschlechtsentwicklung beim Hund [Khan, Gartley und Khanam, 2018]. Durch diese Erkrankung entstehen dem Züchter und Tier negative Folgen (Abschnitt 1.2.1).

1.1 Descensus testis

Der Vorgang des *Descensus testis* beschreibt den Abstieg der Hoden vom intraabdominalen Raum in den Hodensack (Scrotum) in Säugetieren [Hadžiselimović, 1983], wobei dies aber nicht bei allen Säugern vorkommt [Chai et al., 2021]. Dieser Begriff leitet sich von den griechischen Worten "*Descensus*" für "Herabsteigen" und "*testis*" für "Hoden" ab [Zilles und Tillmann, 2011]. Chai et al. [2021] stellt verschiedene Hypothesen gegenüber, welche die unterschiedliche Lage der Hoden bei verschiedenen Tieren erklären könnten. Der Hintergrund für das Verbleiben oder ganze bzw. teilweise Absteigen ist bisher unklar. Eine dieser Theorien beschreibt die geringere Temperatur im Hodensack im Vergleich zum Körperinnern als ausschlaggebend. Da diese eine Voraussetzungen für die Bildung und Speicherung von vitalen Spermien sei [Zilles und Tillmann, 2011]. Außerdem könnte die Lagerung außerhalb des Körpers eine sexuelle Zurschaustellung sein [Chai et al., 2021]. Des Weiteren besteht auch die Möglichkeit, dass wenige, aber qualitativ hochwertige Spermien gebildet werden, da sie sich in einer ungeschützten Umgebung befinden [Freeman, 1990].

1.1.1 Ablauf des Descensus testis

Der allgemeine Abstieg der Hoden lässt sich in drei Phasen einteilen. Zunächst erfolgt die intraabdominale, daraufhin die intrainguinale und schließlich die extringuinale Migration. Das *Gubernaculum testis* ist eine Bandstruktur, welches am unteren Rand der Hoden ansetzt und sie mit der Bauchfellfalte verbindet. Das *Gubernaculum testis* ist für den Hodenabstieg verantwortlich, da es sich in der Größe verändert, um den Leistenkanal zu öffnen. Ebenfalls werden durch die Veränderung der Größe die Hoden durch das Abdomen in Richtung Leistengegend gezogen und später durch den Leistenkanal bewegt. Wahrscheinlich ist, dass auch die abdominalen Muskeln eine Rolle bei dem *Descensus testis* spielen. Durch Erhöhung des Drucks könnte dabei der Abstieg durch den Leistenkanal unterstützt werden. Die nun folgende Bewegung der Hoden beschreibt die extrainguinale Migration in den Hodensack. Das *Gubernaculum testis* beginnt sich danach zurückzubilden. Dadurch werden die Hoden kaudal, Richtung Schwanz bzw. Steißbein, gezogen [Romagnoli, 1991].

Im Gegensatz zu vielen anderen domestizierten Tieren und zum Menschen, ist der Hodenabstieg beim Hund bei der Geburt noch nicht abgeschlossen. Daher lässt sich Hodenhochstand, auch Kryptorchismus genannt, zu diesem Zeitpunkt noch nicht identifizieren [Romagnoli, 1991]. Der Ablauf des Descensus testis ist schematisch in Abbildung 1 dargestellt. Die ersten beiden Querschnitte zeigen den 53. bzw. 59. Schwangerschaftstag und der dritte Zeitpunkt beschreibt den Tag der Geburt. Der Abstieg der Hoden beginnt beim Hund nach dem 53. Tag der Schwangerschaft, wobei der rechte Hoden dem Linken ein Stück voraus ist. Zu diesem Zeitpunkt befinden sich die Hoden in der Nähe der kaudalen Seite der Niere. Danach steigen die Hoden in Richtung des Leistenringes ab, wobei sie sich zum Zeitpunkt der Geburt auf circa halber Höhe zwischen Niere und Leistenring befinden. Am dritten Tag nach der Geburt befinden sich die Hoden im, oder kurz vor dem Leistenkanal. Am fünften Tag haben die Hundehoden den Leistenkanal durchquert. Fünf Tage später, am zehnten Tag nach der Geburt, haben sie bereits ein Drittel des Weges zum Scrotum zurückgelegt. Ab dem 15. bis 17. Tag werden die Hoden fühlbar, da sie sich nun auf der Hälfte der Strecke befinden. Ab diesem Zeitpunkt sind beide Hoden auf einer Höhe. Am 27. Tag haben sie sich bereits halb in das Scrotum bewegt. Zwischen dem 35. und 40. Tag befinden sich die Hoden am tiefsten Punkt des Scrotums und haben daher ihre finale Position erreicht [Baumans, Dijkstra und Wensing, 1981].

Abbildung 1: Schematisch dargestellter *Descensus testis* beim Hundewelpen vom 53. Tag der Schwangerschaft bis zum 35. Tag nach der Geburt (modifiziert nach Baumans, Dijkstra und Wensing, 1981)

1: linke Niere; 2: rechte Niere; 3: Bauchdecke; 4: Subkutangewebe; 5: Hoden; 6: *Gubernaculum testis* (intraabdominaler Teil); 7: Leistenkanal; 8: *Gubernaculum testis* (extraabdominaler Teil); 9: Scrotum

1.1.2 Hormonelle Regulation des Descensus testis

Der Hodenabstieg wird durch viele Regulationsmechanismen beeinflusst. Eine wichtige Rolle spielt das *Leydig insulin like*-Protein (INSL3). Dieses Gen und das zugehörige Genprodukt ist in vielen Tieren gefunden worden und ähnelt dem Hormon Insulin, da es aus einer A- und einer B-Kette besteht. Wahrscheinlich spielt es eine Rolle bei dem Abstieg der Hoden und bei der Ausprägung des Sexualdimorphismus, was zunächst bei Mäusen beobachtet wurde [Tomboc et al., 2000; Zimmermann et al., 1997]. Es ist ebenfalls an der Ausbildung des *Gubernaculum testis* und an der Öffnung des Leistenkanals beteiligt [Ayers et al., 2019]. Der *Relaxin family peptide*-Rezeptor 2 (RXFP2) ist ein Rezeptor für INSL3. In Mäusen wurde bilateraler Kryptorchismus festgestellt, wenn ein mutiertes Gen dieses Rezeptors vorlag [Gorlov et al., 2002]. Ebenso wie INSL3 wird RXFP2 in den Leydigzellen exprimiert [Minagawa et al., 2012].

Außerdem nehmen Androgene beim Abstieg eine wichtige Funktion ein [Hutson und Donahoe, 1986]. Diese Gruppe von Männlichkeitshormonen [Zilles und Tillmann, 2011] werden in den Leydigzellen gebildet [Hadžiselimović, 1983]. Auch Testosterone induzieren den *Descensus testis*. In den Sertolizellen wird das Anti-Müller-Hormon gebildet, welches die Rückbildung des Müllerganges auslöst [Hadžiselimović, 1983]. Der *Anti-Muellerian hormone type-2 receptor* (AMHR2) spielt dabei ebenfalls eine wichtige Rolle [Imbeaud et al., 1995]. Bei dem Müller-Gang handelt es sich um eine der embryonalen Anlagen für die Geschlechtsorgane [Riede und Werner, 2017].

1.2 Kryptorchismus

Das Wort Kryptorchismus leitet sich vom antiken Griechisch ab und bedeutet "versteckte Hoden". Diese Krankheit beschreibt eine fehlerhafte Entwicklung wodurch ein oder beide Hoden nicht in das Scrotum absteigen. Die im Bauchraum verbleibenden Hoden können in diesem Fall im Abdomen, am Leistenring oder im Leistenring befinden [Romagnoli, 1991].

1.2.1 Folgen von Kryptorchismus

Durch einen gestörten *Descensus testis* kann es zu verschiedenen Auswirkungen kommen. So zum Beispiel ergibt sich durch die Lage innerhalb des Körpers eine Störung der Spermatogenese [Zilles und Tillmann, 2011]. Außerdem besteht bei nicht abgestiegenen Hoden ein erhöhtes Risiko für maligne Entartungen [Hadžiselimović, 1983]. So könnte es durch die verringerte Fruchtbarkeit und den Stillstand der Spermatogenese selbst zu Krebs kommen [Ferguson und Agoulnik, 2013]. Die erhöhte Temperatur im Körper von über 32 °C, hat eine Verringerung der Keimzellen zur Folge [Izu et al., 2004]. Hodentorsionen können bei kryptorchiden Hunden vermehrt auftreten. Bei einer Hodentorsion kommt es zu einer Drehung des Hodens, wodurch Blutgefäße abgedrückt werden. Das Lebewesen leidet dabei starke Schmerzen und muss akut chirurgisch behandelt werden [Zilles und Tillmann, 2011]. Ebenso kann Hyperöstrogenismus auftreten [Birchard und Nappier, 2008]. Dieser Zustand beschreibt einen erhöhten Gehalt an Östrogenen [Fritsch, 2009]. Hodenhochstand kann auch weitere Folgen mit sich bringen: Verhaltensstörungen, Übergewicht und Hautkrankheiten. Um die Folgen zu minimieren, wird bei Hunden eine Kastration durchgeführt [Mattos et al., 2000], was die Zeugung von Nachkommen verhindert. Dies hat einen wirtschaftlichen Schaden für den Züchter zu Folge, da dieser Hund nicht mehr zur Zucht zugelassen werden kann und zusätzliche Kosten durch die Operationen entstehen [Birchard und Nappier, 2008].

1.2.2 Gründe für Kryptorchismus

Es gibt die Theorie, dass Säugetiere von einer Störung beim Hodenabstieg betroffen sind, wenn abnormale Veränderungen des *Gubernaculum testis* auftreten. Dieser Zusammenhang besteht, da der Hodenabstieg mit morphologischen Veränderungen des *Gubernaculum testis* einhergeht. Daher lässt sich schlussfolgern, dass sowohl beim Scheitern der Ausbildung des *Gubernaculum testis*, als auch bei der Anordnung in eine unübliche Position, Hodenhochstand auftreten kann. Aber auch durch übermäßiges Wachsen oder durch fehlende oder verzögerte Rückbildung kann ein Kryptorchismus entstehen [Leung, 1987].

Romagnoli [1991] postulierte mehrere Gene als ausschlaggebend. Wobei davon ausgegangen wird, dass einige Gene mit einer geringen Penetranz einen Anteil haben. Auch Sittmann [1980] sagte voraus, dass diese Krankheit auf wenige rezessiv vererbbare Gene zurückgeht. Von Nielen, Janss und Knol [2001] wurden verschiedene Vererbungsmodelle untersucht und geschlussfolgert, dass Kryptorchismus einen komplizierten Vererbungshintergrund besitzt.

Eine genetische Prädisposition liegt wahrscheinlich vor [Lea et al., 2016]. Auch Hutson, Hasthorpe und Heyns [1997] beschrieben, dass es sich bei Hodenhochstand um eine multifaktorielle Krankheit handelt. Auch eine erhöhte Inzuchtrate könnte eine Rolle bei dem Auftreten von Kryptorchismus spielen [Amann und Veeramachaneni, 2007]. Ein Indiz ist, dass oft kleine und reinrassige Hunde an Hodenhochstand erkranken [Ortega-Pacheco et al., 2006]. Daher liegt es nahe, dass mit dieser Krankheit assoziierte Gene bei der Zucht isoliert worden sein könnten [J Chen et al., 2015].

Bei einer genomweiten Assoziationsstudie von Zhao, Onteru et al. [2013a] wurden 205 männliche Huskys, die aus Amerika bzw. aus Europa stammten, untersucht. Circa die Hälfte der Tiere war kryptorchid. Schlussendlich konnte die Studie sechs Regionen identifizieren, die mit Kryptorchismus in Verbindung gebracht wurde. Diese betrafen die *Cyclopropane fatty acyl phospholipid*-Synthase (CFA), genauer die Loci CFA6, CFA9, CFA624, CFA627, CFA6 und X. Zuvor konnten Zhao, Onteru et al. [2013b] eine Verbin-

dung zu AMHR2 herstellen. Drei Regionen wurden näher identifiziert: An der 4. Megabase (Mb) CFA27, der 75. Mb von CFA4 und die 18 Mb auf CFA31. Weitere drei Jahre zuvor zeigten Zhao, Du und Rothschild [2010], dass die sonst oft assoziierten Gene bzw. Genprodukte INSL3, *Homeobox A10* (HOXA10), *Gonadotropin releasing hormone*-Rezeptor (GNRHR), *Estrogen*-Rezeptor 1 (ESR1) sowie *Nuclear receptor subfamily 5 group a member 1* (NR5A1) nicht mit Kryptorchismus bei den untersuchten Huskys in Verbindung gebracht werden konnten. Als potentielles Kandidatengen wurde das *Type II collagen*-Gen (COL2A1) genannt. Typ II Kollagen ist ein wesentlicher Bestandteil der extrazellulären Matrix von Knorpel und gewährleistet das Wachstum, Knochenbildung und eine normale Gelenkfunktion [Gregersen und Savarirayan, 2019].

Cassata et al. [2008] untersuchten einen Dalmatinerrüden und fanden eine Mutation im INSL3-Gen und keine Einzelnukleotid-Polymorphismen (SNPs, *short nucleotide poly-morphisms*) innerhalb von RXFP2 und der *Sex determining*-Region Y (SRY).Truong et al. [2003] analysierte die Expression von INSL3 bei Mischlingsrüden anhand von Zellgewebe und den Aufbau von INSL3. Die Ergebnisse wurden dann mit denen bei Mäusen und Menschen verglichen. Die genomische Struktur von INSL3 von Hunden ist vergleichbar mit der von Menschen und Mäusen sowie Ratten. Auch die Expression war ähnlich. INSL3 wurde in Eierstöcken von Hunden weniger stark exprimiert als bei Hoden. Ebenso wies INSL3 bei Hunden eine alternative Spleißstelle im Exon 1 auf, genau wie bei Mäusen. Dadurch kommen Truong et al. [2003] zu dem Schluss, dass eine Untersuchung des Promotors von INSL3 von Hunden ein neuer Ansatz für die genetische Ursachenforschung von Kryptorchismus wäre.

Von Gao et al. [2019] wurde festgestellt, dass eine Deletion vom *Nuclear receptor coactivator-5* (NCOA5) eine Verringerung der Beweglichkeit und Entwicklung der Spermien im Nebenhoden auslöst. Dieses Gen kodiert für einen Rezeptor-Co-Aktiviator mit Co-Aktivierungs- als auch Co-Repressionsfunktionen. Er reguliert beispielsweise Östrogenrezeptoren [Sauvé et al., 2001].

Umwelteinflüsse können ebenfalls das Ausbrechen von Kryptorchismus beeinflussen [Mitsui, 2021], so zum Beispiel Umweltchemikalien. Dies könnte der Grund für die weltweit steigenden Raten an Kryptorchismusfällen bei Hunden sein [Lea et al., 2016].

2 Zielstellung

Das Ziel der Arbeit ist die Untersuchung genetischer Ursachen von Kryptorchismus bei 46 Altdeutschen Schafpudeln. Zunächst sollen DNA-Extraktionen aus Ethylendiamintetraessigsäure (EDTA)-Vollblutproben von Hunden dieser Rasse erfolgen. Anschließend werden die DNA-Proben auf ihre Qualität und Quantität überprüft, um eine erfolgreiche anschließende Polymerasekettenreaktion (PCR, polymerase chain reaction)-basierte Amplifikation von Kandidatengenen gewährleisten zu können. Aus einer Literaturrecherche von Prause [2017] wurden sechs Genloci als relevant hinsichtlich der Untersuchung auf Kryptorchismus angesehen und sollen daher in dieser Studie weiter untersucht werden. Somit werden Amplifikationen zu diesen Genregionen durchgeführt, welche in vorangegangenen Studien etabliert wurden [Prause, 2017; Prause, 2019]. Diese Genregionen sind die Exons 7 bis 11 des Gens AMHR2 (AMHR2_E7-11), die Exons 9 bis 16 des Gens COL2A1 (COL2A1_E9-16), die Exons 3 bis 5 bzw. 7 bis 8 des Gens NCOA5 (NCOA5_E3-5 bzw. NCOA5_E7-8) sowie die Exons 6 bis 8 bzw. 10 bis 11 des Gens RXFP2 (RXFP2_E10-11 bzw. RXFP2_E6-8).

Es werden sich Sequenzierungen dieser Amplifikate der Hunde mit der Nanoporentechnologie anschließen. Hierfür sollen die PCR-Produkte jedes Hundes gepoolt und die Probe jedes Individuums gebarcodet werden. Die Sequenzdaten werden mithilfe des Protokolls von Prause [2019] gefiltert und danach mit BCFtools und Sniffles auf Einzelnukleotidaustausche (SNVs, *single nucleotide variants*) und Strukturvarianten (SV) untersucht. Zuletzt soll eine Untersuchung hinsichtlich eines genetischen Zusammenhangs der Varianten mit Hodenhochstand erfolgen.

3 Material

3.1 Geräte

Gerät	Typenbezeichnung	Hersteller	
Dunkelhaube	DH-30/32	Biostep GmbH (Jahnsdorf)	
Elektrophorese Netz-	PS 304 MiniPac II	Apelex (Evry Cedex)	
gerät			
Elektrophoresekammer	MiniSub® Cell GT Cell	Bio-Rad Laboratories GmbH	
		(München)	
Flow Cell	Flongle Flow Cell FLO-	Oxford Nanopore Technolo-	
	FLG001	gies plc. (Oxfort)	
Fluorometer	Qubit™ 3	Bio-Rad Laboratories GmbH	
		(München)	
Mixer	Hula-Mixer	Thermo Fisher Scientific	
		GmbH (Langenselbold)	
Sequenzierer	MinION Mk1C	Oxford Nanopore Technolo-	
		gies plc.(Oxford)	
Sicherheitswerkbank	HERAsafe [®]	Thermo Electron Corporation	
Klasse 2		(Waltham)	
Spektralphotometer	NanoVue™	General Electric Healthcare	
		Europe GmbH (Freiburg)	
Thermocycler	Mastercycler [®] Nexus	Eppendorf AG (Hamburg)	
	Thermal Cyclers GSX1		
Thermomixer	comfort	Eppendorf AG (Hamburg)	
Tischzentrifuge	Mini Star silverline	VWR International LLC (Rad-	
		nor)	
UV-Transilluminator	Vio View UV light UST-	Biostep GmbH (Jahnsdorf)	
	20M-8E		
Vortexer	Vortex-Genie 2	Electro Scientific Industries,	
		Inc. (Portland)	
Zentrifuge	Minispin plus	Eppendorf AG (Hamburg)	

3.2 Chemikalien

Chemikalie	Hersteller	Chargennummer
10,000x Sybr [®] Safe	Invitrogen AG (Carlsbad)	Lot: 1933715
\geq 99,8 % Ethanol mit 1 %	Carl Roth GmbH + Co. KG	
MEK	(Karlsruhe)	
Certified [™] Molecular Bio-	Bio-Rad Laboratories	Lot: BRD00117
logy Agarose	GmbH (München)	
Nukleasefreies Wasser	Carl Roth GmbH + Co. KG	Lot: 337262174
	(Karlsruhe)	

3.3 Lösungen

Lösung		Bezeichnung	Hersteller	
Orange G L	adungspuffer	Zur Verfügung gestellt von der Hochschule Mittweida		
Trisacetat Ethylendiamintetra-		Rotiphorese [®] 50x TAE-Puffer	Carl Roth GmbH +	
essigsäure	(TAE)-Puffer		Co. KG (Karlsruhe)	

3.4 Biologische Proben

Hundeblutproben der Probensammlung der Hochschule Mittweida, in EDTA-Röhrchen versandt

3.5 Molekularbiologische Reagenzien

Reagenzie	Hersteller	Chargennummer
50 mg/ml Quick-Load® pur-	New England BioLabs Inc (Ips-	Lot: 0071708
ple 1 Kilobasen (kb) Ladder	wich)	
AMPure XP Beads	Beckman Coulter GmbH (Kre-	Lot: 18440500
	feld)	
Blunt /TA Ligase Master Mix	New England Biolabs GmbH	Lot: 10030312
	(Frankfurt am Main)	
NEBNext [®] Companion Mo-	New England Biolabs GmbH	Lot: 10016787
dule Ligation Sequencing	(Frankfurt am Main)	
NEBNext® Ultra II End Re-	New England Biolabs GmbH	Lot: 10120039
pair / dA-Tailing Module /	(Frankfurt am Main)	
Quick-Load [®] purple 1 kb	New England BioLabs Inc (Ips-	Lot: 10076401
Plus Ladder	wich)	

