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Referat

The Tutte polynomial is an important tool in graph theory. This paper provides an introduction
to the two-variable polynomial using the spanning subgraph and rank-generating polynomi-
als. The equivalency of definitions is shown in detail, as well as evaluations and derivatives.
The properties and examples of the polynomial, i.e. the universality, coefficient relations,
closed forms and recurrence relations are mentioned. Moreover, the thesis contains the
connection between the dichromate and other significant polynomials.
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1 Introduction

1.1 Structure

The paper begins with a preface into the history of the Tutte polynomial of graphs. In the
first chapter we introduce notions crucial for the comprehension of the topic.
The second chapter focuses on the definitions of the polynomial with a preamble for the span-
ning subgraph andWhitney rank-generating polynomial. We show the proof of equivalency of
different definitions and provide a detailed example of calculating the different polynomials.
Chapter three mentions evaluations of the polynomial at precise points. These evaluations
give information about the graph’s features: spanning subgraphs, spanning forests, orienta-
tions, etc.
The next chapter specializes in the properties of the polynomial regarding planar graphs and
their duals, components of a graph, as well as concepts for the coefficients of the spanning
forest expansion formula. Chapter five and six include notions and theorems about the uni-
versality of the Tutte polynomial and the rooted graphs expansion, respectively.
A brief introduction and relations of other polynomials which are specialisations of the Tutte
polynomial follows in the last chapter. It includes: the chromatic, bad coloring, flow and
reliability polynomials. We conclude the paper with details and links to further extensive
research on the topic.
1.2 History

Ellis-Monaghan and Merino [EM11] said: ’A graph polynomial encodes information about a
graph. The challenge is in extracting combinatorially useful information from this algebraic
object.’
Throughout the history of graph theory, which is a new and constantly evolving branch of
mathematics, graph polynomials have captured the attention of many mathematicians. W.T.
Tutte, H. Whitney and H.H. Crapo are the names related to the Tutte polynomial investigated
in this paper.
As will be seen later, the first use of, what is now called the Tutte polynomial, was by Hassler
Whitney who ’knew and used analogous coefficients without bothering to affix them to two
variables’, said W.T. Tutte.
Inspired by perfect rectangles and spanning trees, William Thomas Tutte started working on
the deletion/contraction formula early in his days at Trinity College. He was also interested
in whether this recursive formula could be used for other graph invariants. Initially, he
called the invariants which satisfy the relation - W-functions - or V-functions, if they were also
multiplicative over the components. Investigation of these functions led him to a two-variable
polynomial that could be related to the chromatic and flow polynomial using a specialization,
i.e. taking one of the variables equal to zero. Although his later work on the dichromate
polynomial - as W.T. Tutte considered it to be a generalization of the chromatic polynomial -
includes concepts extended to matroids, the in depth generalisation on matroids is credited
to Crapo [Cra69].
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1.3 Preliminaries

We assume the reader has a basic knowledge of graph theory, namely that the following
notions are known:

• loop, bridge, ordinary edge
• connected component, connected graph
• tree, forest, spanning tree, spanning forest
• subgraph, spanning subgraph

The focus of this paper are undirected graphs that have loops and multiple edges.
Let G = (V,E) be a graph. We denote V (G)-the set of its vertices and E(G)-the set of its
edges. The size of a graph is the number of edges, |E|; the order of a graph is the number
of vertices, |V |. k(E) denotes the number of components of the graph.

Definition 1.1
The rank and co-rank(nullity) of a graphG = (V,E), denoted by r(E) and n(E), are defined
as

r(E) = |V (G)| − k(E)

n(E) = |E(G)| − r(E)

Definition 1.2
G-e is the graph obtained from G by deletion/removal of the edge e, e ∈ E(G); i.e. G− e =

(V,E\e).

Definition 1.3
G/e is the graph obtained from G by contraction of the edge e = {u, v}, e ∈ E(G); i.e. the
graph obtained from G− e by merging u and v.

Definition 1.4
LetG = (V1, E1) andH = (V2, E2) be graphs. A one-point join ofG andH , denoted asG∗H ,
is formed by merging the vertices u ∈ V1 and v ∈ V2 into a single vertex c, called a cut vertex.

G

c

H

Figure 1.1: One-point join G ∗H
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Definition 1.5
Let G be a graph and E(G) are ordered linearly, i.e. e1 < e2 < e3 < ... < em. Let τ(G) be the
set of all spanning trees of G. H ∈ τ(G) is a spanning tree with the edge set F ; H = (V, F ).
An edge e ∈ F (H) is internally active in H if e is the largest edge in the cut it defines. An
edge e ∈ F (H) is externally active inH if e is the largest edge in the unique cycle ofH + e.
Int(H) is the set of internally active edges ofH ; int(H) = |Int(H)|.
Ext(H) is the set of externally active edges ofH ; ext(H) = |Ext(H)|.
As these notions are rather new in graph theory, there are resources that claim this definition
differently, i.e. that we take the smallest and not largest edge. However, in this paper, we
agree on the previously mentioned definition with the largest edge and use it throughout the
chapters.

Example 1.6
To emphasize this definition, we take the bull graph as an example. We denote the graph by
B = (V,E) and the edges linearly ordered in the following way: 1 < 2 < 3 < 4 < 5.

1

2

3

45

Figure 1.2: Bull graph B

The bull graph has 3 spanning trees, we take one of them, H , and analyze its internal and
external activity.

1 3

45

H

Figure 1.3: Spanning tree of the bull graph

We start with edges that are part of the tree and check for internal activity. The cut defined by
1 includes only the edge itself, thus, 1 is an internally active edge. Similarly, 3 is also internally
active. Let us take edge 4: the cut defined by it in B contains both 4 and 2. However, 4 is the
largest edge, meaning it is internally active. Following the same algorithm, 5 is also internally
active.
Next, we move to the edges that are not part of the spanning tree, in our case only 2. In
the cycle H + 2, 2 is not the largest edge, hence, not an externally active edge. To sum up,
Int(H) = {1, 3, 4, 5} and Ext(H) = ∅.
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2 Equivalent definitions of the Tutte
Polynomial

2.1 The Spanning Subgraph Polynomial

The spanning subgraph polynomial has both a recursive and a spanning forest representa-
tion and it is closely related to the Tutte polynomial. We analyse proofs of equivalency of the
definitions as simpler similar proofs for the Tutte polynomial.

Definition 2.1
Let G = (V,E) be a graph. The spanning subgraph polynomial of G is:

Z(G;x, y) =
∑
F⊆E

x|F |yk(F )

where k(F ) is the number of components of the graph (V, F ).

Example 2.2
As an example we take the Star graph with 3 edges, S3: E(S3) = {a, b, c}.

a

b

c

S3

Figure 2.1: Star graph

For the calculation of the spanning subgraph polynomial, we take all possible subsets of the
edge set, shown in Figure 2.2:

P(E(S3)) = {∅, {a}, {b}, {c}, {a, c}, {a, b}, {b, c}, {a, b, c}}.

