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Abstract

Continuous learning is a research field that has significantly boosted in recent years due
to highly complex machine and deep learning models. Whereas static models need to be
retrained entirely from scratch when new data get available, continuous models progressi-
vely adapt to new data saving computational resources. In this context, this work analyzes
parameters impacting replay-based continuous learning approaches at the example of a
data-incremental text classification task using an MLP and LSTM. Generally, it was found that
replay improves the results compared to naive approaches but achieves not the performance
of a static model. Mainly, the performances increased with more replayed examples, and the
number of training iterations has a significant influence as it can partly control the stability-
plasticity-trade-off. In contrast, the impact of balancing the buffer and the strategy to select
examples to store in the replay buffer were found to have a minor impact on the results in
the present case.

Referat

Kontinuierliches Lernen ist ein Forschungsgebiet, das in den letzten Jahren durch komplexe
Machine- und Deep-Learning-Modelle einen enormen Aufschwung erfahren hat. Während
statische Modelle komplett neu trainiert werden müssen, wenn neue Daten zur Verfügung
stehen, passen sich kontinuierliche Modelle schrittweise an neue Daten an und sparen
so Rechenressourcen. In diesem Zusammenhang untersucht diese Arbeit Parameter, die
sich auf replay-basierte kontinuierliche Lernansätze auswirken, am Beispiel einer Daten-
inkrementellen Textklassifizierungsaufgabe unter Verwendung eines MLPs und eines LSTMs.
Eswurde festgestellt, dass Replay die Ergebnisse imVergleich zu trivialen Ansätzen verbessert,
aber nicht die Leistung statischer statischerModelle erreicht. Hauptsächlich stieg die Leistung
mit einer höheren Anzahl von wiedergegebenen Beispielen, und die Anzahl der Trainingsit-
erationen hat einen großen Einfluss gezeigt, da sie den Stability-Plasticity-Trade-Off teilweise
steuern kann. Im Gegensatz dazu wurde festgestellt, dass die Auswirkungen eines ausbal-
ancierten Replay-Puffers und der Strategie zur Auswahl der Beispiele für die Speicherung im
Puffer im vorliegenden Fall nur geringe Auswirkungen auf die Ergebnisse hatten.
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Chapter 1: Introduction 1

1 Introduction

The fields of big data analysis, machine learning, and artificial intelligence have received a
lot of attention in recent years, and much progress has been made. Even though essential
ideas like the perceptron model (Rosenblatt, 1957), which are still the basis of current neural
networks, were already developed in the second half of the 20th century, the progress and
new possibilities regarding computational resources during the last years brought a massive
boost to these research fields. For example, the global total corporate artificial intelligence
investment has increased sevenfold from 2015 to 2022 (Stanford University, 2023) and the
worldwide market size of artificial intelligence is forecasted to increase eighteenfold until
2030 from 2021 (Next Move Strategy Consulting, 2023).
The development went from classical models like Support Vector Machines or decision trees
to more complex deep learning models. A large field of research and application of machine
learning and artificial intelligence is Natural Language Processing (NLP) with tasks such as text
classification, translation, question answering, and text generation but also part-of-speech-
tagging and named entity recognition to name only a selection of possible tasks. NLP, in
particular text classification, is also the focus of this work.

1.1 Motivation and Classification

Most research about supervised learning tasks focuses on building models to best solve a
specific task defined by a static training dataset. This means a labeled dataset is used to
train a model, which is then evaluated on a test split of the dataset with a similar feature
distribution. Recently, large language models like Transformers often achieved good results
and became state-of-the-art in many NLP-tasks (Minaee et al., 2021). Those developments
are significant efforts in the research field. However, in many cases, the experimental setup
of a static training and test data set is not realistic in the long-term usage for real applications
as the data underlays shifts regarding the feature and label distribution. For instance, in a
hate speech classification system for text comments, the topics of the comments and the
proportion of hate speech can change over time. This usually leads to a decrease in perfor-
mance with the result that those static models become outdated after a specific amount of
time. Then a model would need to be retrained with updated data. In practice, this is the
problem because regularly used large language models have high requirements regarding
computational resources, which end users do not have available in most cases. Additionally,
manual effort is required to do the retraining. Both points are major drawbacks that may
prevent the practical application of those models (W. Zhang et al., 2023).
This problem is addressed by Continuous Learning (CL). CL deals with the issue of continu-
ously updating models to omit the retraining step from time to time in static models. Con-
tinuous updates of models in small steps instead of complete retraining have the advantage
that the requirements on computational resources are smaller, as the computation is spread
over a long time. When a model is often updated with just a few new training examples, the
computational power needed to fulfill theminor update is much smaller than when complete
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retraining must be done. In other words, it could be thought that the retraining is spread
into many small updates executed over a long time span. The second advantage is that the
model is updated continuously with each new data point or in small steps instead of bigger
updates in the case of complete retraining. Ideally, CL omits decreases in the performance
over time.
Nevertheless, CL is still a big challenge. It was only a minor research area before it became
more popular whenmodels becamemuchmore complex - too complex to be retrainedwithin
short periods. This raised the ContinualAI1 research organization and open community in
2018, intending to drive research in this area. CL is confronted with a trade-off between
efficiency, scalability, and adaptability to achieve the goal of sustainable models that can be
used in the long term (Cossu et al., 2021). Compared to static models, in CL many processes
are different - beginning in the data acquisition and not ending with the evaluation process.
There are still no established definitions of most related terminology, making work in this
field difficult. At the time of writing, research in this field is growing. Much research focuses
on image processing tasks, whereas only a minor part focuses on NLP-tasks. Furthermore, it
must be distinguished in multiple application scenarios, making related work rarer again.
1.2 Objective and Contribution

This work deals with CL in NLP tasks, concretely with text classification. The first part aims to
highlight the main difficulties of CL and current solutions for addressing those challenges. In
this context, it will among others be referred to dataset shifts, Catastrophic Forgetting (CF),
and the stability-plasticity trade-off.
In the second part, a data-incremental text classification scenario is used to examine a
replay-based CL-approach in more detail regarding influential parameters. Replay-based
approaches save selected examples from the training data in a memory. In the further train-
ing process, a small amount of preserved examples is added to the new training examples
and replayed to prevent the network from forgetting previously learned knowledge. As of
now, no research analyzing those parameters in the mentioned constellation. This work,
therefore, contributes to the following two main research questions:
Research Question 1 In a replay-based approach, how do the number of replayed exam-
ples, the number of training iterations, and the buffering strategy affect the learning process
and performance?
Research Question 2 To what extent does replay improve the results compared to a naive
approach, and how does it compare to a model trained with all data at once (static model)?
For all the experiments carried out to answer the research questions, a Multi-Layer Percep-
tron (MLP) and a Long Short-Term Memory Network (LSTM) model are compared as repre-
sentatives of a simple and a more complex neural network respectively. For question 1, each
parameter is changed while keeping the others constant to be able to measure its impact.
The buffer-strategy-parameter is again split into three parts. The impact of balancing the
1https://www.continualai.org/ (visited on June 14, 2023)
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saved examples in the memory buffer and the strategy for selecting examples to be saved
in the buffer is examined. Furthermore, both are combined. Research Question 2 aims to
classify the performance of the model. As a lower bound commonly naive models apply
no strategies to address the challenges of CL. Models trained with the complete dataset at
once (classical models) can be seen as the upper bound of the performance. For research
question 2 it should therefore be examined where in betweenmodels using the replay-based
approach lie.
1.3 Structure of this Work

This work begins with the theoretical background of CL depicting differences compared to
classical models and evaluation. Chapter 2 gives an overview including a formal definition of
CL, descriptions of possible learning scenarios, and the main challenges. Subsequently, the
main strategies to address CL are introduced in Chapter 3 including a description of methods
for the learning process as well as evaluation protocols for the continuous case. Afterward, in
Chapter 4 NLP comes more in the focus with related work regarding CL in NLP-tasks before
the practical analyses are done in Chapter 5. In this part, first, the methodology is introduced
(Section 5.2), followed by the description of the experiments (Section 5.3) and finally their
results and discussion (Section 5.4). The findings of this work are summarized in Chapter 6
and an outlook for future work is given in Chapter 7.
In addition, supplementary material, including the created dataset, all models, and the code
used, is available online.2

2https://drive.google.com/drive/folders/1K6XkQ7iWWNjd8DtS6skQ6MT8ZioeuA5s
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2 Overview of Continual Learning

This chapter introduces CL in general, starting with a description of the workflow compared
to classical, static models. Subsequently, the CL algorithm is formally defined. As CL can be
applied to a wide range of different types of applications, it is essential to distinguish them
because a system’s requirements differ depending on the type of application. Those types
are coarsely divided into three scenarios which are explained in Section 2.3. Building upon
the basics of CL, lastly the main problems and challenges are explained in this chapter.
2.1 Workflow of Continuous Learning Systems

Classic, static machine, or deep learning models are usually trained on a static dataset. Once
the dataset is created, it is used to train a model, which in turn is deployed and used for
prediction. Google Cloud (2023) describes the machine learning workflow as a sequence of
seven stages, including data preparation, model coding followed by training, deployment,
and finally, generating predictions, monitoring them, and versionmanagement. The problem
with this procedure is the assumption of a stationary data distribution and that the workflow
does not provide for any update. This means it is assumed that the unseen data in the
prediction phase has the same distribution as the training set (Hu et al., 2020; Hurtado et al.,
2023). However, the model has limited usability if the distribution of the data to predict
changes as it reflects only the data seen so far in the training phase (Hurtado et al., 2023).
The workflow must be adjusted for CL to allow model updates using new data. Mundt et al.
(2022) suggests using the workflow of Google Cloud (2023) cyclically while applying changes
and extensions in each step to fit the workflow for CL. However, the cycle does not represent
continuous updates optimally. In particular, the stages of coding the model and deployment
raise imprecision as coding the model should include the update process, and once the
model is deployed, it should be updated in its work environment. Another workflow closer
to the demands of CL and more specific is proposed by Hurtado et al. (2023). Building upon
this, an adapted and extended version of a CL workflow is shown in Figure 2.1. It starts
with the data collection. The data can arrive in batches or as a stream, depending on the
scenario. The data needs to be preprocessed for further steps, including feature extraction
and conversion to a machine-readable representation. The drift detection as the next step
can be actively done if new classes or tasks are detected or passively in case of a constantly
evolving data stream. According to the update strategy chosen, the model is then updated
using the preprocessed data. Finally, continuous evaluation or monitoring of the predictions
is important to ensure the stability and robustness of the model. At this point, the cycle starts
again from the beginning when new data arrives. In this way, a model can be continuously
updated to adapt to changing data distributions.
2.2 General Definition

This section introduces a general definition of CL and its formal notation. Generally speaking,
a CL-System is a system that can learn new tasks by continuously adapting the current state
of the system without losing the ability to solve prior tasks. Losing the ability to solve prior
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Figure 2.1: Continual learning workflow (adapted from Hurtado et al., 2023).Workflow of a CL-system. The cycle starts with newly arriving data (data collection) which is subsequentlypreprocessed. The system detects data drift actively (e.g., new task or class) or passively (continuously evolvingdata stream). Afterward, the model is updated and evaluated to ensure robustness.

tasks during the adaption process is also called catastrophic forgetting (Hassabis et al., 2017;
Parisi et al., 2019; Thrun & Mitchell, 1995) and will be explained in detail in Section 2.4.2.
This means the system is ideally able to incrementally learn new tasks without losing the
ability to solve tasks learned before. Thereby the goal is to constantly improve the system’s
performance on all learned tasks by a progressive generalization of the system (Biesialska
et al., 2020).
Formally the system has to learn sequentially arriving tasks t1...tn with ti ∈ T where T is the
set of task descriptors and each ti is a specific task descriptor. A task descriptor could, for
example, be a number in the easiest way. For each task, the data objects arrive in batches
b ∈ Bt. Here, b is the batch index of the current tasks batch, and Bt is the respective set ofbatch indices for the current task (L. Wang et al., 2023). The specific data points of a batch
are finally contained in the set Dt,b = {Xt,b, Yt,b} where Xt,b contains the input samples of
batch b in task t and Yt,b contains the respective labels.
Often in literature, the data objects are also summarized into a single training set for each
task, and the subdivision in batches is omitted (Biesialska et al., 2020; Lesort et al., 2020).
As the split in batches is more general, it is included in this definition. On the one hand, if
the batch number per task is chosen to be one, the same result is achieved without batch
notation. On the other hand, the use of batches of sequentially arriving single data points
can be described by choosing the batch size one (one object per batch). This makes it very
flexible and allows to describe a broad range of problems with a common notation.
The actual goal is then to learn a function (the actual prediction model) f and continuously
update it with new arriving training samples to possibly changed circumstances, i.e., to new
tasks, classes or domains (Biesialska et al., 2020):

f : X × T → Y (2.1)
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This means the model progressively uses the training samplesX from all tasks T to learn to
solve all existing tasks. Thereby the solution of a task is given by the prediction (label Y ) for
a given data point for a specific task.
The sequential update rule for the prediction function f can now be formulated as in the
following CL-algorithm ACL (Lesort et al., 2020):

ACL
s : < fs−1 , Xt,b , Ms−1 , Yt,b > → < fs , Ms > ∀t ∈ T, b ∈ Bt, s ∈ N (2.2)

The goal of the algorithm is to update the model fs−1. s indicates the time step here, and
therefore fs−1 is the model from the last time step, whereas the model after the update is
denoted as fs. The model learns from the training examplesXt,b and their respective labels
Yt,b in each time step. This states that a complete batch b of a specific task t is processed in
each iteration. Therefore a batch denotes the smallest unit to process during training.Ms−1 isa memory for storing data. It can store previous examples, partially trained models, or other
relevant data (Awasthi & Sarawagi, 2019). This is necessary as it is often not automatically
allowed or even possible to access previously used training examples again, except those are
explicitly stored in the given memory. Usually, the memory is limited for each task, batch, or
the complete system but not endless. Using the mentioned inputs, the algorithm updates
(learns) the model resulting in the updated model fs and updated memoryMs.
2.3 Continual Learning Scenarios

CL is needed when the circumstances of the problem that should be solved change over
time. The model needs to continuously adapt to keep or improve the performance, whereas
a static model without continuous training would experience decreasing performance and
may be useless after some time.
Depending on which circumstances related to the problem are changing, different CL-Sce-
narios are distinguished. The three main scenarios are task-incremental learning, domain-
incremental learning, and class-incremental learning (De Lange et al., 2021). Beyond that, other
constellations or deviations of these scenarios are possible. For simplification, as it is themain
focus of this work and also done in most literature, it is assumed here to have a classification
problem (De Lange & Tuytelaars, 2021; De Lange et al., 2021; Hsu et al., 2018; Sodhani et al.,
2022; van de Ven et al., 2022; Z. Wang et al., 2022), since classification problems are the main
focus of this work. For other problem types, e.g., regression, the following definitions must
be extended.
Three main objectives distinguish the scenarios between the sequentially learned tasks.
These are the output distribution P (Y ), the observed classes {Y }, and if a task-identifier
t is provided in the prediction phase or if it is not provided and possibly needs to be inferred
by the system itself (De Lange et al., 2021; Hsu et al., 2018; Sodhani et al., 2022). In some
cases, the input distribution P (X) is also taken into account (Hsu et al., 2018; Sodhani et al.,
2022). The output distribution P (Y ) describes the probability of observing a given class label,
and therefore it also represents the ratio of the classes to each other. Conversely, the input
distribution P (X) is the probability of observing a given example x. In simple terms, this
describes how the data is spread in the input space.
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Scenario Output Distribution Classes Task-ID
domain-
incr.

P (Yt) = P (Yt+1) {Yt} = {Yt+1} not required
class-
incr.

P (Yt) ̸= P (Yt+1)

{Yt} ̸= {Yt+1} only given in training
task-
incr.

{Yt} ∩ {Yt+1} = ∅ given in training and predic-tion (evaluation)
Table 2.1: Distinction of the main CL-Scenarios.

CL-Scenarios are distinguished by comparison of their output distribution (class ratio), the present classes in agiven task, and if, respectively, when a task-identifier is given. Yt denotes the available class labels of task t.

It is essential here to understand the concept task as "an isolated training phase with a new
batch of data, belonging to a new group of classes, new domain or a different output space"
(De Lange et al., 2021). This does not necessarily coincide with the common understanding of
the word task, i.e., a problem that has to be solved. Here this is related to the learning phase
of the system, and it is two different tasks if the system first learns to distinguish zebras from
horses, for example, and afterward, it learns to distinguish rabbits and cats. As new classes
emerge in the second training phase, it is a new task by the given definition (van de Ven et al.,
2022). If a system learns to solve one single problem but with successively arriving data, the
learning procedure can also be divided into different tasks by the batches of arriving data.

Table 2.1 gives an overview over the mentioned CL-scenarios and their properties. In the
following, each scenario is described in more detail.

The task-incremental scenario is, in general, the easiest of the three scenarios. This is
because the task identifier is given for every task in the training and prediction (evaluation)
phase. Consequently, multiple task-specific components can be separately used, and for a
given task, the respective component can be activated for the prediction. In this case, the
challenge is finding approaches to share knowledge between the separate components to
reduce computational complexity (van de Ven et al., 2022). Otherwise, one could also use
completely different models for each task. Nevertheless, separation is often necessary, as
tasks could be of utterly different problem types with a different number of classes (Hsu et al.,
2018). As the tasks are usually unrelated to each other with respect to their output, the class
labels of the tasks are disjoint, and the output distributions are different, too.