Kit	Hersteller	Chargennummer	
Flow Cell Priming Kit EXP-	Oxford Nanopore Technolo-	Lot: FLP002.10.0042	
FLP002	gies plc.		
GeneJET PCR Purification	Thermo Fisher Scientific	Lot: 00998764,	
Kit	GmbH (Langenselbold)	00998970	
Ligation Sequenzing Kit	Oxford Nanopore Technolo-	Lot: CS9109.10.0001	
SQK-LSK109	gies plc.		
MagSi-DNA Body Fluid DNA	magtivio B.V (Nuth)	Lot: BF0908211A,	
Extraktionskit		BF1704191A	
Native Barcoding Expansion	Oxford Nanopore Technolo-	Lot: EN04.10.0013	
1-12 EXP-NBD104	gies plc.		
Phusion High-Fidelity PCR	Thermo Fischer Scientific	Lot: 00788992	
Kit	GmbH (Langenselbold)		
Qubit™ dsDNA HS Assay Kit	Thermo Fisher Scientific	Lot: 2219324	
	GmbH (Langenselbold)		

3.6 Oligonukleotide

Oligonukleotide		Sequenz 5'-> 3'	Hersteller
AMHR2_E7-11	fwd	CACCCGACACTTCTGCTACC	biomers.net
[Prause, 2019]	rev	CCTCTCTTGCTTCTGTTATTGCC	GmbH (Ulm)
COL2A1_E9-16	fwd	GCCAGCTTCTCCATCCAAACG	biomers.net
[Prause, 2019]	rev	GGATGACAACACCCTCTACACC	GmbH (Ulm)
NCOA5_E3-5	fwd	TACGCAGGAGAAATAGCCAAAGG	biomers.net
[Prause, 2019]	rev	AAACATGTCTGGTGGGGAAAAGC	GmbH (Ulm)
NCOA5_ E7-8	fwd	ATTCTAAACTCAGCCGATTGTGC	biomers.net
[Prause, 2019]	rev	AGAGAATACAACAGGCGATGAGG	GmbH (Ulm)
RXFP2_E6-8	fwd	GGCCAGGAAGTCACAACAGT	biomers.net
[Prause, 2019]	rev	AGATGCCCGAATCTCACTGC	GmbH (Ulm)
RXFP2_E10-11	fwd	CTTTGTTCCTTTGTTCAGTCACG	biomers.net
[Prause, 2019]	rev	GTCATTTCATTTCTGGGTTTCGG	GmbH (Ulm)

3.7 Software

Software	Herausgeber
argusX1	Biostep GmbH (Jahnsdorf)
dplyr Version 1.0.7	[Wickham, Romain et al., 2021]
ggplot2 Version 3.3.5	[Wickham, 2016]
Inkscape Version 1.0.2-2	https://inkscape.org/
Integrative Genomics Viewer Version	[Robinson et al., 2017]
2.13.2	
kinship2 Version 1.8.5	[Sinnwell, Therneau und Schaid, 2014]
LibreOffice Version 7.1.6.2	https://www.libreoffice.org/
Minimap2.1	[H Li, 2018]
NanoComp Version 1.21.0	[Coster et al., 2018]
Nanoplot Version 1.41.0	[Coster et al., 2018]
NEBioCalculator [®] Version 1.15.0	New England BioLabs Inc. (Ipswich, USA)
Primer Blast	[Ye etal., 2012] https://www.ncbi.nlm.
	nih.gov/tools/primer-blast/
RStudio Destop Version 1.4.1106	RStudio, PBC (Boston)
SAMtools Version 1.9	[H Li et al., 2009]
Sniffels Version 1.0.11	[Sedlazeck et al., 2018]
tidyverse Version 1.3.1	[Wickham, Averick et al., 2019]
tidyr Version 1.2.0	[Wickham, Romain et al., 2021]

4 Methoden

4.1 Stammbaumvisualisierung

In dieser Arbeit wurden die Daten von Schön [2021] ergänzt. Für jedes Individuum, von welchem eine Blutprobe vorlag, wurden Mutter und Vater mit der Zuchtbuchnummer ermittelt. Diese Nummer wurde von den Hundehaltern mit der Blutprobe mitgeteilt. Ebenso wurde ein eventuell vorliegender Kryptorchismus vermerkt. Das Zuchtbuch mit den Daten zu den Verwandtschaftsverhältnissen wurde von der Züchterin Frau Mechthild Jennissen-Tibbe zur Verfügung gestellt. Falls die Elterntiere nicht in der Probensammlung vertreten waren, wurde eine neue ID mit M als Präfix für ein unbekanntes Muttertier und D als Präfix für ein unbekanntes Vatertier, erstellt.

Die so entstandene Tabelle wurde mit Libre Office Calc erstellt und als Comma-separated values (CSV)-Datei gespeichert. Einzusehen ist diese Tabelle im Anhang.

Die Erstellung eines Stammbaums erfolgte mit dem R-Paket Kinship2. Hierfür wurde die erstellte CSV-Datei eingelesen und der Befehl *gen.pedi* genutzt, um die Daten in das benötigte Format umzuwandeln. Mit *plot.pedigree* wurden die Daten als Stammbaum visualisiert.

4.2 Probenlagerung

Die mit EDTA versetzten Schafpudelvollblutproben wurden unter der Sicherheitswerkbank zu je 850 μ I in Kryoröhrchen aliquotiert. Bis zur weiteren Verwendung wurden die Proben bei -20 °C gelagert. Nach der erfolgreichen Extraktion wurden die Blutproben bei -80 °C für eine Langzeitlagerung hinterlegt.

4.3 DNA-Extraktion

Für die Extraktion der DNA aus dem Blut wurde das MagSi-DNA Body Fluid Kit genutzt und vor jedem Inkubationsschritt wurde gevortext und die Proben wieder herunterzentrifugiert. Für die Isolation der DNA wurde das Protokoll des Kits für Blut- und Speichelproben mit einem Trocknungsschritt an einigen Punkten abgewandelt. Für die Extraktion wurden 200 μ I der Blutprobe in ein 1,5 ml-Reaktionsgefäß pipettiert. Danach wurden 10 μ I Proteinkinase K und 200 μ I Lysepuffer hinzugefügt. Bei Raumtemperatur wurde die Probe für 10 min bei 350 rpm inkubiert. Danach wurden 400 μ I des Bindepuffers und 20 μ I der MagSi-DNA-Beads hinzugegeben. Es erfolgte eine Inkubation von 5 min bei 1000 rpm und anschließend wurden die Proben für 2 min zur Separation der Beads in ein Magnetrack gestellt. Der Überstand wurde abpipettiert und es folgten zwei Waschschritte mit 800 μ I des Waschpuffers I mit einer Inkubationszeit von 1 min bei 1000 rpm und anschließender Separation für 2 min mittels Magnetrack und Entfernen des Überstandes. Im Anschluss wurde ein identischer Waschschritt mit Waschpuffer II vollzogen und anschließend wurden die Beads wieder für 2 min separiert und der Überstand entfernt. Zur Trocknung des Beadpellets wurden die Proben mit offenen Deckel im Rack belassen.

Im Laufe der Experimente wurde eine Änderung vorgenommen. Probe 1 bis Probe 29 wurden für 10 min auf dem Rack belassen. Nach circa der Hälfte der Zeit wurde etwaige Flüssigkeit abpipettiert. Anschließend wurden 150 μ I des Elutionspuffers zur Probe hinzugefügt und 5 min bei 1000 rpm inkubiert und danach wurden die Proben wieder für 2 min in das Magnetrack gestellt. Der Überstand mit der extrahierten DNA wurde anschließend in ein neues 1,5 ml-Reaktionsgefäß überführt. Ab der 30. Probe bis zur Probe 59 wurde darauf geachtet, dass der gesamte Waschpuffer II beim Trocknungsschritt verdunstet war, dafür wurde die Dauer auf 15 min erhöht. Ebenfalls wurde ab dieser Extraktion besonders darauf geachtet, dass Blutrückstände am Reaktionsgefäß bei den Waschschritten beseitigt wurden. Zudem wurde die Zeit für die Separation ab dem zweiten Waschschritt auf 90 s reduziert.

4.4 Qualitätsprüfung der DNA

Die extrahierte DNA wurde hinsichtlich der Konzentration bzw. Menge mittels Qubit[™] dsDNA HS Assay Kit und dem Qubit Fluorometer sowie mit dem NanoVue[™] analysiert. Außerdem wurden die Proben auf ihre Reinheit mit dem NanoVue[™] spektralphotometrisch untersucht. Zusätzlich erfolgte eine Prüfung auf die Integrität der DNA mit einer Agarosegelelektrophorese nach der Extraktion.

Zudem wurden die Fragmentlängen der Amplikons nach der PCR mit der Agarosegelektrophorese überprüft.

Die DNA wurde zunächst bei 4 ℃ gelagert bis die Qualitätsprüfungen abgeschlossen waren. Nach der Durchführung der Elektrophorese erfolgte eine Lagerung der DNA bei -20 ℃.

4.4.1 Konzentrationsbestimmung mittels Qubit[™] dsDNA HS Assay Kit

Das Protokoll zum QubitTM HS Assay Kit wurde befolgt. Es wurde das Qubit Fluorometer mit den im Kit beinhalteten Standards im High Sensity Modus kalibriert und anschließend die Konzentrationen der Proben gemessen, wobei das Probevolumen von 1 μ I eingesetzt wurde.

Für die PCR wurde eine Mindestkonzentration von 10 ng/µI angestrebt. Hierfür wurde das Ergebnis des Qubit[™] dsDNA HS Assay Kits herangezogen. Falls dieser Grenzwert nicht erreicht wurde, erfolgte eine Wiederholung der DNA-Extraktion mit einem anderen Aliquot, sofern dieses vorhanden war. Andernfalls wurde die DNA der bereits verwendeten Proben erneut extrahiert.

4.4.2 Konzentrations- und Reinheitsquotientenbestimmung mit NanoVue™

Für die Messung der Konzentration und der Reinheitsquotienten A_{260}/A_{280} und A_{260}/A_{230} wurde das NanoVueTM mit dem Elutionspuffer des DNA-Extraktionskits kalibriert. Hierfür wurde ein Volumen von 2 μ I genutzt. Für die Bestimmung der Parameter wurden Probevolumina von ebenfalls 2 μ I verwendet. Jede Messung erfolgte zweimal und aus den Werten wurde anschließend das arithmetische Mittel gebildet. Für die Bestimmung der DNA-Konzentration wurde die Absorption bei der Wellenlänge 260 nm herangezogen.

4.4.3 Fragmentlängenüberprüfung durch Agarosegelelektrophorese

Zur Überprüfung der extrahierten DNA und der PCR-Amplikons auf die Länge der Fragmente wurde ein 1%iges Agarosegel genutzt. Für die Untersuchung der PCR-Produkte wurden diese nach der Aufreinigung aufgetragen. Für die MiniSub[®] Cell GT Cell wurde ein Volumen von 30 μ l verwendet. Es wurde ein 1%-iges Agarosegel hergestellt, wobei 10.000x Sybr[®] Safe genutzt wurde. Als Ladungspuffer wurde TAE-Puffer und Orange G als Laufpuffer verwendet. Das Probevolumen betrug 10 μ l. Der Standard Quick-Load [®] 1 kb-Leiter oder die 1 kb Plus Quick-Load [®]-Leiter wurden aufgetragen. Eine Spannung von 100 V und eine Stromstärke 200 mA wurde für 35 min angelegt. Für die Betrachtung der Banden wurde das Gel bei 312 nm mit dem UV-Transilluminator und der Dunkelhaube mit der Software argusX1[®] untersucht.

4.5 Durchführung der PCR

Für die bereits in vorherigen Untersuchungen von Prause [2017] und Prause [2019] etablierten PCRs (AMHR2_E7-11, COL2A1_E9-16, NCOA5_E3-5, NCOA5_E7-8, RXFP2_E10-11 und RXFP2_E6-8) wurde das Pipettierschema aus Tabelle 1 genutzt.

Tabelle 1: Pipettierschema für AMHR2_E7-11, COL2A1_E9-16, NCOA5_E3-5, NCOA5_E7-8, RXFP2_E10-11 und RXFP2_E6-8

Komponente	Endkonzentration	20 μ I-Reaktion
5x Phusion HF Buffer	1x	4 μΙ
Dimethylsulfoxid (DMSO)	3 %	0,6 <i>µ</i> I
10 mM dNTPs	200 μ M jedes dNTPs	0,4 <i>μ</i> Ι
10 μ M Forwardprimer	0,5 μM	1 μl
10 μ M Reverseprimer	0,5 μM	1 μl
Template-DNA	100 ng	x
Phusion DNA-Polymerase	1 Unit / 50 μΙ	0,2 <i>µ</i> I
Nukleasefreies Wasser		ad 20 µI

Hierfür wurden die Komponenten unter der Sterilwerkbank auf Eis pipettiert und mit einem Reaktionsansatz für jede Probe von 20 μ I gearbeitet. Die DNA-Proben wurden zuvor auf eine Konzentration von 10 ng/ μ I verdünnt. Zudem wurde eine Negativkontrolle (NTC, *No Template Control*) mitgeführt. Zu diesem Zweck wurde nukleasefreies Wasser anstatt der Template-DNA hinzugegeben.

Schritt	Temperatur	Dauer	
Initiale Denaturierung	98 ℃	30 s	
Denaturierung	98 ℃	10 s	
Annealing	60℃ bzw. 62℃	30 s	35 Zyklen
Elongation	72℃	70 s	
Finale Elongation	72℃	600 s	
Lagerung	10℃	bis Ende	

Tabelle 2: PCR-Zyklen für alle Genloci

Zur Amplifikation wurde das Programm aus Tabelle 2 genutzt. Wobei eine Annealingtemperatur von 60 ℃ für COL2A1_E9-16, NCOA5_E3-5, RXFP2_E10-11 und RXFP2_E6-8 bzw. von 62 ℃ für AMHR2_E7-11 und NCOA5_7-8 genutzt wurde. Des Weiteren wurden die Proben für die Amplifikation nach ihrer Qualität und Quantität ausgewählt (siehe Anhang Seite 81). Nach der PCR wurden die amplifizierten Fragmente binnen vier Tagen aufgereinigt und bis dahin bei 4 °C gelagert.

4.6 Aufreinigung der Fragmente

Zur Aufreinigung der PCR-Produkte wurde das GeneJET PCR Purification Kit genutzt. Dafür wurde das Protokoll des Herstellers befolgt. Durch ein Volumen von 20 μ I PCR-Ansatz ergab sich ein Bindungspuffervolumen von ebenfalls 20 μ I. Eine Abweichung des Elutionsvolumens auf 40 μ I wurde ebenfalls eingeführt. Jede Zentrifugation wurde bei 14.100 x g für 1 Minute durchgeführt. Die aufgereinigten Amplikons wurden bis zur weiteren Verarbeitung bei -20 °C gelagert.

Nach der Aufreinigung wurde die Konzentration der PCR-Produkte mittels Qubit[™] dsDNA HS Assay Kit bestimmt und diese mittels Agarosegelelektrophorese visualisiert. Für die weitere Nutzung der Amplikons wird eine DNA-Konzentration von über 6 ng/µI benötigt. Falls diese Konzentration nicht erreicht wurde, erfolgte eine Wiederholung der Amplifikation.

4.7 Nanporensequenzierung

Für die Sequenzierung der Amplikons wurden diese zunächst gepoolt. Hierfür wurden äquimolare Anteile jedes Genlokus für jeden Hund verwendet. Anschließend wurde die Vorbereitung der Sequenzier-Library mit dem Ligation Sequencing Kit SQK-LSK109 durchgeführt. Zusätzlich wurden die Proben mit dem Kit Barcoding Expansion 1-12 EXP-NBD104 gelabelt. Dadurch war es möglich, bis zu zwölf Hunde gleichzeitig zu sequenzieren. Hierfür wurde der MinION Mk1C mit Flongle Flow Cell FLG001 verwendet. Für das Barcoding und die Vorbereitung der Sequenzier-Library wurde das Protokoll von Oxford Nanopore Technologies mit Anpassungen für die Flongle Flow Cells genutzt.

4.7.1 Amplikonpooling

Vor der Sequenzierung wurden die Amplikons jedes Hundes in äquimolaren Anteilen in ein Volumen von 24 μ I gepoolt. Die molare Masse jedes Pooles betrug 80 fmol, dadurch ergaben sich 13,33 fmol für jedes Amplikon. Als Lösungsmittel wurde nukleasefreies Wasser genutzt. Die Umrechnung der DNA-Masse in die molare Masse er-

folgte mit NEBioCalculator[®] von New England BioLabs[®] Inc. Anschließend wurde die DNA-Massekonzentration mit dem Qubit[™] dsDNA HS Assay Kit gemessen (Unterabschnitt 4.4.1).

4.7.2 Sequenzierung

Es erfolgten einige Anpassungen der Nanopore-Protokolle mit den Versionen NBA_9093_v109_revI_12Nov2019 und GDE_9063_v109_revAC_14Aug2019. Die gepoolten Amplikons wurden mit 1,75 μ I Ultra II End-prep Reaction Buffer und 1,5 μ I Ultra II End-prep Enzyme Mix gemischt. Außerdem wurden in Schritt 8 27,3 μ I resuspendierte AMPure XP Beads hinzugegeben. Die Proben wurden für 3 min auf dem Magnetrack pelletiert. Es wurden in Schritt 15 12,5 μ I nukleasefreies Wasser hinzugegeben und 5 min inkubiert. Eine Konzentration von mindestens 9 ng/ μ I wurde angestrebt.

Anschließend erfolgte das Barcoding der Proben mit 50 bis 100 fmol DNA. Diese wurden in 11.26 μ I gelöst. Jeder Probe wurde 1,25 μ I einer der unterschiedlichen Barcodes und 12,4 μ I Blunt/TA Ligase Mastermix hinzugefügt. In Schritt 8 wurden 25 μ I AMPure XP Beads der Probe hinzugegeben. Gelöst wurde die DNA in 13 μ I nukleasefreiem Wasser.

Die Proben wurden in Schritt 19 äquimolar mit einer gesamten molaren Masse von 100 fmol gepoolt. Zur Berechnung wurde der NEBioCalculator[®] genutzt. Es wurde eine Fragmentlänge wurden 2969 nt angenommen, da dies dem Durchschnitt der Fragmentlängen der genutzten Amplikons entsprach. Nach der Quantifizierung wurde die DNA in 32,5 μ l nukleasefreiem Wasser gelöst.

Für die Adapter-Ligation wurden 2,5 μ I Adapter Mix II, 10 μ I NEBNext Quick Ligation Reaction Buffer und 5 μ I Quick T4 DNA Ligase genutzt. 25 μ I AMPure XP Beads wurden in Schritt 9 dazugegeben. Gewaschen wurden die Beads mit 125 μ I Short Fragment Buffer und eluiert wurde die DNA in 7 μ I Elution Buffer. Es sollte eine molare Masse von 25 bis 50 fmol erreicht werden.

Anschließend wurde die Flongle Flow Cell mit der Probe nach Herstellerprotokoll beladen. Folgende Parameter wurden für die Sequenzierung festgelegt, wobei die Funktion der Einstellung der Mindestreadlänge bei der genutzten MinKNOW-Version noch nicht verfügbar war:

- Flow cell Typ: FLO-FLG001
- Flow cell ID (aufsteigend nach Sequenzierungen geordnet): AFT824, AJA846, AJA789, AJA536 und AJA560
- Kit-ID: Ligation Sequencing Kit SQK-LSK109 und Native Barcoding Expansion 1-12 EXP-NBD104
- Laufzeit: 24 h
- · Basecalling: aktiviert, hohe Genauigkeit
- Read-Filterung: mindestens ein Q-Score von 9
- Bios Spannung: -180 mV
- Aktive Channel-Selektion: aktiviert
- FAST5-Ausgabe: aktiviert
- FASTQ-Ausgabe: aktiviert
- MinKNOW Version 21.11.7
- MinKNOW Core Version 4.5.4
- Bream Version 6.3.5
- Guppy Version 5.1.13

4.8 Datenverabreitung der Sequenzdaten

Für die Identifikation von SNPs und Strukturvarianten wurden die erzeugten Daten aus der Nanoporensequenzierung verarbeitet. Dafür wurde der Arbeitsablauf nach Prause [2019] befolgt.

Das Basecalling erfolgte mit der systemeigenen Software Guppy des MinION Mk1C von Oxford Nanopore Technologies. Für die Prozessierung wurden die gefilterten Reads, über einen Q-Score von 9, jedes Barcodes genutzt. Anschließend wurden die Reads nach der Länge mithilfe von AWK gefiltert. Sequenzen, welche kleiner als 3500 bp waren, wurden anschließend gegen die Referenz gemapped. Hierfür wurde Minimap2.1 und eine FASTA-Datei mit den Amplikon-Sequenzen des Referenzgenoms Canfam3.1 genutzt. Die erhaltenden *Sequence alignemt map* (SAM)-Dateien wurden nach den Genregionen mit AWK sortiert und anschließend in *Binary alignment map* (BAM)-Dateien konvertiert. Anschließend wurden die BAM-Dateien sortiert und indexiert. Diese drei Schritte wurden mit Samtools durchgeführt.