We only need the cardinality of the subsets and the number of components of the graphs
defined by the edges, which yields:

Z(S3;x, y) =
∑
F⊆E

x|F |yk(F ) = x|F0|yk(F0) + x|F11|yk(F11) + x|F12|yk(F12)+

+x|F13|yk(F13) + x|F21|yk(F21) + x|F22|yk(F22) + x|F23|yk(F23) + x|F3|yk(F3) =

= x4y0 + x1y2 + x1y2 + x1y2 + x2y2 + x2y2 + x2y2 + x3y1 =

= y4 + 3xy3 + 3x2y2 + x3y = y(x+ y)3
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F0

a

F11

b

F12

c

F13

a

b

F21

a c

F22

b

c

F23

ca

b

F3

Figure 2.2: Star graph - edge subsets

Theorem 2.3
Let G = (V,E) be a graph, e ∈ E. Then

Z(G;x, y) = Z(G− e;x, y) + xZ(G/e;x, y)

Proof[Tit22]: Using the definition of the polynomial, we split it into two sums over subsets
that contain e and the ones that do not:

Z(G;x, y) =
∑
F⊆E

x|F |yk(F ) =

=
∑

F⊆E∖e

x|F |yk(F ) +
∑

F :e∈F⊆E

x|F |yk(F ) =

= Z(G− e;x, y) + x
∑

F⊆E∖e

x|F |yk(F∪e) =

= Z(G− e;x, y) + xZ(G/e;x, y)

Using the same method, we conclude two more theorems.

Theorem 2.4
Let G = (V,E) be a graph and e ∈ E be a bridge. Then

Z(G;x, y) = (x+ y)Z(G/e;x, y)

Theorem 2.5
Let G = (V,E) be a graph and e ∈ E be a loop. Then

Z(G;x, y) = (x+ 1)Z(G− e;x, y)

Let τ(G) be the set of all spanning forests of a graph G = (V,E).
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Theorem 2.6
LetG = (V,E) be a graph,E(G) be ordered linearly,K = (V,A) a spanning subgraph ofG. Then
there exists a unique spanning forest L = (V,B) ∈ τ(G) such thatK = L− Int(L) + Ext(L).

Proof [Tit22]: Wegenerate the desired spanning forest by this algorithm: Firstly, we setE1 = ∅
and E2 = ∅; i = 0,K0 = K.

• Step 1. We assume that there is a component K ′ = (W,D) of Ki and a component
G′ = (X,F ) of G, W ⊂ X . If this is not the case, continue to Step 2. We choose the
largest edge e that connects a vertex ofW with a vertex of X \W . The edge e is then
included in E1 and inserted inKi, which givesKi+1. Next, we take i+ 1 and repeat the
process, i.e. Step 1. We exit Step 1 when the number of components of Ki and G are
the same. As a result, all edges in Ei are bridges in the graphKi.• Step 2. Let C be a cycle. If there exists a cycle C in the graph Ki, then we choose thelargest edge e of it, include it in E2 and remove e from C. This process is repeated until
there are no more cycles in the graph, which makes it a spanning forest L of G.

Consequently, as E1 consists only of largest bridges, E1 = Int(H). E2 = Ext(H), as it
consists only of largest edges that are part of a cycle.

Theorem 2.7
Let G = (V,E) be a graph. The spanning subgraph can be equivalently defined by the internal
and external activity of edges:

Z(G;x, y) = x|V |−k(E)yk(E)
∑

H∈τ(G)

(
1 +

y

x

)int(H)
(1 + x)ext(H)

.

Proof [Tit22]: Using the previous theorem, we can build every spanning subgraph originating
from a spanning forest H by removal of an arbitrary subset of Int(H) and addition of an
arbitrary subset from Ext(H), which yields:

Z(G;x, y) =
∑

H∈τ(G)

int(H)∑
i=0

ext(H)∑
j=0

x|V |−k(E)−i+jyk(E)−i

= x|V |−k(E)yk(E)
∑

H∈τ(G)

int(H)∑
i=0

(y
x

)i
ext(H)∑
j=0

xj

= x|V |−k(E)yk(E)
∑

H∈τ(G)

(
1 +

y

x

)int(H)
(1 + x)ext(H)
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Theorem 2.8
Let G = (V,E) be a graph, G1, ..., Gn be its components. Then

Z(G;x, y) =

n∏
i=1

Z(Gi;x, y)

Proof [Tit22]: We take the components in the following way: G1 = (V1, E1), ..., Gn = (Vn, En).We consider the subsets of the edge set and partition them into n subsets. Namely, F ⊆ E,∑n
i=1 Fi = F , which means

n∑
i=1

|Fi| = F,

n∑
i=1

k(Fi) = k(F )

We attain
Z(G;x, y) =

∑
F⊆E

x|F |yk(F )

=
∑

F1⊆E1,...,Fn⊆En

x|F1|+...+|Fn|yk(F1)+...+k(Fn) =

=
∑

F1⊆E1

x|F1|yk(F1)...
∑

Fn⊆En

x|Fn|yk(Fn)

= Z(G1;x, y)...Z(Gn;x, y).

Theorem 2.9
Let G and H be a graphs. Then the spanning subgraph polynomial of their one-point join is the
following:

Z(G ∗H;x, y) =
1

y
Z(G;x, y)Z(H;x, y)

Proof [Tit22]: Let v be the cut vertex of G ∗ H . Any subset of the edge set of G ∗ H can be
partitioned into F1 ⊆ E(G) and F2 ⊆ E(H).
Due to the fact that v is a cut vertex formed by merging two different vertices of G and H ,
respectively; in G ∗H , v is counted twice. Thus k(F ) = k(F1) + k(F2)− 1. Substituting it into
the definition of the polynomial, we obtain:

Z(G ∗H;x, y) =
∑

F1⊆E(G),F2⊆E(H)

x|F1|+|F2|yk(F1)+k(F2)−1

=
1

y

∑
F1⊆E(G)

x|F1|yk(F1)
∑

F2⊆E(H)

x|F2|yk(F2)

=
1

x
Z(G;x, y)Z(H,x, y).
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2.2 The Whitney Rank-Generating Polynomial

Definition 2.10
Let G = (V,E) be a graph. The (Whitney) rank-generating polynomial of G is:

S(G;x, y) =
∑

F⊆E(G)

xr(E)−r(F )yn(F ) =
∑

F⊆E(G)

xk(E)−k(F )yn(F )

Theorem 2.11
Let G = (V,E) be a graph, e ∈ E. Then:

S(G;x, y) =


(x+ 1)S(G− e;x, y) if e is a bridge,
(y + 1)S(G− e;x, y) if e is a loop,
S(G− e;x, y) + S(G/e;x, y) if e is neither a bridge or a loop

Specifically, S(En;x, y) = 1 when En is the empty graph with n vertices.