The second scenario is the domain-incremental scenario. It is mainly characterized by the
absence of task-identifiers as the system solves the same problem with the same classes but
in different domains in every task (van de Ven et al., 2022). Therefore task identifiers are not
necessary. Caused by the change of the domain, the input distribution changes with every
task, such that P (Xt) ̸= P (Xt+1). Most literature also assumes to have the same output
distribution in all tasks (P (Yt) = P (Yt+1)) (De Lange et al., 2021; Hsu et al., 2018; Sodhani
et al., 2022). This simplifies the problem but must not always be true. If, for example, a
hate speech classifier is trained to detect hate speech in different social networks (where
the training on each network corresponds to one task), the assumption would mean the
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hate speech percentage is the same in all social networks. This is not necessarily true. In
this scenario, the goal is to generalize the model such that it can solve the given problem in
different domains with little domain-specific training.
It should be pointed out, that the domain-incremental scenario is not the same as domain
adaptation. The latter aims only at a good performance on an unseen domain while it was
trained on another domain before (Pan & Yang, 2010). Just the performance on the unseen
domain is relevant. In contrast, domain-incremental learning aims at keeping the perfor-
mance high on all domains (Hsu et al., 2018).
Finally, the class-incremental scenario is considered the most difficult of these three sce-
narios, as in the prediction phase, the system first needs to infer the task, and building upon
this, it predicts one of the respective classes (van de Ven & Tolias, 2019). Though, the task
identifier is only given in the training phase. In this scenario, each task contains new classes
the system should learn to distinguish. Furthermore, the system should not only be able
to distinguish the classes of each task but also to distinguish all of the growing number of
classes (van de Ven et al., 2022). Due to the changed set of classes, also the output distribu-
tion changes with every task. An example would be a system that learns to classify images
from the MNIST-dataset. In the first task, it may learn to distinguish the numbers 0 and 1.
In the second task, it learns the numbers 2 and 3 and so on. In the end, one would ask the
system which of the numbers from 0 to 9 a given image shows (Hsu et al., 2018).
Some literature furthermore considers data-incremental learning as a more general concept
of learning from a data stream, i.e., the data arrives incrementally (De Lange & Tuytelaars,
2021; De Lange et al., 2021). This paradigm is very similar to the domain-incremental scenario,
as the data does also not come with a task identifier. However, the input distribution P (X)

must also not change. Often both scenarios cannot clearly be separated, as changes in the
input distribution are often constantly (Hurtado et al., 2023), making it difficult to define
boundaries between domains.

2.4 Main Problems and Challenges

Compared to the classic machine learning workflow, CL comes withmore complex difficulties,
which is also one reason why it is rarely used yet, even though it would theoretically be more
efficient to use continuously adapting models for many tasks. One can find three main and
mutually dependent factors that make CL as difficult as it is. These are distributional shifts in
the dataset, CF, and the stability-plasticity-dilemma. The starting point that makes continuous
learning necessary in the first place are dataset shifts. In the adaption to those dataset shifts
it comes to the problem of CF which is again related to the stability-plasticity-dilemma - a
trade-off between learning new information and forgetting older knowledge. All these factors
are interdependent and influence each other. In the following subsections, each of the factors
is described in detail.



10 Chapter 2: Overview of Continual Learning
No distribution Shift

(a) Original Data

Change in P(X)

(b) Covariate Shift

Change in P(Y)

(c) Label Shift

Change in P(Y|X)

(d) Concept Shift
Figure 2.2: Types of dataset-shifts (adapted from Ataei et al. (2021).Figure (a) shows exemplary output data in the feature space. In (b), a covariate shift is depicted, where a shift inthe feature distribution P(X) is observed. In contrast, in a label shift (c), the distribution of labels P(Y) betweenthe classes changes. Last, in a concept shift (d), the separation line changes, with the result that the labels ofdata points change compared to the original data in (a). The shape of the data points highlights changed labels.

2.4.1 Dataset Shifts

Shifts in the data distribution are the first challenging factor, and one can understand dataset
shifts as the reason why CL is necessary in the first place. Sometimes, dataset shift is impre-
cisely also called concept drift. However, concept drift is just one kind of possible dataset
shifts (Gepperth & Hammer, 2016). Dataset shifts generally describe changes of various kinds
in the underlying data over time. As a result, the environment of the machine- or deep learn-
ing system changes. This is where static systems will fail if the changes exceed a certain range
and where CL-systems are necessary, as they should be able to adapt to those changes. How-
ever, to adapt to possible changes, it is first necessary to detect them (Quiñonero-Candela
et al., 2008). Therefore, the following gives an overview of the three main dataset shifts ob-
served in practice (Ataei et al., 2021). A more fine-grained categorization can be found in
Quiñonero-Candela et al. (2008). It is essential to be aware of the main observable dataset
shifts when designing CL-systems and their requirements for what changes they should be
able to adapt to.
For an easier understanding, in the following, a system for hate speech detection in social
media comments is used as an example. Thereby, the feature set of a comment, which can
be constructed from its textual content and possibly other features, is denoted byX . In this
example, the respective labels, which would be hate speech or not hate speech, are denoted
by Y .
First, one could observe topic changes and a changing language over time. As a result, new
words or new meanings of words might be observed dependent on the topic. Especially in
socialmedia, language is changing rapidly because of the use of slang and colloquial language.
Consequently, a static model becomes outdated as it cannot cover such changes. Formally
spoken, those observations concern changes in the feature space P (X) (Ataei et al., 2021;
Quiñonero-Candela et al., 2008). This kind of shift is also called Covariate Shift (Ataei et al.,
2021; Quiñonero-Candela et al., 2008). In Figure 2.2, one can see that the data points are
differently distributed over the input space compared to the original data. However, the label
distribution, representing the number of data points per class, stays constant.
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Another observation could be a changing amount of posted hate speech in a social net-
work during a given time span, i.e., more hate speech is written as one year before. This is,
therefore, a change in the label distribution P (Y ) (Label Shift) (Ataei et al., 2021; Quiñonero-
Candela et al., 2008). Such changes are often not only a problem in CL but also in staticmodels
when training and target data are compared, as the training data is often not an adequate
representation of the real-world target data the model should be applied to in production
(Quiñonero-Candela et al., 2008). In Figure 2.2, the label shift is visible by fewer data points
in the green (triangle) class than in the original data. That means the label distribution has
changed.
Third, the understanding of what is defined as hate speech could change over time, which
means the underlying concept of the task changes. Therefore, this shift is also called Concept
Shift (Ataei et al., 2021). A concept shift means the same data point in the feature space might
be classified into a different class than before. Formally spoken, the class probability given
the data points X changes: P (Y |X) (Ataei et al., 2021; Quiñonero-Candela et al., 2008). In
this case, it is necessary that the model, which determines P (Y |X), is able to adapt to the
concept shift. In the diagram on the right in Figure 2.2 the concept shift can be seen by the
changed separation border in the feature space. Depending on the extent of the concept shift
and the model, one decides between global and local adaptation (Ataei et al., 2021; Gepperth
& Hammer, 2016). In local adaptation, the model is only refitted for selected decision regions.
For example, specific branches of a decision tree could be changed. Conversely, a global
adaptation influences the whole model (Ataei et al., 2021).
The mentioned dataset shifts can also be distinguished in real and virtual shifts (Gepperth &
Hammer, 2016; Widmer & Kubat, 1993). The concept shiftP (Y |X) is a real shift, as it is caused
by changes in the underlying concept in the real world. In a virtual shift, on the other hand,
there is no distributional change in the real world, but there is a changed input distribution
P (X) as a result of a bias in the selection of the data samples (Gepperth & Hammer, 2016;
Widmer & Kubat, 1993). For example, the feature distribution of the training data could be
different from the feature distribution of the test data. As in this case, the change of P (X)

did not happen in the real world but is caused by the selection of the training data, it is
considered a virtual shift.
2.4.2 Catastrophic Forgetting

Natural cognitive systems, i.e., humans, are able to lifelong learn different task one after
another without abruptly and totally forgetting tasks learned before (French, 1999). Humans
do forget, but a slowly forgetting of selective information is not necessarily a disadvantage. De
Lange et al. (2021) describes this as graceful forgetting. However, neither a less complex MLP
nor Deep Neural Networks are able to satisfactory implement this capability in its standard
implementations (Chen & Liu, 2018, pp. 55–57). In the classical concurrent training, the
network is trained with all data at once (Ratcliff, 1990). Accordingly, if the data is well shuffled
the data distribution appears stationary for the model (Goodrich & Arel, 2014). However, in
CL-scenarios not all data is available at the same time and the order of the data is given by
the application task and cannot be changed. Depending on the concrete application it may
only be possible to change the order of new data examples within smaller subsets. This leads
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to the problem, that the data is not presented stationary as in the concurrent training but in
a non-stationary manner (Goodrich & Arel, 2014). CF can occur in all CL-scenarios including
data-incremental learning which can be understood as a single task (Toneva et al., 2018).

As a result it comes to the problem referred to as CF or catastrophic interference (Weaver
et al., 1998) and was first observed by McCloskey and Cohen (1989) and Ratcliff (1990). It
describes the phenomenon of a neural network to abruptly lose information about previous
tasks when training on new data of a new task (Kirkpatrick et al., 2017; McClelland et al., 1995;
Ratcliff, 1990; Robins, 1995). This leads to disruption of the performance of the previous
task(s) .

The reason for CF is, that in CL the parameters of a model cannot be jointly optimized (Kirk-
patrick et al., 2017). In contrast, at the beginning they can only be optimized for the first task
which means to find one of multiple minima regarding the optimization (Ratcliff, 1990). When
training is continued with new data, the parameters need to be changed to fit the new task.
As the starting point of the further optimization of the network is given by the set of weights
learned before, the updated solution will be near the previous solution (Ratcliff, 1990). This
does not necessarily mean, that this new solution is an optimal one due to the restriction of
sequential training. In simple words, a concurrent training jointly optimizing the parameters
using all data at once would likely find a different solution.

In depth, the problem is mainly cause by two factors. First, shifts in the input space (new data)
where each subset covers just a small local region of the entire input space (Toneva et al., 2018;
Weaver et al., 1998). This makes it representative for a specific task but unrepresentative for
the whole domain. Goodrich and Arel (2014) describe this as a temporal bias towards the
respective training data of the task. Consequently, the optimization processes for each of
the tasks converge to strongly different solutions (Toneva et al., 2018).

Second, the network architecture itself causes difficulties, as the same weights are relevant
to multiple tasks. Accordingly, the change of a weight does affect several learned regions that
refer to different tasks (Goodrich & Arel, 2014; Chen & Liu, 2018, pp. 55–57). The problem gets
worse, when the network uses activation functions that are non-zero over large parts because
the larger the non-zero part of the activation function is, the higher is the probability that the
outcome of the neuron changes and effects previous knowledge (Goodrich & Arel, 2014). If
there is redundancy within the networks weights, this can cushion the forgetting. However,
latest after a certain number of learned tasks redundancy will decrease and therefore favor
forgetting (Goodrich & Arel, 2014).

Even though the performance sharply drops when observing CF it was found that not all
samples have the same probability to be forgotten. Toneva et al. (2018) distinguished the
examples in forgettable and unforgettable examples. The latter were examples which were
never forgotten by the system during the entire training procedure. Their analysis showed,
that both groups contained many examples that were first learned during three to four train-
ing iterations but the set of forgettable examples contained more examples which needed
more training iterations to be first learned. Furthermore, it was found, that learning items in
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groups makes themmore resistant to forgetting (Ratcliff, 1990; Robins, 1995). The bigger the
groups of examples are, the more elements can be jointly learned which is advantageous for
the solution.
As CF is amain problem in CL,most CL-approaches deal with the question of how to overcome
CF. An overview of possible strategies is given in Chapter 3.
2.4.3 Stability-Plasticity-Dilemma

The stability-plasticity dilemma represents a fundamental trade-off between two essential
aspects of a learning system. Stability refers to the ability of a model to retain previously
learned information and patterns without being significantly impacted by new data (De Lange
et al., 2021; Parisi et al., 2019). In other words, a stable model resists changes to its existing
representations when training is continued on new data, ensuring that past knowledge re-
mains intact. In contrast, plasticity refers to the ability of a model to adapt and incorporate
new information effectively (De Lange et al., 2021; Parisi et al., 2019). A highly plastic model
can learn rapidly from new data, allowing it to update its representations or weights and
adapt to changing environments.
Whereas humans tend to steadily forget throughout the lifetime it is unusual to rapidly forget
when learning a new task (French, 1999; Parisi et al., 2019). This balance between stability and
plasticity is in the human brain solved by the interaction of different brain areas (Hassabis et
al., 2017; Kumaran et al., 2016). The theory behind is referred to as Complementary Learning
System (CLS) (Kumaran et al., 2016; Parisi et al., 2019). Among others, the combination of
the hippocampus and neocortex plays an important role. The hippocampus is characterized
by a fast learning rate (high plasticity) but cannot manage long term memories (Hassabis
et al., 2017). On the other side the neocortex has a slow learning rate but being able to build
strong, overlapping connections to make long termmemories possible (Hassabis et al., 2017;
Kumaran et al., 2016).
The challenge arises from the inherent tension between these two competing objectives.
A model that is too stable may struggle to learn from new data, as it tends to resist any
modifications to its existing representations. Consequently, it helps to prevent CF (Hurtado
et al., 2023), however new knowledge can rarely be learned, leading to a degradation of the
overall performance when new tasks are added.
On the other hand, a model excessively plasticity can be too sensitive to new data. It could
rapidly accommodate new patterns but losing track of previously learned knowledge in the
processwhich is called CF. This lack of stability results in difficulties inmaintaining information
on previously seen tasks, as the model keeps adapting to new information at the expense of
retaining old knowledge.
Finding the right balance between stability and plasticity to prevent CF is crucial for creating
robust CL systems. Various approaches have been proposed to address the stability-plasticity
dilemma, aiming to mitigate catastrophic forgetting while allowing the model to learn from
new data effectively (Hurtado et al., 2023; Parisi et al., 2019).
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3 Methods Addressing Continual Learning

The problems and challenges regarding CL mentioned before hamper the creation of robust
and reliable CL-systems. Therefore, most approaches suggested in the area of CL address
CF and the stability-plasticity-dilemma. Most approaches are based on neural networks as
those are inspired by the mammalian brain, which is perhaps the best role model and neural
networks naturally provide the possibility to step-wise continue training. There exist also
non-neural-network methods (e.g. Benavides Prado, 2020; Gepperth & Hammer, 2016), but
they are less common as it needs more effort to adapt the systems to enable continuous
training. Due to the higher relevance, this work concentrates only on neural-network-based
approaches.
The following introduces three general concepts to address the mentioned challenges. Fur-
thermore, specific evaluation protocols andmetrics are explained as evaluation ismuchmore
complex and case-specific in the continuous setting than for static models.

3.1 Categorization of the Main Learning Strategies

Most CL approaches use neural networks. This hasmainly two reasons: First, neural networks
became very popular for machine and deep learning, and second, they are highly customiz-
able, adaptable and can be naturally trained continuously, which means a neural network
can be trained with initial data and training can be continued with additional data later on.
Nevertheless, this naive approach usually works poorly and often results in CF. Therefore,
more sophisticated approaches (also called strategies) are necessary for incremental and
continuous training of neural networks.
A wide range of strategies are applied to various use cases (i.e., for different CL-scenarios).
These strategies can be divided into three main categories: replay-based methods, regular-
ization-based methods, and architectural methods. The categorization is based on where the
strategies apply in the training cycle of a neural network (Figure 3.1) (L. Wang et al., 2023).
The data features are fed into the neural network model. The model’s output is a prediction.
Finally, using the prediction and the data labels, the loss function is used to compute the
loss and update the model’s parameters. The green colored boxes in the figure depict where
each of the strategies mainly applies in the learning cycle. All the methods aim to overcome
the primary problem of CF while reducing necessary computational and memory resources
(Lesort et al., 2020). Replay-basedmethods try to avoid CF by storing and replaying previously
seen data later. Regularization-based methods try to prevent or slow down the change of
selected parameters that were important for previous tasks. This is mainly done by additional
regularization terms in the loss function. Last, architectural methods address the problems
of CL by specific or changing network architectures. Therefore, this approach stays in the
context of the model in Figure 3.1. Not all CL-systems can generally be categorized into one
of these categories as different strategies are often combined. As each strategy applies to
another part of the neural network learning cycle, such hybrid approaches are possible.
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Figure 3.1: Overview of strategies for CL with neural networks and their entry points in the machinelearning cycle (adapted from L. Wang et al., 2023).The blue rectangles depict the main elements of the training process of a CL-system. The green rectanglesdepict, to which elements the main CL-strategies apply.
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Figure 3.2: Overview of general strategies to address CL and example algorithms.The boxes denote specific examples of the general strategies addressing CL. All mentioned examples are furtherdescribed in Section 3.1: iCaRL (Rebuffi et al., 2017), GEM (Lopez-Paz & Ranzato, 2017), A-GEM (Chaudhry et al.,2019), GR (Shin et al., 2017), EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017), LwF (Li & Hoiem, 2016), HAT(Serra et al., 2018), Piggyback (Mallya et al., 2018), PathNet (Fernando et al., 2017), PNN (Rusu et al., 2016).

It should be mentioned here that it exists no common definition of the methods established
in literature by now. Other categorizations also exist (e.g., Lesort et al. (2020), Parisi et al.
(2019), and L. Wang et al. (2023)). However, as most of them can be traced back to the
mentioned categorization, this one was chosen in this work. The strategies are overviewed in
Figure 3.2. The boxes highlight selected examples of approaches for the respective strategy.
More comprehensive overviews containing further concrete approaches can be found in
De Lange et al. (2021), Lesort et al. (2020), and Maltoni and Lomonaco (2019). In the following
subsections, these strategies and the mentioned example approaches are described in more
detail.