Für die Bestimmung der Strukturvarianten wurde Sniffles benutzt. Zu den BAM-Dateien wurde der *MD tag* hinzugefügt und anschließend die Varianten bestimmt. Die erzeugten *Variant call format* (VCF)-Dateinen wurden mithilfe BCFtools normalisiert. Danach wurden die Strukturvarianten mit AWK nach den Parametern des internen Sniffles-Qualitätsprotokoll gefiltert.

BCFtools wurde ebenfalls für die Bestimmung der SNVs und deren Normalisierung verwendet. Es schloss sich ein weiterer Filterungsschritt an, bei dem alle SNVs mit einer Qualität von weniger als 20 verworfen wurden.

5 Ergebnisse

5.1 Stammbaumvisualisierung

Abbildung 2: Repräsentativer Ausschnitt des erstellten Stammbaums mit Kennzeichnung der entsprechenden Studie Viereck: Rüde; Kreis: Hündin, rot: Kryptorchid

Der Stammbaum von Schön [2021] wurde in dieser Arbeit bis zum Schafpudel mit der ID 208 erweitert. Ein Ausschnitt der Visualisierung ist in Abbildung 2 zu sehen. Innerhalb dieser Studie wurden 250 Tiere untersucht, 132 Rüden und 118 Hündinnen. Davon waren 208 Hunde, von denen biologische Proben vorlagen. Die übrigen 42 Individuen standen im Verwandtschaftverhältnis von mehreren Tieren und wurden daher in die Untersuchung aufgenommen. Gekennzeichnet wurden diese mit D (Rüde) bzw. M (Hündin)

und einer nachfolgenden ID. Die Tiere mit den IDs 1, 3, 19, 26 und 27 wurden jedoch nicht mit im Stammbaum dargestellt, da diese keine verwandtschaftlichen Beziehungen zu den übrigen Tieren aufwiesen.

Die männlichen Tiere sind als Vierecke, die Hündinnen als Kreise dargestellt. Kryptorchide Rüden wurden rot gekennzeichnet. Insgesamt wurden 13 betroffene Männchen betrachtet. Zusätzlich wurde vermerkt, ob das Indivuum von Prause [2019], Schön [2021] oder in dieser Studie untersucht wurde. Eine direkte Verwandtschaft der Tiere wird mit einer durchgezogenen Linie dargestellt. Eine gestrichelte Verbindung zeigt mehrere Positionen eines Tieres im Stammbaum an.

Die Visualisierung wurde für die Einschätzung der Relevanz der SNVs und SVs genutzt.

5.2 Quantität und Qualität der DNA-Extraktion

Für die Bestimmung der Konzentration der extrahierten DNA wurde sowohl eine spektralphotometrische Messung, als auch eine Bestimmung mittels Qubit[™] HS Assay Kit, durchgeführt.

In Abbildung 3 wurde die Konzentration der DNA, durch beide Messmethoden quantifiziert, verglichen. Ebenfalls erfolgte eine Gegenüberstellung der DNA-Konzentrationen mit bzw. ohne Abänderung des Herstellerprotokolls.

Vergleich der Extraktionsmethode anhand der extrahierten DNA-Konzentration

Abbildung 3: Vergleich der DNA-Konzentration nach der Extraktion nach Herstellerprotokoll und abgeänderter Arbeitsweise

Durch das QubitTM HS Assay Kit wurden Minimalwerte von annähernd 0,7 ng/ μ I bzw. von 1 ng/ μ I DNA bei den Proben 180/1/2 bzw.172/2/1 bestimmt, beide Extraktionen erfolgten vor der Abänderung. Das Maximum an enthaltener DNA pro Mikroliter wurde bei der Probe 182/1/1, welche mit der veränderten Methode extrahiert wurde, mit 66,2 ng/ μ I ermittelt.

Viele Werte zeigten vor der Anpassung des Protokolls Ergebnisse von unter 10 ng/ μ l, welches als interner Schwellenwert festgelegt wurde. Das arithmetische Mittel bis zur Anpassung betrug daher 6,8 ng/ μ l. Nach der Anpassung lag der Mittelwert bei 22 ng/ μ l. Wurden alle Proben betrachtet, so lag das Mittel bei 15,4 ng/ μ l.

Ebenfalls wurde eine Konzentrationsmessung der DNA mit dem Nanovue[™] durchgeführt. Die erhaltenden Daten sind ebenfalls in Abbildung 3 dargestellt. Die spektralphotometrisch ermittelten DNA-Konzentrationen lagen im Mittel bei 22,9 ng/µl, wenn alle Proben betrachtet wurden. Für die Proben bis zur Abänderung der Durchführung des Extraktionskits betrug das arithmetische Mittel 13,2 ng/µl, danach konnte ein Durchschnitt von 30,4 ng/µl ermittelt werden.

Die geringste Konzentration wies Probe 180/1/1, vor der Änderung extrahiert, mit 2,2 ng/ μ l auf. Das Maximum wurde bei 186/1/1, welche nach der Modifikation extrahiert wurde, mit 70 ng/ μ l erreicht.

Vergleich der Extraktionsmethode anhand der DNA-Qualität

Abbildung 4: Vergleich der DNA-Reinheit nach der Extraktion mit den unterschiedlichen Extraktionsmethoden

Außerdem wurde die Reinheit der DNA überprüft. Hierfür wurde der Quotient der Absorption aus den Wellenlängen 260 nm und 280 nm bzw 230 nm gebildet. Die erhaltenden Werte sind in Abbildung 4 gezeigt. Nach der Anpassung des Protokolls verringerte sich die Streuung der Reinheitsquotienten A260/A280. Insgesamt lagen 41 Proben innerhalb des Intervalls von 1,8 bis 2,0. Das arithmetische Mittel des Quotienten lag bei 1,79. Nach der Abänderung lag der Mittelwert bei 1,88, davor bei 1,69.

Den höchsten Wert bei dem Quotienten aus der Absorption bei 260 nm und 280 nm wurde bei Probe 195/1/1, nach Änderung extrahiert, mit 1,99 erreicht. Das Minimum wurde bei der Probe 180/1/2 mit 1,097, erhalten.

Auch der Reinheitsquotient aus der Absorption der Wellenlängen 260 nm und 230 nm wurde untersucht. Insgesamt blieben die Ergebnisse unter einem Wert von 2,0, bis auf die Proben 184/1/1, 187/1/1, 188/1/1, 193/1/1, 194/1/1 und 195/1/1, zurück.

Bei dem Reinheitsquotienten A260/A230 wurde das minimale Ergebnis von 0,17 bei der Extraktion 180/1/2 erhalten und mit 2,32 erreichte die Probe 188/1/1 das Maximum. Bei Letzterer wurde die DNA nach der Anpassung isoliert. Der Mittelwert aller Extraktionen lag bei 1,31, wobei durch die Änderung des Protokolls des Extraktionskits ein arithmetischer Mittelwert von 1,65 erreicht werden konnte. Davor lag dieser bei 0,86.

Für die PCR wurden die Extraktionen genutzt, welche in Tabelle 7 im Anhang dargestellt sind. Diese wurden anhand ihrer Konzentration und Reinheitsquotienten ausgewählt.

5.3 Agarosegelelektrophorese nach der DNA-Extraktion

Für die Beurteilung der Integrität der extrahierten DNA wurden die Ergebnisse der Agarosegelelektrophoresen herangezogen. Insgesamt wurden vier Gelelektrophoresen nach den DNA-Extraktionen durchgeführt, welche in Abbildung 5 zu sehen sind.

Abbildung 5: Agarosegelelektrophorese der extrahierten DNA aller Proben A bis E chronologisch nach Extraktionsdatum gezeigt

Alle Extraktionen zeigen Banden, sofern vorhanden, oberhalb von 10 kb. Die Proben in A wiesen deutlich schwächere Banden als die restlichen Gelelektrophoresen auf. Ebenso waren die Banden der Proben 174/2/2 /175/2/1, 175/2/2, 184/1/1 und 189/1/1 in B deutlich weniger intensiv. Proben mit deutlicheren Banden sind in C und D zu erkennen.
Diese waren 186/1/1 und 194/1/1. In B wurden bei Extraktion von 184/1/1 und 185/1/1 sowie bei C 186/1/1 Schlieren unterhalb der Proben sichtbar. Probe 184/1/1 lag etwas unterhalb der anderen Banden. Bei keiner Extraktion wurden Probenrückstände in den Taschen sichtbar. Die Gelbilder wurden nach ihrem Extraktionsdatum angeordnet, sodass A die Proben zeigt, welche zuerst und E die Extraktionen zeigt, welche zuletzt bearbeitet wurden.

5.4 Aufreinigung der PCR-Amplikons

Die DNA-Konzentrationen der Amplikons aller Hunde ist in Tabelle 8 im Anhang zu sehen. Die Mindestkonzentrationen, welche für das Pooling der Amplikons benötigt wurden, sind in der Tabelle 3 gezeigt.

Fast alle Proben überschritten diesen Grenzwert. Lediglich bei drei Proben (175/2/1, 193/1/1 und 195/1/1) konnte der Schwellenwert für den Lokus COL2A1_E9-16 nicht erreicht werden. Durch höhere Konzentrationen bei den anderen Amplikons und den damit geringeren benötigten Volumina stand ein höheres Volumen für COL2A1_E9-16 zur Verfügung. Dadurch konnte eine größere Menge an DNA-Lösung hinzugegeben und diese geringen Konzentrationen ausgeglichen werden.

U	0
Lokus	Mindestkonzentration [ng/µl]
AMHR2_E7-11	6,4
COL2A1_E9-16	6,7
NCOA5_E3-5	5,8
NCOA5_E7-8	5,5
RXFP2_E6-8	5,4
RXFP2_E10-11	5,4

Tabelle 3: Benötigte Konzentrationen für das Pooling

In Abbildung 6 sind die Konzentrationen der einzelnen PCR-Produkte als Boxplot aufgetragen.

Für den Lokus innerhalb des Gen AMHR2 konnte ein Minimum von 7 ng/µl bei Probe 175/2/1 und ein Maximum von 29,4 bei 149/1/1 erreicht werden. Die geringste Konzentration wies 175/2/1 mit 6,04 ng/µl und die höchste 188/1/1 mit 16,8 ng/µl bei COL2A1_9-16 auf. Den Maximalwert an DNA des Amplikons für NCOA5_E3-5 besaß mit 22,2 ng/µl Probe 60/1/1 bzw. den Minimalwert mit 9,56 ng/µl Probe 192/1/1. 6,18 ng/µl konnte bei 170/2/1 gemessen werden und war damit die Minimalkonzentration bei NCOA5_E7-8. Für die gleiche Region war das Maximun 20,8 ng/µl bei 183/1/1.

Die Konzentration von 6,4 ng/ μ l (170/2/1) war die niedrigste und 20,4 ng/ μ l die höchste bei der Amplifikation von RXFP2_E6-8. Die Aufreinigung der Exons 10-11 des gleichen Gens erreichte 190/1/1 mit 12,8 ng/ μ l die geringste bzw. 127/1/1 mit 27,8 ng/ μ l die größte DNA-Masse pro Mikroliter.

Die höchsten DNA-Konzentrationen konnten bei RXFP2_E10-11, gefolgt von AMHR2_E7-11, erreicht werden. Die geringsten Werte wiesen die Amplifikationen des Lokus COL2A1_E9-16 auf. Die größte Streuung der Daten lag bei RXFP2_E6-8 vor.

Abbildung 6: DNA-Konzentrationen aller Amplikons nach der Aufreinigung

5.5 Agarosegelelektrophorese nach der PCR der Genloci

Zur Überprüfung auf die erfolgreiche Durchführung der Amplifikationen RXFP2_E6 8, COL2A1_E9-16, NCOA5_E3-5, NCOA5_E7-8, RXFP2_E10-11 und AMHR2_E7-11 wurden nach der Produktaufreinigung mit dem Gene JET PCR Purification Kit Agarosegelelektrophoresen durchgeführt.

Für den Vergleich der erhaltenden Fragmentgrößen aus den Gelelektrophoresen mit den erwarteten Produktgrößen sind diese in Tabelle 4 dargestellt.

Fragement	erwartete Fragmentgröße
AMHR2_E7-11	3232 bp
COL2A1_E9-16	3389 bp
NCOA5_E2-4	2945 bp
NCOA5_E7-8	2806 bp
RXFP2_E6-8	2719 bp
RXFP2_E10-11	2723 bp

Tabelle 4: Erwartete Fragmentgrößen der amplifizierten Genloci

Die Gelelektrophoresen für die Amplifikationen der Exons 10 und 11 des Gens RXFP2 und der Exons 6 bis 8 Abbildung 7 gezeigt.

Bei allen durchgeführten Amplifikationen waren die NTCs ohne sichtbare Banden. Deutliche Banden in dem Bereich von weniger als 3000 bp zeigten sich bei allen durchgeführten Amplifikationen. Schwache Banden traten bei der Amplifikation der Genregion NCOA5_E3-5 der Probe 199, bei RXFP2_6-8 bei den Proben 181, 184, 195 und 200 auf. Es wurden durch die Gelektrophoresen keine Nebenbanden sichtbar. In F ist ein Schwanken der Bandenhöhe sichtbar, wobei die Laufweite der Fragmente am Rand des Geles geringer war als in der Mitte.

In Abbildung 8 sind die Gelelektrophoresebilder der PCR-Produkte von RXFP2_E6-8, COL2A1_E9-16 und AMHR2_E7-11 zu sehen.

Die Banden bei den Amplifikationen des Genabschnitts COL2A1_E9-16 lagen zwischen 3000 bp und 4000 bp, die für NCOA5_E7-8 zwischen 2000 bp und 3000 bp. Keine sichtbaren Produkte traten bei den NTCs auf. Vergleichbar schwache Banden zeigten sich bei Probe 91, 116 und 200 der PCR von COL2A1_E9-16. Nebenfragmente wurden nicht sichtbar.

In Abbildung 9 ist die Agarosegelelektrophorese der Amplikons von NCOA5_E7-8 und AMHR2_E7-11 dargestellt.

Deutliche Unterschiede zeigten sich in der Laufweite der Proben der Genregion NCOA5_E7 8, wobei einige eine Doppelbande aufwiesen. Die Proben mit der ID 149, 159 und 160 zeigten zwei aufeinander folgende ähnlich intensive Banden, 121 eine schwächere. Auf der Höhe der oberen Bande lagen die Amplikons der Proben 14, 25, 34, 59, 60 116, 170, 172, 178, 180, 181, 182, 184, 185, 186, 187, 188, 190, 199, 202 und 206. Die übrigen Proben zeigten Fragmente auf der Höhe der Bande mit der längeren Laufweite. Weiterhin blieben die NTCs ohne Produkte.

Die Banden für AMHR2_E7-11 traten zwischen 3000 bp und 4000 bp und für NCOA5_E7-8 zwischen 2000 bp und 3000 bp auf. Deutlich schwächere Banden zeigten sich bei den Proben 91 und 200 beim Genlokus NCOA5_E7-8.

Abbildung 7: Amplikons von RXFP2_E6-8 und RXFP2_E10-11 aufgetragen auf Agarosegelelektrophoresen A: RXFP2_E6-8 und RXFP2_E10-11; B: RXFP2_E10-11; C: RXFP2_E10-11 und NCOA5_E3-5; D: RXFP2_E6-8; E: RXFP2_E6-8; F: RXFP2_E10-11

Abbildung 8: Agarosegelelektrophorese der PCR-Produkte von NCOA5_E3-5 und COL2A1_E9-16 A: COL2A1_E9-16 und NCOA5_E3-5; B: NCOA5_E3-5; C und D COL2A1_E9-16

Abbildung 9: Agarosegelelektrophorese der Amplikons von NCOA5_E7-8 und AMHR2_E7-11 A: AMHR2_E7-11 und NCOA5_E7-8; B: NCOA5_7-8; C und D: AMHR2_E7-11;

E und F: NCOA5_E7-8

5.6 Sequenzierung

Während der Durchführung des Protokolls zur Vorbereitung der Sequenzierung wurden die DNA-Konzentrationen vor bzw. nach jedem Schritt gemessen. Eine Übersicht der Quantitäten ist in Abbildung 10 dargestellt. Hierbei sind alle Sequenzierungen gegenüber gestellt.

Nach dem Pooling der Amplikons des jeweiligen Hundes wurde der DNA-Gehalt gemessen. Die deutlich niedrigsten Konzentrationen wurden während der fünften Sequenzierung ermittelt. Die Ergebnisse der ersten, zweiten und dritten Sequenzierung sind durchaus vergleichbar, wobei jedoch die Zweite einen höheren Median aufweist.

Nach der EndPrep zeigten sich die höchsten Konzentrationen bei der letzten Sequenzierung und die vierte Sequenzierung zeigte sowohl die höchste Streuung der Daten, als auch den geringsten Gehalt pro Mikroliter.

Die deutlich höchsten Werte zeigten sich bei der ersten Vorbereitung nach dem Barcoding. Vergleichbare Ergebnisse wurden bei den folgenden vier Sequenzierung gemessen.

Nach dem Pooling der Barcodes wurden die geringsten DNA-Konzentrationen bei der letzten Sequenzierung erhalten und die höchsten bei der Ersten.

Nach Fertigstellung der Library wurden sehr unterschiedliche Quantitäten gemessen, wobei die vierte Sequenzierung den höchsten Wert zeigte und die Erste den geringsten.

Abbildung 10: DNA-Konzentration während der Sequenzierung

Auch die *Translocation speed* wurde während des Vorgangs durch den Sequenzierer gemessen. Diese beschreibt, wie viele Basenpaare pro Sekunde gelesen werden [Y Wang et al., 2021]. Anschließend wurden die Ergebnisse der einzelnen Sequenzierungen in Abbildung 12 durch das Tool NanoComp zusammengefasst.

Die meisten Nukleotide pro Sekunde wurden zu Beginn bei der letzten Sequenzierung gelesen. In absteigender Reihenfolge der Geschwindigkeit folgten die zweite, die vierte die dritte und die erste Sequenzierung. Letztere zeigte den deutlichsten Abfall und die niedrigste Sequenzierungsgeschwindigkeit zur Beendigung des Durchlaufes. Bei der fünften sowie der zweiten und der dritten Durchführung zeigten sich ähnlich hohe End-geschwindigkeiten, wobei die Sequenzierung 4 kurz darunter lag.

Abbildung 11: Vergleich der Sequenzierungsgeschwindigkeit

Durch den Mux-Scan wurde die Anzahl der aktiven Poren festgestellt und deren Ergebnisse aller Durchläufe über die Zeit in Abbildung 12 mit NanoComp aufgezeigt.

Die höchste Startanzahl an aktiven Poren hatte die Flongle Flow Cell der fünfen Sequenzierung mit 85 Poren, gefolgt von derer der dritten mit 84, derer der ersten mit 79 Poren sowie 71 bei der zweiten und 67 Poren bei der vierten Sequenzierung.

Einen deutlichen Abfall der aktiven Poren zeigte die Flongle Flow Cell der dritten zu Beginn und der fünften Sequenzierung nach 15 Stunden. Eine niedrigere Anzahl an Inaktivierungen zeigte sich auch nach 15 Stunden bei der dritten Sequenzierung. Bei Sequenzierung 2 wurde ebenfalls einen Einbruch der aktiven Poren ermittelt. Dieser zeigte sich jedoch erst nach 20 Stunden und hatte dadurch ein geringeres Ausmaß.

Abbildung 12: Verlauf der Anzahl der aktiven Poren aller Sequenzierungen

Eine Gegenüberstellung der gelesenen Reads wurde mittels NanoComp erstellt und ist in Abbildung 13 zu sehen.

Die meisten Reads wurden bei der ersten Sequenzierung mit 656.521 nt erzeugt und die wenigsten bei der Fünften mit 515.522 nt. Der zweite und dritte Run zeigten ähnliche Read-Anzahlen mit 559.977 nt bzw. 568.047 nt.

Abbildung 13: Vergleichendes Histogramm der Anzahl der Reads

Die Länge der Reads liefert ebenfalls einen Anhaltspunkt für die Bewertung der Sequenzierungen. Eine Aufschlüsselung nach Länge und Anzahl der Reads der jeweiligen Runs wurde mit NanoComp erstellt in Abbildung 14 aufgezeigt.

Jede Sequenzierung zeigte die größte Häufung im Bereich von bis zu 1000 Basen. Die zweite Ausprägung ist im Bereich zwischen 2600 nt und 3500 nt zu erkennen. Ausschläge sind bis über 15.000 nt bei der ersten und zweiten Sequenzierung bzw. leicht unter 15.000 nt bei Sequenzierung 5 zu sehen. Die Read-Längen bleiben den anderen Durchläufen unter 10.000 nt.