Proof[Bol98]: Firstly, we prove the assertion for the empty graph. As there are no edges in
the graph, the only subset is the edge set itself (∅) and k(En) = n. Thus

S(En;x, y) = xk(E)−k(E)yn(E) = x0y0−n+n = 1

We set G′ = G − e,G′′ = G/e, as well as r′ = r(G′), n′ = n(G′), r′′ = r(G′′), n′′ = n(G′′).
Furthermore, if e ∈ E and F ⊆ E − e, then r(F ) = r′(F ), n(F ) = n′(F ), r(E) − r(F ∪ e) =

r′′(E − e)− r′′(F ) = r(G′′)− r′′(F ).

r(E) =

{
r′(E − e) + 1 if e is a bridge,
r′(E − e) otherwise

This happens because deleting a bridge from a graph increases the number of its compo-
nents.

n(F ∪ e) =

{
n′′(F ) + 1 if e is a loop,
n′′(F ) otherwise

This is due to the fact that, when contracting a loop, the number of edges decreases, while
the number of vertices remains the same.
Nextly, we split S(G;x, y) the following way:

S(G;x, y) = S0(G;x, y) + S1(G;x, y),

with
S0(G;x, y) =

∑
F⊆E,e/∈F

xr(E)−r(F )yn(F )

and
S1(G;x, y) =

∑
F⊆E,e∈F

xr(E)−r(F )yn(F ).



Chapter 2: Equivalent definitions of the Tutte Polynomial 9
Consequently :

S0(G;x, y) =
∑

F⊆E−e

xr(E)−r(F )yn(F )

=


∑

F⊆E(G′)

xr
′(E−e)+1−r′(F )yn

′(F ) if e is a bridge,∑
F⊆E(G′)

xr
′(E−e)−r′(F )yn

′(F ) otherwise

=

{
xS(G− e;x, y) if e is a bridge,
S(G− e;x, y) otherwise

and
S1(G;x, y) =

∑
F⊆E−e

xr(E)−r(F∪e)yn(F∪e)

=


∑

F⊆E(G′′)

xr(G
′′)−r′′(F )yn

′′(F )+1 if e is a loop,∑
F⊆E(G′′)

xr(G
′′)−r′′(F )yn

′′(F ) otherwise

=

{
yS(G/e;x, y) if e is a loop,
S(G/e;x, y) otherwise

On that account:

S(G;x, y) =


xS(G− e;x, y) + S(G/e;x, y) if e is a bridge,
S(G− e;x, y) + yS(G/e;x, y) if e is a loop,
S(G− e;x, y) + S(G/e;x, y) if e is neither a bridge or a loop

Lastly, if e is a bridge: r′′(E − e) − r′′(F ) = r′(E − e) − r′(F ) and n′′(F ) = n′(F ) for all
F ⊂ E − e; if e is a loop : G/e ∼= G− e.
This gives the following expression: if e is a bridge or loop, then

S(G/e;x, y) = S(G− e;x, y)

Thus,

S(G;x, y) =


(x+ 1)S(G− e;x, y) if e is a bridge,
(y + 1)S(G− e;x, y) if e is a loop,
S(G− e;x, y) + S(G/e;x, y) if e is neither a bridge or a loop

Remark 2.12
If a graph G = (V,E) consists only of i bridges and j loops, then:

S(G;x, y) = (x+ 1)i(y + 1)j .
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Example 2.13
As an example, we consider again the star graph, S3, see Figure 2.1. As all of the edges arebridges, we obtain:

S(S3;x, y) = (x+ 1)3(y + 1)0 = (x+ 1)3.

2.3 The Tutte Polynomial

The Tutte Polynomial has different notations in the bibliography, i.e. TG = T (G) = TG(x, y).In this paper, we use T (G;x, y).

Definition 2.14
Let G = (V,E) be a graph. The rank/co-rank definition of the Tutte polynomial is

T (G;x, y) =
∑
F⊆E

(x− 1)r(E)−r(F )(y − 1)n(F )

=
∑
F⊆E

(x− 1)k(F )−k(E)(y − 1)k(F )+|F |−|V |

This form was introduced by William Tutte himself.

Definition 2.15
LetG = (V,E) be a graph and τ(G) be the set of all the spanning forests ofG. The spanning
forest expansion of the Tutte polynomial is

T (G;x, y) =
∑

H∈F(G)

xint(H)yext(H).

Equivalently:
T (G;x, y) =

∑
i,j

tijx
iyj ,

where tij is the number of spanning forests with internal activity i and external activity j.

Definition 2.16
Let G = (V,E) be a graph, e an ordinary edge.
The recursive formula of the Tutte polynomial is

T (G;x, y) = T (G− e;x, y) + T (G/e;x, y)

If G consists of i bridges and j loops, then
T (G;x, y) = xiyj .
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We can rewrite the last definition in another way.

Remark 2.17
Let G = (V,E) be a graph. Then:

T (G;x, y) =


xT (G− e;x, y) if e is a bridge,
yT (G− e;x, y) if e is a loop,
T (G− e;x, y) + T (G/e;x, y) if e is neither a bridge or a loop.

Example 2.18
We consider again the previously mentioned Bull graph B = (V,E).
For Definition 2.15 we find the spanning trees of the graph. The bull graph has 3 spanning
trees, shown in Figure 2.3.

1 3

45

H1

1 3

2

5

H2

1 3

4

2

H3

Figure 2.3: Spanning trees of the bull graph

For H1: Int(H1) = {1, 3, 4, 5} and Ext(H1) = ∅. Similarly, for H2: Int(H2) = {1, 3, 5}

and Ext(H2) = ∅; and for H3: Int(H3) = {1, 3} and Ext(H3) = {1}. Thus, T (B;x, y) =

x4 + x3 + x2y.

We use now Definition 2.16. As the edges have numbers as labels, we search for the first
ordinary edge, which is 2 in this case. We calculate B − 2 and B/2.

1 3

45

1 3

45

Figure 2.4: Left: B − 2. Right: B/2

We notice that B − 2 consists only of bridges, so T (B − 2;x, y) = x4. For B/2 we repeat the
process, the first ordinary edge in this case being 4.
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1 3

5

1 3

5

Figure 2.5: Left: (B − 2)− 4. Right: (B/2)/4

Our process ends here, as T ((B − 2) − 4;x, y) = x3 and T ((B/2)/4;x, y) = x2y. Lastly,
T (B;x, y) = x4 + x3 + x2y.
For Definition 2.14, we compute the power set of the edge set,

P(X) = {∅, {1}, ..., {1, 2, 3, 4, 5}}

Next, we calculate the terms of the Tutte Polynomial, which give us the same result as in the
other two formulas.
Before we go into more details and theorems, we draw a detailed proof of the equivalency
of the deletion/contraction and spanning forest expansion definitions.
Proof [Bol98]: We prove the claim by induction on the number of edges of G.