3.1.1 Replay-Based Methods

In replay-basedmethods, the basic idea is to somehow store selected examples fromprevious
tasks to retrain the network on them together with the new tasks data and therefore prevent
CF. This retraining is also called replay and describes the repeated training of examples during
multiple tasks. If the network processes examples from previous tasks, again and again, this
reduces CF.
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Reply-based methods are inspired by the CLS-theory (Kumaran et al., 2016; McClelland et al.,
1995), which describes the process of effective learning of many mammalian species. Accord-
ing to CLS-theory, the learning process consists of two complementary systems represented
by the quick learning hippocampus and the slow learning neocortex (Kumaran et al., 2016).
Transferred to the replay strategy, the hippocampus is represented by a memory that stores
specific examples or the data distribution for all tasks. These examples are replayed later on.
The neocortex corresponds to the actual classification system for prediction, which gradually
acquires generalized and structured knowledge about all tasks (Kumaran et al., 2016). In this
view, replay-based strategies can be seen as a bio-inspired approach (Parisi et al., 2019).
One distinguishes two replaymethods: rehearsal-replay and pseudo-rehearsal- or generative
replay.
In rehearsal-replay, selected examples of previous tasks are explicitly stored in a designated
memory to be replayed in later training phases (Biesialska et al., 2020). The goal is to select
examples to be stored such that they best represent the data distribution of previous tasks
data (Lesort et al., 2020; L. Wang et al., 2023). Therefore, different sampling strategies exist.
A simple strategy is to use random selection (L. Wang et al., 2023). More advanced strategies
often use optimizable approaches. Aljundi, Lin, et al. (2019) suggest an approach that aims
to find a feasible region with reduced constraints (the stored examples) most similar to the
feasible region of the original problem containing all data examples. They showed that this
can be achieved by a maximal diversity of selected examples in the reply memory. As the
optimization approach is computationally expensive, they propose a heuristic greedymethod
as an alternative. The question is which examples to remove from the buffer to make room
for new examples. In their method, examples in the buffer with high cosine similarity to other
randomly selected examples from the buffer have a higher probability of being removed, as
the method aims to obtain diversity in the buffer Aljundi, Lin, et al. (2019). Therefore, keeping
similar elements in the buffer is not constructive.
Next to this storage on data-level, rehearsal-replay can also be done on feature-level. In this
case, it is not the complete data example stored, but its extracted features (L. Wang et al.,
2023). This reduces needed storage in many cases. This approach’s difficulty is managing
representation shifts, i.e., the change of the feature extractor due to continuous adaption. As
a result, the previously stored features do not align with the current changed feature space
(L. Wang et al., 2023).
A general disadvantage of rehearsal-replay is privacy concerns, as raw data is stored for a
potentially long time (Lesort et al., 2020). This could already be an exclusion criterion in some
use cases.
One of the first algorithms in this category focusing on class-incremental learning is Incre-
mental Classifier and Representation Learning (iCaRL) (Rebuffi et al., 2017). For every learned
class, iCaRL dynamically selects a set of exemplar images or data points using a herding-
based prioritized exemplar selection. This iteratively selects exemplars such that the feature
vector of the selected examples is most similar to the average of all feature vectors of the
data points in the respective class. Concerning resource usage, the total number of data
points is bounded by a fixed parameter. Besides the sample selection, the algorithm updates
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the neural network-based feature selection routine during training. For the latter, it also uses
regularization-based methods, which are described in the following section (Section 3.1.2) in
more detail. For the classification of unlabelled data points, the nearest-mean-of-exemplars
strategy is used, which determines a prototype vector for each class using the respective
exemplar images and compares it to the feature vector of the data point to classify (Rebuffi
et al., 2017).
Another representative for replay-basedmethods is Gradient Episodic Memory (GEM) (Lopez-
Paz & Ranzato, 2017). It has a memory for each task to store selected examples. While
learning, the underlying network is optimized so that the loss of samples in each task’s mem-
ory stays constant or decreases. The advantage to other methods (e.g., iCaRL) is that it allows
positive backward transfer, which means an improvement on previous tasks while learning
the current task (Lopez-Paz & Ranzato, 2017). Although GEM showed good results when only
trained a single epoch per batch, it still has a high resource consumption, making it inefficient
and unsuitable for common devices. Chaudhry et al. (2019) propose with Averaged Gradient
Episodic Memory (A-GEM) a more efficient version. The key idea is to optimize the loss over
all task’s memories together by averaging the single losses. Therefore optimization problem
is reduced from t− 1 constraints to a single constraint, where t is the number of the current
task (Chaudhry et al., 2019).
The pseudo-rehearsal, also called generative replay, approach aims to train a second gen-
erative model next to the actual classification model, which can generate artificial examples
of the previous tasks data distribution (Biesialska et al., 2020; De Lange et al., 2021; Lesort
et al., 2020; L. Wang et al., 2023). These artificially generated examples can be used for replay
in the next step as before. The advantage is that this approach does not need additional
memory. Furthermore, it is easily possible to balance generated data using conditional gen-
erative models. In this case, examples of a given class P (X|Y ) can be generated (Lesort et al.,
2020). Nevertheless, it is challenging to continuously train a generative model to represent
the data distribution of previous tasks well. Due to a considerable overhead during training,
this approach does not scale up well to large datasets (Parisi et al., 2019; L. Wang et al., 2023).
An example of this method is the Deep Generative Replay (GR) approach described in Shin
et al. (2017). The approach trains a scholar model for each task which is then used to train a
global generator model that can generate samples. The last part is the solver, which learns
from real-input data of the current task and artificially generated data.
3.1.2 Regularization-Based Methods

Regularization-based approaches avoid storing data examples of previous tasks to cope
with limited memory (De Lange et al., 2021). Instead, they apply regularization on network
parameters. A central problem in learning new tasks is the unwanted change of parameters,
so old tasks cannot be solved adequately anymore (CF). To face the problem, regularization-
based methods are orientated to the mammalian brain, for which it is assumed that it may
avoid forgetting by protecting previously learned knowledge in neocortical circuits (Kirkpatrick
et al., 2017). Therefore, regularization-based approaches try to prevent parameter changes
with negative consequences on the result by introducing regularization-terms to the loss
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function (Figure 3.1) to limit changes of essential parameters of previous tasks (Lesort et al.,
2020; Parisi et al., 2019). This method is also called prior-focused regularization (De Lange
et al., 2021) or penalty-computing (Lesort et al., 2020). A second common approach in this
group is knowledge distillation, which aims to optimize the complete network (instead of a
few selected parameters) for the new task while preventing changes in the prediction for old
tasks (Li & Hoiem, 2016; Parisi et al., 2019). As constraints are incrementally added with each
task in both cases, training time usually increases over time (Parisi et al., 2019).
The main characteristic of prior-focused regularization (also called penalty-computing) is
to prevent significant changes to parameters that are important to solve previous tasks (L.
Wang et al., 2023). Accordingly, if important parameters are not changed, the performance
of old tasks should also not change significantly. One of the most essential approaches in
this category is Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017). It measures the
importance of weights (parameters) for specific tasks and adds it as a quadratic penalty loss
to the update rule of the network (Kirkpatrick et al., 2017). To cut it short, it aims to prevent
changes to vital parameters. The importance of parameters is hereby calculated using the
Fisher information matrix (Kirkpatrick et al., 2017). A primary disadvantage of EWC is the
disability to learn new classes incrementally. Furthermore, multiple variations and extensions
of EWC exist, for instance, using dropout or early stopping, but the main idea to prevent or
slow down changes to specific parameters is the same (Lesort et al., 2020). However, in online-
learning scenarios, the problem with EWC is that it computes the importance of parameters
only task-wise and at the end of each task (offline). Therefore, splitting the stream artificially
into tasks would be necessary in an online scenario. This computation of the parameter
importance was changed in the Synaptic Intelligence (SI) approach, which continuously (in
an online manner) computes the parameter importance, which makes it more suitable for
online-learning scenarios (Zenke et al., 2017). Due to the restriction to parameter changes, it
comes in particular in prior-focused regularization to a challenging trade-off between learning
new tasks and preventing forgetting (Lesort et al., 2020).
In the knowledge distillationmethod, the underlying idea is to transfer knowledge from a
big, complex neural network to a smaller network while preserving the performance (Hinton
et al., 2015). This means the smaller network predicts the same outputs for given inputs
as the original network. The transfer of knowledge is thereby not based on the transfer of
parameters. Instead, the resulting simpler network aims to learn a more straightforward
mapping from input vectors to output vectors (Hinton et al., 2015). Sometimes, knowledge
distillation is also illustrated as a student model that learns to generate predictions of a
complex teacher model (Biesialska et al., 2020).
In CL, knowledge distillation can be used to transfer knowledge from the model of the previ-
ous tasks and a model trained on the new task together into one new model. The model of
previous tasks, together with the model of the newly learned task, can be seen as a complex
ensemble neural network simplified into a new (smaller) model (De Lange et al., 2021). Learn-
ing without Forgetting (LwF), which was introduced by Li and Hoiem (2016), uses this tech-
nique: Given a set of shared parameters θs, task-specific parameters of previously learned
tasks θo and task-specific parameters of the new task θn, they optimize the all the parameters
of the network to achieve a good performance on the new task while omitting changes to
the outputs of previous tasks. As without memory, only the new task’s data can be used
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for training. The authors aimed to prevent changes in the predictions of previous tasks on
the new (possibly domain external) data between the old and the new model as this goes
hand in hand with the prevention of (significant) parameter changes for the previous tasks
(Li & Hoiem, 2016). This mirrors knowledge distillation in LwF. Another usage of the student-
teacher constellation is the work of Shan et al. (2020).
3.1.3 Architectural Methods

Architectural methods address CL by implicit or explicit modification of the network’s architec-
ture itself (De Lange et al., 2021; Lesort et al., 2020). Both methods aim to separate learned
tasks such that new tasks can be learned without interfering with previous tasks (Biesial-
ska et al., 2020; Lesort et al., 2020). In the explicit modification, the network is dynamically
expanded when learning new tasks, i.e., new layers are added. Therefore it is also called
dynamic network expansion. In contrast, implicit modification has a static, fixed network
where other methods like masking separate parameters. As this is not done by regularization
terms in the loss function, this method distinguishes from regularization-based methods
(Figure 3.1).
In detail, according to their name, implicit (fixed network) architectural methods have a
static network architecture. Parameters of learned task are separated by activation and
deactivation of learning units when learning new tasks (De Lange et al., 2021; Lesort et
al., 2020). This prevents CF as parameters of the previous task cannot be changed. On
the other hand, when learning new tasks, those units can be reused in the forward pass.
This can be understood as the reuse of earlier learned knowledge. Learning units can be
weights, neurons, network layers, or others, depending on the specific system. Realized is
the activation/deactivation primarily by somehowmasking out learning units (De Lange et al.,
2021; Fernando et al., 2017).
Algorithms using masking are, for example, Piggyback or Hard Attention to the Task (HAT). In
the Piggyback algorithm, the model learns binary masks for the task to mask out neurons to
prevent parameters from changingwhen learning new tasks (Mallya et al., 2018). The network
architecture itself stays fixed. As the masks are attached to the underlying network, the
authors called it Piggyback. The HAT approach works similarly but uses a different strategy
to learn the attention masks (Serra et al., 2018). A different approach is used in PathNet,
which tries to find appropriate pathways through the network for new tasks by choosing
the pathway to best possible reuse parts of the network (Fernando et al., 2017). PathNet is
agent-based, meaning pathways are modeled by agents optimized by a genetic algorithm.
The underlying network consists of multiple connected subnetworks called modules. Each
module can only be trained once. If it was trained, it could not be changed anymore in the
future. This is why PathNet strictly tries to reuse modules for new tasks.
In explicit (dynamic network expansion) architectural methods, the network’s structure
changes over time. As new tasks are learned, the network is expanded by adding new param-
eters, neurons, layers, or other structures (Lesort et al., 2020; Parisi et al., 2019). Typically, a
new part or branch is added to the network for each new task (De Lange et al., 2021). The
disadvantage of this approach is a growing number of parameters which can lead to huge
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networks with high complexity over time (Biesialska et al., 2020; Parisi et al., 2019). Neverthe-
less, this method also makes it possible (and efficient) to have shared parameters between
tasks. For example, one could use a standard feature extraction and add smaller task-specific
components on top (L. Wang et al., 2023).
Dynamic network expansion is done in the Progressive Neural Networks (PNN) approach,
for example (Rusu et al., 2016). For every task, each layer of the network is extended with
additional, task-specific neurons, which, however, learn lateral connections to neurons of
other tasks. When training the new task’s parameters, all previous tasks’ parameters are
frozen to prevent performance loss.

3.2 Evaluation Protocols and Metrics

The evaluation of a CL-system is much more complex compared to static classification sys-
tems as it is not only the overall performance which is relevant to evaluate the system, but
many more features. The fact that there is a wide range and huge heterogeneity of possi-
ble CL-constellations and scenarios makes evaluation even more complex as for different
systems different evaluation strategies are necessary (Parisi et al., 2019). This is also the
reason, why there does not exist a general accepted evaluation strategy for CL-systems by
now. Consequently, a meaningful comparison of the different approaches described in the
literature is difficult and sometimes impossible.
In general the evaluation of a CL-system should take all aspects of the learning and application
problem into account to get an all-encompassing view of the system (Lesort et al., 2020).
Thereby, the overall average accuracy is only one of many metrics to measure (Lopez-Paz &
Ranzato, 2017). Furthermore, it should be looked at the accuracy on the current, on previous
and possibly also on future tasks because the goal of improved performance on all task
dissociates CL from transfer learning, were only the performance on the target task is relevant
(Lesort et al., 2020). Based on these measures, one can compute metrics to evaluate the
forgetting, stability and plasticity of the system and draw conclusions about the ability to
transfer and reuse previous learned knowledge (Lopez-Paz & Ranzato, 2017; L. Wang et al.,
2023). Another aspect is the consumption of computational and memory resources, as one
goal of CL-systems is, to reduce those resources. Next to specific evaluation metrics, it is
important to think about when and how often to evaluate a system during the learning
process and even how continuously monitor the performance in real world applications to
avoid a significant loss of performance. Regarding this, different evaluation protocols exist
including approaches to estimate worst case performance which is important for systems in
critical applications (De Lange et al., 2023).
In the following subsections, the evaluation protocols and subsequently an ensemble of
possible evaluation metrics is described in more detail. An overview of relevant metrics is
given in Table 3.2.
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Evaluation Sets
E1 E2 E3

Train Sets
T1 R1,1 R1,2 R1,3

T2 R2,1 R2,2 R2,3

T3 R3,1 R3,2 R3,3

Table 3.1: Evaluation matrix of a CL-system (based on Lesort et al., 2020; Lopez-Paz & Ranzato, 2017).
After training the system on each training set Ti, the system is evaluated on all evaluation sets Ej withperformance metric R. Each row represents the evaluation results after the training up to the respectivetraining set on the evaluation sets Ej for every task.

3.2.1 Evaluation Protocols

An evaluation protocol describes the basic strategy for evaluating a CL-system. This includes
specifying the training-, validation- and test data, when and how often to evaluate the system
during the ongoing learning process (evaluation periodicity), and which metrics to use with
the aim of assessing the system with respect to the whole application.
The most common setting is using separated train and test data for each task. That means
two datasets per task exist: a training set and a test set which are usually disjoint (De Lange
et al., 2023). The procedure, then, is to train the system on the first tasks training data
until the specified first evaluation point is reached, where the system is evaluated on all
evaluation sets. Afterward, training is continued on the next training set again, followed by
an evaluation on all evaluation sets, and so on. The reason for evaluating on all evaluation
sets (even from future tasks) is to be able to draw conclusions about forgetting, stability, and
plasticity afterward. As a result, one receives a performance matrix as shown in Table 3.1.
In the table, the rows represent the training sets, and the columns the evaluation sets. The
values Ri,j denote the system’s performance on task j after training until the i-th task. For
example, R2, 1 denotes how the model that was trained on tasks one and two performs on
the test set of task one. The performance measure itself can be chosen depending on the
problem setting. The accuracy is regularly used, for example.
Until now, it was assumed to evaluate the system after training on the whole training set
of each task. This is the most common approach, called task-based evaluation (De Lange
et al., 2023). Nevertheless, if the training sets are big, this is a relatively coarse evaluation,
and it is not known what happens during training and if the performance possibly fluctuates.
Therefore, a more fine-grained evaluation can be applied. For example, evaluation can be
done after each batch, mini-batch (Lesort et al., 2020) or up to evaluating the system after
eachm training sample, which is also called continual evaluation (De Lange et al., 2023). Con-
sequently, the most detailed result is achieved when choosing m equal to one. As shown
in De Lange et al. (2023), continual evaluation is particularly important to determine the
worst-case performance.
A third method, which is, in particular, suitable for online learning scenarios when the avail-
able amount of data is small, is prequential evaluation (Bittencourt et al., 2019; Gama et al.,
2013). In this procedure, a new data point is first used for evaluation by predicting it with the
current system. Afterward, the same data point is used for further training (Bittencourt et al.,
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2019). Consequently, each data point is used for both evaluation and training. Compared
to the protocols using a train-test-split discussed before, the disadvantage is that it is not
possible to measure the performance on previous data as no data is held out.

3.2.2 General Performance Metrics

General performance metrics express the system’s overall performance at a given time. Typ-
ically, these metrics are based on accuracy, but other measures like the F1-Score could also
replace it.
An intuitive measure is the Average Accuracy (ACC), which is the average accuracy from the first
up to the current task tk (Chaudhry et al., 2018; Lopez-Paz & Ranzato, 2017). Rk,i is accordingto the notation in Table 3.1 the performance (in this case accuracy) of the model trained up
to task tk evaluated on task i:

ACCk =
1

k

k∑
i=1

Rk,i (3.1)
When the ACC is computed after each task, it gives insights into the development of the
performance.
If one single value is preferred instead of many values, Rebuffi et al. (2017) suggest averaging
the ACC values from previous time steps. The authors of the paper call it Average Incremental
Accuracy (AIA):

AIA =
1

T

T∑
i=1

ACCi (3.2)
With the AIA, it is important to remember that it reflects the entire historical evolution of the
model, including any outliers in performance, whether positive or negative (L. Wang et al.,
2023).
The AIA includes the evolution of the performance, but due to averaging, it gives no informa-
tion about how the performance developed over time. To get insights about the evolution
and how quickly a model learns, the Learning Curve Area (LCA) can be used (Chaudhry et al.,
2019). In contrast to the metrics before, it evaluates after training with each mini-batch and
is more fine-grained. First, the b-shot performance needs to be defined, which is the average
performance of the model for each of the T tasks after it has been trained on bmini-batches
each (Chaudhry et al., 2019):

Zb =
1

T

T∑
i=1

Ri,b,i (3.3)
The performance value Ri,b,j denotes the model’s performance after being trained up to the
b-th mini-batch on task i, and it is evaluated on task j. As i equals j in this case, this means
the model is always just evaluated on the current task.
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Group Performance Metric Reference

GeneralPerformance
Average Accuracy (ACC) Lopez-Paz and Ranzato, 2017
Average Incremental Accuracy (AIA) Rebuffi et al., 2017
Learning Curve Area (LCA) Chaudhry et al., 2019

ForgettingMetrics
Forgetting Measure (f j

i ) Chaudhry et al., 2018
Average Forgetting (Fj ) Chaudhry et al., 2018
Windowed Forgetting De Lange et al., 2023

Stability and PlasticityMetrics
Backward Transfer (BWT) Lopez-Paz and Ranzato, 2017
Forward Transfer (FWT) Lopez-Paz and Ranzato, 2017
Relative Overall Performance Ω Hayes et al., 2018
Intransigence Measure (I) Chaudhry et al., 2018

Computational-and MemoryResources
Model Size (MT) Rodríguez et al., 2018
Sample Storage Size (SSS) Rodríguez et al., 2018
Computational Efficiency (EF) Rodríguez et al., 2018

Table 3.2: Performance metrics for evaluation of CL-systems.
Metrics to evaluate CL-systems can be divided into four groups. General performance measures are used toassess the performance of the predictions. Forgetting metrics give insights about the amount of knowledge thesystem forgets from previously learned tasks. Stability and plasticity are helpful to assess the robustness andneeded computational and memory resources give information about hardware requirements.