Abbildung 14: Violinenplot der Read-Längen der fünf Sequenzierungen

Der Durchschnitt der Read-Qualität des Q-Scores vor der Filterung betrug bei den Sequenzierungen 1 und 5 9,2, bei 2. 9,3, bei der 3. 10,2 sowie bei der 4. 10,3. Weitere Statistiken der Sequenzierungen, so auch die Charakteristika nach dem Filtern, sind im Anhang in der Tabelle 10 bzw. Tabelle 11 zu sehen. Ebenso wird dort die Verteilung der generierten Reads nach dem erreichten *Phred quality score* (Q-Score) in der Tabelle 9 gezeigt.

5.7 Bestimmung der Struktur- und Sequenzvarianten

5.7.1 Identifikation von SNVs

Die Darstellung der Varianten erfolgte mit IGV, wobei homozygote SNVs türkis und heterozygote blau dargestellt sind. Zudem sind Weibchen in rot und Männchen in gelb markiert. Kryptorchide Rüden sind durch eine Umrandung und in Orange gekennzeichnet.

Die Positionen der einzelnen SNVs sowie deren Austausche und die Verteilung der Genotypen ist in Tabelle 5 zu sehen. Nachfolgend sind die sieben SNVs, welche identifiziert werden konnten, für das Gen AMHR2 im Bereich der Exons 7 bis 11 in Abbildung 15 gezeigt. In dieser Darstellung ist ein Zusammenhang zwischen rs23409998 und rs23409994 zu sehen. Ein weiterer Austausch, den ein Großteil der untersuchten Schafpudel trugen, wurde als rs23409987 identifiziert. Bei allen drei zuvor Genannten traten sowohl heterozygote, als auch homozygote Mutationen auf. rs23409991, rs850731167, rs23349967 und rs23342685 wiesen, bis auf eine Ausnahme, heterozygote SNVs auf. Die beiden Varianten rs23342685 und rs23349067 lagen sehr dicht beieinander. Eine Häufung von drei SNVs trat sowohl zwischen den Exons 6 und 8 sowie eine Ansammlung von vier zwischen den Exons 10 und 11 auf.

Abbildung 15: Sequenzvarianten des Lokus AMHR2 _ E7-11 gelb: Männchen; rot: Weibchen; schwarzer Rahmen und orange: kryptorchid; blaue SNV: heterozygot; türkise SNV: homozygot

Die Nukleotidaustausche für die Genregion COL2A1_E9-16 sind in Abbildung 16 zu sehen.

Für alle untersuchten Schafpudel wurde die homozygote SNV rs23338705 festgestellt. Außerdem zeigte sich eine Korrelation zwischen rs850858172 und rs851335209. Jedes Tier, welches diese Mutationen aufwiesen, besaß ebenfalls rs23358342. Dieser Austausch lag als gleicher Genotyp vor, wie rs850858172 und rs851335209. Lediglich bei dem Hund 121 wurde eine homozygote Mutation bei rs23358342 gefunden, wobei rs850858172 und rs851335209 heterozygot auftraten.

Des Weiteren schien eine Korrelation zwischen rs23358342 und rs23354654 vorzuliegen. Lediglich bei Hund 25 wurde kein rs23354654 festgestellt, wobei aber rs23358342 vorlag.

Ein heterozygoter SNV, welcher bisher nicht bei dem *European Variation Archive* (EVA) annotiert wurde, konnte bei der Position 6.767.548 festgestellt werden.

Abbildung 16: SNVs innerhalb des Gens COL2A1 an den Exons 9 bis 16 gelb: Männchen; rot: Weibchen; schwarzer Rahmen und orange: kryptorchid; blaue SNV: heterozygot; türkise SNV: homozygot

Bei dem untersuchten Lokus NCOA5_ E2-4 konnten drei Austausche gefunden werden, welche nicht herausgefiltert wurden. rs851171698 trat nur bei einem Schafpudel auf, dem Hund 15. Der Genotyp war homozygot. Die Variante rs23194369 konnte bei 13 Proben als heterozygot identifiziert werden. Bei zwei Rüden lag rs851219744 ebenfalls heterozygot vor.

Abbildung 17: Short nuclear variants der Genregion NCOA5_ E2-4 gelb: Männchen; rot: Weibchen; schwarzer Rahmen und orange: kryptorchid; blaue SNV: heterozygot; türkise SNV: homozygot

Eine Häufung der Nukleotidaustausche innerhalb der Region NCOA5_E7-8 kann in Abbildung 18 betrachtet werden. Diese befanden sich zwischen den Exons 6 und 7. Eine SNV konnte mit EVA als rs23194368 identifiziert werden und trat heterozygot auf. Die weiteren sechs Varianten lagen dicht beieinander. Alle untersuchten Individuen, welche rs23194368 aufwiesen, besaßen ebenfalls einen Austausch bei der Position 33.327.162. Eine SNV bei 33.326.844 trat nur bei Hund 15 auf und an Position 33.326.919 nur bei Hund 15 und Hund 179.

Abbildung 19 zeigt zwei gefundene, homozygote Varianten zwischen den Exons 7 und 8 des Gens RXFP2. Beide Nukleotidaustausche traten bei allen untersuchten Rüden und Hündinnen vor. Sie wurden als rs23263149 und rs23268164 identifiziert.

	• 2.720 to		
	1000 to	2.000 top	1
Hund 14			
Hund 14			
Hund 15			
Hund 25			
Hund 34			
Hund 59			
Tiona 33			
Hund 60			
Hund 121			
Hund 127			
Hund 128			
Hund 140			
Hund 149			
Hund 159			
Hund 160			
Hund 170			
Hund 171			
Hund 172			
Hund 172			
Hund 173			
Hund 174			
Hund 175			
Hund 176			
Hund 177			
Hund 178			
thread 2.70			
Hund 179			
Hund 180			
Hund 181			
Hund 182			
Hund 183			
Hund 184			
Hund 105			
Hund 165			
Hund 186			
Hund 187			
Hund 188			
Hund 189			
Hund 190			
thered 101			
Houg 191			
Hund 192			
Hund 193			
Hund 194			
Hund 195			
Hund 196			
H			
Hund Tay			
Hund 198			
Hund 199			
Hund 200			
Hund 116			
Hund 202			
Hund 200			
and the second s			

Abbildung 19: Darstellung der Sequenzvarianten des Gens RXFP2 der Exons 6 bis 8 gelb: Männchen; rot: Weibchen; schwarzer Rahmen und orange: kryptorchid; blaue SNV: heterozygot; türkise SNV: homozygot

Ebenfalls konnten zwei Mutationen zwischen den Exons 9 bis 11 des gleichen Gens beobachtet werden (Abbildung 20). Beide traten heterozygot auf und konnten mit EVA nicht benannt werden. Sie befanden sich bei den Positionen 8.333.335 und 8.332.223 bei Hund 25 bzw. bei Hund 191.

Abbildung 20: Identifizierung der Nukleotidaustausche von RXFP2 _ E10-11 gelb: Männchen; rot: Weibchen; schwarzer Rahmen und orange: kryptorchid; blaue SNV: heterozygot; türkise SNV: homozygot

Die Tabelle 5 zeigt eine Übersicht über die ermittelten SNVs, geordnet nach ihrem Genlokus, deren Positionen und das Auftreten dieser. Zusätzlich wurden die SNP-IDs des EVA, sofern vorhanden, ergänzt. Die Verteilung der Zygotie der Austausche ist nach Geschlecht und nach dem Krankheitsstatus geordnet zu sehen. Außerdem sind die entsprechenden Referenzen und deren Austausche in der Spalte R bzw. A dargestellt.

Tabelle 5: Übersicht der SNV-Austausche, -Positionen und -Verteilungen

R: Referenz; A: *alternate*; RR: homozygotes Referenzgenotyp; RA: heterozygoter Genotyp; AA: homozygoter *alternate*-Genotyp; Chr.: Chromosom; krypt.: kryptorchid

Genlokus	R	Α	Chr.	Position	dsSNP ID	Rüde			Rüde krypt.			Hündin		
						RR	RA	AA	RR	RA	AA	RR	RA	AA
AMHR2_E7-11	G	Т	27	1.792.119	rs23409998	0,19	0,63	0,19	0,33	0,33	0.33	0,06	0,63	0,31
	G	Α	27	1.792.005	rs23409994	0,19	0,63	0.19	0,33	0,33	0,33	0,06	0,63	0,31
	G	A	27	1.791.702	rs23409991	0,56	0,41	0,04	1	0	0	0,75	0,25	0
	С	A	27	1.790.821	rs850731167	0,74	0,26	0	0,33	0,67	0	0,81	0,19	0
	G	Т	27	1.790.645	rs23349967	0,74	0,26	0	0,67	0,33	0	0,69	0,31	0
	G	Α	27	1.790.634	rs23342685	0,78	0,22	0	0,33	0,67	0	0,81	0,19	0
	Т	С	27	1.790.245	rs23409987	0,19	0,63	0,19	0,33	0,33	0,33	0,31	0,63	0,06
	Т	С	27	6.765.553	rs23338705	0	0	1	0	0	1	0	0	1
	С	G	27	6.765.968	rs851091431	0,93	0,07	0	1	0	0	1	0	0
	С	Т	27	6.766.245	rs850858172	0,74	0,19	0,07	1	0	0	0,63	0,38	0
COL2A1_E9-16	G	A	27	6.766.826	rs851335209	0,74	0,22	0,04	1	0	0	0,63	0,38	0
	Α	G	27	6.767.301	rs23358342	0,3	0,59	0,11	0,33	0,33	0,33	0,5	0,44	0,06
	С	Т	27	6.767.548	-	0,78	0,22	0	1	0	0	0,81	0,19	0
	G	A	27	6.768.500	rs23354654	0,33	0,59	0,07	0,33	0,33	0,33	0,5	0,44	0,06
	С	A	24	33.332.103	rs851171698	0,96	0	0,04	1	0	0	1	0	0
NCOA5_E3-5	Т	G	24	33.331.732	rs23194369	0,65	0,35	0	0,67	0,33	0	0,63	0,38	0
	G	Α	24	33.330.259	rs851219744	0,88	0,12	0	1	0	0	1	0	0

Genlokus	R	Α	Chr.	Position	dsSNP ID	Rüde			Rüde	krypt.		Hündin		
						RR	RA	AA	RR	RA	AA	RR	RA	AA
NCOA5_E7-8	Т	С	24	33.327.337	rs23194368	0,85	0,15	0	0,67	0,33	0	0,69	0,31	0
	G	Α	24	33.327.162	-	0,78	0,22	0	0,67	0,33	0	0,63	0,31	0
	Т	G	24	33.327.034	-	0,89	0,11	0	0,67	0,33	0	0,75	0,25	0
	G	Т	24	33.327.032	-	0,93	0,07	0	1	0	0	0,88	0,13	0
	G	Α	24	33.326.981	-	0,7	0,22	0,07	0,67	0	0,33	0,63	0,19	0,19
	С	Т	24	33.326.919	-	0,96	0,04	0	1	0	0	0,94	0,06	0
	G	Α	24	33.326.844	-	0,96	0,04	0	1	0	0	1	0	0
RXFP2_E6-8	Т	G	25	8.337.810	rs23263139	0	0	1	0	0	1	0	0	1
	Т	С	25	8.337.357	rs23268164	0	0	1	0	0	1	0	0	1
RXFP2_E10-11	A	С	25	8.333.335	-	0,96	0,04	0	1	0	0	1	0	0
	G	Α	25	8.332.223	-	1	0	0	1	0	0	0,94	0,06	0

5.7.2 Detektion von SVs

Ebenso wie die Einzelnukleotidaustausche wurden Strukturvarianten detektiert. Dies erfolgte mittels Sniffels und anschließend wurden die Daten normalisiert und gefiltert. Für die Darstellung wurde IGV genutzt.

Nachfolgend werden drei der sechs untersuchten Loci gezeigt. Die Strukturvarianten von AMHR2_E7-11, NCOA5_E3-5 und RXFP2_E10-11 sind im Anhang als Übersicht gezeigt. Männchen wurden gelb, Weibchen rot markiert. Mit Orange gekennzeichnete Rüden waren von Hodenhochstand betroffen. Blaue Strukturvarianten sind als Inversionen und türkise als Deletionen gezeigt. Bei einer Überschneidung von mehreren SVs bei einem Hund wurden diese als dünne Balken übereinander dargestellt.

Drei unterschiedliche Strukturvarianten konnten zwischen den Exons 9 bis 16 des Gens COL2A1 auf dem Chromosom 27 entdeckt werden. Eine Deletion im Bereich von 6.765.734 bis 6.768.738 und somit mit einer Länge von 3004 nt, wiesen zehn gesunde sowie zwei kryptorchide Rüden und zwei Hündinnen auf.

Des Weiteren wurden zwei Inversionen identifiziert. Eine konnte mit 137 nt bei zwölf Männchen, einem betroffenen Hund und vier Weibchen gefunden werden. Sie wurde auf den Genkoordinaten 6.768.565 bis 67.58.707 lokalisiert. Die andere Inversion betrug 46 nt und war zwischen 6.765.618 und 6.765.664. Drei gesunde und ein erkrankter Rüde trugen diese Strukturvariante.

Abbildung 21: Strukturvarianten des Lokus COL2A1_E9-16

gelb: Männchen; rot: Weibchen; schwarzer Rahmen und orange: kryptorchid; türkis: Deletion, blau: Inversion

Innerhalb des Amplikons NCOA5_E7-8 wurden sowohl Inversionen, als auch Deletionen gefunden. 16 Hunde (fünf Weibchen, zehn Rüden, ein Kryptorchider) wiesen eine Deletion zwischen 33.327.022 und 33.324.828 des Chromosomes 24 auf. Diese Veränderung umfasste 2194 nt.

Eine weitere Deletion befand sich zwischen 33.327.063 und 33.326.847 (216 nt) und wurde bei 24 Schafpudeln gefunden. Davon trugen diese Variante 18 Rüden, zwei Kryptorchide sowie vier Hündinnen. Die Sequenzierung wies innerhalb dieses Bereiches einen Abfall der *Coverage* auf. Die Sequenziertiefe sank an dieser Position auf ca. 150.

Eine Inversion konnte zwischen 33.324.852 bis 33.324.769 identifiziert werden. Damit betrug diese Variante 83 nt und wurde bei elf Rüden und einem Männchen mit Kryptorchismus festgestellt.

Eine Inversion wurde bei Hund 169 identifiziert. Die SV wurde zwischen 33.325.009 und 33.324.840 lokalisiert und war somit 169 nt lang.

Abbildung 22: Darstellung aller identifizierten SVs innerhalb von NCOA5_E7-8 gelb: Männchen; rot: Weibchen; schwarzer Rahmen und orange: kryptorchid; türkis: Deletion, blau: Inversion

Auf dem Amplikon RXFP2_E6-8 wurden bei 18 nicht betroffenen Männchen, zwei erkrankten Rüden und fünf weiblichen Hunden eine 32 nt große Inversion gefunden. Diese Variante befand sich von 8.337.242 bis 8.337.210. Zwischen 8.339.614 und 8.339.556 bzw. 8.339.510 und 8.339.333 befanden sich zwei weitere Inversionen. Sie waren 58 nt bzw. 177 nt groß und wurden bei zwei gesunden bzw. bei einem gesunden und einem betroffenen Rüden identifiziert.

Abbildung 23: Übersicht der strukturellen Varianten der Exons 6 bis 8 des Gens RXFP2 gelb: Männchen; rot: Weibchen; schwarzer Rahmen und orange: kryptorchid; türkis: Deletion, blau: Inversion

6 Diskussion

6.1 DNA-Extraktion

Die extrahierte DNA wurde sowohl quantifiziert, als auch auf eine Gelelektrophorese aufgetragen und auf ihre Reinheit untersucht. In der Gelelektrophorese, welche in A der Abbildung 5 dargestellt wurde, waren nur sehr schwache oder keine Banden der Proben zu erkennen. Wird dies mit den DNA-Konzentrationen, welche mit dem Qubit[™] HS Assay Kits gemessen wurden, verglichen, so fällt auf, dass die DNA-Konzentration mit der Bandenstärke korreliert. In A wurden Proben aufgetragen, welche ohne eine Veränderung des Protokolls extrahiert wurden. Durch die geringe Konzentration, welche sich im Bereich von 0,76 ng/µl und 13,2 ng/µl befand, wurden nur schwache Banden ausgebildet. Dieses verhält sich ebenso bei den Proben in den Spuren 1-4 in B in Abbildung 5. Diese wurden ebenfalls vor der Anpassung der Extraktion erstellt. Ab Probe 180/3/1 in Spur 5 zeigten sich stärkere Banden. Die deutlichste Bande wurde bei 186/1/1 ausgebildet. Dies zeigt sich auch in den Konzentrationsmessungen mittels Qubit[™] in einem Wert von 66,2 ng/µl.

Die DNA-Konzentrationen nach der Extraktion wiesen starke Schwankungen auf, wie in Abbildung 3 zu erkennen ist. Gerade zu Beginn der Studie wurden nur niedrige Werte ermittelt. Dies kann auf die ungeübte Handhabung der Schritte zurückgeführt werden. Mit zunehmender Routine wurden die Schritte schneller und genauer und es konnten zunehmend höhere DNA-Konzentrationen festgestellt werden. Ein weiterer Grund könnte die Verkürzung der Inkubationszeiten auf dem Magnetrack sein.

Eine Verbesserung des DNA-Ausbeute kann ebenfalls auf das vollständige Verdunsten des Ethanols zurückgeführt werden. Ethanol senkt die Löslichkeit, besonders in Anwesenheit von monovalenten Kationen, wodurch die DNA nicht vollständig hätte eluieren können [Kurreck, Engels und Lottspeich, 2022]. Auch auf die anschließende Amplifikation kann Ethanol einen negativen Einfluss haben [Schrader et al., 2012].

Insgesamt lässt sich feststellen, dass sich nach der Veränderung des Protokolls zur Durchführung der Extraktion die gemessenen Konzentrationen deutlich erhöht haben. Dies lässt sich anhand der errechneten arithmetischen Mittelwerte von 6,8 ng/ μ I vor und 24,4 ng/ μ I nach der Abwandlung der Anleitung erkennen. Daher sollten weitere Extraktionen mit der Anpassung des Protokolls erfolgen, da eine Verbesserung der Extraktion durch diese Abwandlungen wahrscheinlich ist.

Zudem können die Schwankungen in der DNA-Konzentration auch auf unzureichendes

Durchmischen zu Beginn der DNA-Extraktion bzw. vor der Messung der DNA sein.

Außerdem ist ein Schwanken der Extraktionsqualität auch durch die Unterschiede bezüglich der Qualität der Ausgangsproben möglich. Koagel, geronnenes Blut, wirken sich negativ auf die DNA-Konzentration aus [Samadi Shams et al., 2011]. Dies könnte am fehlenden Invertieren nach der Blutabnahme liegen, da sich das Antikoagulans mit der Probe vermischen muss [Labor Augsburg MVZ, 2019].

Auch die Lagerung des Blutes bis zum Versand und während des Postweges und die Dauer spielen eine Rolle. Eine ungekühlte Aufbewahrung hat einen negativen Einfluss auf die Probe [Bulla et al., 2016].

Die DNA-Reinheit wurde durch Messung der Absorption untersucht und ist in Abbildung 4 abgebildet.

Der Quotient für reine Nukleinsäuren A260/A280 sollte zwischen 1,8 und 2,0 liegen [Mülhardt, 2013; Matlock, 2015]. Wobei Matlock [2015] einen Wert von 2,0 mit RNA assoziiert. Koetsier und Cantor [2019] beschreiben das Optimum bei doppelsträngiger DNA bei 1,85-1,88, wobei Proteinkontaminationen diesen Wert senken und RNA den Wert erhöhen können.

Innerhalb dieser Studie wurden 11 Proben gemessen, welche einen Quotienten zwischen 1,88 und 2 aufwiesen. RNA-Kontaminationen konnten bei der Agarosegelelektrophorese nach der DNA-Extraktion bei diesen Proben nicht festgestellt werden. Allerdings zeigten sich unterhalb der Proben 184/1/1, 185/1/1 und 186/1/1 ein Schmier. Dies könnte auf eine unzureichende Inkubationszeit von der Proteinase K zurückzuführen sein [Hicks et al., 2018]. Des Weiteren könnte es sich hierbei um degradierte DNA handeln [Lucena-Aguilar et al., 2016], welche beispielsweise durch Lagerung bei Raumtemperatur entsteht [Permenter et al., 2015]. Das Blut dieser Hunde wurde ungekühlt per Post versandt. Allerdings war dies auch bei weiteren Proben der Fall und dort konnte kein Schmier festgestellt werden.