• Base step: We use the empty graph En. As it does not have any edges, t00 = 1 and
tij = 0 when i+ j > 0; thus,∑i,j tijx

iyi = 1 = T (En;x, y).• Induction step: Let G = (V,E) be a graph, E(G) = e1, ..., em;m ≥ 1. The edge set
is linearly ordered in the following way: e1 > ... > em. We assume the equivalency
is true for the graph with m − 1 edges. We consider G′ = G − em and G′′ = G/em,
E(G′) = E(G′′) = E(G) \ em. We denote t′ij to be the number of (i, j)-forests of G′, i.e.
forests with internal activity i and external activity j, and t′′ij - (i, j)-forests ofG′′. By the
claim of the induction step:

T (G− em;x, y) =
∑
i,j

t′ijx
iyi and T (G/em;x, y) =

∑
i,j

t′′ijx
iyi

It needs to be proven that: T (G;x, y) =
∑

i,j tijx
iyi

We differentiate among three cases of the nature of the edge em.
– We assume em is a bridge; hence, it is a part of every spanning forest F of G.
Specifically, em is an internally active edge in every spanning forest. If F is a (i, j)-
forest of G, then F − em is an (i− 1, j)-forest of G′; tij = t′i−1,j . Thus:∑

i,j

tijx
iyj =

∑
i,j

t′i−1,jx
iyj = x

∑
i,j

t′i−1,jx
i−1yj

= x
∑
i,j

t′ijx
iyj = xT (G− em;x, y) = T (G;x, y)
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– We assume em is a loop; hence, it is not a part of any spanning forest F of G, but
it is always an externally active edge of it (a loop is a cycle of length 1). If F is a
(i, j)-forest of G, then F − em is an (i, j − 1)-forest of G′; tij = t′i,j−1. Thus:∑

i,j

tijx
iyj =

∑
i,j

t′i,j−1x
iyj = y

∑
i,j

t′i,j−1x
iyj−1

= y
∑
i,j

t′ijx
iyj = yT (G− em;x, y) = T (G;x, y)

– We assume em is an ordinary edge. As em is the smallest edge in the edge set of
G, it cannot be an externally or internally active edge of any spanning forest F of
G. It follows that tij = t′ij + t′′ij and∑

i,j

tijx
iyj =

∑
i,j

t′ijx
iyj +

∑
i,j

t′′ijx
iyj

= T (G− em;x, y) + T (G/em;x, y) = T (G;x, y).

This proves the claim for the graph G withm edges, which completes the proof.

The proof for the equivalency of the rank/co-rank and deletion/contraction definition is sim-
ilar to the ones presented for the spanning subgraph and rank generating polynomial, i.e.
Theorem 2.3 and Theorem 2.11

Theorem 2.19
Let G = (V,E) be a graph, T (G;x, y) - its Tutte polynomial and S(G;x, y) - its Whitney rank-
generating polynomial. The Tutte polynomial is a simple function of the rank-generating polyno-
mial:

T (G;x, y) = S(G;x− 1, y − 1)

The proof follows directly from the definition of the rank-generating polynomial.

Theorem 2.20
LetG = (V,E) be a graph, T (G;x, y) - its Tutte polynomial andZ(G;x, y) - its spanning subgraph
polynomial. The Tutte polynomial is a simple function of the spanning subgraph polynomial:

T (G;x, y) = (x− 1)−k(E)(y − 1)−|V |Z(G; y − 1, (x− 1)(y − 1))

Proof [Tit22]: We prove the theorem using both definitions of the polynomials.
• Firstly, we use the rank/co-rank formula of the Tutte polynomial.

T (G;x, y) = (x− 1)−k(E)(y − 1)−|V |Z(G; y − 1, (x− 1)(y − 1))

= (x− 1)−k(E)(y − 1)−|V |
∑
F⊆E

(y − 1)|F |[(x− 1)(y − 1)]k(F )



Chapter 2: Equivalent definitions of the Tutte Polynomial 14
=

∑
F⊆E

(x− 1)k(F )−k(E)(y − 1)|F |−|V |+k(F )

=
∑
F⊆E

(x− 1)r(E)−r(F )(y − 1)n(F )

• Secondly, we use the spanning trees expansion formula.
Z(G;x, y) = x|V |−k(E)yk(E)

∑
H∈τ(G)

(1 +
y

x
)int(H)(1 + x)ext(H)

We substitute s = 1 + y
x and t = 1 + x, which provides x = t− 1 and y = (s− 1)(t− 1).

Z(G; t− 1, (s− 1)(t− 1)) =

= (t− 1)|V |−k(E)[(s− 1)(t− 1)]k(E)
∑

H∈τ(G)

sint(H)text(H)

= (t− 1)|V |−k(E)[(s− 1)(t− 1)]k(E)T (G;x, y)

The equality yields:
T (G;x, y) = (t− 1)k(E)−|V |(s− 1)−k(E)(t− 1)−k(E)Z(G; t− 1, (s− 1)(t− 1))

which proves the theorem.

Example 2.21
We use the star graph S3 again as we have calculated both the spanning subgraph and therank-generating polynomials for it. We show that they are all equivalent.
Using Definition 2.16, as the graph has only 3 bridges, we attain: T (S3;x, y) = x3. Correspond-
ingly, the graph has only one spanning tree which has 3 internally active edges. We start from
the rank-generating polynomial:

T (S3;x, y) = S(S3;x− 1, y − 1) = (x+ 1− 1)3 = x3.

We consider now the spanning subgraph polynomial:
T (S3;x, y) = (x− 1)−k(S3)(y − 1)−|V (S3)|Z(S3, y − 1, (x− 1)(y − 1) =

= (x−1)−1(y−1)−4(x−1)(y−1)((x−1)(y−1)+y−1)3 = (y−1)−3((y−1)(x−1+1))3 = x3.

As shown, all definitions and polynomials mentioned before lead to the same Tutte polyno-
mial.
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3 Evaluations of Tutte Polynomial

3.1 Spanning Subgraphs

Theorem 3.1
Let G = (V,E) be a graph and τ(G) be the set of all spanning forests of G, then

1. T (G; 1, 1) = |τ(G)|
2. T (G; 2, 1) equals to the number of forests (acyclic edge subsets) of G
3. T (G; 1, 2) equals to the number of spanning subgraphs of G that have the same number of

components as the original graph
4. T (G, 2, 2) = 2|E|, i.e. number of spanning subgraphs.

Proof [Bol98]: All these observations follow from the rank/co-rank definition of the Tutte
polynomial.