The b-shot performance is then used to compute the learning curve of themodel. For this, the
b-shot performance Zb is computed for all b ∈ [0, β]. As a result, the learning curve shows the
development regarding the performance for the number of seen mini-batches. This reflects
howmuch data the model needs for training to achieve a given performance. In other words,
the curve displays how fast the model learns.
Finally, to make learning curves easily comparable, Chaudhry et al. (2019) suggested comput-
ing the area under the learning curve as a representative value for the learning speed of a
model:

LCAβ =
1

β + 1

∫ β

0
Zb db =

1

β + 1

β∑
b=0

Zb (3.4)
The higher the LCAβ of a model is, the better it is, as the area under the Zb curve is greaterif the model achieves a high performance with few training samples (small b). Therefore, a
high LCAβ score shows that the model learns faster than a low LCAβ score (Chaudhry et al.,2019).

3.2.3 Forgetting Metrics

In the previous sections, CF was discussed as a main problem in CL. Following, it must be
adequately monitored to notice the occurrence of forgetting with the goal of minimizing it.
To clarify, forgetting of a CL-system is understood as the difference between the maximum
knowledge themodel had about a task during the learning process in the past and the current
knowledge of the model about the same task (Chaudhry et al., 2018). Hereby, the accuracy
commonly measures the knowledge, but other metrics could also be used. Accordingly, the
forgetting on task ti after the model was trained up to task k is defined as (Chaudhry et al.,
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2018):

fk
i = max

j∈{1,...,k−1}
Rj,i −Rk,i ∀i < k. (3.5)

Based on the forgetting for each task, the average forgetting Fk of the model trained up to
task tk is computed by

Fk =
1

k − 1

k−1∑
i=1

fk
i . (3.6)

This means Fk is the average forgetting over all previous tasks learned by the current model.
The forgetting is a value in the range of -1 to +1. A great value means that there is much for-
getting (catastrophic forgetting), whereas a small value indicates less forgetting. In contrast,
negative forgetting means knowledge is transferred from later tasks to previous ones (De
Lange et al., 2023). In other words, it indicates that the model can improve the performance
on previous tasks by later learned knowledge from other tasks.
De Lange et al. (2023) adapted the forgetting measure in the Windowed Forgetting also for
data incremental learning, where the data is not task-based. In this case, the forgetting is
analogously measured over the lastm evaluations, wherem is the window size.
3.2.4 Stability and Plasticity Metrics

The third important property of a CL-system is the plasticity of a model, i.e., the ability to
transfer knowledge from one task to another to improve the performance on previous or
even future tasks when learning the current task. To evaluate such knowledge transfer, the
most important metrics are the BWT and Forward Transfer (FWT) for task tk (Lopez-Paz &Ranzato, 2017). The BWT reflects the ability to transfer knowledge of the current task to
previous tasks by measuring the difference in the performance of the current and previous
model states on learned tasks:

BWTk =
1

k − 1

k−1∑
i=1

Rk,i −Ri,i. (3.7)

The sum computes for each learned task ti the difference of the performance of the current
model Rk,i (trained until current task tk and evaluated on test set ei) and the model state
directly after learning task ti. Regarding the evaluation matrix after task ti (Table 3.1), theBWT averages the element-wise differences of the last row and the diagonal entries while
the last column is ignored.
Analogously, the FWTk reflects the ability of the model to use knowledge of the current task
tk to solve future tasks. If the model has a good FWT, this is also referred to as zero-shot-
learning, as the model is able to learn to solve a future task without task-specific training
data. Formally, FWT is defined as

FWTk =
1

k − 1

k∑
i=2

Ri−1,i − R̃i, (3.8)
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where R̃i is the performance of a model with randomly initialized parameters on evaluation
set ei (Lopez-Paz & Ranzato, 2017).

Generally, a high BWT and FWT stand for a good ability of the model to transfer knowledge
which represents a good trade-off between the stability and plasticity of the model. Stability,
on the one hand side, as an improvement on previous or future tasks unlikely occurs together
with high forgetting and plasticity on the other hand, as the model is variable enough to
improve.

Furthermore, there is the relative overall performance Ωk which measures the performance
of the CL-system relative to an offline system that is trained with all data up to task tk at once(joint training) (Hayes et al., 2018). Joint training is considered as the upper bound of the
performance that can be reached (Lesort et al., 2020). The relative overall performance is
given by:

Ωk =
1

k

k∑
i=1

Ri,i

Rjoint
i,i

(3.9)
where Rjoint

i,i is the performance of a system with joint training using all training data up to
task tk at once instead of training continuously. Therefore, the relative overall performance
would be one if the continuously trained system achieves the same performance as the joint
training system, and the lower (withminimum zero), the bigger the performance gap between
both models is. Theoretically, Ω could also get greater than one if the continuously trained
system performs better than the joint training system. However, this is usually not the case in
practice as continuous training is much more difficult than joint training (Lesort et al., 2020).

The same idea is used in the Intransigence Measure introduced by Chaudhry et al. (2018). It
is defined as the inability of a model to learn new tasks, which directly represents plasticity.
The measure compares the performance of a model trained with joint training and the con-
tinuously trained model, but it takes the difference instead of the ratio in the relative overall
performance:

Ik = Rjoint
k,k −Rk,k, (3.10)

where Ik is the intransigence measure after the k-th task. The result is also in the range of -1
to +1, but here a small value indicates a good model.

Both, the relative overall performance and the intransigence measure give insights about the
plasticity. If the measures indicate just a slight difference between the joint performance and
the continuously trained model, it shows that the CL-system has a high ability to adapt to
the tasks, which is the definition of plasticity (Chaudhry et al., 2018). Without high plasticity,
it would be unlikely for the model to be able to adapt task by task so well that it reaches
almost the joint performance in the end. However, it also depends on the tasks themselves,
especially their similarities (Lesort et al., 2020). If the tasks are very different, it is more
complex, and the model needs a higher plasticity than similar tasks.
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3.2.5 Computing and Storage Resources

The metrics explained before are used to evaluate a model concerning its classification per-
formance and the ability to adapt to new tasks or data. Beyond that, it is often of interest to
get insights about computational and memory resources the model uses as this reflects the
efficiency and makes it possible to compare CL-systems with static models that are retrained
in certain intervals.
Those metrics depend on the specific architecture used in the CL-system. Here, three metrics
are introduced, giving a basic idea of measuring used resources. The metrics can also be
customized depending on the actual system and the environment.
For every model, it is desirable that it does not grow too fast in size. This applies especially to
architectural methods where new parameters are added over time. The memory size at task
i is quantified in the number of parameters θ denoted asMem(θi) (Rodríguez et al., 2018).The following formula then measures the growth of the model size (MS) (Rodríguez et al.,
2018):

MS = min(1,

∑N
i=1

Mem(θ1)
Mem(θi)

N
). (3.11)

The higher the value (up to one), the less the model grows in size. If the model does not grow
(or even shrink) over time, the maximum value of one is reached.
For replay-based approaches, measuring the efficiency of memory usage is also valuable.
Rodríguez et al. (2018) proposes to measure the efficiency of the memory usage with the
Samples Storage Size (SSS) efficiency defined as follows:

SSS = 1−min(1,

∑N
i=1

Mem(Mi)
Mem(D)

N
) (3.12)

The numerator takes the sumof the percentages of each task’smemory occupationMem(Mi)from the memory occupation Mem(D) the whole dataset would need in bits. This sum is
then divided by the number of tasks making it interpretable as efficiency.
Similarly, the computational efficiency can be computed using the number of required oper-
ations for forward and backward passes as a ground measure. For details, it is referred to
Rodríguez et al. (2018).
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4 Related Work of Continuous Learning for
NLP-Tasks

The topic of CL in the context of machine- and deep learning was a minor research area for
a long time. However, with the popularity of large language models in recent years, the topic
got more attention due to their high computational requirements and the lack of flexibility in
fine-tuning and re-training (W. Zhang et al., 2023). Starting from about 2018, CL becamemore
active, which can be seen in the number of research papers published. An exemplary request
on the Elsevier bibliographic database Sciencedirect3 for the search query "continual learning"
OR "continuous learning" returned 1,342 results of type review articles, research articles, and
book chapters in the computer science subject. 55% of all articles were published from
2020 to 2023, whereas the result list already contains for the first half of 2023 a number of
224 results. However, by now, most research is done on computer vision tasks, including
image classification for example, and the results heavily thin out when adding the key phrase
"natural language processing"4 to the query. In this case, the results number reduced to 167,
having alone in the first half of 2023 a number of 53 publications and 85% being published
in the period from 2020 to 2023.
Similar results shows the search on IEEE Xplore5 with 668 results for the search phrase "con-
tinual learning" OR "continuous learning" in the publication topic6 learning (artificial intelligence),
neural nets and/or deep learning (artificial intelligence). When the publication topicwas changed
to "natural language processing" the number of results reduced to only 16, from which 13
publications were published in the period from 2020 to 2023.
The number of results must not include all relevant results, but on the other side, it might also
include some irrelevant publications. But the exemplary search queries show that research
on this topic got more attention just in the last three to five years. Research about related
topics was also done before, but this was mainly more basic research to CF, stability and
plasticity of networks also with the view to neuroscience (e.g., French, 1999; Grossberg, 1982;
Mermillod et al., 2013; Ratcliff, 1990; Robins, 1995). In contrast, the research in recent times
proposes, tests, and compares in large parts approaches to address the challenges in CL.
In 2018 the non-profit research organization ContinualAI7 was founded aiming to connect
researchers and to promote research in the field of CL but also to educate.
Comprehensive overviews of CL, its backgrounds and approaches are from De Lange et al.
(2021), Lesort et al. (2020), Parisi et al. (2019), and L. Wang et al. (2023). Biesialska et al. (2020)
surveyed the topic with the focus on NLP.
3https://www.sciencedirect.com/ (visited on July 13, 2023)4The complete search query was in this case ("continual learning" OR "continuous learning") AND "natural language
processing"5https://ieeexplore.ieee.org/ (visited on July 13, 2023)6Publication Topic is an available filter in the IEEE Xplore search with a given selection of topics.7https://www.continualai.org/ (visited on July 13, 2023)
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The first works addressing the problem of CF were already done in the 1990s by Ratcliff (1990)
and Robins (1995). Both had found that learning new information in a CL-setting leads to
rapid forgetting of previously learned knowledge and did experiments on so-called base pop-
ulations, which are just input-output-pairs of binary vectors. Ratcliff (1990) analyzed several
different network architectures next to an approach with a replay buffer. They found the
replay approach was the only tested approach that could reduce CL. Robins (1995) continued
the experiments using replay with the addition that they had the idea of pseudo-rehearsal
approaches as this overcomes the problem that previously learned examples must be later
available. For the buffer, they created pseudo-items by using random (with constraints) initial-
ized vectors which were passed through the network and its output was assigned as the label
of the pseudo-item. Next to differences between specific implementations, they generally
found that a higher number of replay improved the results.

One of the first research papers combining NLP tasks with CL is from Blitzer et al. (2006, 2007).
They suggested semi-supervised Structural Correspondence Learning for domain adaption to
overcome performance losses when a model is trained on one domain but new domains are
added later. Therefore, they identified correspondences between the features of different
domains andmodeled their correspondence by pivots (Blitzer et al., 2006). The approach was
tested for POS-Tagging (Blitzer et al., 2006) on parts of the Penn Treebank (Marcus et al., 1993)
and for sentiment classification of Amazon reviews of different product types (Blitzer et al.,
2007). Even though domain adaption was only from one domain to one and not multiple
others, these were first steps regarding CL.

A different approach not built upon neural networks but on Naive Bayes classification al-
gorithm is the Lifelong Sentiment Classification (LSC) suggested in Chen et al. (2015). Their
system does not store previous examples but the probabilities for each word to occur in each
class and the absolute numbers of words occurring in positive or negative documents. Fur-
thermore, they introduce virtual counts optimized by stochastic gradient descent to improve
the classification in newly learned domains. To address the problem of domain-dependent
sentiment words, they also added penalty terms to the optimization step. Similar to Blitzer
et al. (2007) before, they tested the approach for only learning one new of in total 20 do-
mains treating the other 19 domains as previously seen. The corpus also consists of Amazon
reviews of different product types. The results showed that the LSC approach separately
optimized for each target domain outperforms an SVM and standard Naive Bayes trained on
all training samples, including the target domain.

As the results of the described works are not comparable due to different datasets, later
works for task-incremental learning in NLP (D’Autume et al., 2019; Ho et al., 2023; Huang et al.,
2021; F.-K. Sun et al., 2020; J. Sun et al., 2020) commonly used the collection of text datasets
of X. Zhang et al. (2015). Created initially to do analyses on character-level convolutional
networks, it is well suited for task-incremental learning as the collection contains six datasets
with classification tasks with two to 14 classes. Namely, these are AG’s News and Sogou News
(news classification), DBPedia (Wikipedia article classification), Yelp reviews (sentiment and
five-star-rating), Yahoo (topic classification), and Amazon reviews (sentiment and five-star-
rating) (X. Zhang et al., 2015).
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A wide range of approaches has been used for task-incremental learning on this dataset col-
lection. Comprehensive comparisons are from D’Autume et al. (2019) and Huang et al. (2021).
Both used the dataset collection to train their models on the different datasets coming with
different tasks progressively. They focus on the comparison of multiple replay-based meth-
ods. D’Autume et al. (2019) used standard replay with a replay rate of 1%, A-GEM (Chaudhry
et al., 2019) and three versions of Memory-based Parameter Adaptation (MBPA) originally
introduced by Sprechmann et al. (2018). MBPA consists of a slowly learning but generaliz-
ing standard neural network (parametric component) and a fast adapting non-parametric
component (episodic memory) which can rapidly temporarily change weights in the neural
network (Sprechmann et al., 2018). The memory is, therefore, not used for replay in MBPA.
Generally, the approach of using a slow and a fast learning component is based on the CLS
orientating on human learning with a long-term and short-term memory (McClelland et al.,
1995).

The results for five successively learned text classification tasks in D’Autume et al. (2019)
reached an average accuracy from 0.578 using simple replay to 0.706 with the MBPA++ ver-
sion. The A-GEM achieved an accuracy of 0.669 on average. Clearly, the tested approaches
significantly improved the results compared to a naive baseline (accuracy 0.184). The upper
bound multitask model reached an accuracy of 0.736 which is 0.030 higher than the MBPA++
model. On the same task, F.-K. Sun et al. (2020) could improve theMBPA++model with further
hyper-parameter-tuning about 0.036 to 0.742. The Language Modeling for Lifelong Language
Learning (LAMOL) approach, also suggested by F.-K. Sun et al. (2020), further outperforms
this result with an accuracy of 0.765. LAMOL is a generative-replay model replaying pseudo-
samples from previously learned tasks. It, therefore, learns to generate pseudo-samples
as well as to solve the actual classification tasks (F.-K. Sun et al., 2020). Huang et al. (2021)
further compare the described methods to their Information Disentanglemant based regu-
larization (IDBR) approach. The regularization-based method represents texts by combining
task-generic and task-specific components using separate regularization to fit the model bet-
ter. The accuracy of, on average, 0.732 on the same datasets as before showed the model’s
effectiveness. Additionally, they analyzed the impact of the number of tasks learned and
found that the average performance slightly increased with the number of tasks, which in
turn shows that the model generalizes well and transfers knowledge from one task to the
others (Huang et al., 2021). The underlying models vary from using BERT-base as encoder
and key network (D’Autume et al., 2019), only using a BERT-model as feature extractor but
an MLP as trainable network (F.-K. Sun et al., 2020) and in Huang et al. (2021) a pretrained
GPT-2 model was used as underlying language model.

Just recently, Ho et al. (2023)worked on the dataset collection of X. Zhang et al. (2015), focusing
on analyzing replay-related parameters, including the replay sample selection, memory size,
and replay rate. Their prototype-guided memory replay (PMR) method uses prototypes for
knowledge representation and to guide the selection of examples to store in memory for
replay and is combined with a meta-learning framework. Mirzadeh et al. (2020) analyzed the
impact of similar replay parameters, however, using image data instead of text data. Further
research of replay-based methods, but on image data, was among others done in Aljundi,
Lin, et al. (2019), Ramalho and Garnelo (2018), Tiwari et al. (2022), and Xiao et al. (2023).
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Most previously described research focuses on task-incremental learning, which differs, de-
pending on the similarity of the tasks, and often suffers more from CF than data-incremental
learning (Blitzer et al., 2007). Capuano et al. (2021) analyzed data-incremental sentiment clas-
sification using customer communication data of companies for English and Italian language.
Their outcomes showed that their results of a continuously trained system using replay gen-
erally improved over time. However, it did not reach the performance of joint training. De
Lange and Tuytelaars (2021) use Continual Prototype Evolution for data-incremental learning
on images. They use evolving prototypes with a nearest-neighbor classification schema in
combination with a replay-based approach and a balanced memory. Their algorithm aims to
minimize the variance within the classes and encourages the variance between classes.
The current research shows that the best results are achieved when using replay-based
approaches, at least when replay is used as one of the possible other components. However,
the impacts of replay-based parameters are rarely analyzed, and by now, no study is known
that conducts replay-based parameters in the context of data-incremental text classification.
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5 Practical Application of Replay-Based CL to
Text Classification

In this chapter, parameters affecting replay-based approaches are practically examined in
detail at the example of a data-incremental text classification task. It aims, in particular, to
get deeper insights about impacting factors of replay-based strategies and to answer the
research questions formulated at the beginning of this work.
After a detailed description of the concrete task at the beginning, the methodology is de-
scribed, including the creation of the used dataset and details about evaluation and program-
matic implementation. Subsequently, the experiments will be motivated and introduced in
Section 5.3 before the results are shown and discussed in Section 5.4. The chapter closes
with a summary of the results.