Stark auffällig ist der Verlauf der Werte des Reinheitsquotienten A260/A280. Nach der Anpassung des Extraktionsprotokolls stabilisierten sich die Werte um 1,89. Die Ergebnisse zuvor lagen deutlich niedriger. Dies lässt sich ebenfalls auf die geübtere Handhabung zurückführen. Außerdem erfolgte ein Spülen der Innenwände des Reaktionsgefäßes während der Waschschritte. Dadurch könnten etwaige Verunreinigungen mit Proteinen weggewaschen worden sein. Daher ist die Verbesserung des Reinheitsquotienten A260/A280 mit hoher Wahrscheinlichkeit auf die Anpassung des Protokolls und der Routine in der Durchführung zurückzuführen. Das arithmetische Mittel vor der Veränderung lag bei 1,69 und danach bei 1,89. Allerdings ist auch kein signifikanter Anstieg ab Probe 30 zu erkennen, weshalb auch andere Einflüsse eine Rolle spielen könnten. Proteinkontaminationen beeinflussen beide Reinheitsquotienten, wobei der A260/A230Quotient hierdurch stärker verändert wird. Zusätzlich wird die Wirkung von Proteinen auf die Reinheitsquotienten von der Konzentration der DNA beeinflusst. Bei geringeren DNA-Konzentrationen beeinflussen Eiweiße die Reinheitsbestimmung stärker [Koetsier und Cantor, 2019]. Auch Matlock [2015] beschreibt, dass niedrige DNA-Konzentrationen von unter 10 ng/ μ l der Grund für niedrige Reinheitsquotienten sein können.

Der Quotient aus den Absorptionen der Wellenlängen 260 nm und 230 nm gibt laut Literatur Auskunft über eine Vielzahl von Kontaminationen. Es wird beschrieben, dass viele Substanzen bei 230 nm absorbieren [Matlock, 2015], beispielsweise Polysaccharide, ebenso wie frei schwebende Partikel, die Reinheitswert beeinflussen können. Au-Berdem nehmen beispielsweise chaotrophe Salze, EDTA, nicht-ionische Detergenzien, Proteine und Phenol Einfluss [Koetsier und Cantor, 2019]. Einige dieser Substanzen könnten ebenfalls die folgende PCR negativ beeinflussen [Schrader et al., 2012]. Koetsier und Cantor [2019] schlussfolgern, dass dieser Quotient mit Vorsicht betrachtet werden sollte, da er in der Regel eine höhere Standardabweichung aufweist. Koetsier und Cantor [2019] geben einen Idealwert von 2,3-2,4 für doppelsträngige DNA bei dem Reinheitsquotienten von A260/A230 an, wobei ab einem Wert von 1,8 die Probe für weitere Downstreamanwendungen genutzt werden kann. Armbrecht [2013] hingegen beschreibt Proben ab einem Wert von 2,0 als rein. Ähnlich erläutert Matlock [2015] 2,0 bis 2,2 als Bereich für reine DNA. In diesen durchgeführten Experimenten erreichte nur eine Probe 188/1/1 ein Ergebnis zwischen 2,3 und 2,4, mit 2,32 und sechs Proben lagen oberhalb von 2.0. Bei 15 Proben wurde ein Quotient von über 1.8 erhalten. Dies weist daraufhin, dass auch Rückstände aus dem Extraktionskit Auswirkungen auf

diesen Reinheitskoeffizienten haben und somit die Messung beeinflusst haben könnten. So ist es möglich, dass die Abänderung der Inkubationszeit nach dem Waschpuffer II einen positiven Einfluss auf diesen Reinheitsquotienten gehabt hatte. Dadurch hätte mehr Puffer verdunsten können, was sich positiv auf die Quotienten auswirkte. Der Mittelwert des Reinheitsquotienten A260/A230 vor der Abänderung betrug 0,86 bzw. danach 1,75. Dadurch scheint diese Abwandlung einen positiven Einfluss auf diesen Quotienten gehabt zu haben.

Deutliche Unterschiede sind beim Vergleich der fluoreszenzbasierten mit der spektralphotomtrischen Bestimmung der DNA-Konzentration zu sehen. Koetsier und Cantor [2019] zeigten, dass die Messung mit dem Qubit[™] lediglich bei geringen Konzentrationen, wie bei Verdünnungen, einen Vorteil bringt. In den Testreihen wurde dargestellt, dass mit beiden Messmethoden vergleichbare Ergebnisse erzielt werden konnten. Die hier in dieser Studie erhaltenen DNA-Konzentrationen wiesen eher niedrige Werte auf. Daher ist davon auszugehen, dass die Werte der fluoreszenzbasierten Messung genauer sind. Außerdem können Kontaminationen einen Einfluss auf die spektralphotometrische Konzentrationsmessung haben, besonders bei niedrigen DNA-Konzentrationen [Koetsier und Cantor, 2019]. Die Konzentration wird bei einer, mit Proteinen versetzten Probe, höher gemessen, als sie tatsächlich ist. Bei hohen Konzentrationen kann der Einfluss der Proteine laut Koetsier und Cantor [2019] ebenfalls unterschätzt werden. Dies steht im Einklang, mit den hier gezeigten Unterschieden zwischen den fluoreszenzbasierten und spektralphotometrisch gemessenen DNA-Konzentrationen.

Die DNA wird aus den im Blut vorhandenen Leukozyten extrahiert [John et al., 1991]. Der Gehalt an Leukozyten im Blut kann Schwankungen aufweisen, so beispielsweise bei einer Entzündung [Thomas, 2005]. In diesem Fall kann die Leukozytenkonzentration bis auf das zehnfache ansteigen. Bei Leukämien ist es möglich, dass der Gehalt noch weiter ansteigt [Krause, Scherer et al., 2012]. Die Probe 186/1/1 wies eine deutlich höhere DNA-Konzentration, sowohl bei der spektralphotometrischen, als auch bei der fluoreszenzbasierten Messung auf. Dies spricht gegen einen Fehler bei der Konzentrationsmessung. Allerdings zeigte die Probe einen geringen Reinheitsquotienten von A260/A280, dies könnte die Messung beeinflusst haben [Koetsier und Cantor, 2019]. Da der allgemeine Gesundheitszustand der Hunde nicht bekannt ist, könnte eine erhöhte Leukozytenkonzentration der Grund für eine sehr hohe DNA-Ausbeute sein. Dies müsste weiter untersucht werden, gerade in Anbetracht der fehlenden allgemeinen Gesundheitsdaten der Hunde.

In vorangegangenen Studien wurde eine mittlere Konzentration mit dem MagSi-DNA-Kit von 23,48 ng/ μ l floureszenzbasiert gemessen [Schön, 2021]. In hier durchgeführten Extraktionen lag ein Gesamtmittelwert von 15,8 ng/ μ l vor. Dieses Ergebnis liegt deutlich niedriger. In dieser Arbeit wurde eine Verbesserung des Protokolls entwickelt. Nach Anwendung dieser Optimierung wurde ein durchschnittlicher DNA-Gehalt von 24,4 ng/ μ l erreicht. Damit wurden die Konzentrationen mit den ermittelten Werten von Schön [2021] vergleichbar. Die Werte für die Reinheitsquotienten waren mit 1,83 [Schön, 2021] und 1,79 ähnlich. Deutlich unterhalb lagen die Werte für den Quotienten A260/A230 mit 1,31 im Vergleich zu 1,67 bei Schön [2021].

Durch die Abänderung der Durchführung der DNA-Extraktion war es möglich, für die PCR geeignete DNA aus allen Individuen (ID 170 bis 200) zu extrahieren. Durch die Auswahl der Extraktionen mit den besten Reinheitsparametern wurde eine mögliche Kontamination mit PCR-Inhibitoren vermindert [Rezadoost, Kordrostami und Kumleh, 2016]. Diese hätten einen negativen Einfluss auf die anschließenden Amplifikationen [Schrader et al., 2012].

6.2 Bewertung der PCR

Zu Überprüfung der erfolgreichen Durchführung der PCR wurden die amplifizierten Proben auf ein Agarosegel aufgetragen. Die Lage der Banden auf der erwarteten Höhe ohne Nebenprodukte lässt Rückschlüsse auf die Qualität und Quantität der PCR zu. Verschmierte Banden geben einen Hinweis auf unspezifische Amplifikationen. Bei schmalen schwachen Banden kann von einer Störung während der PCR ausgegangen werden. Um die verwendeten Reagenzien zu überprüfen und Kontaminationen zu detektieren wurde eine NTC mitgeführt [Krause, Scherer et al., 2012].

Alle Banden dieser Amplifikationen befanden sich auf der erwarteten Höhe und alle NTCs waren negativ. Daher konnte eine Kontamination der Reagenzien mit zuvor hergestellten PCR-Produkten ausgeschlossen werden. Ein unzureichendes Primerdesign oder eine zu geringe Annealingtemperatur würde PCR-Artefakte herbeiführen [Krause, Scherer et al., 2012], da die Primer falsch hybridisieren würden [Mülhardt, 2013]. Eine etwaige unspezifische Bindung könnte ebenfalls durch eine zu hohe Temperatur bei der Vorbereitung des PCR-Ansatzes hervorgerufen werden [Mülhardt, 2013]. Da keine verschmierten Banden und Nebenprodukte, außer bei NCOA5_E7-8, erkennbar waren, können unspezifische Amplifikationen bei allen anderen Loci als unwahrscheinlich angesehen werden. Daher ließ sich die Schlussfolgerung ziehen, dass die Amplifikation dieser fünf Regionen erfolgreich war.

Bei der Amplifikation der Exons 7 bis 8 des Gens NCOA5 war eine doppelt auftretende Bande zu erkennen. Eine etwaige Verunreinigung der Reagenzien konnte als unwahrscheinlich angesehen werden, da die NTC negativ war. Schön [2021] beschreibt ebenfalls solche Beobachtungen von zwei aufeinander folgenden Banden bei dem hier genutzten Primerpaar. Eine sowohl homozygote und heterozygote Deletion von 216 bp, welche bisher noch nicht beschrieben wurde, konnte von Schön [2021] durch Nanoporesequenzierung nachgewiesen werden. Daher ist davon auszugehen, dass es sich bei den Doppelbanden nicht um Fehlhybridisierung handelte.

In dem Bildausschnitt F von Abbildung 7 ist ein Ansteigen der Laufweite der Fragmente zur Mitte des Gels hin zu erkennen. Dies könnte auf den *Smiling*-Effekt zurückzuführen sein. Hierbei handelt es sich um ein Gefälle der Temperatur zum Rand hin, da die Wärme nicht gleichmäßig abgeleitet werden kann [Jansohn und Rothhämel, 2012].

Bei einigen Proben trat eine geringe Bandenstärke auf. Dies war bei den Spuren 6, 9, 11, 22 und 27 in Abbildung 8 bei RXFP2_E6-8 der Fall. Außerdem war dies ebenfalls bei den Proben 183/1/1 und 194/1/1 bei RXFP2_E10-11, bei 180/3/1 bei COL2A1_E9-16 und 199/1/1 der Region NCOA5_E3-5 zu erkennen. Diese könnten auf ein etwaiges Ausströmen der Probe aus der Geltasche zurückgeführt werden. Dies kann durch feh-

lende Vermischung des Ladungspuffers vorgekommen sein. Alternativ könnten auch Rückstände aus der Aufreinigung dafür verantwortlich gewesen sein, da diese eine geringere Dichte besitzen. Außerdem wäre eine Störung der Amplifikation als Ursache denkbar [Krause, Scherer et al., 2012]. Zudem ist ebenfalls möglich, dass die Primer, die Annealingtemperatur oder die Polymerase der Grund wären.

In vorangegangenen Studien von Schön [2021] und Prause [2019] konnten die Amplifikationen erfolgreich durchgeführt werden.

COL2A1_E9-16 zeigte durchschnittlich geringere arithmetische Mittelwerte der DNA-Konzentration der Amplikons. Bei Schön [2021] wurden ebenfalls, im Vergleich zu den weiteren Loci, geringere Konzentrationswerte erreicht. Auch die Ergebnisse von Prause [2019] zeigen eine unterdurchschnittliche Quantität für dieses Amplikon. Daher könnte es sich hierbei zusätzlich um einen schwer amplifizierbaren Abschnitt handeln [Mülhardt, 2013].

Bis auf die Amplikons von 175/2/1, 193/1/1 und 195/1/1 der Region COL2A1_E9-16 konnten die festgelegten Schwellenwerte überschritten werden. Durch eine höhe Konzentration der Anderen Amplikons dieser Hunde konnte dies ausgeglichen werden, da somit mehr Volumen für COL2A1_E9-16 zur Verfügung stand. Daher war es möglich die erforderlichen DNA-Massenkonzentration für die Sequenzierung für alle Proben zu erreichen. Alle Loci wurden erfolgreich amplifiziert, da nicht von unspezifischen PCR-Produkten auszugehen ist.

6.3 Sequenzierung

Nach dem Pooling zeigte sich der geringste DNA-Gehalt bei der 5. Sequenzierung. Bei den ersten drei Durchläufen traten vergleichbare Werte und bei der Vierten eine etwas geringere Konzentration auf. Diese Schwankungen könnten an einem unzureichendem Durchmischen der Amplikon-Proben der einzelnen Hunde bei der Quantifizierung und beim Pooling liegen. Zudem kann auch eine längere Lagerung von DNA einen Einfluss auf die Stabilität haben [Bulla et al., 2016; Madisen et al., 1987]. Eine Steigerung der Degradierung lässt sich auf das Einfrieren und Auftauen zurückführen [Safarikova et al., 2021].

Während der Vorbereitung der Proben für die Sequenzierung kam es zu einer Abnahme der vorhandenen DNA-Menge. Diese könnte sich auf die häufigen Aufreinigungsschritte mit den AMPure XP Beads zurückführen lassen.

Alle Proben für jeden Hund konnten erfolgreich gepoolt, gebarcodet und für die Sequenzierung vorbereitet werden. Die erforderliche DNA-Masse der Sequenzier-Library konnte erreicht werden.

Die Anzahl der aktiven Poren zu Beginn der Sequenzierung schwankten zwischen 67 und 85. Der Hersteller gibt eine Mindestanzahl von 60 Poren für eine Sequenzierung und 126 vorhandene Poren an [DeSantis et al., 2020; Technologies, 2020]. Eine Verringerung der Anzahl kann durch eine Lagerung über vier Wochen hervor gerufen werden [DeSantis et al., 2020]. Außerdem wurde von Oxford Nanopore Technologies eine Verbesserung einiger Komponenten des Primining bzw. Ligation Sequencing Kits entwickelt (EXP-FSE001). Diese steigern die Robustheit der Flongle Flow Cell [Oxford Nanopore Technologies, 2021a]. In dieser Studie wurden jedoch die älteren Versionen der Bestandteile des Ligation Sequencing Kits (SQK-LSK110) und des Flow Cell Priming Kits (EXP-FLP002) genutzt. Dies ist wahrscheinlich auch ein Grund für die geringe Porenanzahl.

Beim Vergleich der Anzahl der Reads fallen Unterschiede zwischen den einzelnen Sequenzierungen auf. Dieser kann an den variierenden aktiven Porenanzahlen oder an ein etwaiges Eindringen von Luft beim Beladen in die Flow Cell liegen [Oxford Nanopore Technologies, 2021b]. So ist in Abbildung 12 bei Beendigung der ersten Sequenzierung die höchste Porenanzahl zu sehen. Daher ist auch die Gesamtanzahl der Reads bei dieser am höchsten. Ebenfalls ist auch ein Zusammenhang zwischen der Poren- und der Read-Anzahl bei der vierten und fünften Sequenzierung zu sehen.

Die durchschnittlichen Read-Qualitäten der Sequenzierungen nach der Filterung lagen zwischen 11,1 und 11,7, wobei die dritte und vierte höhere Qualitäten aufwiesen als die übrigen. Bei einem Q-Score von 10 wird eine Fehlerrate von 10 % angenommen [Illumina, 2011; Delahaye und Nicolas, 2021].

Die Sequenzierungsgeschwindigkeit hat einen Einfluss auf die Qualität des Basecallings [Kuznetsova, 2019]. Den stärksten Abfall hatte die erste Sequenzierung. Solch eine deutliche Verminderung der Qualität ließ sich nicht in den Daten feststellen. Allgemein sinkt die Geschwindigkeit typischerweise auch im Verlaufe des Laufes [Amarasinghe et al., 2020]. Ebenso hat die Read-Länge eine Auswirkung auf die Fehlerrate [Amarasinghe et al., 2020; Delahaye und Nicolas, 2021]. Die durchschnittlichen Readlängen waren bei allen Sequenzierungen vergleichbar, bis auf die dritte. Diese zeigt ca. 200 nt kürzere Reads, aber nicht den höchsten Q-Score.

Delahaye und Nicolas [2021] beschreiben eine Abhängigkeit der *Translocation speed* von der Komplexität der Sequenz. Durch das Schwanken der Sequenzierungsgeschwindigkeit, welche sich daher auf unterschiedliche Komplexitäten innerhalb der Sequenzen zurückführen lässt, kann es zu falschen Berechnungen der Read-Längen kommen.

Der Q-Score bei Schön [2021] und bei Prause [2019] lag teilweise über den hier erreichten Werten, somit ist auch die Fehlerrate in diesen Studien geringer. Dies trifft ebenso auch auf die Werte zwischen 11,1 und 11,7 nach der Filterung zu. Allerdings lag die erreichte Qualität der Reads im vergleichbaren Bereich mit denen in der Literatur [Y Wang et al., 2021; Delahaye und Nicolas, 2021].

Es wurden bei Schön [2021] eine vergleichbare Anzahl an Nukleotiden pro Sekunde sequenziert, auch der Verlauf der Geschwindigkeit war ähnlich. Die mittleren Read-Längen waren mit denen von Schön [2021] vergleichbar, da die gleichen Abschnitte sequenziert wurden. Da bei Prause [2019] für die Sequenzierung ein anderer Flow Cell Typ (FLO-MIN106) genutzt wurde, welcher 1130 aktive Poren zu Beginn aufwies, kann eine Gegenüberstellung der Geschwindigkeit nicht erfolgen.

Bei der Betrachtung der durchschnittlichen Länge der sequenzierten Reads zeigte sich ein Bereich von 1.173 bis 1.453 Nukleotiden. Ebenso ist in Abbildung 14 ein Peak im Bereich unter 1000 Basen und ein Weiterer zwischen 2600 und 3500 Basen zu erkennen. Die Amplikons besaßen eine durchschnittlich berechnete Größe von 2969 Basen. Diese Diskrepanz in der Fragmentgröße weist auf eine Fragmentierung hin. Die Korrektheit der Fragmentgrößen nach der PCR wurde mithilfe der Elektrophorese überprüft. Daher liegt eine Verringerung der Fragmentgrößen während der Lagerung oder Probenvorbereitung für die Sequenzierung nahe. Klingström, Bongcam-Rudloff und Pettersson [2018] und Yoo et al. [2011] beschreiben, dass Einfrieren, Auftauen und Langzeitlagerung zu solch einer Fragmentierung der DNA führen können. Ebenso könne die Vorbereitung der DNA für die Sequenzierung zu Scherkräften führen und dadurch die Fragmentgrößen verringern. Weiterhin können auch Erschütterungen zur Fragmentierung führen [Yoo et al., 2011], so beispielsweise beim Anschnipsen der Reaktionsgefäße.

Für alle Sequenzierungen wurden Reads für die verwendeten Barcodes identifiziert. Ebenso war das Mapping für jeden Schafpudel für alle Amplikons möglich. Jedoch wurden für die einzelnen Barcodes unterschiedliche Read-Anzahlen zugeordnet. Dies lässt auf Ungenauigkeiten bei dem Pooling oder beim Barcoding schließen. Für alle Bereiche, bis auf eine Region von NCOA5_E7-8, wurden eine gleichmäßig hohe Sequenziertiefe und Coverage erreicht, welche sich für die Bestimmung von SVs und SNVs eignete. Im Bereich der 216 nt lange Deletion im Intronbereich vor dem siebten Exon von NCOA5 lag eine geringere Sequenziertiefe von ca. 150 vor. Auch weitere Studien, welche Einzelnukleotidaustausche untersuchten, nutzten Sequenzierdaten mit einer solchen Tiefe oder weniger [Sun et al., 2021; Koboldt, 2020; Kuznetsova, 2019; Kishikawa et al., 2019]. Daher ist davon auszugehen, dass die Anzahl der Reads für jede Region für die Bestimmung von SNVs ausreicht.

6.3.1 Sequenzvarianten

Die Untersuchung auf Einzelnukleotidaustausche innerhalb von AMHR2_E7-11 ergab sieben SNVs. Bei Schön [2021] wurden alle und bei Prause [2019] sechs der sieben SNVs identifiziert, wobei rs23349967 nicht gefunden wurde.