1. T (G; 1, 1) =
∑

F⊂E

0r(E)−r(F )0n(F ) = |{F : F ∈ E, r(E) = r(F ) and n(F ) = 0}|. r(E) =

r(F )means that (V, F ) has the same number of components as G, n(F ) = 0 implies
that (V, F ) is a forest; thus T (G; 1, 1) is the number of spanning forests of G.

2. T (G; 2, 1) =
∑

F⊂E

1r(E)−r(F )0n(F ) = |{F : F ∈ E and n(F ) = 0}|. As mentioned,
n(F ) = 0 implies that (V, F ) is a forest, thus T (G; 2, 1) is the number of forests of G.

3. T (G; 1, 2) =
∑

F⊂E

0r(E)−r(F )1n(F ) = |{F : F ∈ E and r(E) = r(F )}|. r(E) = r(F )

means that (V, F ) has the same number of components as G, thus T (G; 1, 2) is the
number of spanning subgraphs of G that have the same number of components as G.

4. T (G; 2, 2) =
∑

F⊂E

1r(E)−r(F )1n(F ) = |{F : F ∈ E}| = 2|E|.

3.2 Orientations and Score vectors

Theorem 3.1 can be rewritten using orientations and score vectors of a graph.
An orientation G⃗ = (V,E) of a graph G = (V,E) is an assignment of a direction to every
edge in the graph. A score vector of an orientation is the vector (s1, s2, ..., sn) given that
vertex i has an outdegree si in G⃗.

Theorem 3.2
Let G = (V,E) be a graph and T (G;x, y) its Tutte polynomial. Then:

1. T (G; 2, 0) is the number of acyclic orientations of the graph, i.e. orientations that have no
oriented cycles

2. T (G; 0, 2) is the number of totally cyclic orientations of G, i.e. orientations in which every
edge belongs to at least one cycle.

3. T (G; 1, 0) is the number of acyclic orientation that have one predefined source v.
4. T (G, 2, 1) is the number of score vectors of orientations of the graph.
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Details for the proof of this theorem can be found in Ellis-Monaghan and Merino [EM11].
The evaluations at T (G; 1,−1) and T (G; 2,−1) and their results can be found in Goodall et al.
[Goo+13]. More conjectures that provide inequalities between the evaluations of the Tutte
polynomial are revealed and studied in Jackson [Jac10].
3.3 Derivatives of Tutte Polynomial

Theorem 3.3
Let G = (V,E) be a graph with its edges linearly ordered. The following derivative with respect
to y of the T (G; 1, y) is the number of spanning subgraphsH of G that contain exactly one cycle
and have the same number of components as the original graph:

∂T (G; 1, y)

∂y

∣∣∣∣∣
y=1

Proof [Tit22]: From the spanning forests definition of the Tutte polynomial, we have:
∂

∂y
T (G; 1, y) =

∑
H∈τ(G)

ext(H)yext(H)

Thus:
∂

∂y
T (G; 1, y)

∣∣∣∣∣
y=1

=
∑

H∈τ(G)

ext(H)

According to Theorem 2.6, for every graph J with one cycle, there exists a unique spanning
forest H , a unique edge e ∈ Int(H) with J = H + e. Thus, each spanning forest generates
precisely ext(H) unicyclic graphs.
3.4 Closed forms and recurrence relations for the Tutte

Polynomial

We mention certain closed forms for some classes of graphs, see [Mat23]:
• For a cycle graph Cn: T (Cn;x, y) = y + x+ x2 + ...+ xn−1

• For a forest G: T (G;x, y) = x|E(G)|

• For a path graph Pn: T (Pn;x, y) = xn−1

We specify recurrence relations for the Tutte polynomial of some classes of graphs:
• For a cycle graph Cn: T (Cn;x, y) = (x− 1)T (Cn−1;x, y)− xT (Cn−2;x, y)• For the path graph Pn: T (Pn;x, y) = xT (Pn−1;x, y)• For the wheel graphWn:

T (Wn;x, y) = (x+ y + 2)T (Wn−1;x, y)−

−(x+ 1)(y + 1)T (Wn−2;x, y) + xyT (Wn−3;x, y)

.
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Figure 3.1:Wheel graphs [Exc23]

Figure 3.2: Path graph [Wik23]
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4 Properties

4.1 Planar graphs

Let G = (V,E) be a graph. G is called planar if we can draw it the plane such that there
are no edge crossings.The dual graph G∗ has the faces of G as its vertices. We connect two
vertices ofG∗ with n edges if the corresponding faces are connected by n boundary edges in
G. Let f denote the number of faces of a graph G, then V (G∗) = f and E(G∗) = E(G).
Moreover, if F ⊆ E is a spanning forest inG, thenE \A is a spanning forest inG∗. There also
exists a bijective map between the spanning forests of a graph and its dual that exchanges
the internal and external activity of them, meaning tij = t∗ij , see Biggs [Big74].Regarding the deletion/contraction formula, we observe that (G/e)∗ ∼= G∗−e and (G−e)∗ ∼=
G∗/e, see Goodall [Goo13]. This gives us the following relation between the Tutte polynomial
of a graph and its dual.

Theorem 4.1
Let G be a planar graph and G∗ its dual graph. Then:

T (G;x, y) = T (G∗; y, x).

Example 4.2
We consider the Cycle graph C3 = G and its dual, G∗.

Figure 4.1: Cycle graph and its dual [Wei23]

As seen in Chapter 3.4, the Tutte polynomial for the cycle graph is : T (G;x, y) = y + x + x2.
We focus on the dual.

a

G∗

Figure 4.2: Dual of the cycle graph G
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We use the recursive formula, starting with the edge a. We delete and contract it and analyze
the new graphs.

b

G∗ − a G∗/a

Figure 4.3: Left: G∗ − a. Right: G∗/a

The polynomial for the G∗/a can be calculated directly, as it consists only of loops:
T (G∗/a;x, y) = y2. For the graph G∗ − a, we use the formula again for the edge b.