5.1 Task Description and Objective

The problem that will be explored in this section arose from the research project DeTox8,
which was about the detection of hate speech and toxic language on the internet. The project
was done in collaboration with the Hessian Cyber Competence Center9, a reporting office
for offensive language in Germany, to build intelligent models to support the classification
process of reported comments.
A major challenge for classification systems for comments on the internet is to continuously
keep the systems up to date. Especially on the internet, current topics and language are
subject to constant change. This leads to outdated classification models after a short time if
they are only static and donot continuously adapt to current topics and language. The present
case is an ideal environment for data- or domain-incremental-learning, depending on the
view of the problem, as the reporting of comments is an ongoing process that continuously
produces new annotated training data. After an initialization period, where data is thoroughly
reviewed and annotatedmanually by human officers, models can be initialized using this data.
Afterward, the models support human officers during the review process with suggestions,
whereas human officers do a final classification of the comment. Subsequently, for every
reported comment, a reliable annotation is naturally produced, which could, in turn, be used
to continue the model’s training and improve and adapt it. Over a long time, the models
would steadily be fed with new training data, hopefully learning the vocabulary of new topics
and changes in language, especially in colloquial language often used on the internet.
Due to a lack of adequate long-term hate speech data, the task of data incremental learning
for text classification is transferred to another domain. Namely, the problem is examined in
the domain of books with the task to classify excerpts and blurbs of books written in different
time periods into the three categories Adventure Stories, Love Stories and Conduct of Life by
8https://fz.h-da.de/detox (visited on April 11, 2023)9https://hessengegenhetze.de/ (visited on April 11, 2023)
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its content. Models were trained starting with the oldest books and continuing with the
training using newer books step by step. For this task, an appropriate dataset was created
using existing resources. There has been a natural change in the language and topics of
written books over several centuries, even in the same categories. The analyses focus on the
replay-based method, as related work showed, this is state-of-the-art. In detail, the analyzed
parameters are the number of replayed examples, the number of training iterations, and the
buffer strategy. It can be assumed that general findings are transferable to the hate speech
domain in future work and be helpful in general for CL in text classification.
This section first describes the methodologies (Section 5.2) in detail. In Section 5.3, the ex-
periments and their specific goals are explained before the results are shown and discussed
in Section 5.4.

5.2 Methodologies

In this section, the usedmethodologies are described in detail, including a dataset description
and its creation process, preprocessing steps, the evaluation procedure, and details regarding
the implementation.

5.2.1 Dataset

For the task mentioned above of text classification in the domain of books, it was necessary
to create a dataset containing books over a long time (several hundreds of years) to ensure
significant changes in the language and writing style as well as in topics. Additionally, an-
notations regarding content categories were required for the present supervised learning
task.
To fulfill the requirements, two different public sources were used: First, the Project-Guten-
berg10 which is a collection of old books up to about 1975 and its metadata including classi-
fications. Second, to receive data about current literature, the Goodreads web page11 was
used. Goodreads claims to be the world’s largest site for readers and book recommendations
(Goodreads LLC, 2023). As current books are not free of charge, only blurbs of those books
were used. For the book’s language, it was decided to use English as the Gutenberg-Project
has with a number of 55,753 books by far the most books in English language compared to
2,064 German books, for example. The collection also contains books that are only partly writ-
ten in English mixed with other languages. However, those books were not used to minimize
noise in the data.
In the following subsections, the creation process of the dataset will be described in detail
before a statistical overview of the resulting dataset is presented.
10https://www.gutenberg.org/ (visited on May 9, 2023)11https://www.goodreads.com/ (visited on May 9, 2023)
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5.2.1.1 Creation Process

As mentioned before, dataset sources were the Gutenberg-Project and the Goodreads-Web-
page. Because the Gutenberg-Project is the more limited resource, book categories or sub-
jects which should be classified in further work were selected based on the number of books
for existing subjects, the distribution of those books over time, and finally on the overlap
of subjects in selected books. In detail, the books can be classified into multiple subjects
(multiclass). However, a multiclass task is different from the goal of this work. Therefore,
classes with low overlap were preferred, and books classified into more than one subject of
the finally selected subjects were dropped to allow a precise classification.
5.2.1.2 Data Selection

Gutenberg-Project provides subject classifications of the books by the Library of Congress
Subject Headings (LCSH). LCSH is a comprehensive list of subject headings maintained by the
Library of Congress12, to organize books by its contents. The current 44th version of LCSH
contains 355,980 topic subject headings organized in a flat hierarchical structure (Library of
Congress, 2022). Table 5.1 lists the most frequent topics of English books. Different kinds of
fiction are most present, followed by short stories. Both are coarse categories that do not
precisely narrow topics. Instead, they cover a wide range of topics and often co-occur with
other subjects. Therefore, both are unsuitable for subject classification. Following subjects in
the frequency ranking are Adventure Stories, Juvenile Fiction as a subcategory of Conduct of
Life, and Love Stories, which are subjects that are well separated from each other regarding
the content. Further analyses showed that the coarse category Conduct of Life also occurs
with other subtopics resulting in 1,401 books which is favorable for the present case. The
same, but not at this scale, is valid for the categories Adventure Stories and Love Stories, such
that the number of books for these subjects also slightly increases. In detail, 1,277 books
belong to Adventure Stories and 742 to Love Stories. Further, the Venn Diagram (Figure 5.1)
shows that there is overlap between those three subjects, but to a low extent. Conduct of Life
and Love Stories have only an overlap of 7 books. The overlap between Adventure Stories
and Conduct of Life is with 125 books much greater. Nevertheless, both subjects also contain
more books than Love Stories. In total, 206 books in these three subjects had overlapped
and were therefore removed in the further process.
The third criterion for the selection was the distribution of books per topic over time. As
the metadata for the books does not contain the publishing years, the time of publishing
was approximated from the author’s lifetime. Concretely, if birthdate and death date were
included in the Gutenberg Metadata, the average of both rounded to the next full year was
used as the approximate publishing year. If just one of these dates was given, this respective
date was used. If no year was given or the author was not specified, the book was dropped
as it is unsuitable without a temporal classification. This concerned 494 books in total. The
reason for this high number is that books written bymultiple authors often have an empty au-
thors field, so authors cannot be assigned automatically. Parsing the authors from the book’s
content could theoretically be done. However, as the books have very different structures,
12https://www.loc.gov/ (visited on May 9, 2023)
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Rank Subject (LCSH) # Books
1 Science Fiction 2693
2 Short Stories 2474
3 Fiction 1416
4 Adventure Stories 1231
5 Conduct of Life –– Juvenile Fiction 856
6 Love Stories 719
7 Detective and Mystery Stories 717
8 Man-Woman Relationships –– Fiction 707
9 Historical Fiction 568
10 English Wit and Humor ––Periodicals 556

Table 5.1: Top 10 LCSH-Topics in the English part of the Gutenberg-Project-Corpus.
English language books of the Gutenberg-Project-Corpus were ranked by the number of occurrences ofLCSH-subjects. The table lists the top ten subjects in 55,753 books. Double hyphens (–– ) indicate subtopics.

Figure 5.1: Overlap of classes.The Venn-Diagramm shows the number of books contained in each of the categories only and the number ofbooks assigned to multiple categories (overlap of circles).
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5.2.1.4 Text Extraction from Books

he last step was to extract smaller excerpts from the books. Due to the usually long length
of the books, multiple excerpts were extracted from each book. Aiming to create a balanced
dataset over the subjects and ideally also over the time, the number of excerpts to be ex-
tracted from each book was determined depending on the subject and time interval of a
book, i.e., in time intervals with fewer books, more excerpts were extracted from each book
than in time intervals containing a higher number of books to balance the number of excerpts
in each time interval. It was targeted to have 1,000 excerpts or blurbs per time interval and
subject. On this basis, the number of excerpts per book to extract was calculated. However,
the maximum number of excerpts extracted per book was set at 20 to avoid biases in the
final dataset. This approach allowed the number of excerpts to be balanced across subjects.
Nevertheless, a good balance over time was not possible due to significant differences in the
number of books per time span (Figure 5.2).Throughout the process, the number of blurbs
per subject and time interval were also considered. In the following use of the dataset, it will
not be further divided between extracted book excerpts and blurbs if it is irrelevant. Both
will be referred to as texts.
For the extraction of excerpts from the book, the length of the excerpts was chosen based on
the length of the blurbs to receive a homogeneous dataset. The average length of the crawled
blurbs is 1,029 chars with a standard deviation of 467 chars. Under the assumption that the
distribution of the blurb length is a normal distribution, about 68% of the data lies in the range
of plus minus one standard deviation from the mean. For this reason, the excerpt length
was chosen to be 1,500 chars which is approximately the sum of the mean and standard
deviation. Using the higher length ensures to have long enough excerpts. For each book,
the extracted excerpts were evenly spread over the whole book, beginning to extract each
excerpt after a full stop, exclamation mark, or question mark, which usually indicate the end
of a sentence.
5.2.1.5 Final Dataset and Train-Test-Split

With the described process, a dataset of 16,205 texts was created, from which 13,294 are
excerpts from books and 2,911 texts are blurbs (Table 5.2). The dataset was split into training
and test data, using 80% for training and 20% for testing (Table 5.3). The split was done such
that the train-test-ratio is approximately kept for every time interval, and the subjects are
again balanced in the train and test data for each time interval. The split could not be done
with the exact ratio and perfectly balanced subjects because of the introduced constraint
that all excerpts of books from one author are either in train or test data, but not both.
Accordingly, excerpts from one book are also either in train or test data. In the following the
time intervals will be referred to as task to use typical wording from CL. The task numbers
from one to eleven are assigned as shown in the first two columns of Table 5.3.
The distribution of texts distinguished by the subject and source (Gutenberg-books or blurbs)
is depicted in Figure 5.3. The diagram shows that the excerpts from books mainly cover the
time until 1949, whereas from 1950 the dataset contains mainly blurbs.
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are visible for the model too. These circumstances make it necessary to build another corpus
of texts that can be used to train word embeddings. The restriction hereby is that the corpus
can only contain texts from before the first time interval in the training dataset. Otherwise,
the word embedding corpus might contain words that arose later in time and would not have
been known at the beginning of the training phase. Simply put, the word-embedding corpus
would be an oracle able to know words that arise in the future.
For this reason, a separate word-embedding dataset fulfilling the mentioned constraints was
created. As the dataset before, it was built from books from the Gutenberg-Project. This
assures that it contains the same type of text, in this case books. The book categories are not
of interest for a word-embedding training corpus. Therefore, the books were not filtered by
their categories. The only restriction was that the year of the book had to be 1600 or before,
where the year of the book was determined as previously described in Section 5.2.1.2. The
year 1600 is not before the first time span, which starts in year zero, but as the amount of 76
books in the first time span is small and second to have a corpus large enough to train word
embeddings, the year 1600 was chosen as the boundary. The resulting word embedding
corpus contained 845 books in the English language.

5.2.2 Data Preprocessing

A basic preprocessing was done on both datasets (training/test dataset and word-embedding
dataset). For all further tasks and experiments the preprocessed data was used. For English
texts, as in the present case, the Python package NLTK (Bird et al., 2009) offersmany functions
for text preprocessing, which were widely used in the preprocessing step.
At first, the texts were tokenized, followed by the removal of the last token in case the text
was a book excerpt, as the excerpts were extracted by a fixed number of characters which
led to the cut-off of words at the end. Then the texts were converted to all lowercase before
the words were lemmatized using NLTKs Word-Net-Lemmatizer. In the last step, stop words,
punctuation, and special characters were removed. For stop words NLTKs stop word list for
English was used. The result formed the basis for all further tasks.

5.2.3 Evaluation

The evaluation was done using predictions of the models on the test data. Generally, k-fold
cross-validation should be preferred to a static train-test-evaluation to overcome possible
biases in the test dataset. The cross-validation was not performed for two reasons. First, it is
challenging to find different train-test-splits for each fold in the cross-validation, as it needs to
be ensured to fulfill the constraints to have each author either in the training dataset or the
test dataset, and the class balancemust be kept as good as possible. Second, cross-validation
efforts higher computational resources due to repeated training which were not available. To
still receive robust results, each run was repeated with the same parametrization five times,
and the results were averaged over the five runs.
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Generally, the F1-Score was used as the primary performancemeasure. It was preferred over
accuracy as it provides more meaningful results if datasets are unbalanced. Even though the
present dataset is class-balanced over large parts, it shows imbalances in tasks five, seven,
ten, and eleven. Depending on the experiment, the results were analyzed regarding average
F1-Score, task-wise evaluation, the range between the performance of the best and worst
performing class, and forgetting and BWT. All measures are based on the F1-Scores. The
average F1-Score is always only measured on the tasks already trained, i.e. if the model is
trained until task five, only the first five tasks are included in the average F1-Score. This is
close to real-world scenarios. An exception are task-wise analyses, where the performance
on each task is measured separately. The range between the best and worst performing
class at each task is essential to assess if all classes have an equal performance (small range)
or if one class has a very high performance whereas another class performs much worse.

5.2.4 Implementation

For all experiments, Python was chosen as the programming language as it offers many
possibilities for machine and deep learning scenarios. A primary reason for Python was fur-
thermore the existence of the CL-framework Avalanche (Lomonaco et al., 2021), which is an
open-source end-to-end library for CL based on PyTorch mainly developed by members of
the ContinualAI non-profit research organization. Due to the complexity and the effort to
implement all learning strategies from scratch, Avalanche vastly simplifies the whole develop-
ment cycle. It consists of five modules: The Benchmarks-, Training-, Model-, Evaluation-, and
Logging-Module. Starting with a Benchmarks-Modul, it provides benchmark datasets ready
to use for continuous learning. Due to limited resources for text classification, the selection
of available datasets is mainly limited to computer vision benchmarks by now. However, it
also provides base classes for datasets and data loaders, such that custom datasets can be
integrated and prepared for CL-tasks with affordable effort. The Training-Module provides
by the time of writing (Avalanche version 0.3.1) this thesis 22 learning strategies, which can
be combined with pre-defined models from the Models-Module. All strategies can be cus-
tomized, and they can be combined as far as the strategies are not in conflict with each other.
Additionally, all PyTorch models can be connected to the framework. Finally, the Avalanche
provides valuable tools for evaluation and logging during training with the Evaluation- and
Logging-Modules. More details about Avalanche can, among others, be found in Lomonaco
et al. (2021).

5.3 Experiments

In the following subsections, the performed experiments are described in detail before their
results are shown in Section 5.4. In the beginning, two comparative experiments were done
to assess all further experiments better. The first is cumulative training which can be seen
as the upper bound of the achievable performance with CL-approaches, and the second, a
simple naive strategy is used as a baseline experiment which is used to see how replay can
improve the results compared to the naive baseline.
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In the following subsection, general settings applying to all experiments are explained before
the experiments are introduced separately, including backgrounds and hypotheses about
expected results.

5.3.1 General Settings

For all experiments, which will be described in detail in Section 5.3, an MLP and an LSTM
are used as underlying models. The MLP was chosen as most CL-approaches are based on
neural networks, but it was designed to be still a simple and less complex model (15,303
trainable parameters). Unless otherwise specified, the MLP was used with a single hidden
layer containing 75 neurons and a dropout of 0.35. As an activation function, ReLU was used,
and it was trained with an Adam-optimizer and a constant learning rate of 0.001. Second,
LSTMs are well suited for sequential tasks, as is the case in text classification, as they are
able to capture long-term dependencies (i.e., dependencies between words that are not
close to each other in the word order in the sentence, Otter et al. (2021). It is expected to
achieve better results compared to the MLP, but the LSTM also has higher computational
requirements. The LSTM was parameterized with a maximum sequence length of 250, one
LSTM-layer with a hidden size of 64 neurons and 0.1 dropout in the input layer resulting
in 68,291 trainable parameters. The Adam-optimizer with a learning rate of 0.001 and the
cross-entropy-loss-function was used in the LSTM-training process.
For all experiments, the documents are represented by fastText (Bojanowski et al., 2017)
based embeddings. FastText word embeddings were trained on the word embedding corpus
(Section 5.2.1.6). In detail, a skipgram model with a minimum number of three occurrences
of each word, a context window size of five words, and a vector size of 200 dimensions
was trained. The advantage of fastText word embeddings is that fastText can handle out-of-
vocabulary words by using character n-grams. This means even words not contained in the
word embedding corpus can bemapped to word vectors (Bojanowski et al., 2017). This works
well for compound words that consist of character n-grams of words with coherent meanings.
Neologisms not including related character n-gramsmight therefore be not necessarily repre-
sented as meaningful word vectors by the model. To be able to represent out-of-vocabulary
words is, in particular, for the present problem of high importance as new words occur over
time. Having a static word embedding model that can vectorize out-of-vocabulary words
therefore simplifies the process, as the embeddings do not need to be updated over time.
This would be a non-trivial problem in CL and would need to be analyzed separately.
For the detailed embedding, it must be distinguished between the MLP and LSTM. For the
MLP, the vectors of each word in the preprocessed text were determined and averaged over
each text. As the word embeddings are 200-dimensional, this results in a 200-dimensional
document vector. The document vectors were then directly used as the input for the model.
The LSTMwas provided with sequences of word embeddings of the words/tokens in the docu-
ments. Themaximum sequence length was here set to 250 tokens, whereasmost documents
had fewer tokens. To conclude, the input for the LSTM was a matrix of a maximum of 250
rows (maximum sequence length) and 200 columns (fastText word embedding dimension)
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Experiment # Replay # Iterations Buffer Details
Cumulative Training — — — Section 5.4.1
Naive Training 0 2 — Section 5.4.2
Number Replay [0, 1, 3, 5,7, 10, 15] 2 task-bal., rand. selection Section 5.4.3
Number Iterations 7 [1, 2, 5,7, 9, 15] task-bal., rand. selection Section 5.4.4
Buffer Constellation 7 2 refer to exp. description Section 5.3.6
Optimized Parameters 15 5 task-bal., close2ctr Section 5.4.8

Table 5.4: Overview of performed experiments.
Overview of parameter values used in each experiment. For all experiments, except cumulative and naivetraining with no buffers, the memory size was chosen to be 647 texts (5% of the training data), and the databatch size was ten. Each experiment is described in detail in the referenced section. The experiments numberreplay and number iterations used task-balanced buffers with random selection of elements to store in thebuffer. The run with optimized parameters used a task-balanced buffer with close-to-center selection strategy.Details about the buffer strategies are given in Section 5.3.6.

for each document. Additional features to the word embeddings were not used but could be
added to improve the results. As this work focuses on CL, no additional feature engineering
was done.
For the training of all models, the described split of the data into eleven tasks was used.
As the time span of each task is small, and the evaluation is task-wise, the examples were
pseudo-shuffled within each task. Pseudo-shuffling with always the same seed was used to
have the same conditions in each experiment. Each task was then split into batches of ten
texts each. Then the model was successively trained on the batches of each task.
A replay buffer was used in all experiments except for cumulative and naive training. The
maximum buffer size was chosen to be 647 texts in all experiments, which corresponds to 5%
of the total training data. The buffer was furthermore adaptive. This means it is completely
filled during the first iterations and elements are removed to make space for elements of
new training data during the further learning process.
An overview of the parameterization of the performed experiments is given in Table 5.4.
The number of replayed elements (# replay) denotes the number of examples from the
buffer that were replayed for each batch of new training data, i.e., the number of replays per
ten new examples. Elements from the training data stored in the buffer are selected by a
particular strategy or randomly (rand. selection). Furthermore, the buffer can be balanced
regarding tasks (task-bal.) or classes. Details about buffer constellations are explained in the
respective experiment descriptions and in Section 5.3.6. For replay, examples from the buffer
are sampled randomly as this is common sense in replay-based methods (Aljundi, Belilovsky,
et al., 2019). The number of training iterations (# iterations), also called training passes, is
the number of passes the neural network is trained on the subset of data before the next
data batch is shown to the network. It is equivalent to training epochs in the training of static
neural networks. It was set to two in most experiences. In other words, if the number of
training iterations is, for example, two, every batch containing ten new data points is shown
twice to the model for training purposes before the model is trained on the next batch.
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5.3.2 Cumulative Training