Schön [2021] und Prause [2019] konnten ebenfalls den Austausch rs23409994 nachweisen. DeLorenzi et al. [2018] beschreibt einen möglichen Zusammenhang zwischen dem gefundenen rs23409994 und dem Müller-Gang-Persistenzsyndrom. Diese Mutation löst keinen Aminosäureaustausch aus [DeLorenzi et al., 2018]. In den hier durchgeführten Versuchen trat ein homozygoter bzw. heterozygoter Austausch und eine homozygote Ausprägung der Referenz bei je einem kryptorchiden Hund auf. Des Weiteren wurde die SNV bei 22 gesunden Rüden und 15 Hündinnen identifiziert. Die Auswirkung dieser Veränderung ist unklar, da sie auch in Hunden ohne Hodenhochstand gefunden wurde.

Das Müller-Gang-Persistenzsyndrom tritt häufig in Zusammenhang mit Kryptorchismus auf [Poth et al., 2010; Picard und Josso, 2019]. Auch weitere Studien beschreiben einen Zusammenhang zwischen Mutationen des AMHR2 und dieser Krankheit [H Chen et al., 2022; Liu, S Wang et al., 2022; Brunello und Rey, 2021; Wu et al., 2008]. Allerdings wurden von Smit et al. [2017] und Pop et al. [2017] bei einem männlichen Malinois bzw. bei zwei Basset Hounds mit dem Müller-Gang-Persistenzsyndrom ebenfalls keine kodierenden Mutationen gefunden.

Schön [2021] konnte ein Auftreten von rs23409991 innerhalb einer Vererbungslinie bei 10 Tieren identifizieren. Diese wurde aber ebenso auch in vier weiteren Hunden gefunden. Wenn die Hunde aus dieser Studie betrachtet werden, so lassen sich bei insgesamt 23 Hunden ein Verwandtschaftsverhältnis und bei fünf Individuen keines feststellen.

Es konnten ebenfalls sieben Einzelnukleotidaustausche in der untersuchten Region von COL2A1 gefunden werden. Diese befanden sich alle innerhalb von Introns. Einem Austausch konnte keine SNP-ID zugeordnet werden.

Auch von Schön [2021] und Prause [2019] konnte an dieser Position keine Variante festgestellt werden. Des Weiteren traten bei Prause [2019] rs850858172 und rs851335209 nicht auf. Jedoch wurde an der Position 27:6.767.017 in der hier durchgeführten Studie kein Austausch identifiziert.

Auffällig ist die homozygote SNV rs23338705, welche bei allen betrachteten Hunden, ebenso bei Schön [2021] und Prause [2019], auftrat.

Innerhalb der hier durchgeführten Untersuchungen konnte der SNP rs23358342 gefunden werden. Es wurde hier je eine SNV hetero- bzw. homozygot bei einem Kryptorchiden gefunden. Außerdem trugen den Austausch 8 Weibchen und 19 gesunde Rüden. Eine Studie mit Sibirischen Huskys von Zhao, Du und Rothschild [2010] zeigte einen sehr vielversprechenden Zusammenhang von rs23358342 mit Hodenhochstand.

Die beiden Autoren Schön [2021] und Prause [2019] beschrieben ebenfalls, dass rs23358342 identifiziert werden konnte. Prause [2019] identifizierte zwei Kryptorchide mit diesem homozygoten SNP und einer mit einem heterozygoten Austausch. Des Weiteren wurde dieser bei zwei gesunden Rüden und bei einer Hündin gefunden. Auch bei Schön [2021] trat diese Mutation bei zwei betroffen Rüden, jeweils homozygot und heterozygot, auf. Ebenso wurde diese Variante in acht gesunden bzw. zwei Rüden mit unbekanntem Status und bei 14 Weibchen identifiziert.

Die Bedeutung für diesen Austausch ist unklar.

rs851171698, rs23194369 und rs851219744 konnten in der Genregion von NCOA5_E3-5 festgestellt werden. Diese wurden auch bei Prause [2019] und Schön [2021] lokalisiert.

Eine Häufung der Varianten trat in der Intronsequenz vor dem siebten Exon des Gens NCOA5 auf. Diese wurde ebenfalls bei Prause [2019] und Schön [2021] beschrieben. Die Autoren zeigten bereits den Zusammenhang dieser variablen Region zu den Deletionen in diesem Bereich auf. Sechs der sieben Austausche waren bisher unbekannt. Einige dieser wurden auch bei Schön [2021] und Prause [2019] identifiziert. So wurden ebenso Varianten an den Positionen 33.327.162, 33.327.034, 33.326.981 und 33.326.919 sowie die bekannte SNV rs23194368 von Prause [2019] und Schön [2021] gezeigt. Ebenso konnten auch drei Austausche bei Prause [2019] und vier bei Schön [2021] festgestellt werden, welche hier nicht gefunden wurden.

Die hohe Dichte an Mutationen könnte auf den Abfall der Coverage und damit auf Regionen mit einer geringen Komplexität zurückzuführen sein [Stancu et al., 2017].

Die Untersuchungen mit Sniffles auf Strukturvarianten zeigten eine 216 nt lange Deletion an der Position 33.327.063 bis 33.326.847. Diese erklärt die schwankende Fragmentgröße, welche bei der Gelelektrophorese sichtbar wurde. Ähnliches wurde ebenfalls auch von Prause [2019] und Schön [2021] berichtet.

Alle sequenzierten Hunde zeigten zwei identische homozygote SNVs im Intronbereich vor Exon 8 von Gen RXFP2. Sie konnten als rs2326139 und rs23268164 in dem EVA gefunden werden und traten ebenso bei Prause [2019] und Schön [2021] auf. Dies könnte auf eine Schafpudel-typische Mutation hinweisen [Schön, 2021].

Auch im Menschen konnten fünf Mutationen im achten Exon dieses Gens entdeckt werden [Ferlin et al., 2009]. Lediglich zwei Hunde trugen Einzelnukleotidaustausche im Bereich der untersuchten Sequenz von RXFP2_E10-11. Beiden konnte keine ID zugeordnet werden und sie wurden in Intronsequenzen gefunden.

Prause [2019] und Schön [2021] beschrieben keine SNVs, welche nicht herausgefiltert wurden. Daher ist ein Zusammenhang mit Hodenhochstand unwahrscheinlich.

7 Ausblick

Innerhalb dieser Studie zeigten sich einige Aspekte, welche für die Betrachtung der Ursachen für Hodenhochstand vielversprechend wären.

In den Studien von Nowacka-Woszuk et al. [2020] wurden sieben SNPs, hauptsächlich im 5´UTR- und 5´flankierenden Bereich, des RXFP2-Gens identifiziert. Eine Betrachtung dieser Bereiche wäre daher sinnvoll. Außerdem spielen auch die Umweltbedingungen eine Rolle [Lea et al., 2016; Mitsui, 2021]. So kann u.a. Hitzestress eine negative Auswirkung auf die Keimzellen haben [Hernández-Jardón et al., 2022; Liu und X Li, 2010]. Eine genauere Betrachtung dieser sollte daher ebenfalls erfolgen.

Ein weiterer Ansatz zur Untersuchung des Scheiterns des Abstieges der Hoden wäre eine Expressionsanalyse. So konnte Jhun et al. [2022] zeigen, das die Gruppe der Claudine, dies sind Transmembranproteine [Krause, Winkler et al., 2008], in Hoden kryptorchider Hunde ein höheres Expressionslevel aufwiesen.

Ebenso wären epigenetische Betrachtungen sinnvoll, da bereits Veränderungen im Methylierungsmuster im 5⁻Bereich von INSL3 gefunden wurden [Nowacka-Woszuk et al., 2020].

Eine genomweite Assoziationsstudie mithilfe von Microarrays könnte die Anzahl der untersuchten Loci erweitern. Blades et al. [2022] nutzten diese Technik bereits für rasseübergreifende Identifikationen und konnten eine Variante im *High mobility group A2* (HMGA2)-Gen finden. Dieses Gen wird in Verbindung mit dem Körperwachstum gebracht [Webster et al., 2015; Rimbault et al., 2013]. Da bereits ein Zusammenhang zwischen Körpergröße der Rasse und Kryptorchismusauftreten festgestellt wurde [Hayes et al., 1985], äußern Blades et al. [2022] die Vermutung, dass zwischen einer Veränderung in diesem Gen und Hodenhochstand eine Korrelation bestehen könnte.

In diesem Kontext könnte ebenfalls eine Haplotypenuntersuchung durchgeführt werden. Hierfür könnte die Technik des Phasings genutzt werden. Dadurch sind Rückschlüsse auf die Vererbung durch eine allelsensitive Analyse möglich [Tiemann-Boege und Betancourt, 2017].

Hinsichtlich der hier durchgeführten Untersuchungen könnten weitere Anpassungen vorgenommen werden. So wäre eine Nutzung eines anderen Extraktionskits denkbar um höhere DNA-Gehalte zu generieren. Schön [2021] zeigte bereits einen Vergleich verschiedenster Kits, sodass diese Daten bei der Auswahl herangezogen werden können. Auch Tagliaferro et al. [2021] untersuchten bereits mehrere Extraktionskits auf ihre DNA-Ausbeute und -Qualität und konnten gute Ergebnisse mit dem *Quick*-DNA Mini-

prep Plus Kit erzielen. Für stark koagulierte Blutproben würden sich die Clotspin Baskets in Verbindung mit dem Gentra Puregene Blood Kit von Qiagen nach dem Protokoll von Stanzick et al. [2023] anbieten.

Außerdem sollte das Flongle Sequencing Expansion Kit (EXP-FSE001) für das Beladen der Flongle Flow Cell genutzt werden, da so die verfügbare Porenzahl gesteigert werden könnte. Ebenfalls sollten die aktuellsten Versionen der Kits für die Sequenzierung verwendet werden. Zum aktuellen Zeitpunkt bietet Oxford Nanopore Technologies im Early Access die Flow Cell R10.4.1 sowie die Kits der Reihe V14 an [Technologies, 2023].

Ebenso wäre eine Aktualisierung der hier verwendeten Pakete zur Identifikation der SNVs und SVs sinnvoll. Dadurch ließen sich auch Vergleiche zwischen den Versionen durchführen. Im Zuge dessen könnten auch weitere Filteranpassungen und die Nutzung weiterer Tools erfolgen. Hierfür geben Y Wang et al. [2021] und Delahaye und Nicolas [2021] einen Überblick hinsichtlich der möglichen Pakete.
8 Zusammenfassung

Diese Arbeit erfolgte zur Untersuchung eines möglichen Zusammenhangs von Mutationen in sechs Genloci in Bezug auf Hodenhochstand bei Altdeutschen Schafpudeln.

Die Hoden verbleiben beim Kryptorchismus im Bauchraum, da es zu einer Störung während des *Descensus testis* kommt. Die Ursachen für diese Krankheit bei Hunden ist noch nicht ausreichend aufgeklärt, obwohl diese Krankheit viele Folgen hat, so beispielsweise Schmerzen und Hodentorsionen sowie Krebs.

In vorangegangenen Studien wurde ein Stammbaum von Schön [2021] zur Einbeziehung der Verwandschaftsverhältnisse angefertigt. Dieser wurde nun um 65 Hunde erweitert.

Des Weiteren wurden in dieser Arbeit aus Schafpudelblutproben DNA von 46 Hunden extrahiert. Um eine erfolgreiche Extraktion zu gewährleisten, wurde eine Abwandlung des Herstellerprotokolls genutzt. Dadurch konnten aus allen Blutproben für die PCR geeignete DNA-Proben extrahiert werden.

Es erfolgten die Amplifikationen der Genloci AMHR2_E7-11, COL2A1_E9- 16, NCOA5_E3-5, NCOA5_E7-8, RXFP2_E6-8 und RXFP2_E10-11 für alle Individuen, da diese in vorangegangenen Literaturstudien als sehr vielversprechende Kandidatengene identifiziert wurden [Prause, 2017; Prause, 2019; Schön, 2021]. Erfolgreich konnten alle Genloci amplifiziert und anschließend für alle Hunde sequenziert werden. Hierfür wurde die Nanoporensequenzierung von Oxford Nanopore Technologies für 5 Sequenzierungen genutzt. Die Reads wurden gebasecallt und nur solche über einen Q-Score von über 9 für die Analyse verwendet. Die mittlere Read-Länge lag zwischen 1.172 bp und 1.453 bp.

Die Sequenzdaten wurden mithilfe der Pipeline von Prause [2019] gefiltert und auf Sequenz- und Strukturvarianten untersucht. Hierfür wurden BCFtools und Sniffles genutzt.

Insgesamt wurden 28 SNVs identifiziert. So konnte die Variante rs2335834 festgestellt werden, welche ebenfalls von Zhao, Du und Rothschild [2010] beschrieben wurde. In den hier durchgeführten Untersuchungen konnte dieser Austausch bei insgesamt 29 Hunden, davon 2 kryptorchide, gefunden werden. Es konnte weiterhin eine 216 bp lange Deletion identifiziert werden, welche auch bei Schön [2021] und Prause [2019] gefunden wurde. Eindeutige genetische Zusammenhänge zum Kryptorchismus konnten nicht festgestellt werden.

9 Summary

This work was done to investigate a possible association of mutations in six gene loci in relation to undescended testis concerning Old German Sheep Poodles.

In cryptorchidism, the testes remain in the abdomen because of a disturbance during *descensus testis*. The causes of this disorder in dogs have not yet been determined, although the condition has many consequences, including pain and testicular torsion, as well as cancer.

In previous studies, a pedigree was created by Schön [2021] to include the relationships. This has now been extended to 65 dogs.

Furthermore, DNA from 46 dogs was extracted from sheep poodle blood samples in this work. To ensure a successful extraction, a modification of the manufacturer's protocol was used. This allowed suitable DNA samples to be extracted from all blood samples for PCR.

Amplifications of the gene loci AMHR2_E7-11, COL2A1_E9- 16, NCOA5_E3-5, NCOA5_E7-8, RXFP2_E6-8 and RXFP2_E10-11 were performed for all individuals, as these were identified as very promising candidate genes in previous literature studies [Prause, 2017; Prause, 2019; Schön, 2021]. All gene loci were successfully amplified and subsequently sequenced for all dogs. Nanopore sequencing from Oxford Nanopore Technologies was used for this purpose for 5 sequencing runs. Reads were basecalled and only those with a Q-score above 9 were used for analysis. The mean read length was between 1,172 bp and 1,453 bp.

Sequence data were filtered using the pipeline of Prause [2019] and analysed for sequence and structural variants. BCFtools and Sniffles were applied for this task.

A total of 28 SNVs were identified. Thus, the variant rs2335834 was detected, which was also described by Zhao, Du und Rothschild [2010]. In the investigations carried out here, this exchange was found in a total of 29 dogs, two of them cryptorchids. Furthermore, a 216 bp long deletion could be identified, which was also found by Schön [2021] and Prause [2019]. Clear genetic correlations to cryptorchidism could not be established.

Literaturverzeichnis

- Amann, RP und DNR Veeramachaneni (2007) *Cryptorchidism in common eutherian mammals*. Reproduction.
- Amarasinghe, SL, S Su, X Dong, L Zappia, ME Ritchie und Q Gouil (2020) Opportunities and challenges in long-read sequencing data analysis. *Genome Biology* 21(1).
- Armbrecht, M (2013) Detektion von Kontaminationen in DNA und Protein-Proben durch photometrische Messungen: Application Note. Eppedorf AG. Hamburg.
- Ayers, K, R Kumar, G Robevska, S Bruell, K Bell, MA Malik, RA Bathgate und A Sinclair (2019) *Familial bilateral cryptorchidism is caused by recessive variants in RXFP2*. Journal of medical genetics.
- Bateson, P (2010) Independent Inquiry into Dog Breeding.
- Baumans, V, G Dijkstra und CJ Wensing (1981) *Testicular descent in the dog*. Anatomia, histologia, embryologia.
- Birchard, SJ und M Nappier (2008) Cryptorchidism. Compendium (Yardley, PA).
- Blades, M, J Freyer, J Donner, RC Foran und OP Forman (2022) Large scale acrossbreed genome-wide association study reveals a variant in HMGA2 associated with inguinal cryptorchidism risk in dogs. *PLOS ONE* 17(5):e0267604.
- Botigué, LR et al. (2017) Ancient European dog genomes reveal continuity since the Early Neolithic. *Nature Communications* 8(1).
- Brunello, FG und RA Rey (2021) AMH and AMHR2 Involvement in Congenital Disorders of Sex Development. *Sexual Development* 16(2-3):138–146.
- Bulla, A, B De Witt, W Ammerlaan, F Betsou und P Lescuyer (2016) Blood DNA Yield but Not Integrity or Methylation Is Impacted After Long-Term Storage. *Biopreservation* and Biobanking 14(1):29–38.
- Cassata, R, A Iannuzzi, P Parma, L de Lorenzi, V Peretti, A Perucatti, L Iannuzzi und GP Di Meo (2008) *Clinical, cytogenetic and molecular evaluation in a dog with bilateral cryptorchidism and hypospadias.* Cytogenetic und genome research.
- Chai, S, R Tian, J Bi, S Xu, G Yang und W Ren (2021) Rapid evolution and molecular convergence in cryptorchidism-related genes associated with inherently undescended testes in mammals. BMC Ecology und Evolution.
- Chen, H, P Lin, X Yuan und R Chen (2022) Two novel AMHR2 gene variants in monozygotic twins with persistent Müllerian duct syndrome: A case report and functional study. *Molecular Genetics Genomic Medicine* 10(8).
- Chen, J et al. (2015) The Mechanism of Environmental Endocrine Disruptors (DEHP) Induces Epigenetic Transgenerational Inheritance of Cryptorchidism. PLOS ONE.

- Coster, WD, S D'Hert, DT Schultz, M Cruts und CV Broeckhoven (2018) NanoPack: visualizing and processing long-read sequencing data. *Bioinformatics* 34(15):2666–2669.
- Delahaye, C und J Nicolas (2021) Sequencing DNA with nanopores: Troubles and biases. *PLOS ONE* 16(10):e0257521.
- DeLorenzi, L, S Arrighi, D Groppetti, S Bonacina und P Parma (2018) Persistent Müllerian Duct Syndrome in a German Shepherd Dog. *Sexual Development* 12(6):288– 294.
- DeSantis, D, L Truong, P Martinez und L D'Orsogna (2020) Rapid high-resolution HLA genotyping by MinION Oxford nanopore sequencing for deceased donor organ allocation. *HLA* 96(2):141–162.
- Ferguson, L und Al Agoulnik (2013) *Testicular cancer and cryptorchidism*. Frontiers in Endocrinology.
- Ferlin, A, D Zuccarello, A Garolla, R Selice, C Vinanzi, F Ganz, GF Zanon, B Zuccarello und C Foresta (2009) Mutations in INSL3 and RXFP2 Genes in Cryptorchid Boys. *Annals of the New York Academy of Sciences* 1160(1):213–214.
- Freeman, S (1990) The evolution of the scrotum: A new hypothesis. *Journal of Theoretical Biology* 145(4):429–445.
- Fritsch, P (2009) *Dermatologie und Venerologie für das Studium*. Springer Berlin Heidelberg. Berlin, Heidelberg.
- Gao, S, Y Zhang, C Yang, GI Perez und H Xiao (2019) NCOA5 Haplo-insufficiency Results in Male Mouse Infertility through Increased IL-6 Expression in the Epididymis. Scientific reports.
- Gorlov, IP, A Kamat, NV Bogatcheva, E Jones, DJ Lamb, A Truong, CE Bishop, K McElreavey und AI Agoulnik (2002) *Mutations of the GREAT gene cause cryptorchidism*. Human molecular genetics.
- Gregersen, PA und R Savarirayan (2019) *GeneReviews*®: Type II Collagen Disorders Overview. Seattle.
- Hadžiselimović, F (1983) *Embryology of Testicular Descent and Maldescent*. Springer Berlin Heidelberg. Berlin, Heidelberg.
- Hayes, HM, GP Wilson, TW Pendergrass und VS Cox (1985) *Canine cryptorchism and subsequent testicular neoplasia: case-control study with epidemiologic update.* Teratology.
- Hernández-Jardón, N, JC Rojas-Castañeda, D Landero-Huerta, E Reyes-Cruz, R Reynoso-Robles, M del Lourdes Juárez-Mosqueda, A Medrano, F Reyes-Delgado und RM Vigueras-Villaseñor (2022) Cryptorchidism: The dog as a study model. *Frontiers in Veterinary Science* 9.