(G∗ − a)− b (G∗ − a)/b

Figure 4.4: Left: (G∗ − a)− b. Right: (G∗ − a)/b

The graph (G∗ − a) − b consists of only one edge, thus T ((G∗ − a) − b;x, y) = x; and the
graph (G∗ − a)/b has one loop: T ((G∗ − a)/b;x, y) = y. Adding all polynomials together, we
obtain: T (G;x, y) = y2 + x+ y. From Theorem 4.1, we have:

T (G∗;x, y) = T (G; y, x) = x+ y + y2

which is indeed the case.
4.2 Tutte polynomial of components

Theorem 4.3
Let G andH be graphs and T (G;x, y), T (H;x, y) - their respective Tutte polynomials. Then:

T (G ∪H;x, y) = T (G;x, y)T (H;x, y)

and
T (G ∗H;x, y) = T (G;x, y)T (H;x, y)

Proof: The formulas follow from the equivalent ones using the spanning subgraph polyno-
mial and its equivalency to the Tutte polynomial.
Still, we sketch the proof for the Tutte polynomial of the one point join. As mentioned previ-
ously, in the case of G ∗H , V (G ∗H) = V (G) + V (H)− 1 and k(G ∗H) = k(G) + k(H)− 1.
Using Theorem 2.18 , for a graph G = (V,E) and Theorem 2.8 it is given that:

T (G;x, y) = (x− 1)−k(E)(y − 1)−|V |Z(G; y − 1, (x− 1)(y − 1))
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Which yields:

T (G ∗H;x, y) = (x− 1)−k(G∗H)(y − 1)−|V (G∗H|)Z(G ∗H; y − 1, (x− 1)(y − 1))

= (x− 1)−k(G)−k(H)+1(y − 1)−|V (G)|−|V (H)|+1

1

(x− 1)(y − 1)
Z(G; y − 1, (x− 1)(y − 1))Z(H; y − 1, (x− 1)(y − 1))

=
(x− 1)(y − 1)

(x− 1)(y − 1)
(x− 1)−k(G)−k(H)(y − 1)−|V (G)|−|V (H)|

Z(G; y − 1, (x− 1)(y − 1))Z(H; y − 1, (x− 1)(y − 1))

= (x− 1)−k(G)(y − 1)−|V (G)|Z(G; y − 1, (x− 1)(y − 1))

(x− 1)−k(H)(y − 1)−|V (H)|Z(H; y − 1, (x− 1)(y − 1))

= T (G;x, y)T (H;x, y).

Example 4.4
We show the theorem for the graph G ∗H , where G is the cycle graph C3 andH consists of
a bridge and a loop, see Figure 4.5.

G H

a

G ∗H

Figure 4.5: G,H and G ∗H .

We calculate the polynomial of G ∗ H using the recursive formula, choosing a as our first
ordinary edge. We delete and contract it.

(G ∗H)− a

b

(G ∗H)/a

Figure 4.6: Left: (G ∗H)− a. Right: (G ∗H)/a.

The graph (G ∗H)− a consists only of 3 bridges and one loop, which means
T ((G ∗H)− a;x, y) = x3y. For the contracted graph, we choose the edge b and repeat the
process.
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((G ∗H)/a)− b ((G ∗H)/a)/b

Figure 4.7: Left: ((G ∗H)/a)− b. Right: ((G ∗H)/a)/b.

Now, both graphs consist only of loops and bridges, thus: T (((G ∗H)/a)− b;x, y) = x2y and
T (((G ∗H)/a)/b;x, y) = xy2. Lastly, the Tutte polynomial for G ∗H is :
T (G ∗ h;x, y) = T ((G ∗H)− a;x, y) + T (((G ∗H)/a)− b;x, y) + T (((G ∗H)/a)/b;x, y) =

= x3y + x2y + xy2.

Using Theorem 4.3, the Tutte polynomial of a one-point join is the product of the respective
graphs, in our case:

T (G;x, y) = y + x+ x2 and T (H;x, y) = xy,

which yields:
T (G ∗H;x, y) = T (G;x, y)T (H;x, y) = (y + x+ x2)xy = xy2 + x2y + x3y.

As we have seen, both polynomials coincide.
4.3 Identities for the coefficients of the Tutte Polynomial

Theorem 4.5
LetG = (V,E) be a graph and T (G;x, y) =

∑
i,j tijx

iyj its Tutte polynomial. If |E(G)| > 0, then
t00 = 0 If |E(G)| ≥ 2, then t10 = t01.

Theorem 4.6
Let G = (V,E) be a graph, E(G) ≥ m. Brylawski [Bry10] proved the following:

k∑
i=0

k−i∑
j=0

(−1)j
(
k − i

j

)
tij = 0

where k = 0, 1, ...,m− 1.

Theorem 4.7
Let G = (V,E) be a graph without loops, k(G) = 2, E(G) = m, V (G) = n and T (G;x, y) =∑

i,j tijx
iyj its Tutte polynomial. Then:

∀i, 1 ≤ i ≤ n− 1 : ti0 > 0 and ∀j, 1 ≤ i ≤ m− n+ 1 : t0j > 0
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Theorem 4.8
LetG = (V,E) be a graph without loops, is not a cycle or contains parallel edges, k(G) = 2. Then
t11 > 0.

The proofs for these theorems can be found in Bollobás [Bol98] and Goodall [Goo13]. Ex-
pressions for further coefficients can be found in Gong, Jin, and Li [GJL20].
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5 Universality of Tutte Polynomial

A graph invariant is the property of graphs which is preserved by isomorphisms, i.e. a func-
tion f such that f(G1) = f(G2) wheneverG1

∼= G2. A graph polynomial is a graph invariant
whose values are polynomials, i.e. the image of the graph invariant lies in a polynomial ring.
A graphG is called aminor of a graphH , ifG can be formed by deletion of edges or vertices,
contraction of edges of H . A class of graphs G is minor-closed if every minor of G is in G,
∀G ∈ G, see [Eri09].

Definition 5.1
Let G be a minor-closed class of graphs. A graph invariant f from G to a commutative ringR
with unity is a generalized Tutte-Gröthendieck invariant or T-G invariant if:

• f(E1) is the unity ofR• ∃a, b ∈ R : ∀G ∈ G,∀e ∈ G : f(G) = af(G− e) + bf(G/e);
• ∀G,H ∈ G, whenever G∪H ∈ G or G ∗H ∈ G: f(G∪H) = f(G)f(H) and f(G ∗H) =

f(G)f(H)

The Tutte polynomial is a T-G invariant, in fact, it is the only T-G invariant, i.e. all others are
an evaluation of it, see Ellis-Monaghan and Merino [EM11].

Theorem 5.2
Let G be a minor-closed class of graphs, R a commutative ring with unity and a, b, x0, y0 ∈ R.
Then there is a unique T-G invariant f : G → R such that:

f(G) = a|E(G)|−r(E(G))br(E(G))T (G;
x0
b
,
y0
a
)

where f(B) = x0 and f(L) = y0.

The proof of the theorem is by induction on the number of ordinary edges using the dele-
tion/contraction definition of the Tutte polynomial and can be found in Bollobás [Bol98].
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6 The Tutte Polynomial of Rooted Graphs

A rooted graph is a a graph in which a specific vertex is taken as the root. We denote it as
Gv , where v is the root. Given that the graph is a tree, a rooted subtree is a subgraph that
is also a tree and has the same root as the original graph.