In order to better assess all the following results, in the first experiment cumulative training
was performed. Cumulative training trains the model for each task on the whole training
data of the previous and current task at once. Therefore the models do not build on each
other, instead they are retrained. Therefore, cumulative training produces static models (as
in classical machine learning), but it can be seen as an upper bound for the performance
of CL-models (Lesort et al., 2020). That means, due to higher constraints in CL-models, it is
commonly expected that CL-models perform worse than static models, which saw all the
training data at once.
For this experiment, the MLP and LSTM were used as described before. Additionally, an SVM
was used for comparison purposes. SVMs are classical machine learning models but still
they often achieve comparable results in text classification tasks (e.g. Struß et al., 2019). The
difference to neural networks is that the result of an SVM is not dependent on the initialization,
but with the same training data it mathematically computes the optimal solution leading to
the same result if trained multiple times.
5.3.3 Naive Training Baseline

Naive training was chosen as a baseline for CL on the described task. Naive training means
that no particular strategy is used to address the problems of CL. Instead, the training on
the network is just continued with new data samples and no buffer is used. It is the most
straightforward approach to update the model continuously. Naive training was tested with
two different models: an MLP and an LSTM. The SVM could not be used in this case, as it is
not based on a neural network, making it impossible to transfer this strategy to an SVM and
requiring other approaches. The parameters regarding the MLP and LSTM, as well as the
embeddings, were used as described before in Section 5.3.1.
The outcome of the experiments was evaluated after the model was completely trained on
each task’s training data. First, the average performance using the F1-Score over the classes
was measured over the tasks. After each task’s training, the models were evaluated on all
tasks up to the current one. In Analogue, the progress in the performance for each of the
three classes is evaluated. Furthermore, the performance was analyzed separately for each
task. This gives insights about the performance of each of the eleven tasks over time. This
makes it also possible to draw conclusions about the mutual influence of the task. Last, the
average forgetting and BWT were visualized.
As each data example is only seen twice by the network (two train passes) and no replay or
regularization is applied in naive training, it is expected that the trade-off between stability
and plasticity will not be balanced, resulting in an unstable model and partly forgetting of
learned knowledge. This could be visible in decreasing performance of some tasks and a
fluctuating curve of the average F1-Score over time. The average performance is therefore
also expected to be significantly lower compared to the cumulative trainedmodels. As before,
the experiment was repeated five times to get reliable results and to be able to measure the
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standard deviation over the runs. The latter is particularly relevant as fluctuation is expected.
Therefore it is likely, that the results clearly differ in some sections, which would be visible by
a high standard deviation.

5.3.4 Number of Replayed Examples

In replay-based approaches, the question arises of how many of the examples stored in the
replay buffer should be replayed in each training step which also depends on the number of
new examples per training step. As the number of new examples per training step is set to
ten for all experiments in this work, in the further description and analyses only the number
of replayed elements will be mentioned.
In the naive approach before, no examples were replayed. The opposite would be to replay
all elements stored in the replay buffer in each training step. However, if the number of
new instances in each training step is small, as in the present case, this leads to substantial
computational effort depending on the buffer size.
Therefore, this experiment aims to get insights into the correlation between the ratio of
replayed examples and the resulting performance. Using replay has the goal of overcoming
performance decreases in previous tasks when learning new tasks. On the other hand, there
might be a threshold where a higher number of replayed examples per training step does
not further improve performance.
For the experiment, a task-balanced buffer of size 647, which is 5% of the total number of
training examples, was chosen. This means the buffer can store a maximum of 647 elements.
As it is task-balanced, these 647 elements are proportionally divided to the number of ex-
amples in the already seen tasks, i.e., from tasks with a higher number of examples, more
elements are buffered than from tasks with a low number of examples. Furthermore, the
buffer was designed as an adaptive buffer which means, in the beginning, all elements are
stored until the buffer is completely full. From this point on, examples are removed step by
step to maintain the task ratio while new data arrives. According to the ratio, new data points
can thus be added. The buffer could also be split into fixed numbers of examples per task as
the total number of tasks and examples is known. However, the adaptive behavior is more
realistic for real-world scenarios as the number of new tasks is commonly unknown initially.
Finally, regarding the buffer, the selection strategy of new elements plays a role. In this case,
the elements were selected randomly. That covers training examples that are added to the
buffer as well as the elements that are removed from the buffer are selected randomly within
the elements of each task. It is noticeable that this strategy may result in an imbalance of
classes in the buffer. However, due to the law of large numbers, a random selection will, over
the long term, result in the same class balance in the buffer as in the training data.
For the experiment, the parameter of replayed examples was varied between the values 1,
3, 5, 7, 10, and 15. Additionally, 0 replayed examples, equivalent to no replay (naive training),
was added to the diagrams for better comparison.
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The results were analyzed under consideration of the F1-Scores after each task. Furthermore,
it was looked at the range between the F1-Scores of the best and worst performing class at
each task. The background is that all three classes should ideally have equal performance.
Therefore the range between the best and worst performing classes should be low. Third, as
before, the forgetting and BWT are considered in the analysis.
For the result, the performance is expected to increasewith the number of examples replayed,
as the forgetting should decrease. As a result of lower forgetting, the performance graph
should stabilize, which means that it shows less fluctuation, as sudden performance drops
should be dampened. The goal is to get insights about the number of examples to replay
necessary to achieve a visible improvement in the performance and if there is an upper
bound where replaying more examples does not lead to further improvements.

5.3.5 Number of Training Iterations

In the training of neural networks, the number of training epochs is a parameter that defines
for how many iterations the network should be trained to fit the network’s weights. Typi-
cally, in the first training epochs, the loss decreases faster before the loss curve flattens and
converges.
Analogue, in CL, the number of training iterations per batch can be varied. This is the number
of passes the neural network is trained on the subset of data before the next data batch
is shown to the network. The number of iterations is relevant, as it decides how often the
network can see each data sample besides replay. If the number of iterations is too low, the
network might not be able to fit its weights adequately. If the number of iterations is too
high, the model might more likely forget previous knowledge and overfit on the last batch
due to too much change in the weights. As also the replayed examples are trained together
with the new examples for the chosen number of training iterations per batch, it needs to be
analyzed together with replay and the results could vary when no replay is applied. In the
latter case, the number of training iterations might be higher because, due to missing replay,
this is the only time the network sees the examples. For this reason, it is essential to analyze
the number of training iterations separately in the case of replay.
Six different numbers of training iterations, ranging from one to 15, were examined in the
experiments. The number of examples to replay was set to seven, as this is in the middle of
the tested numbers of replay in the previous experiment. Therefore, it is known from the
previous experiment that it performs better than no replay, but it still has some shortcomings.
If the number of examples for replay had been chosen according to the best performance
achieved in the previous experiment, it would have been harder to see the effects of varying
numbers of training iterations, as there would have been little room for improvement.
As before, the experiments were analyzed regarding the average performance, the range
between the best and worst performing classes, forgetting, and BWT.
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5.3.6 Impact of the Buffer-Strategy

A potentially significant impact in replay-based methods has the replay buffer and the se-
lection of the elements from the training data to be stored in the buffer. Therefore, it is of
relevance which elements of the current training examples are newly added to the buffer and
which elements from the buffer are replaced by the new elements. The replacement strategy
is only relevant after the buffer is completely filled. In this work, only adaptive buffers are
examined. This means the buffer of its complete size is used at any point to store selected
examples. If new tasks or classes are added during the learning process, the examples from
the buffer are removed to make space for new elements. In contrast, non-adaptive buffers
specify beforehand the number of examples to store for each task or class. Respectively,
there is no need to remove elements from the buffer at any time. However, in practical appli-
cations, the latter has the disadvantage that either the buffer size grows (potentially infinitely)
over time due to new added tasks respective classes or the number of tasks or classes must
be specified before the start of the learning process, which is in turn rarely practical in natural
CL-applications. In adaptive buffers, all training data is usually added to the buffer at the
beginning until it reaches the specified maximum size. This is the point where it becomes of
interest which elements to add and which to be replaced in the buffer.
Generally, the buffer is influenced by two factors. First, it is interesting whether the buffer is
balanced in some way or not. Possibilities to balance a buffer are primarily class-balanced
and task balanced. This means the amount of samples in the buffer is proportional to the
number of classes or tasks. Class and task balancing can furthermore be combined. Second,
the strategy of selecting the examples stored in the buffer plays a role. Many different
approaches can be considered to achieve this. Among others, possible ideas can include
various feature-based selection methods (e.g., similarity-based) or based on predictions (e.g.,
based on correct or false classification). Besides this, random-based approaches are possible.
In the experiments carried out, both factors, balancing and the selection strategy, are ana-
lyzed separately and in combination. Table 5.5 gives an overview of tested strategies grouped
by the mentioned factors. The columns class-balanced (Class-Bal.) and task-balanced (Task-
Bal.) refer to the balancing aspect. The markers in columns Exp. 1 - 3 show which buffer
constellations are compared in which of the three sub-experiments. The random strategy is
listed separately from the groups in the table. The selection strategies used are the following:

• random: The random selection assigns a random value from zero to one to each new
example in the training data. To decide which element to add respectively to replace
from the buffer, the elements from the buffer concatenated with the new elements are
ordered by their assigned random values. Subsequently, the first m elements of the
ordered list are kept in the buffer, wherem is the maximal buffer size.

• close-to-center: The strategy selects the examples based on Euclidean distance to the
feature mean of the elements in the buffer (including new examples to be added). It
can be understood such that all new elements of a batch are added to the buffer, then
the feature mean of all elements in the buffer is computed, and finally, the elements
are ordered by their distance to the feature mean from which them closest elements
are kept in the buffer. As features, the fastText document vectors (average over all
word vectors of each document) are taken.
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• similarity-based (diversity): The strategy is adapted from the approach suggested
by Aljundi, Lin, et al. (2019). It selects elements based on cosine similarity aiming to
maintain a wide variety of examples in the buffer. As in the strategies before, the
new training data is added to the buffer, and the pairwise cosine similarity between all
elements is computed. To maintain diversity, one of each two most equal elements is
removed. This strategy fills the buffer such that the elements cover a wide range of the
feature space.

• false classified: The strategy selects elements based on their classification by the
current model. The elements are ordered from false classified to correctly classified,
whereas the orderingwithin false or correct is random. As a result, the buffer is intended
to keep the false classified examples and may be filled with correct classified if false
classified examples do not fill the whole buffer. The intention is to improve the model
by replaying false classified examples from the previous tasks.

Regarding the balancing, class-balanced means the buffer is split into three parts of equal
size (in the present case, one-third of the complete buffer size each), whereas each part is
reserved for one class. That means balancing is not necessarily ensured in the beginning
phase when the buffer just starts filling. From the point where the buffer is completely filled,
class balancing is definitely ensured. However, in the present case, the classes are balanced
in the dataset. Therefore this is not an issue. Task-balanced means the buffer is balanced
over the tasks, such that the sizes of the buffer subsets are proportional to the number of
elements in each task. If the buffer is not balanced, this means the elements are selected
randomly, such that imbalance can occur.
For comparison to all buffer constellations, an unbalanced buffer with random selection is
used.
To get insights about the impact of different buffer constellations, the analysis was split
into three sub-experiments as shown in Table 5.5. The first sub-experiment analyses the
influence of balancing while using a random selection strategy. The second sub-experiment
analyses different selection strategies using no balancing, and the third sub-experiment tests
balancing and different strategies in combination.
5.4 Experimental Results and Discussion

This section shows and discusses the results of the described experiments. The sections are
chosen analog to the experiment description sections, with the difference that the results
of the buffer analyses are discussed in three separate subsections. Additionally, subsection
5.4.8 uses all parameters leading to the best results when analyzed separately. It combines
the separately optimized parameters in one run before the section closes with a summary.
5.4.1 Analysis of Cumulative Training Baselines

The cumulative training was performed to get an impression of the upper bound of the
performance that can be achieved with the described feature set and models and to be able
to better assess the performance of the CL-approaches later.



50 Chapter 5: Practical Application of Replay-Based CL to Text Classification
Name/Constellation Selection Strategy Class-Bal. Task-Bal. Exp. 1 Exp. 2 Exp. 3

random random ✗ ✗ • • •

Balancing
task-bal-rand random ✗ ✓ •
class-bal-rand random ✓ ✗ •
class-task-bal-rand random ✓ ✓ •

Selection Strategy
classification-based false classified ✗ ✗ •
sim-based similarity-based (diversity) ✗ ✗ • •
close2ctr-based close-to-center ✗ ✗ • •

Balancing & Selection
task-bal-close2ctr close-to-center ✗ ✓ •
task-bal-sim similarity-based (diversity) ✗ ✓ •
class-bal-close2center close-to-center ✓ ✗ •
class-bal-sim similarity-based (diversity) ✓ ✗ •

Table 5.5: Overview of analyzed buffer constellations.
The table overviews the buffer strategies used in the respective experiments. Besides the random approach, allothers are grouped in upper classes regarding balancing of the buffer, selection of examples to store in thebuffer and both combined. The markers in columns Exp. 1-3 show in which experiment(s) each constellation isused.

Regarding the average performance (Figure 5.5(a)), the diagram shows the F1-Score mea-
sured after each task on the test data of the current and all previous tasks. Additionally,
shaded areas show the standard deviation of the F1-Scores over five repeated runs. After
training on task one, the performance is very high (approx. 0.6 to 0.75), with a big standard
deviation for the MLP and LSTM. The performance massively drops at task two to values
between 0.3 and 0.4. The high performance with the big standard deviation at the beginning
is caused by the fact that the test data of task one contains only nine examples. This is too
less to get reliable results. After task two, the performance of all models steadily increases
up to task 5, where the F1-Score flattens around 0.6. Until task ten, it rises slightly above 0.6
before it goes up in the last task again. The LSTM reaches with an F1-Score of 0.6645 the
highest performance, followed by the SVM (0.6549) and MLP (0.6486, Table A.1). However,
the LSTM has mostly a slightly higher standard deviation than the MLP, which means the
differences in the performance between the five repeated runs are larger. The SVM has a
standard deviation of zero. This model is in contrast to neural networks deterministic and
does not depend on the initialization.

Similar results between all three models also show the class-wise analysis after each trained
task (Figure 5.5(b)). The class Conduct of Life reaches already after task three an F1-Score of
0.5 to 0.6, whereas the Adventure Stories and Love Stories reach this performance only after
task five. However, in the further process, the performance of all three classes slightly rises
except for the SVM for the class Love Stories. The latter starts with higher performance and
slightly decreases in some sections of the training process. Besides minor deviations, models
achieve comparable results after the last task with no significant differences between the
classes. In conclusion, the differences between the three models tested are marginal at this
stage.
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is more significant the smaller the number of replayed examples is. The maximum drop in all
cases is reached at task nine, which was also seen in the naive training before. The drop of
the run with 15 replayed examples is with a difference of 0.0279 much smaller than the drop
of the run with one replayed example (0.1137). This shows that replay had a positive effect
on overcoming the strong forgetting at task nine when the model first saw text from blurbs
instead of texts from books before. After the last task, the results vary between 0.4902 (one
replayed example) and 0.5808 (15 replayed examples).
The results of the LSTM differ from this in several ways. Whereas the difference in the per-
formance of all MLP runs was low until task six, this is not the case for LSTM. The differences
between the runs show bigger differences from the beginning on. Furthermore, the perfor-
mance rises much slower during the first tasks. Whereas all MLP runs except zero replayed
examples reach an F1-Score of more than 0.5 after task six, no run achieves this with the
LSTM. The results after task eleven lie between 0.5238 (one replayed example) and 0.5669
(15 replayed examples), achieving results comparable to the MLP at the end. Surprising with
the LSTM is the observation that the performance curve of the naive training (blue curve) is
over large parts almost as good as the performance of the runs with ten and 15 replayed
examples.
Notable differences between the MLP and LSTM also shows the analysis of the ranges be-
tween the best and worst performing class at each task (Figure 5.11). In the MLP, the range
is over large parts lower and also the differences between the runs with varied numbers
of replayed elements are smaller than in the LSTM. Only at task nine, where a drop in the
performance graph occurred, all runs except for 15 replayed examples show a peak in the
range. Interestingly, this peak is not as large in the LSTM at task nine. However, most LSTM
runs show a significant peak at task seven.
The analysis of the forgetting and BWT (Figure 5.12) coincides with the previous results. The
diagrams show the forgetting as solid lines and BWT as dotted lines. The color encodes the
number of replayed examples. To maintain clarity, not all runs are shown in the diagrams.
The forgetting in the MLP was negative, and the BWT high for all runs with replay at the
beginning and closer to zero and more fluctuation from task seven on. In the LSTM, the
opposite is the case. At the beginning until task seven, forgetting and BWT enormously
fluctuate, but from task eight on, the forgetting curves of all runs with replay flatten around
zero while having a BWT of more than 0.05 for all curves. The observations mirror the sharp
rise in the performance at the beginning of the MLP and the slow increase of the LSTM.
Contradictory looks the forgetting curve of the naive training (blue solid line) of the LSTM
compared to the other forgetting curves, as it decreases from task one to three in the naive
training but increases in all other cases. This is caused by the fact that the first task’s test data
contains only nine examples resulting in huge performance fluctuations when measuring
the performance separately for each task, which is the case in the calculation of forgetting
and BWT. However, when evaluating all test data up to the current task, the results on task
one have just a small impact due to task one’s low number of test examples. To cut it short,
abrupt rises in the performance of task zero to task one, followed by a sharp drop to task
three, which is valid for all classes, leads to the resulting forgetting curve. However, this
fluctuation is not visible in the performance graph, as task zero has very few test examples
and, therefore low impact on the overall performance.
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Figure 5.10: Impact of the number of replayed examples per ten new examples on the average per-formance.The diagrams show the performance (F1-Score) of the MLP (left) and the LSTM (right) after each trained task fordifferent numbers of replayed examples. Zero replayed examples is equivalent to naive training and includedfor the purpose of better comparison. Detailed values are shown in Tables A.3 and A.4

Figure 5.11: Impact of the number of replayed examples per ten new examples on the range of theperformance of the classes.The graphs represent the difference between the best and worst performing classes at each task for variednumbers of replayed elements. The range should ideally be low, as this indicates equal performances of allthree classes.