- Hicks, L, CMV der Graaf, J Childress, E Cook, K Schmidt, F Rosenzweig und E Kroll (2018) Streamlined preparation of genomic DNA in agarose plugs for pulsed-field gel electrophoresis. *Journal of Biological Methods* 5(1):e86.
- Hülsmeyer, VI et al. (2015) International Veterinary Epilepsy Task Force's current understanding of idiopathic epilepsy of genetic or suspected genetic origin in purebred dogs. *BMC Veterinary Research* 11(1).
- Hutson, JM und PK Donahoe (1986) *The hormonal control of testicular descent*. Endocrine reviews.
- Hutson, JM, S Hasthorpe und CF Heyns (1997) Anatomical and functional aspects of testicular descent and cryptorchidism. Endocrine reviews.
- Illumina (2011) Quality scores for next-generation sequencing: Assessing sequencing accuracy using phred quality scoring.
- Imbeaud, S et al. (1995) Insensitivity to anti-müllerian hormone due to a mutation in the human anti-müllerian hormone receptor. *Nature genetics* 11(4):382–388.
- Izu, H, S Inouye, M Fujimoto, K Shiraishi, K Naito und A Nakai (2004) Heat shock transcription factor 1 is involved in quality-control mechanisms in male germ cells. *Biology of reproduction* 70(1):18–24.
- (2012) Gentechnische Methoden. Spektrum Akademischer Verlag.
- Jeong, H et al. (2014) Statistical analysis and genetic diversity of three dog breeds using simple sequence repeats. *Genes & Genomics* 36(6):883–889.
- Jhun, H, WY Lee, JK Park, SG Hwang und HJ Park (2022) Transcriptomic Analysis of Testicular Gene Expression in a Dog Model of Experimentally Induced Cryptorchidism. *Cells* 11(16):S.2476.
- John, S, G Weitzner, R Rozen und C Scriver (1991) A Rapid Procedure for Extracting Genomic DNA from Leukocytes. Nucleic acids research.
- Khan, FA, CJ Gartley und A Khanam (2018) *Canine cryptorchidism: An update*. Reproduction in domestic animals = Zuchthygiene.
- Kishikawa, T, Y Momozawa, T Ozeki, T Mushiroda, H Inohara, Y Kamatani, M Kubo und Y Okada (2019) Empirical evaluation of variant calling accuracy using ultra-deep whole-genome sequencing data. *Scientific Reports* 9(1).
- Klingström, T, E Bongcam-Rudloff und OV Pettersson (2018) A comprehensive model of DNA fragmentation for the preservation of High Molecular Weight DNA.
- Koboldt, DC (2020) Best practices for variant calling in clinical sequencing. *Genome Medicine* 12(1).
- Koetsier, G und E Cantor (2019) A Practical Guide to Analyzing Nucleic Acid Concentration and Purity with Microvolume Spectrophotometers: Technical Note. New ENgland BioLabs Inc.

- Krause, G, G Scherer, M Müller und T Weiß (2012) *Grundlagen der Polymerasekettenreaktion (PCR)* [*Biomonitoring Methods in German language, 2004*]. John Wiley und Sons, Ltd.
- Krause, G, L Winkler, SL Mueller, RF Haseloff, J Piontek und IE Blasig (2008) Structure and function of claudins. *Biochimica et Biophysica Acta (BBA) - Biomembranes* 1778(3):631–645.
- Kurreck, J, JW Engels und F Lottspeich (2022) *Bioanalytik*. Springer Berlin Heidelberg. Berlin, Heidelberg.
- Kuznetsova, O. (2019) Refuelling a sequencing run with Flush Buffer from EXP-FLP002. URL: https://community.nanoporetech.com/posts/refuellinga-sequencing-ru.
- Labor Augsburg MVZ (2019) Handbuch der Präanalytik: Ein praktischer Leitfaden für die Probengewinnung und Einsendung. Augsburg.
- Lea, RG et al. (2016) Environmental chemicals impact dog semen quality in vitro and may be associated with a temporal decline in sperm motility and increased cryptorchidism. Scientific reports.

Leung, PCK (1987) Endocrinology and Physiology of Reproduction. Springer. New York.

- Li, H (2018) Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* (*Oxford, England*) 34(18):3094–3100.
- Li, H, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis und R Durbin (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics* (Oxford, England) 25(16):2078–2079.
- Liu, Y, S Wang, R Lan und J Yang (2022) Identification of AMH and AMHR2 Variants Led to the Diagnosis of Persistent Müllerian Duct Syndrome in Three Cases. *Genes* 13(1):S.159.
- Liu, Y und X Li (2010) Molecular basis of cryptorchidism-induced infertility. *Science China Life Sciences* 53(11):1274–1283.
- Lucena-Aguilar, G, AM Sánchez-López, C Barberán-Aceituno, JA Carrillo-Ávila, JA López-Guerrero und R Aguilar-Quesada (2016) DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis. *Biopreservation and Biobanking* 14(4):264–270.
- Madisen, L, DI Hoar, CD Holroyd, M Crisp, ME Hodes und JF Reynolds (1987) The effects of storage of blood and isolated DNA on the integrity of DNA. *American Journal of Medical Genetics* 27(2):379–390.
- Matlock, B (2015) *Technical Note 52646: Assessment of Nucleic Acid Purity*. Thermo Fisher Scientific. Wilmington.
- Mattos, MRF, L Simões-Mattos, S Farhayldes und S Domingues (2000) *Cryptochisdism in dog*.

- Minagawa, I, M Fukuda, H Ishige, H Kohriki, M Shibata, EY Park, T Kawarasaki und T Kohsaka (2012) *Relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) is secreted from testicular Leydig cells as a monomeric protein comprising three domains B-C-A with full biological activity in boars.* The Biochemical journal.
- Mitsui, T (2021) Effects of the prenatal environment on cryptorchidism: A narrative review. *International Journal of Urology* 28(9):882–889.
- Mülhardt, C (2013) *Der Experimentator Molekularbiologie / Genomics*. Springer Berlin Heidelberg.
- Nielen, A, L Janss und B Knol (2001) *Heritability estimations for diseases, coat color, body weight, and height in a birth cohort of Boxers.* American journal of veterinary research.
- Nowacka-Woszuk, J, P Krzeminska, T Nowak, M Gogulski, M Switonski und M Stachowiak (2020) Analysis of transcript and methylation levels of INSL3 and RXFP2 in undescended and descended dog testes suggested promising biomarkers associated with cryptorchidism. *Theriogenology* 157:483–489.
- Oberbauer, A, J Bell, J Belanger und T Famula (2006). *BMC Veterinary Research* 2(1):S.15.
- Ortega-Pacheco, A, JC Rodríguez-Buenfil, JC Segura-Correa, ME Bolio-Gonzalez, M Jiménez-Coello und C Linde Forsberg (2006) *Pathological conditions of the reproductive organs of male stray dogs in the tropics: prevalence, risk factors, morphological findings and testosterone concentrations.* Reproduction in domestic animals.
- Oxford Nanopore Technologies. (2021) Flongle Sequencing Expansion update. URL: https://community.nanoporetech.com/posts/flongle-sequencing-expansi.
- Oxford Nanopore Technologies. (2021) Ligation sequencing amplicons Native barcoding (SQK-LSK109 with EXP-NBD104 and EXP-NBD114). URL: https://community. nanoporetech.com/docs/prepare/library_prep_protocols/native-%20barcodingamplicons/v/nba_9093_v109_revn_12nov2019.
- Permenter, J, A Ishwar, A Rounsavall, M Smith, J Faske, CJ Sailey und MP Alfaro (2015) Quantitative analysis of genomic DNA degradation in whole blood under various storage conditions for molecular diagnostic testing. *Molecular and Cellular Probes* 29(6):449–453.
- Picard, JY und N Josso (2019) Persistent Müllerian duct syndrome: an update. *Reproduction, Fertility and Development* 31(7):S.1240.
- Pop, AR, O Henegariu, R Micu, A Sonea, A Irimie, A Henegariu, IS Groza et al. (2017)
 Hormone receptor type 2 antimüllerian gene role in dogs with Persistent Müllerian
 Ducts Syndrome. *Romanian Biotechnological Letters* 22(6):13029–13034.

- Poth, T, W Breuer, B Walter, W Hecht und W Hermanns (2010) Disorders of sex development in the dog—Adoption of a new nomenclature and reclassification of reported cases. *Animal Reproduction Science* 121(3-4):197–207.
- Prause, R (2017) *Identifizierung genetischer Variationen als Ursache von Kryptorchismus bei Schafpudeln*. Fakultät Computer- und Biowissenschaften. Mittweida.
- Prause, R (2019) Nanopore sequencing of cryptorchidism associated genes for identification of genetic variants in German Sheep Poodle. Fakultät Angewandte Computerund Biowissenschaften. Mittweida.
- Rezadoost, MH, M Kordrostami und HH Kumleh (2016) An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants. *3 Biotech* 6(1).
- Riede, UN und M Werner (2017) *Allgemeine und Spezielle Pathologie*. Springer Berlin Heidelberg.
- Rimbault, M, HC Beale, JJ Schoenebeck, BC Hoopes, JJ Allen, P Kilroy-Glynn, RK Wayne, NB Sutter und EA Ostrander (2013) Derived variants at six genes explain nearly half of size reduction in dog breeds. *Genome Research* 23(12):1985–1995.
- Robinson, JT, H Thorvaldsdóttir, AM Wenger, A Zehir und JP Mesirov (2017) Variant Review with the Integrative Genomics Viewer. *Cancer Research* 77(21):e31–e34.
- Romagnoli, SE (1991) *Canine Cryptorchidism*. Veterinary Clinics of North America: Small Animal Practice.
- Safarikova, M, AA Kubena, V Frankova, T Zima und M Kalousova (2021) The effects of different storage conditions and repeated freeze/thaw cycles on the concentration, purity and integrity of genomic DNA. *Folia Biol. (Praha)* 67(1):10–15.
- Samadi Shams, S, S Zununi Vahed, F Soltanzad, V Kafil, A Barzegari, S Atashpaz und J Barar (2011) *Highly effective DNA extraction method from fresh, frozen, dried and clotted blood samples.* BioImpacts : BI.
- Sauvé, F, LD McBroom, J Gallant, AN Moraitis, F Labrie und V Giguère (2001) *CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant.* Molecular und cellular biology.
- Schön, N (2021) *Genetic variant analysis of German Sheep Poodle with focus on cryptorchidism.* Fakultät Angewandte Computer- und Biowissenschaften. Mittweida.
- Schrader, C, A Schielke, L Ellerbroek und R Johne (2012) PCR inhibitors occurrence, properties and removal. *Journal of Applied Microbiology* 113(5):1014–1026.
- Sedlazeck, FJ, P Rescheneder, M Smolka, H Fang, M Nattestad, A von Haeseler und MC Schatz (2018) Accurate detection of complex structural variations using singlemolecule sequencing. *Nature methods* 15(6):461–468.
- Sinnwell, JP, TM Therneau und DJ Schaid (2014) The kinship2 R package for pedigree data. *Human heredity* 78(2):91–93.

- Sittmann, K (1980) 9th International Congress on animal Reproduction and artificial insemination: 16th 20th June 1980. Garsi. Madrid.
- Smit, M, K Ekenstedt, K Minor, C Lim, P Leegwater und E Furrow (2017) Prevalence of the AMHR2 mutation in Miniature Schnauzers and genetic investigation of a Belgian Malinois with persistent Müllerian duct syndrome. *Reproduction in Domestic Animals* 53(2):371–376.
- Stancu, MC et al. (2017) Mapping and phasing of structural variation in patient genomes using nanopore sequencing. *Nature Communications* 8(1).
- Stanzick, KJ, J Simon, ME Zimmermann, M Schachtner, D Peterhoff, HH Niller, K Überla, R Wagner, IM Heid und KJ Stark (2023) DNA extraction from clotted blood in genotyping quality. *BioTechniques* 74(1):23–29.
- Sun, Y et al. (2021) Characterizing sensitivity and coverage of clinical WGS as a diagnostic test for genetic disorders. *BMC Medical Genomics* 14(1).
- Tagliaferro, SS, A Zejnelagic, R Farrugia und SB Wettinger (2021) Comparison of DNA extraction methods for samples from old blood collections. *BioTechniques* 70(5):243–250.
- Technologies, ON. (2020) Flongle Adapter Technical Specification. URL: https:// nanopore.yilimart.com/Static/Images/Media/flongle-spec.pdf.
- Technologies, ON. (2023) Flongle Flow Cell (R10.4.1): Information. URL: https:// store.nanoporetech.com/eu/flongle-flow-cell-pack.html.
- Thomas, L (2005) Labor und Diagnose. Th-Books. Frankfurt am Main, Germany.
- Thorsrud, JA und HJ Huson (2021) Description of breed ancestry and genetic health traits in arctic sled dog breeds. *Canine Medicine and Genetics* 8(1).
- (2017) Haplotyping. Springer New York.
- Tomboc, M, PA Lee, MF Mitwally, FX Schneck, M Bellinger und SF Witchel (2000) Insulin-like 3/relaxin-like factor gene mutations are associated with cryptorchidism.
- Truong, A, NV Bogatcheva, C Schelling, G Dolf und Al Agoulnik (2003) *Isolation and expression analysis of the canine insulin-like factor 3 gene*. Biology of reproduction.
- Wang, Y, Y Zhao, A Bollas, Y Wang und KF Au (2021) Nanopore sequencing technology, bioinformatics and applications. *Nature biotechnology* 39(11):1348–1365.
- Webster, MT, N Kamgari, M Perloski, MP Hoeppner, E Axelsson, A Hedhammar, G Pielberg und K Lindblad-Toh (2015) Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds. *BMC Genomics* 16(1).
- Wickham, H, F Romain, H Kionel und K Müller (2021) *dplyr: A Grammar of Data Manipulation*.
- Wickham, H (2016) ggplot2: Elegant graphics for data analysis. Springer international publishing. Cham. ISBN: 9783319242774.

- Wickham, H, M Averick et al. (2019) Welcome to the Tidyverse. *Journal of Open Source Software* 4(43):S.1686.
- Wu, X, S Wan, S Pujar, M Haskins, D Schlafer, M Lee und V Meyers-Wallen (2008) A Single Base Pair Mutation Encoding a Premature Stop Codon in the MIS Type II Receptor Is Responsible for Canine Persistent Mullerian Duct Syndrome. Journal of andrology.
- Ye, J, G Coulouris, I Zaretskaya, I Cutcutache, S Rozen und TL Madden (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. *BMC bioinformatics* 13:S.134.
- Yoo, HB, H Lim, I Yang, SK Kim und SR Park (2011) Flow cytometric investigation on degradation of macro-DNA by common laboratory manipulations. *Journal of Biophysical Chemistry* 02:102–111.
- Zhao, X, S Onteru, M Saatchi, D Garrick und M Rothschild (2013) A genome-wide association study for canine cryptorchidism in Siberian Huskies. Journal of animal breeding und genetics.
- Zhao, X, ZQ Du und M Rothschild (2010) *An association study of 20 candidate genes with cryptorchidism in Siberian Husky dogs.* Journal of animal breeding und genetics.
- Zhao, X, S Onteru, M Saatchi, D Garrick und M Rothschild (2013) Bayesian Inference Identifies a Candidate Region Associated with Canine Cryptorchidism that Includes the AMHR2 Gene. Animal Industry Report.

Zilles, K und B Tillmann (2011) Anatomie. Springer Berlin Heidelberg.

Zimmermann, S, P Schöttler, W Engel und IM Adham (1997) Mouse Leydig insulinlike (Ley I-L) gene: Structure and expression during testis and ovary development. Molecular Reproduction und Development.

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe. Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Fotos sowie Abbildungen, die nicht gekennzeichnet wurden, wurden von mir erstellt. Diese Arbeit wurde in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt.

Mittweida, 09.06.2023

Anhang A: Anhang

ID	Zuchtbuch	Geschlecht	Vater	Mutter	Kryptorchid
1	-	m	-	-	nein
2	IGPZ030903	m	D002	M002	ja
3	-	m	-	-	ја
4	IGPZ031305	m	D003	M005	ja
5	IGPZ97105	m	D001	M001	nein
6	IGPZ041730	W	D007	M008	nein
7	IGPZ041735	m	D007	M008	nein
8	IGPZ041715	W	D007	M011	nein
9	IGPZ041736	W	D007	M008	nein
10	IGPZ041716	m	D007	M011	nein
11	IGPZ041734	m	D007	M008	nein
12	IGPZ041714	m	D007	M011	nein
13	IGPZ041707	m	D007	91	ja
14	IGPZ041702	m	D007	91	nein
15	-	m	-	-	nein
16	IGPZ041711	m	D007	M011	nein
17	IGPZ041712	W	D007	M011	nein
18	IGPZ041731	W	D007	M008	nein
19	-	m	-	-	nein
20	IGPZ041732	m	D007	M008	nein
21	IGPZ041733	m	D007	M008	nein
22	IGPZ041738	W	D007	M008	nein
23	IGPZ041713	W	D007	M011	nein
24	IGPZ081702	m	D010	M012	nein
25	IGPZ081706	m	D010	M012	nein
26	-	m	-	-	nein
27	-	m	-	-	nein
28	IGPZ041718	W	D007	M011	nein
29	IGPZ091708	m	D008	M013	nein
30	IGPZ041717	W	D007	M011	nein
31	IGPZ091705	W	D008	M013	nein

Tabelle 6: Daten zur Erstellung des Stammbaums

ID	Zuchtbuch Geschlecht Vater		Vater	Mutter	Kryptorchid	
32	IGPZ091709	W	D008	M013	nein	
33	IGPZ111706	W	D007	M014	nein	
34	IGPZ121709	m	D009	M010	nein	
35	IGPZ121710	w	D009	M010	nein	
36	IGPZ091704	m	D008	M013	nein	
37	IGPZ121703	m	D009	M010	nein	
38	IGPZ111707	w	D007	M014	nein	
39	IGPZ121705	m	D009	M010	nein	
40	IGPZ121704	w	D009	M010	nein	
41	IGPZ111701	m	D007	M014	nein	
42	IGPZ121714	W	D005	M015	nein	
43	IGPZ121708	m	D009	M010	nein	
44	IGPZ111704	m	D007	M014	nein	
45	IGPZ121707	w	D009	M010	nein	
46	IGPZ111702	W	D007	M014	nein	
47	IGPZ041704	w	D007	91	nein	
48	IGPZ021801	m	D011	135	nein	
49	IGPZ111705	m	D007	M014	nein	
50	IGPZ021803	m	D011	135	nein	
51	IGPZ111708	W	D007	M014	nein	
52	IGPZ121713	W	D005	M015	nein	
53	IGPZ121711	m	D005	M015	nein	
54	IGPZ121715	m	D005	M015	nein	
55	IGPZ021804	m	D011	135	nein	
56	IGPZ071806	W	D014	M011	nein	
57	IGPZ071811	W	15	92	nein	
58	IGPZ051803	W	D012	M016	nein	
59	IGPZ071801	m	D014	M011	nein	
60	IGPZ071805	m	D014	M011	nein	
61	IGPZ051806	m	D012	M016	nein	
62	IGPZ071813	w	15	92	nein	
63	IGPZ061506	m	D005	M006	nein	
64	IGPZ071804	W	D014	M011	nein	
65	IGPZ071816	m	15	92	nein	
66	IGZP071802	m	D014	M011	nein	
67	IGPZ061806	w	D013	M017	nein	

ID	Zuchtbuch	Geschlecht	Vater	Mutter	Kryptorchid
68	IGPZ111703	W	D007	M014	nein
69	IGPZ051807	m	D012	M016	nein
70	IGPZ071812	W	15	92	nein
71	IGPZ071807	W	D014	M011	nein
72	IGPZ051801	W	D012	M016	nein
73	IGPZ121803	m	D014	136	ja
74	IGPZ061804	m	D013	M017	nein
75	IGPZ051805	m	D012	M016	nein
76	IGPZ071810	m	15	92	nein
77	IGPZ071808	m	15	92	nein
78	IGPZ071815	m	15	92	nein
79	IGPZ111807	W	D015	118	nein
80	IGPZ101807	m	7	116	ja
81	IGPZ111801	m	D015	118	nein
82	IGPZ081807	m	7	M018	nein
83	IGPZ021606	m	D007	M008	nein
84	IGPZ121810	W	D017	113	nein
85	IGPZ021807	m	D011	135	nein
86	IGPZ121814	m	D017	113	nein
87	IGPZ121805	W	D014	136	nein
88	IGPZ121812	m	D017	113	nein
89	IGPZ021806	m	D011	135	nein
90	IGPZ121811	W	D017	113	nein
91	IGPZ031201	W	5	M004	nein
92	IGPZ061603	W	D008	M009	nein
93	IGPZ121806	W	D014	136	nein
94	IGPZ111805	m	D015	118	nein
95	IGPZ121804	m	D014	136	nein
96	IGPZ111804	W	D015	118	nein
97	IGPZ121813	W	D017	113	nein
98	IGPZ121808	m	D017	113	nein
99	IGPZ121807	W	D017	113	nein
100	IGPZ121809	m	D017	113	ja
101	IGPZ051903	W	D018	135	nein
102	IGPZ051904	m	D018	135	nein
103	IGPZ031902	w	24	M008	nein