Definition 6.1
Let Gv = (V,E) be a rooted graph. Then, for every subset A of the edge set, r(A) is defined
as follows:

r(A) = max
F⊆A

{|F | : F − rooted subtree of T}

Definition 6.2
LetGv = (V,E) be a rooted graph. Then the Tutte polynomial for it is defined in the following
way:

T (Gv;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A)

But in this case, r(A) is defined as in the previous theorem and it is called the branching rank.
An interesting concept is presented in Gordon [Gor] where the deletion/ contraction formula
for the Tutte polynomial of a rooted graph is presented.

Theorem 6.3
Let Gv = (V,E) be a rooted graph, E(Gv) = n, e be an adjacent edge to v. Then:

T (Gv;x, y) = T (Gv/e;x, y) + (x− 1)r(Gv)−r(Gv−e)T (Gv − e;x, y).

Gordon states that the term (x− 1)r(Gv)−r(Gv−e) is not present in the definition for ordinary
graphs, as r(G) = r(G−e), unless e is a bridge. The detailed proof, as well as more theorems
and propositions about the Tutte polynomial of rooted graphs and trees can be found in
Gordon [Gor] and Chaudhary and Gordon [CG91].
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7 Polynomials that can be derived from the
Tutte Polynomial

We introduce other polynomials that can be derived from the Tutte polynomial substituting x
and y accordingly, with some possible prefactor. We call them specializations of the Tutte
Polynomial.
7.1 Chromatic Polynomial

We start with the best known and studied polynomial in graph theory: the chromatic polyno-
mial.
Let G = (V,E) be a graph and λ a positive integer. A map ϕ : V (G) → {1, ..., λ} is called a
vertex coloring of G , such that it allocates a color to every vertex of the graph. ϕ is called a
proper(admissible) coloring of G if ∀i, j ∈ E(G) : ϕ(i) ̸= ϕ(j).
The chromatic number X (G) is the smallest number of colors used for a proper coloring of
G.

Definition 7.1
Let G = (V,E) be a graph. The chromatic polynomial of G is

X (G;λ) =
∑
F⊆E

(−1)|F |λk(F ).

Theorem 7.2
Let G be a graph with its chromatic polynomial X (G;λ). Then:

• X (En;λ) = λn

• X (G;λ) = 0,∀λ, if G has a loop
• X (Kn;λ) = λ(λ− 1)...(λ− n+ 1)

• X (G;λ) = x−1
x X (G− e;λ), if e is a bridge

• if we let e be any edge of G, then:

X (G;λ) = X (G− e;λ)−X (G/e;λ).

The detailed proof of this theorem can be found in Tittmann [Tit22].

Theorem 7.3
Let G andH be graphs and X (G;λ),X (H;λ) their respective chromatic polynomials. Then:

X (G ∪H;λ) = X (G;λ)X (H;λ)

and
X (G ∗H;λ) =

1

λ
X (G;λ)X (H;λ)
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The proof of this theorem can be found in Github [Git23].
We can see that the chromatic polynomial satisfies the universality property, thus it can
written as a specialisation of the Tutte polynomial.

Theorem 7.4
Let G = (V,E) be a graph, X (G;λ) its chromatic polynomial and T (G;x, y) its Tutte polynomial.
Then:

X (G;λ) = (−1)r(E)λk(E)T (G; 1− λ, 0).

Proof [EM11]: We start with the Tutte polynomial:
T (G; 1− λ, 0) =

∑
F⊆E

(1− λ− 1)k(F )−k(E)(0− 1)k(F )+|F |−|V |

=
∑
F⊆E

(
λ

−1
)k(F )−k(E)(−1)k(F )+|F |−|V |

=
∑
F⊆E

(−1)k(E)−k(F )+k(F )+|F |−|V |λk(F )−k(E)

= (−1)k(E)−|V |λ−k(E)
∑
F⊆E

(−1)|F |λk(F )

= (−1)−r(E)λ−k(E)X (G;λ).

The Beta Invariant

An important invariant of the chromatic polynomial worth mentioning is the beta invariant.

Definition 7.5
Let G = (V,E) be a graph with E(G) ≥ 2. The beta invariant or chromatic invariant is
defined in the following way:

β(G) = (−1)r(E)
∑
F⊆E

(−1)|F |r(F ).

The invariant is related to the trees expansion formula of the Tutte polynomial.

Theorem 7.6
Let G = (V,E) be a graph with E(G) ≥ 2 and T (G;x, y) =

∑
i,j tijx

iyj its Tutte polynomial.
Then t01 = t10 = β(G).
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Theorem 7.7
Let G = (V,E) be a graph and X (G;λ) its chromatic polynomial. Then the derivative of the
polynomial with λ = 1 is:

X ′(G; 1) = (−1)r(E)+1β(G).

The proof for the previous two theorems can be found in Bollobás [Bol98]
7.2 Bad Colouring Polynomial

A generalization of the chromatic polynomial is the counting of not only the proper colorings,
but of all possible colorings of a graphG. In this situation, we have edges that connect vertices
with the same colour. We name them bad edges, this is where the polynomial gets its name
of bad coloring polynomial.

Definition 7.8
Let G = (V,E) be a graph. The bad colouring polynomial of G is:

B(G;λ, t) =
∑
j

bj(G;λ)tj

where bj(G;λ) is the number of λ-colourings with j bad edges.

Remark 7.9
The bad colouring polynomial can be written in the following way:

B(G;λ, t+ 1) =
∑

ϕ:V→[λ]

(t+ 1)|b(ϕ)|.

where ϕ is the map that describes the colouring of the vertices and b(ϕ) is the set of bad
edges of it.

Theorem 7.10
Let G = (V,E) be a graph, T (G;x, y) its Tutte polynomial and B(G;λ, t + 1) its bad coloring
polynomial. Then:

B(G;λ, t+ 1) = tr(E)λk(E)T (G;
λ+ t

t
, t+ 1)

Proof [EM11]: We manipulate further the bad coloring polynomial using the chromatic poly-
nomial.

B(G;λ, t+ 1) =
∑

ϕ:V→[λ]

(t+ 1)|b(ϕ)|

=
∑

ϕ:V→[λ]

∑
F⊆b(ϕ)

t|F | =
∑
F⊆E

∑
ϕ:V→[λ],F⊆b(ϕ)

t|F | =
∑
F⊆E

t|F |λk(F )
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We use the Tutte polynomial rank/co-rank formula and specialize it for the bad coloring
polynomial:

B(G;λ, t+ 1) =
∑
F⊆E

t|F |λk(F )

= tr(E)λk(E)
∑
F⊆E

t|F |−r(F )(
λ

t
)r(E)−r(F )

= tr(E)λk(E)T (G; 1 +
λ

t
, t+ 1)

7.3 Flow Polynomial

Let G⃗ = (V,E) be a graph with a fixed orientation and N a finite abelian group with the
identity element 0 and order k. A flow on G⃗ is the map f : E(G⃗) → N such that the flow
conversation law or Kirchhoff’s law is satisfied for any vertex v in V (G):∑

e∈E−(v)

f(e) =
∑

e∈E+(v)

f(e)

where E+(v) is the set of all oriented edges starting in v and E−(v) - the set of all oriented
edges ending in v, see Sekine and Zhang [SZ97], Ren and Qian [RQ19] and Chen and Yang
[CY09].
A nowhere zero flow is the map N that never takes the value 0, i.e. ∀e ∈ E(G⃗) : f(e) ̸= 0.
We denote X ∗(G; k) as the flow polynomial of a graph, i.e. the number of nowhere zero
k-flows.