Chapter 5: Practical Application of Replay-Based CL to Text Classification 57

Figure 5.12: Analysis of forgetting and BWT depending on the number of replayed examples.The line style encodes the measure, which is either forgetting (solid lines) or BWT (dotted lines). By the colorsresults of runs using different numbers of replayed examples are compared. In order to maintain clarity, not allruns are plotted, but only these using 0, 5, 10, and 15 replayed examples.

The results of the MLP clearly confirm the hypothesis that the performance increases and the
range between the class-wise performances decrease with an increasing number of replayed
examples. This only applies to a limited extent to the LSTM. The naive training does not fit in
the other results, as it achieves unexpectedly good performance with no replay coming close
to the runs with ten and 15 replayed examples and outperforming the runs with less than ten
replayed examples. This leads to the conclusion that replaying a small number of examples is
inhibitory for the performance. A reason for the general slower increase in the performance
of the LSTM could be the model size. With 68,291 trainable parameters, the LSTM is much
more complex than the MLP with 15,303 trainable parameters. Due to the larger size of the
LSTM, it is likely that it needs a larger amount of training data to fit its parameters properly
and to stabilize. The diagram of the forgetting speaks for this besides the diagram of the
performance. The fluctuation of the forgetting and BWT curves indicate high plasticity and
low stability in the first tasks before the model seems to become more stable after task 7.
Based on this, it can be hypothesized that if the plasticity is too high, replay will have nomajor
effect on model improvement. At the beginning of the training over the first tasks, the model
saw only a relatively low number of different examples. If a selection from the seen examples
is further replayed to the model, it can be imagined that the model overfits to the replayed
examples due to high plasticity. This also explains the drop in the performance curves of
the LSTM at task four, as the number of examples replayed plays no role here and does
not prevent sudden drops in performance. The highest performance at this point achieve
the runs with five and seven replayed examples, but upon others, the run with 15 replayed
examples has one of the lowest performances and a deep performance drop at task four.
Only later, from tasks five to six, the replay of more examples shows advantages regarding
the performance itself and the prevention of sudden performance drops. That replay has
a low effect on the performance during the first tasks coincides with the curves of the MLP.
Until task six, the performance of all runs is still in the same range within 0.05 except for the
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naive training, which has a lower performance. However, in contrast to the LSTM, a higher
number of replayed examples dampens sudden performance drops, as seen in task four.
The reason why a higher number of replayed examples has a positive influence in the MLP
but not in the LSTM in the early training phase at task four could therefore be explained by
a higher plasticity of the LSTM due to a higher number of model parameters that must be
adjusted.
What cannot be explained by the higher complexity of the LSTM and the associated larger
amount of required training data is the high performance of the naive training. To find the rea-
son for this, further analyses must be done. For example, a role may also play the optimizer
for which Adam-optimizer was currently used or the applied loss function. Furthermore, an
LSTM with a smaller hidden layer and accordingly a lower number of trainable parameters
should lead to better results if the high complexity of the current LSTM would be the reason.
To summarize the effect of the number of replayed examples per ten new training examples,
it can be said that a larger amount of replay generally leads to better results. However,
the power of replay does not have a substantial effect starting right from the beginning,
but it takes some time for replay to make a difference. In the present case, an advantage
appeared from approximately the sixth task. Most of the benefits of replay were seen in the
improvement of the average performance and in the ability to dampen sudden drops in the
performance. When comparing MLP and LSTM, replay had a better effect on the results of
the MLP, but both models improved compared to the naive training.

5.4.4 Analysis of the Impact of Number Training Iterations

Looking at the average performance (Figure 5.13), it can be seen that the number of training
iterations leads to only minor differences in the case of the MLP. The highest performance
of 0.6090 after task eleven is achieved with five iterations. Despite the run with one iteration,
all other runs achieve only slightly lower F1-Scores. The differences in earlier tasks also show
equal results. Besides the run with five iterations with the best performance over large parts,
the difference to the other runs with at least three iterations is minimal.
The results of the LSTM show more differences between the runs. From task seven on again,
the run with five iterations achieves the best F1-Scores resulting in 0.6045 after task eleven.
Only slightly worse perform the runs with seven and nine iterations, followed by the run
with 15 iterations. The run with three iterations performs about 0.1 worse than the best run
between tasks five and nine. In the last tasks, the performance improved a bit. The run with
only one iteration has the lowest performance, with large parts having an F1-Score lower
than 0.4.
In the diagrams of both models, it is visible at task one that the curves of the runs with one
and three iterations start with an F1-Score lower than 0.25, and all other runs achieve a much
better performance of over 0.35 for the MLP and over 0.4 for the LSTM. On the one hand side,
this shows that the networks have more training steps to fit the weights due to more training
iterations. On the other hand side, the high performance seems to come from an overfitting
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Figure 5.13: Impact of the number of training iterations on the average performance.The number of training iterations per batch was varied between one and 15. The diagrams show the respectiveperformance graphs for the MLP and LSTM. Detailed values are listed in Tables A.5 and A.6.
to the majority class, as the range between the class with highest and lowest performance
(Figure 5.14) is also big at task one. Another indicator of overfitting is the performance drop
after task one in both models.
Regarding the ranges for the MLP (Figure 5.14), contrary to the performance, bigger differ-
ences between the runs are visible around tasks three to eight. The smallest ranges in this
part have the runs with three and five training iterations lying between 0.1 and 0.2 after task
three. This strengthens the observation that five iterations lead to the best results for the
MLP. In contrast, at the LSTM, the range between the best and worse performing class de-
creases over time. It starts with bigger ranges at tasks three and four compared to the MLP,
but it improves to lower ranges than the MLP has from task 8 to the end when comparing the
curves with the lowest ranges in both models. In the LSTM, the lowest ranges are achieved
with 15 iterations at the beginning before the runs with five and seven iterations further
improve and achieve the lowest ranges. Also the F1-Score performance of the run with 15
iterations was higher compared to the other runs, showing that the system might benefit
from a higher number of iterations at the beginning, which could be reduced after a certain
number of tasks or training experiences. Generally, analysis of the ranges confirms in the
case of the LSTM that one is too less for the complex model, and also three iterations are too
less to be on a level with the runs using a higher number of training iterations.
In accordance with the best performance of the MLP when using five training iterations are
also the results of the analysis of forgetting ans BWT (Figure 5.15). Compared to the runs
with a higher number of iterations (orange and red graphs), it is visible that the green graph
has the highest BWT while preserving forgetting over large parts being lower or equal to
the other curves. This shows that the model adapts more to the current training data with
more iterations. However, it loses generalization simultaneously, which is visible in a lower
BWT of the orange and red graphs compared to the green graph. An unexpected course has
the blue curve using one iteration in the diagram of the MLP, as it shows a high BWT and
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Figure 5.14: Impact of the number of training iterations on the range of the performance of theclasses.Analysis of the difference (range) in the performance (F1-Score) of the best and worst performing class at eachtask for the MLP and LSTM.

a low forgetting until task eight. This is caused by the fact that the performance of the run
using one iteration is very low (almost 0.20) at the beginning but heavily increasing by about
0.3 until task six. In contrast, the runs with five or more iterations start with significantly
better performances between 0.35 and 0.45 at task one and increase to 0.50 to 0.55 at task
six, which is an improvement of maximal 0.2. The higher improvement of the run with one
iteration results in a higher BWT and lower forgetting at the beginning. However, in the last
tasks, it can be seen that the blue graph in Figure 5.15 shows expected results (high forgetting
and low BWT).
For the LSTM, the analysis of forgetting and BWT (Figure 5.15) is more straightforward. As
expected, the curve with one iteration has a high forgetting and a low BWT. The best per-
forming run with five iterations has over large parts the lowest forgetting and a high BWT. As
with the MLP, the results show that too many iterations (more than five to seven in this case)
have a negative effect on the generalization, which in turn affects the performance.
In summary, about the number of training iterations it was found for both tested models,
the MLP and LSTM, that it influences the general performance as well as the fluctuation of
the performance curve.
Regarding the general performance, it was found, that five iterations led to the best results.
For the LSTM, a number of five to seven iterations showed the best results. If the number
of iterations is too low, it is observed that the performance is clearly lower than the best
runs achieved, which indicates that the fitting process of the weights could not be finished.
A higher number of iterations than the optimal values result in a slightly lower performance
compared to the best runs. This is likely caused by decreasing generalization due to better
adaption to current training data.



Chapter 5: Practical Application of Replay-Based CL to Text Classification 61

Figure 5.15: Analysis of forgetting and BWT depending on the number of training iterations.Forgetting and BWT computed from the F1-Score results of the MLP and LSTM models. The solid lines depict theforgetting and the dotted lines represent the BWT.
Furthermore, the results showed that a higher number of iterations reduce fluctuation and
sudden performance drops in the performance curve up to a certain degree, which means
it contributes to stabilizing the performance curve. If the number of iterations is too low,
the fluctuation is higher. However, a higher number of iterations than in the case with the
highest performance is unlikely to improve the results significantly further.
In the case of the LSTM, it was also visible that 15 iterations resulted in a smaller range
between the class performances around tasks four and five (Figure 5.14), which also positively
affects the overall performance. However, it is unclear whether this observation can be
generalized, as nine iterations showed no improvements to the run with five iterations.
5.4.5 Analysis of Buffer Balancing

The performance curves of runs with different balancing combinations (Figure 5.16) show
that for both models, the MLP and LSTM, only marginal differences, whereas the differences
in the LSTM are slightly higher, which may be because of the higher number of parameters.
However, regarding the performance, neither the MLP results nor the LSTM results show that
one balancing strategy works visibly better than another.
When looking at the ranges between the best and worst performing classes (Figure 5.17), the
diagram of the LSTM shows that the ranges in the random selection with no explicit balancing
are higher than the ranges of the other tested balancing strategies from tasks six to nine.
As the average performance is equally high as in the other runs, this indicates that there
is at least one worse but also one very good performing class. In the area from task six to
nine, the task-balanced run (blue curve) shows the lowest ranges for the LSTM, followed by
class- and task-balanced (orange curve). This shows that class balancing has a less positive
impact on the ranges than task balancing. This could be caused by the data distribution. As
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Figure 5.16: Impact of balancing the buffer on the average performance.The curves show the average F1-Score over five repeated runs for each buffer constellation for the MLP and theLSTM after each trained task.
the classes are balanced in the dataset (similar number of examples for each class in each
task), the random buffer is, by the law of large numbers, theoretically also balanced if the
buffer size (respectively the number of selected elements) is big enough. This seems to be
true for the classes which are balanced over all tasks, as the run with class balancing showed
no significant improvement. However, as the number of texts in the tasks differs very much,
the buffer is probably too small to make the law of large numbers apply. This means the
proportion of elements in the buffer from the different tasks cannot be achieved by random
sampling with this buffer size. The observation also coincides with the number of examples
in tasks six to nine (Figure 5.2), where the difference was mainly visible. In tasks five, six, and
seven, the random buffer is likely flooded with books from those tasks as they have with
around 1,000 texts per task and class much more training examples than the tasks before.
The following tasks eight to ten have with less than 200 examples per task and class again
much fewer examples. This might flood the buffer with examples from tasks five to seven,
while the law of large numbers does not apply due to a small task size in tasks eight to ten.
The task-balanced buffer, in contrast, manages to keep the proportion of examples per task
correct.
For the MLP, the diagram of the ranges does not show significant differences between the
tested buffer constellations. This indicates that the MLP is less influenced by replay than
the LSTM, which is, in turn, caused by the much lower number of trainable parameters in
the MLP. The lighter model better fits to the data already in the training of each task, and
therefore replay has not the function to improve the model but to prevent forgetting.
5.4.6 Analysis of Selection Strategy

This experiment (buffer constellation sub-experiment 2) was designed to get insights into
the selection strategy to select examples stored in the buffer. It is analyzed without any
balancing at this point. The MLP and LSTM performance curves (Figure 5.18) clearly show
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Figure 5.17: Impact of balancing the buffer on the range of the performance (F1-Score) of the classes.The diagrams show the range between the best and worst performing classes after training on each task usingthe F1-Score as the performance measure. The results are averaged over five repeated runs each.

that the classification-based approach achieves the lowest performance. The difference to
the other approaches becomes, in particular, visible from around task seven. Interestingly, in
the MLP, the performance sharply drops from over 0.5 to almost 0.25 from tasks six to seven.
Looking at the range between classes (Figure 5.19) at this point, it can be seen that the range is
with almost 0.5 very high. This indicates that at least one class performs poorly, whereas the
model adapted well to another class. Once the model comes in a strong imbalance regarding
the performance of the classes, the problem worsens. The reason is that, followed by the
performance imbalance, many elements of the worse performing class are added to the
buffer, which leads to a shift in the prediction imbalance. The worse performing class from
before will likely improve due to many elements of this class added to the buffer, whereas
the foremost good performing class loses performance. This results in an unstable model.

Another explanation for the observation is that the tasks immediately before task seven con-
tain many falsely classified outliers. Due to the strategy, the false classified outliers are added
to the buffer and replayed, leading to an adaption of the model to fit the outliers. In turn, the
representative examples of the data, which were correctly classified before, were then falsely
classified. Subsequently, in task seven, the representative examples of the data are falsely
classified, which makes them adding to the buffer resulting in an increased performance
due to its replay in task eight again. The selection of false classified examples thus leads to
fluctuation in the performance curve.

In the LSTM, this observation is not visible as clearly, which is caused again by the fact that
the LSTM has a much higher number of trainable parameters, and subsequently, it adapts
slower to new data. This also means that it adapts slower to probably replayed outliers which
negatively influences the MLP. Nevertheless, the classification-based selection also achieves
the lowest performance with the LSTM.
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Figure 5.18: Impact of the example selection strategy on the average performance.Comparison of strategies of how to select examples to store in the buffer. Classification-based selects in the firstline false classified examples, similarity-based (sim-based) aims to maintain a wide diversity of samples in thebuffer by dropping similar elements, and the close-to-center (close2ctr) strategy selects elements based on theirdistance to the feature mean of the elements in the buffer.

The other tested strategies (random, similarity-based, and close-to-center) achieved compa-
rable results with minor differences in both models. The close-to-center selection strategy
shows a slight advantage in case of the LSTM from tasks six to eleven, as the curve is more
stable than the others. However, in the beginning, the close-to-center selection is not as
stable, which becomes visible by a sharp performance drop at task four. The reason for
this could be that the buffer contains elements that are not that representative for the later
elements. As new elements are selected based on their Euclidean distance to the feature
mean of all elements in the buffer, this leads to a gap between the elements in the buffer
and the current training data. After task four, the buffer content adapts to the current data,
which stabilizes the model.
Looking further at the ranges between classes (Figure 5.19), the curves mainly confirm the
results that the differences between the random, similarity-based, and close-to-center strat-
egy are only marginal. A slight advantage shows the close-to-center strategy in the last tasks
of the LSTM training, as it is the only strategy where the range constantly reduces and has
less fluctuation regarding the ranges than the other strategies.
The strategy analysis comes to the result that it is essential that the buffer contains a high
percentage of representative examples of the respective tasks and classes. This is ensured in
the first line in the close-to-center strategy. But also, the random approach and the similarity-
based approach (aiming at diversity) still work well. In the case of the random approach,
it lies in the nature of the random selection, that it selects examples proportional to the
distribution of the underlying data. In the similarity-based strategy, among others, also the
main representative examples are selected, as the strategy selects examples across thewhole
feature space. However, the diversity does not result in a better performance such it can be
said that the examples near the feature mean have the most significant impact.
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Figure 5.19: Impact of the balancing in combination with selection strategy on the range of the per-formance of the classes.Comparison of strategies of how to select examples to store in the replay buffer regarding the range betweenthe best and worst performing class for the MLP and LSTM.
5.4.7 Analysis of the Combination of Balancing and Selection Strategies

In the analyses before, selection strategies and buffer balancing were separately analyzed. It
was seen that classification-based selection works poorly, and task-balancing leads to a slight
improvement compared to the other balancing strategies. However, the buffer constellation
could make a difference if balancing and specific strategies are combined. For example, it is
conceivable that a class-balanced approach combined with the close-to-center selection strat-
egy results in an improvement of the performance, whereas both constellations separately
do not show improved results.
However, the results of the seven compared constellations (Figure 5.20) show that also the
combination of balancing and selection strategies leads just to minor differences. For the
MLP, themost significant differences are visible around tasks eight to eleven. But as all curves
fluctuate in this area, it cannot be clearly said which constellation has the best results. The
most negligible fluctuation has the task-balanced close-to-center (task-bal-close2ctr) curve.
Looking at the ranges-diagram for the MLP (Figure 5.21), the task-balanced close-to-center
constellation has, in particular during tasks seven and ten with just slightly more than 0.2 a
constant rangewhereas all other constellations have at least one peak up almost 0.3 or higher.
This could neither achieve the task-balancing nor the close-to-center strategy separately,
which shows that the size of the ranges slightly benefits from this combination.
For the LSTM, the performance diagram shows that the curves of the task-balanced close-
to-center and the task-balanced similarity-based constellations show the most stable curves
after a drop in task four while preserving performance in the upper range compared to
the other constellations. The stable curve of the task-balanced close-to-center approach
was expected as the task-balancing and the close-to-center strategy separately also showed
the best results. In contrast, the task-balanced and the similarity-based strategy showed
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Figure 5.20: Impact of balancing in combination with different selection strategies on the averageperformance.The diagram shows the performance curve (F1-Score) averaged over five repeated runs each for different bufferconstellations combining balancing and selection strategies. Task-balancing and class-balancing are combinedwith the close-to-center and similarity strategies. For better comparison, both strategies’ curves are also plottedwithout balancing.
fluctuation when used separately, but in combination, the fluctuations cancel each other
out, resulting in a stable performance curve. This means the constellation benefits from
the combination. Even though both constellations have good results regarding the average
performance, they do not show consistently low ranges (Figure 5.21). Compared to the other
constellations in the LSTM, the ranges are mostly in the lower ranges, but compared to the
MLP, they are most time higher. In particular between tasks two and six, the MLP achieves
much better results in this point, which can be traced back to the faster adaption of the MLP
due to a smaller number of parameters.
5.4.8 Run with Optimized Parameters