ID	Zuchtbuch	chtbuch Geschlecht Vater Mutter		Kryptorchid	
104	IGPZ081505	W	D006	M007	nein
105	IGPZ051910	m	D018	135	nein
106	IGPZ051905	m	D018	135	nein
107	IGPZ111802	W	D015	118	nein
108	IGPZ111803	m	D015	118	nein
109	IGPZ031908	w	24	M008	nein
110	IGPZ031904	m	24	M008	nein
111	IGPZ051911	W	D018	135	nein
112	IGPZ021802	W	D011	135	nein
113	IGPZ101602	W	D008	136	nein
114	IGPZ111808	W	D015	118	nein
115	IGPZ051907	m	D018	135	nein
116	IGPZ081504	W	D006	M007	nein
117	IGPZ111806	W	D015	118	nein
118	IGPZ061509	W	D005	91	nein
119	IGPZ041905	m	15	M014	ja
120	IGPZ051906	W	D018	135	nein
121	IGPZ061902	m	25	91	nein
122	IGPZ051802	W	D012	M016	nein
123	IGPZ031202	m	D016	M019	nein
124	IGPZ031907	W	24	M008	nein
125	IGPZ041906	W	15	M014	nein
126	IGPZ031201	m	D016	M019	ja
127	IGPZ041901	m	15	M014	nein
128	IGPZ041909	m	15	M014	nein
129	IGPZ031901	W	24	M008	nein
130	IGPZ031907	m	24	M008	nein
131	IGPZ031906	m	24	M008	nein
132	IGPZ071903	W	34	M016	nein
133	IGPZ071904	W	34	M016	nein
134	IGPZ071902	m	34	M016	ja
135	IGPZ071401	w	D004	M004	nein
136	IGPZ120905	w	D002	M003	nein
137	IGPZ071905	m	D016	18	nein
138	IGPZ051909	m	D018	135	nein
139	IGPZ071901	m	D016	18	nein

ID	Zuchtbuch	Geschlecht	Vater	Mutter	Kryptorchid	
140	IGPZ071902	m	D016	18	nein	
141	IGPZ071907	W	D016	18	nein	
142	IGPZ071904	w	D016	18	nein	
143	IGPZ041904	m	15	M014	ja	
144	IGSZ111905	W	59	6	nein	
145	IGPZ022006	W	60	113	nein	
146	IGPZ071906	m	D016	18	nein	
147	IGSZ111901	W	59	6	nein	
148	IGSZ111906	W	59	6	nein	
149	IGPZ061901	m	25	91	ja	
150	IGSZ022008	W	60	113	nein	
151	IGSZ022007	W	60	113	nein	
152	IGSZ111908	m	59	6	nein	
153	IGSZ022012	m	21	M020	nein	
154	IGSZ022010	m	21	M020	nein	
155	IGSZ022011	W	21	M020	nein	
156	IGSZ111903	W	59	6	nein	
157	IGSZ032006	m	83	116	nein	
158	IGSZ111902	m	59	6	nein	
159	IGSZ022005	m	60	113	ja	
160	IGSZ022003	m	60	113	nein	
161	IGSZ032002	m	83	116	nein	
162	IGSZ032005	m	83	116	nein	
163	IGSZ022004	m	60	113	nein	
164	IGSZ052008	W	95	92	nein	
165	IGSZ111907	W	59	6	nein	
166	IGSZ022009	W	21	M020	nein	
167	IGSZ032007	W	15	104	nein	
168	IGSZ032001	m	83	116	nein	
169	IGSZ032003	m	83	116	nein	
170	IGSZ052003	m	95	92	nein	
171	IGSZ052006	w	95	92	nein	
172	IGSZ032014	m	15	104	nein	
173	IGSZ052004	w	95	92	nein	
174	IGSZ052009	m	95	92	nein	
175	IGSZ052007	m	95	92	nein	

ID	Zuchtbuch	Geschlecht	Vater	Mutter	Kryptorchid
176	IGSZ082007	m	D019	116	nein
177	IGSZ052005	W	95	92	nein
178	IGSZ062007	m	59	M021	nein
179	IGSZ082009	W	65	18	nein
180	IGSZ082021	m	74	M022	ja
181	IGSZ082018	w	74	M022	nein
182	IGSZ082020	m	74	M022	nein
183	IGSZ102006	w	65	M023	nein
184	IGSZ092009	w	74	56	nein
185	IGSZ092016	w	74	56	nein
186	IGSZ09210	m	74	56	nein
187	IGSZ082005	m	D019	135	nein
188	IGSZ082017	m	74	M022	nein
189	IGSZ082013	m	65	18	nein
190	IGSZ092012	W	74	56	nein
191	IGSZ062004	w	59	M021	nein
192	IGSZ062006	m	59	M021	nein
193	IGSZ062005	W	59	M021	nein
194	IGSZ062003	W	59	M021	nein
195	IGSZ082015	W	65	18	nein
196	IGSZ062002	W	59	M021	nein
197	IGSZ102007	m	65	M023	nein
198	IGSZ102005	m	65	M023	nein
199	IGSZ092013	W	74	56	nein
200	IGSZ102008	m	65	M023	nein
201	IGSZ092014	m	74	56	nein
202	IGSZ062001	m	59	M021	nein
203	IGSZ082011	W	65	18	nein
204	IGSZ11206	W	D019	118	nein
205	IGSZ11202	W	D019	118	nein
206	IGSZ082022	m	74	M022	nein
207	IGZS11205	W	D019	118	nein
208	IGSZ092011	m	74	56	nein
M001	-	W	-	-	-
M002	IGPZ97142	W	-	-	-
M003	IGPZ040705	W	-	-	-

ID	Zuchtbuch	Geschlecht	Vater	Mutter	Kryptorchid
M004	IGPZ011006	W	-	-	-
M005	IGPZ051007	W	-	-	_
M006	IGPZ041201	w	-	-	-
M007	IGPZ060905	w	-	-	-
M008	IGPZ091005	w	-	-	-
M009	IGPZ041107	w	-	-	-
M010		w	-	-	-
M011	IGPZ031206	W	-	-	-
M012	111307	W	-	-	-
M013	IGPZ120908	W	-	-	-
M014	IGPZ121403	W	-	-	_
M015	111308	W	-	-	-
M016	111306	W	-	-	-
M017	IGPZ091605	W	-	-	-
M018	IGPZ021616	W	-	-	-
M019	IGPZ111309	W	w		-
M020		W	-	-	-
M021	IGPZ021601	W	D007	M008	-
M022	121701	W	D009	M010	-
M023	IGPZ021603	W	D007	M008	-
D001	-	m	-	-	-
D002	IGPZ010707	m	-	-	-
D003	IGPZ041102	m	-	-	-
D004	IGPZ091010	m	-	-	-
D005	IGPZ111107	m	-	-	-
D006	IGPZ111313	m	-	-	-
D007		m	-	-	-
D008	IGPZ031406	m	-	-	-
D009	IGPZ031212	m	-	-	-
D010	IGPZ121509	m	-	-	-
D011	AAH12-102	m	-	-	-
D012	121503	m	-	-	-
D013	IGPZ031209	m	-	-	-
D014		m	-	-	-
D015	IGPZ091601	m	-	-	-
D016	IGPZ121211	m	-	-	-

ID	Zuchtbuch	Geschlecht	Vater	Mutter	Kryptorchid
D017	IGPZ071403	m	-	-	-
D018	IGPZ091707	m	-	-	-
D019	IGPZ101803	m	7	116	-

Probe	DNA-Konzentration [ng/ μ l]	A260/280	A260/A230
170/2/1	26,8	1,88	1,78
171/2/1	15,5	1,90	1,62
172/3/1	22,8	1,83	1,66
173/1/1	10,8	1,88	1,02
174/2/1	17,5	1,89	1,76
175/2/1	10,9	1,86	1,17
176/2/1	18,3	1,94	1,88
177/2/1	14,2	1,92	1,63
178/2/1	20,4	1,86	1,67
179/3/1	26,8	1,85	1,91
180/3/1	34,4	1,86	1,17
181/3/1	16,7	1,87	1,57
182/1/1	14,7	1,89	1,90
183/1/1	26,2	1,87	1,84
184/1/1	38,0	1,86	2,14
185/1/1	34,6	1,87	1,95
186/1/1	66,2	1,84	1,48
187/1/1	22,8	1,89	2,02
188/1/1	21,0	1,93	2,31
189/1/1	13,0	1,82	1,13
190/1/1	52,2	1,87	1,73
191/1/1	38,0	1,89	1,15
192/1/1	21,2	1,94	1,94
193/1/1	26,4	1,94	2,04
194/1/1	33,4	1,09	2,04
195/1/1	20,4	1,99	1,23
196/1/1	15,8	1,91	1,70
197/1/1	12,8	1,84	1,89
198/1/1	13,9	1,93	1,97
199/1/1	14,9	1,94	1,54
200/1/1	28,4	1,90	1,75

Tabelle 7: Probenauswahl für die PCR mit der DNA-Konzentration und den
Reinheitsquotienten A260/A280 und A260/A230

	Konzentration [ng/µl]								
Probe	RXFP2_E6-8	RXFP2_E10-11	NCOA5_E3-5	NCOA5_E5-6	AMHR2_E7-11	COL2A1_E9-16			
14/1/1	16,4	24	19,4	12,6	15,9	10,3			
15/1/1	15,9	22,8	14,9	10,6	19,6	10,9			
25/1/1	17,1	24	14,5	8,52	18,9	9,22			
34/1/1	19,6	23,4	18,9	13,9	23,6	11,9			
59/1/1	20,4	26	21	15,3	23,8	13,6			
60/1/1	16,5	23,4	22,2	14,2	24,4	13,7			
116/1/1	15,3	14,9	17	16,6	15,5	8,42			
121/1/1	16,8	19,3	17,9	14	19,8	13,5			
127/1/1	10,4	27,8	18,4	16,3	21,4	12,3			
128/1/1	20	22,4	17	16,6	23	11,9			
149/1/1	19,4	20,4	15,3	14,4	29,4	11,2			
159/1/1	17	18,4	17,2	16,9	20,6	11,8			
160/1/1	16,9	24,6	18,3	12,1	18,6	9,96			
170/2/1	6,4	24,6	14,5	6,18	8,38	7,7			
171/2/1	9,28	20,8	14,6	7,1	9,84	8,72			
172/2/1	8,64	22	16	8,12	9,4	10,7			
173/1/1	6,68	20,8	13,6	7,32	10,5	8,36			
174/2/1	15,8	20,4	11,9	7,14	7,3	7,58			

Tabelle 8: DNA-Konzentration der einzelnen Amplikons aller Proben

	Konzentration [ng/µl]								
Probe	RXFP2_E6-8	RXFP2_E10-11	NCOA5_E3-5	NCOA5_E5-6	AMHR2_E7-11	COL2A1_E9-16			
175/2/1	6,6	20,0	10,6	8,64	7,0	6,04			
176/2/1	6,9	24,4	12,9	9,22	10,1	7,46			
177/2/1	18,1	23,2	12,6	9,6	16,7	7,2			
178/2/1	17,2	23,6	13,5	11,6	15,9	7,06			
179/3/1	15,8	23,0	10,4	15,0	17,7	8,36			
180/3/1	14,9	24,0	11,0	10,6	23	7,82			
181/3/1	18,8	22,0	14,6	8,82	20,4	10,2			
182/1/1	13,1	22,6	13,2	10,6	20,0	9,0			
183/1/1	14,5	24,2	14,4	20,8	19,0	9,32			
184/1/1	10,6	22,8	15,1	12,2	17,3	9,02			
185/1/1	14,8	24,2	14,0	11,4	24,0	7,40			
186/1/1	14,3	21,0	12,3	11,3	22,2	9,06			
187/1/1	9,82	20,4	13,7	10,7	18,4	9,6			
188/1/1	7,8	22,0	14,7	10,5	21,4	16,8			
189/1/1	10,4	17,3	11,8	9,64	23,0	7,64			
190/1/1	11,3	12,8	12,7	11,2	16,6	9,1			
191/1/1	14,3	21,0	13,1	9,18	20,0	8,54			
192/1/1	8,72	17,8	9,56	11,3	20,6	7,00			
193/1/1	13,4	20,2	12,8	9,22	22,8	6,64			

	Konzentration [ng/µl]								
Probe	RXFP2_E6-8	RXFP2_E10-11	NCOA5_E3-5	NCOA5_E7-8	AMHR2_E7-11	COL2A1_E9-16			
194/1/1	13	23,2	13,5	10,1	22,4	6,98			
195/1/1	9,84	25,2	13,1	13,0	17,1	6,46			
196/1/1	9,02	19,0	10,8	7,89	19,4	14,0			
197/1/1	8,82	21,8	11,4	8,94	20,2	15,9			
198/1/1	12,6	24,4	13,6	9,88	21,4	6,96			
199/1/1	11,5	24,6	14,0	9,34	18,0	14,6			
200/1/1	11,9	26	14,0	9,94	19,7	7,38			
202/1/1	17,9	21,6	15,8	8,72	17,6	10,6			
206/1/1	17	17,3	13,1	11,4	19,2	8,76			

Q-Score	Seq. 1	Seq. 2	Seq. 3	Seq. 4	Seq. 5
	622157	530567	539989	484537	453308
>Q5	94,8 %	94,7 %	95,1 %	94,0 %	93,4 %
	851,2 Mb	751,0 Mb	643,8 Mb	711,5 Mb	652,1 Mb
	530648	455914	479520	436784	377516
>Q7	80,8 %	81,4 %	84,4 %	84,7 %	77,8 %
	737,8 Mb	648,0 Mb	577,5 Mb	647,2 Mb	547,2 Mb
	262603	228684	299343	274630	190526
>Q10	40,0 %	40,8 %	52,7 %	53,3 %	39,3 %
	397,5 Mb	344,6 Mb	386,4 Mb	438,6 Mb	300,3 Mb
	92977	81004	137004	144417	9007017 0 %
>Q12	14,2 %	14,5 %	24,1 %	28,0 %	120 0 Mb
	151,5 Mb	126,0 Mb	197,1 Mb	250,5 Mb	
	1427	1357	6929	8749	4078
>Q15	0,2 %	0,2 %	1,2 %	1,7 %	0,8 %
	1,6 Mb	1,3 Mb	8,6 Mb	14,1 Mb	6,8 Mb

Tabelle 9: Übersicht der Qualität der generierten Reads

Tabelle 10: Übersicht der allgemeinen Statistiken der einzelnen Sequenzierungen

	Seq. 1	Seq. 2	Seq. 3	Seq. 4	Seq. 5	
Aktive	68	70	78	63	83	
Poren	00	70	70	03	03	
mittlere	1 3/3 1	1 30/ 1	1 172 7	1 453 3	1 405 2	
Read-Länge	1.040,1	1.394,1	1.172,7	1.433,5	1.405,2	
mittlere	92	03	99	10.1	92	
Read-Qualität	3,2	3,5	3,3	10,1	<i>9,2</i>	
Median der	650.0	719.0	525.0	691.0	849 0	
Read-Länge	000,0	713,0	525,0	031,0	0-10,0	
Median der	93	93	10.2	10.3	9.1	
Read-Qualität	0,0	0,0	10,2	10,0	5,1	
Anzahl	656 521 0	559 977 0	568 047 0	515 522 0	485 119 0	
der Reads	000.021,0	000.077,0	500.047,0	515.522,0	405.119,0	
Gesamtanzahl	881 772 531	780 680 720	666 154 038	749 232 565	681 708 312	
der Basen	001.772.001	100.000.720	000.104.000	173.202.303	001.700.012	

	U				
	Seq. 1	Seq. 2	Seq. 3	Seq. 4	Seq. 5
mittlere	1.461,4	1.468,9	1.247,9	1.544,5	1.518,1
Read-Länge					
mittlere	11,1	11,1	11,5	11,7	11,3
Read-Qualität	-	-			
Median der	685,0	687,0	538,0	735,0	834,0
Read-Länge					
Median der	11,0	11,0	11,4	11,6	11,2
Read-Qualität					
Anzahl der	352.083,0	308.336,0	377.354,0	337.777,0	253.210,0
Reads					
Gesamtanzahl	2.865,0	2.853,0	2.861,0	2.884,0	2.834,0
der Basen					
mittlere	1.295,2	1.267,2	1.230,1	1.296,2	1.271,6
Read-Länge					
mittlere	514.544.326	452.903.312	470.894.618	521.682.792	384.385.943
Read-Qualität					

Tabelle 11: Übersicht der allgemeinen Statistiken der einzelnen Sequenzierungen nach Filterung des Q-Scores über 9

Lokus	InDel	Position	Länge in nt	Hund	Geschlecht	Strang
NCOA5_E7-8	Deletion	33327022- 33324828	2194	14	m	+-
				170	m	+-
				171	w	+-
				172	m	+-
				178	m	+-
				180	m	+-
				182	m	+-
				184	w	+-
				185	w	+-
				186	m	+-
				188	m	+-
				190	w	+-
				192	m	+-
				196	w	+-
				198	m	+-
				199	w	+-
	Deletion	33327063- 33326847	216	15	m	+-
				121	m	+-
				127	m	+-
				128	m	+-
				149	m	+-
				159	m	+-
				160	m	+-
				170	m	+-
				172	m	+-
				174	m	+-
				175	m	+-
				176	m	+-
				177	w	+-
				179	w	+-
				183	w	+-

Tabelle 12: Übersicht über Strukturvarianten, deren Lokus, Länge und Auftreten

NCOA5_E7-8	Deletion	33327063- 33326847	216	189	m	+-
				191	w	+-
				192	m	+-
				193	w	+-
				195	w	+-
				196	w	+-
				197	m	+-
				198	m	+-
				200	m	+-
	Inversion	33324852- 33324769	83	14	m	_
				25	m	-
	Inversion	33324852- 33324769	83	34	m	_
				59	m	_
				121	m	_
				127	m	_
				159	m	-
				170	m	_
				176	m	-
				178	m	_
				182	m	-
				189	m	-
	Inversion	33325009- 33324840	169	121	m	_
COL2A1_E9-16	Deletion	6765734- 6768738	3004	25	m	+-
				34	m	+-
				59	m	+-
				60	m	+-
				121	m	+-
				127	m	+-
				128	m	+-
				149	m	+-
				159	m	+-
				187	m	+-

COL2A1_E9-16	Deletion	6765734- 6768738	3004	189	m	+-
				191	w	+-
				196	w	+-
				199	w	+-
	Inversion	6768565- 6758707	137	15	m	-
				34	m	-
	Inversion	6768565- 6758707	137	59	m	-
				121	m	-
				127	m	_
				128	m	-
				149	m	_
				182	m	-
				183	w	-
				187	m	_
				188	m	_
				189	m	-
				190	w	_
				192	m	_
				194	w	_
				196	w	_
				202	m	-
	Inversion	6765618- 6765664	46	34	m	++
				59	m	++
				60	m	++
				159	m	++
RXFP2_6-8	Inversion	8337242- 8337210	32	14	m	-
				15	m	-
				24	m	-
				59	m	-
				60	m	-
				121	m	_
				127	m	-

RXFP2_6-8	Inversion	8337242- 8337210	32	128	m	_
				149	m	_
				159	m	_
				182	m	_
				183	w	_
				185	w	_
				186	m	_
				187	m	-
				188	m	_
				189	m	_
				190	w	_
				192	m	_
				196	w	_
				198	m	-
				199	w	_
				202	m	-
				206	m	-
	Inversion	8339614- 8339556	58	14	m	++
				182	m	++
	Inversion	8339510- 8339333	177	149	m	++
				188	m	++
AMHR2_7-11	Inversion	1789409- 1789542	136	121	m	++
				172	m	++
				177	w	++
	Inversion	1789396- 1789542	146	149	m	++
				170	m	++
	Inversion	1789393- 1789542	143	173	w	++
	Inversion	1789453- 1789494	41	184	w	++
				190	w	++

AMHR2_7-11	Inversion	1789432- 1789542	110	188	m	++
	Inversion	1789280- 1792374	94	159	m	_
NCOA5_E3-5	Inversion	33332674- 33332620	54	14	m	++
				121	m	++
				182	m	++
RXFP2_10-11	Inversion	8330883- 8330828	55	60	m	_
				121	m	_
				127	m	_
				175	m	_
				182	m	_
				184	w	_
				186	m	_
				187	m	_
				188	m	_
				190	w	_
				199	w	_
				202	m	_
	Inversion	8330910- 8330784	126	127	m	-
	Inversion	8330910- 8330786	124	128	m	_