Definition 7.11
Let G = (V,E) be a graph. The flow polynomial of G is

X ∗(G; k) =
∑
F⊆E

(−1)|E(G)|−|F |k|F |−|V |+k(F ).

Theorem 7.12
Let G = (V,E) be a graph, e ∈ E(G), X ∗(G; k) its flow polynomial. Then:

X ∗(G; k) =


0 if e is a bridge,
(k − 1)X ∗(G− e; k) if e is a loop,
−X ∗(G− e; k) + X ∗(G/e; k) if e is an ordinary edge.

The proof for this theorem can be found in Bollobás [Bol98].
Combining the last theorem with the universality property of the Tutte polynomial, yields the
following theorem proposed by W. Tutte.
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Theorem 7.13
Let G = (V,E) be a graph, X ∗(G; k) its flow polynomial and T (G;x, y) its Tutte polynomial. The
flow polynomial is a specialisation of the Tutte polynomial in the following way:

X ∗(G; k) = (−1)n(E)T (G; 0, 1− k).

Proof: We start with the Tutte polynomial:
T (G; 0, 1− k) =

∑
F⊆E

(−1)k(F )−k(E)(1− k − 1)k(F )+|F |−|V |

=
∑
F⊆E

(−1)k(F )−k(E)(
k

−1
)k(F )+|F |−|V |

=
∑
F⊆E

(−1)k(F )−k(E)−k(F )−|F |+|V |kk(F )+|F |−|V |

= (−1)−|E(G)|+|V |−k(E)
∑
F⊆E

(−1)|E(G)|−|F |kk(F )+|F |−|V |

= (−1)−n(E)X ∗(G; k).

7.4 Reliability Polynomial

Another polynomial that is worth mentioning is the probability of encountering a connected
subgraph of a graph G.

Definition 7.14
Let G = (V,E) be a connected graph, E(G) = m, V (G) = n. We consider each edge to be
active with a chosen probability p. The (all terminal) reliability polynomial of G is:

R(G; p) =
∑
F⊆E

[(V, F )connected]p|F |(1− p)|E|−|F |

=
m−n+1∑
k=0

gkp
k+n−1(1− p)m−k−n+1

where gk denotes the number of spanning connected subgraphs of G with |F | = k + n− 1

Theorem 7.15
Let G = (V,E) be a connected graph, E(G) = m, V (G) = n. Then:

R(G; p) = pn−1(1− p)m−n+1T (G; 1,
1

1− p
).
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Proof[EM11]: We rewrite the rank/co-rank definition of the Tutte polynomial using gk andsubstituing x = 1 and y = y + 1. As the part of the Tutte polynomial using x turns to 0, the
only terms which will remain will be the ones that have 00, i.e. r(E) = r(F ) - the spanning
connected subgraphs, which yields:

T (G; 1, y + 1) =
m−n+1∑
k=0

gky
k

Manipulating the reliability polynomial, we obtain:

R(G; p) =
m−n+1∑
k=0

gkp
k+n−1(1− p)m−k−n+1

= pn−1(1− p)1−n+m
m−n+1∑
k=0

gkp
k(1− p)−k

= pn−1(1− p)1−n+m
m−n+1∑
k=0

gk(
p

1− p
)k

= pn−1(1− p)1−n+mT (G; 1,
p

1− p
+ 1)

= pn−1(1− p)1−n+mT (G; 1,
1

1− p
).



Chapter 8: Further research 31

8 Further research

’One of the most important numerical quantities that can be computed from a graph is the
Tutte polynomial’, according to Gessel and E.Sagan [GE95]
The Tutte polynomial continues to be a topic for research until today, we mention some
further articles and papers that offers more details and notions on the topic.
Firstly, the polynomial can be expanded to matroids. This expansion is vastly studied, see
Kook, Reiner, and Stanton [KRS97], Reiner [Rei99], Brylawski [Bry10], Welsh [Wel99] .
A version of the Tutte Polynomial can be considered to be the graded Euler characteristic
with which a bigraded chain complex can be build, see Jasso-Hernandez and Rong [JR06].
In Bernardi [Ber08], a new conviction of activity, called the embedding-activity, which makes
use of the combinatorial embedding, is used to present a new equivalent definition of the
Tutte polynomial as a generating function of spanning trees. More research on embedded
graphs, especially the ribbon graph, can be found in “Irreducibility of the Tutte polynomial of
an embedded graph” [22].
The uniqueness of the Tutte polynomial has also been explored, see Mier and Noy [MN04].
Namely, known classes of graphs, like wheel graphs, ladder graphs, etc.; are shown to be T-
unique, that is they are isomorphic due to the fact that they have the same Tutte polynomial.
A multivariante arithmetic Tutte polynomial is introduced in Bränden and Moci [BM14].
The Tutte polynomial has a fascinating application in statistical physics, specifically in the Potts
model and Ising model, see Welsh and Merino [WM00] and M.Porter [MPo15]. Its connection
to knot theory can be found in Bollobás [Bol98], Kang et al. [Kan+16], Kaufmann [Kau89] and
Goodall [Goo14]. Research on configurations, Merino’s theorem and Gessel’s formula can be
found in Brandt [Bra15] and Biggs [Big99].
An extension to hypergraphs and polymatroids and the definition of a universal Tutte polyno-
mial of degree n can be discovered in Bernardi, Kalman, and Postnikov [BKP20].
Python Computation

As the Tutte polynomial contains information about a graph and its properties, its compu-
tation has been attempted. Even though the problem of finding an exact calculation is part
of the complexity class #P, I was able to write the code for the estimation of the polynomial
using the recursive and rank/co-rank formulas during my internship. I used aMultiGraph
class to define a graph with loops or parallel edges.
Firstly, I defined methods as count_components and dfs (depth first search) for the rank/co-
rank definition and return the polynomial as a sympy expression. For the recursive formula, I
needed methods as remove_edges, contract_edges, edge_type and first_ordinary_edge to calcul-
tate the sympy expression of the polynomial.
To check whether the polynomials were calculated correctly and coincided, I tested 17 graphs.
To be specific, I confirmed that the polynomials given by the two formulas were the same
and whether the properties, mentioned in Theorem 3.1, which I calculated separately, cor-
responded with the evaluations of the Tutte polynomial. For more details and the detailed
code, check Stan [Sta23].
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