In the experiments before, multiple parameters influencing continuous training were an-
alyzed. In this run, all the parameters were chosen as optimal according to the previous
analyses. It should be noted that the combination of separately optimized parameters must
not necessarily lead to the optimal result. To get more insights into how the parameters
influence each other further analyses are necessary.
According to the results of the previous experiments, the parameters for both models were
chosen equally using five training iterations, 15 replayed examples per each ten new training
examples, and a task-balanced buffer using the close-to-center selection strategy.
The performance results after each task and its comparison to the cumulative trainedmodels
are shown in Figure 5.22. It can be seen that the continuously trained MLP consistently
achieves a higher performance than the LSTM, except for the first two tasks. The standard
deviations of both models are equally high, which means the results between repeated runs
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Figure 5.21: Impact of the buffer balancing in combination with selection strategy on the range of theperformance of the classes.The diagram visualizes the results of different combinations of buffer balancing (task-balanced, class-balanced,and unbalanced) and selection strategies (close-to-center, and similarity-based). The run called random (red)uses no balancing and random selection of elements to store in the buffer.

with the same parameter constellation vary approximately by the same amount. With a
maximum standard deviation of 0.231 for the MLP and 0.303 for the LSTM, the variation is
low, showing that influences of random processes (in particular the initialization) are largely
eliminated.
Compared to the cumulative trained models, the results of the continuously trained MLP
are only slightly lower than those of the cumulative trained MLP. When ignoring the results
after task one, the difference is at maximum –0.0524 in task five and on average –0.0222
(negative means the continuous trained model performs worse than the cumulative trained
model). For the LSTM, the difference is higher. At maximum, it is –0.1263 in task four and
on average –0.0800, again ignoring the results after task one, as this is not representative
and would distort the results. Even though the LSTM achieved slightly higher results in the
cumulative training than the MLP, the opposite is true for continuous training. This leads
to the conclusion that the less complex MLP is more suitable for continuous training than
the complex LSTM. The higher number of trainable parameters in the LSTM slows down the
process of the adaption to new data because more parameters must be fitted, which in turn
requires more data.
In both continuously trained models, the range between the performance of the classes
(Figure 5.23(a)) is very low compared to the previous experiments. Over large parts, the
range is smaller than 0.2 for both models, whereas the LSTM has a higher standard deviation.
Furthermore, the LSTM takes longer to stabilize visible at the higher range until task four. That
bothmodels are stable without much fluctuation is also confirmed by the curves of forgetting
and BWT (Figure 5.23). Apart from the beginning of the curves, at task two, bothmodels show
a consistent but low forgetting only slightly greater than zero over most parts. This means,
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In close relation to buffer balancing is the strategy to select examples to store in the buffer.
Three strategies implementing different ideas were compared with random selection. The
classification-based strategy selecting primarily false classified examples showed by far the
worst results. The differences between the other strategies were smaller. In the MLP, it is not
possible to say which one is the best because of their minor differences in the performance
as well as in the class ranges. For the LSTM, a difference is seen in the stability of the perfor-
mance curves. Whereas the random and similarity-based (aiming at diversity) strategy show
fluctuating performance curves, the one of the close-to-center selection strategy was much
more stable without sudden drops after an initial training time until task four.
As balancing and the selection strategy both influence the examples stored in the buffer and
are therefore particularity related, balancing was also analyzed in combination with different
selection strategies. Again, in theMLP, the differences wereminimal, leading to the result that
the buffer does impact the results only on a low scale with the present balanced dataset. In
the LSTM, the task-balanced constellations (task-balanced close-to-center and task-balanced
similarity-based) showed partly a higher performance and were more stable regarding the
performance than the other constellations, including the unbalanced buffer with random
selection.
Finally, it was tested to what extent the parameters considered to be optimal beforehand
improve the result. These were 15 replayed examples, five training iterations, and a task-
balances buffer using the close-to-center selection strategy.
For the MLP, it was found that the combination of these parameter choices outperformed
all previous results of the continuously trained models. The results in the experiment of the
number of iterations are almost as high, but the final parameterization leads to amore stable
model. This is seen in the performance curve, which shows no sudden performance drops,
in the forgetting and BWT curves, and also the curve of the class ranges shows only a slight
jump at the end. Therefore it can be concluded that the number of iterations has an impact
on the average performance. However, the other parameters, likely at big parts the number
of replayed elements, stabilize the model and prevent performance drops. The results of the
continuously trained models come very close to the cumulative trained MLP, which only has
an average difference of –0.0222 ignoring outlier values at task one.
The performance of the LSTM using the mentioned parameter choice is slightly lower than
in the experiment of the number of iterations. However, the curve is more stable in the
concluding experiment, which is also confirmed by the analyses of the ranges, forgetting, and
BWT. In particular, forgetting and BWT aremore stable and consistent than in the experiment
analyzing the number of iterations. It can be concluded that, in this case, the performance has
decreased in favor of higher stability. This mirrors the stability-plasticity-trade-off. Compared
to the cumulative training, the difference is with –0.0800 on average (ignoring outliers at task
one) higher than in the MLP.
In a nutshell, the final parameter choice improved the performance, stabilized the models,
and reduced the differences in the performance of the classes compared to naive continuous
training. The MLP could almost achieve the performance of the cumulative trained model,
whereas the performance of the LSTM was slightly lower. This leads to the conclusion that
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the MLP is more suitable in this case, as it is less complex and, therefore, more flexible and
adapts faster. The more complex LSTM needs more training data to adapt to new tasks,
finally leading to lower performance.
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6 Conclusion

This work consists of two parts. First, the challenges of CL were explained, including dataset
shifts, CF, and the stability-plasticity dilemma. All three challenges are related, making it diffi-
cult to balance the prevention of learned knowledge (stability) and learning new tasks (plas-
ticity). In this context, the main approaches were introduced: replay-based, regularization-
based, and architectural methods. It was found that replay-based approaches are an intuitive
way to prevent CF by storing selected examples in a buffer and replaying them later when
learning on new data. Even though or because of its simplicity, replay is used in many ap-
proaches, and it is also state-of-the-art, often achieving good results. Furthermore, it can be
well combined with other strategies.
Due to its relevance, a replay-based approach was practically implemented and analyzed
regarding influential parameters in the second part of this work. A considerable proportion
of work in the area of CL is done for image classification, however CL for text classification
was rarely done. Nevertheless, CL in general becamemore popular in the recent three to five
years resulting in a rising variability in the research. Furthermore, replay-based approaches
have been examined, but rarely in terms of influential hyperparameters such as the number
of examples replayed, the number of training iterations, and buffer constellations.
For these reasons, a data-incremental text classification task was chosen as the problem
to solve in this study. The task was to classify book excerpts and blurbs into three given
categories. Thereby the system starts learning from old books and progressively continues
training with newer books. Therefore, the system needs to adapt to the books’ changing
language and writing styles over time.
For this task, a dataset based on books of the Gutenberg-Project and blurbs of the Goodreads
web page was created first. It was divided into eleven tasks by successive time intervals. In
all analyses, an MLP and LSTM using a replay-based approach were compared. The baseline
was set by a naive approach without using replay or any other strategy to address CF and
the stability-plasticity dilemma. On the other hand, cumulative trained models using all data
at once were used as the upper bound of the achievable performance.
Results showed that replay improved the results compared to naive training in the case of the
MLP clearly (approx. 0.11 higher F1-Score) and moderately for the LSTM (approx. 0,03 higher
F1-Score). In contrast to the cumulative training, where the LSTM performed slightly better,
the MLP clearly outperformed the LSTM in continuous training. The MLP showed only a
slightly lower performance (-0.03), whereas the performance of the LSTM was approximately
0.09 worse than in the cumulative training. This is explained by the higher complexity of the
LSTM compared to the MLP. Accordingly, a higher number of parameters must be fitted in
the training process, which makes it adapt slower to new tasks.
For the analyzed parameters regarding research question two, it was found that the number
of replayed examples and the number of training iterations have the most impact on the
result. For the number of replayed examples, the results showed the higher the number
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of replayed examples, the better the results. At the highest, 15 replayed examples per ten
new training examples were tested. It improved the performance and stabilized the model.
For the number of training iterations, a number of five to seven iterations lead to the best
results. If the number is too low, the model cannot acquire enough knowledge about the
task. If the number of iterations is too high on the other side, the model is too plastic and
overfits on new tasks while losing knowledge about old tasks. Regarding the buffer, in the
present experiments, only marginal differences could be found with a slight advantage of
a task-balanced buffer. Similarly, the selection strategy had only a minor impact. With the
exception of the false-classification strategy, which resulted in a much lower performance
than the other tested strategies, the differences were small. However, a slightly better and
more stable performance was observed with the close-to-center selection strategy.
To cut it short, the analyses of replay-based CL on a data-incremental text classification task
could clearly improve the results regarding the average performance and stability of the
models compared to naive training. The better adaption of the MLP showed that it was in
the present application more suitable than the LSTM.
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7 Future Work

CL is a research topic that is still at its beginnings and got just recently a big boost. Therefore,
also during the experiments and their analyses, multiple points for potential improvements
and observations to be analyzed in more detail came up. Regarding the analyses, it would
be helpful to further examine the class-wise and task-wise performance in more detail and
evaluate in smaller intervals than task-wise to detect possible anomalieswhich cannot be seen
in a task-wise evaluation (De Lange et al., 2023). In particular, for the analyses of the buffer
constellation, this might show deeper insights into the impact of a class- or task-balanced
buffer. Thereby, the experiments should also be done on (class-) unbalanced data to find out
how a balanced buffer may increase the results in this case. This is, in particular, important
for real-world applications, as data is often unbalanced.
In this context, it could also be helpful to track the distribution shifts in the data, which can
then be used to draw conclusions regarding selection strategies deciding which elements
to store in the buffer. Both are interrelated, as the selection strategy should ideally select
elements such that the buffer also represents the distribution shift. Furthermore, the sam-
pling strategy of examples from the buffer, which are replayed in each batch, can likely be
improved. Even though regularly random sampling is used (Aljundi, Belilovsky, et al., 2019), it
can be expected that sampling of elements to replay based on the new training data improves
the results. For example, it is conceivable that replaying elements from the buffer that are
more distant to the feature mean of the new training data might improve the results as this
prevents overfitting to the new data and forgetting of previous knowledge.
Regarding the buffer-related parameters also the impact of the buffer size should be analyzed
to minimize computational and memory resources without a loss in the performance.
Generally, after this work, it is also unclear how the analyzed parameters influence each
other and which cross relations there are. In particular, for the LSTM, the run with the sepa-
rately optimized parameters performed slightly worse than the best run in the experiment
conducting the number of training iterations. This shows there are cross relations between
parameters canceling advantages of each of the parameter choices out.
Finally, feature engineeringwas not done in the present case except for theword embeddings.
More exhaustive experiments in this area and regarding hyper-parameters of the models,
such as learning rate, optimizer, or loss function, could improve the results. However, this
was not the scope of this work in the first order, but to get insights about influential replay
parameters.
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Appendix A: Performance Tables

A.1 Cumulative Training

Task
SVM MLP LSTM

Mean Std Mean Std Mean Std

1 0.6000 0.0000 0.7396 0.1403 0.7531 0.1682
2 0.3782 0.0000 0.3310 0.0105 0.3157 0.0050
3 0.4110 0.0000 0.3721 0.0192 0.3781 0.0201
4 0.4566 0.0000 0.4606 0.0081 0.4771 0.0114
5 0.5923 0.0000 0.5507 0.0048 0.5772 0.0148
6 0.6080 0.0000 0.5834 0.0105 0.6098 0.0045
7 0.6214 0.0000 0.6029 0.0119 0.6070 0.0112
8 0.6264 0.0000 0.6004 0.0049 0.6197 0.0133
9 0.6277 0.0000 0.6070 0.0040 0.6191 0.0094
10 0.6318 0.0000 0.6157 0.0082 0.6268 0.0066
11 0.6549 0.0000 0.6486 0.0047 0.6635 0.0050
Table A.1: F1-Scores of cumulative trained baseline models.

The table lists the numerical values of the diagram in Figure 5.5(a). The column "Mean" shows the mean of the
F1-Scores over the five runs. Column "Std" shows the standard deviation. The respective Experiment is

described in Section 5.4.1.

A.2 Naive Training

Avg. F1-Score MLP LSTM
Task

1 0.2051 0.3966
2 0.3342 0.2991
3 0.3285 0.2438
4 0.3218 0.2502
5 0.4443 0.4482
6 0.4756 0.4658
7 0.4683 0.4638
8 0.5179 0.5181
9 0.3619 0.4937
10 0.4542 0.4688
11 0.5085 0.5473

Table A.2: Average performance (F1-Scores) of naive trained MLP and LSTM.
Average F1-Score values over five repeated runs for the MLP and LSTM each. The respective experiment is

described in Section 5.4.2. The diagram visualizing the results is shown in Figure 5.7(a).
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A.3 Impact of Number Replayed Examples

Number Replayed 0 1 3 5 7 10 15
Task

1 0.2051 0.2051 0.2051 0.2051 0.2009 0.2051 0.1974
2 0.3342 0.3645 0.3685 0.3549 0.3413 0.3722 0.3704
3 0.3285 0.4008 0.4028 0.4044 0.4071 0.4122 0.4115
4 0.3218 0.3534 0.3749 0.3895 0.3922 0.4028 0.4124
5 0.4443 0.4824 0.4947 0.4911 0.4975 0.5079 0.5118
6 0.4756 0.5209 0.5349 0.5447 0.5414 0.5422 0.5532
7 0.4683 0.4379 0.4880 0.4905 0.4946 0.5158 0.5503
8 0.5179 0.4800 0.5039 0.5019 0.5129 0.5266 0.5253
9 0.3619 0.3596 0.3788 0.4520 0.4621 0.5113 0.5416
10 0.4542 0.4697 0.5237 0.5390 0.5333 0.5746 0.5699
11 0.5085 0.4902 0.5138 0.5359 0.5474 0.5661 0.5808

Table A.3: F1-Scores of MLP with varied number of replayed examples.
Performance (F1-Scores) for the MLP of the experiment analyzing the impact of the number of replayed

examples per training batch containing ten new examples (Section 5.4.3). The respective diagram is shown in
Figure 5.10.

Number Replayed 0 1 3 5 7 10 15
Task

1 0.3966 0.2051 0.2051 0.2051 0.2051 0.2530 0.2051
2 0.2991 0.3508 0.2843 0.3570 0.3607 0.3131 0.3373
3 0.2438 0.3269 0.3513 0.3593 0.3129 0.3415 0.3448
4 0.2502 0.2967 0.2871 0.3251 0.2902 0.3253 0.2829
5 0.4482 0.3833 0.3892 0.4097 0.3532 0.4389 0.4179
6 0.4658 0.3695 0.4432 0.3485 0.4390 0.4691 0.4809
7 0.4638 0.3495 0.3662 0.2952 0.3977 0.4859 0.5140
8 0.5181 0.4456 0.4533 0.4530 0.5076 0.5264 0.5216
9 0.4937 0.3568 0.3832 0.4216 0.4829 0.5041 0.5198
10 0.4688 0.4063 0.4549 0.4791 0.5246 0.5305 0.5321
11 0.5473 0.5138 0.5361 0.5093 0.5509 0.5746 0.5669

Table A.4: F1-Scores of LSTM with varied number of replayed examples.
Performance (F1-Scores) for the LSTM of the experiment analyzing the impact of the number of replayed

examples per training batch containing ten new examples (Section 5.4.3). The respective diagram is shown in
Figure 5.10.
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A.4 Impact of Number of Training Iterations

Number Replayed 1 3 5 7 9 15
Task

1 0.2036 0.2051 0.3636 0.4351 0.4197 0.4378
2 0.2999 0.3814 0.3526 0.3511 0.3509 0.3387
3 0.3828 0.4065 0.3937 0.3705 0.3700 0.3599
4 0.3616 0.3823 0.4076 0.4045 0.4186 0.3987
5 0.4583 0.5197 0.5193 0.5084 0.4950 0.5188
6 0.5024 0.5521 0.5518 0.5103 0.5158 0.5238
7 0.5078 0.5336 0.5503 0.5452 0.5352 0.5214
8 0.5133 0.5600 0.5884 0.5809 0.5829 0.5701
9 0.4136 0.5306 0.5461 0.5390 0.5466 0.5541
10 0.4968 0.5676 0.5719 0.5681 0.5490 0.5351
11 0.5391 0.5782 0.6109 0.6094 0.6090 0.5837

Table A.5: F1-Scores of MLP with varied number of training iterations.
Performance (F1-Scores) for the MLP of the experiment analyzing the impact of the number of training

iterations per training batch (Section 5.4.4). The respective diagram is shown in Figure 5.13.

Number Replayed 1 3 5 7 9 15
Task

1 0.2051 0.1974 0.4797 0.6146 0.4341 0.5902
2 0.3677 0.3353 0.3625 0.3122 0.3013 0.3039
3 0.3615 0.3441 0.3618 0.3469 0.3499 0.3418
4 0.3367 0.3196 0.3168 0.3258 0.3282 0.3666
5 0.3266 0.4107 0.4802 0.4804 0.4890 0.4940
6 0.4172 0.4708 0.5314 0.5330 0.5071 0.4920
7 0.3320 0.4900 0.5525 0.5465 0.5363 0.5120
8 0.3930 0.5072 0.5813 0.5717 0.5539 0.5455
9 0.3392 0.4862 0.5581 0.5565 0.5516 0.5316
10 0.4561 0.5388 0.5781 0.5667 0.5659 0.5282
11 0.4882 0.5665 0.6045 0.5952 0.5965 0.5847

Table A.6: F1-Scores of LSTM with varied number of training iterations.
Performance (F1-Scores) for the LSTM of the experiment analyzing the impact of the number of training

iterations per training batch (Section 5.4.4). The respective diagram is shown in Figure 5.13.
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A.5 Run with Optimized Parameters

MLP F1 MLP Std LSTM F1 LSTM Std
Task

1 0.2421 0.0774 0.3772 0.1368
2 0.3707 0.0092 0.3244 0.0392
3 0.3975 0.0052 0.3349 0.0479
4 0.4183 0.0231 0.3509 0.0097
5 0.4984 0.0213 0.4610 0.0303
6 0.5585 0.0173 0.4999 0.0144
7 0.5658 0.0068 0.5234 0.0197
8 0.5888 0.0051 0.5453 0.0075
9 0.5640 0.0184 0.5449 0.0119
10 0.5710 0.0144 0.5331 0.0149
11 0.6180 0.0039 0.5769 0.0081

Table A.7: F1-Scores and standard deviation of the runs with supposed optimum parameters for MLPand LSTM.
Results of the run with optimized parameters using five iterations, 15 replayed examples per ten new training
examples and a task-balanced buffer with close-to-center selection strategy. The respective diagram is shown in

Figure 5.22.
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