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Abstract

Adversarial robustness of a nearest prototype classifier assures safe deployment in sensitive
use fields. Much research has been conducted on artificial neural networks regarding their ro-
bustness against adversarial attacks, whereas nearest prototype classifiers have not chalked
similar successes. This thesis presents the learning dynamics and numerical stability regard-
ing the Crammer-normalization and the Hein-normalization for adversarial robustness of nearest
prototype classifiers. Results of conducted experiments are penned down and analyzed to as-
certain the bounds given by Saralajew et al. and Hein et al. for adversarial robustness of nearest
prototype classifiers.
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1 Introduction

Human activities in recent times have led to the generation of vast amounts of data.
An example is the numerous data uploaded on various digital platforms daily [28]. The
amount of data is so huge in such a way that analyzing, interpreting, and making predic-
tions using traditional statistics do not carry much insight compared to machine learning
methods [28].

Machine learning models learn patterns in data and make intelligent predictions and
informed decisions based on the learned patterns given a new input [27, 28]. Ma-
chine learning models deliver good generalizations given a new instance when trained
well [11]. An Artificial Neural Network is one of the many machine learning models that
learn patterns in data and give good predictions given new input. However, the training
and testing of artificial neural networks need more in-depth interpretability [10], so de-
ploying it in sensitive areas like medicine and autonomous driving may not be advisable.
Nearest Prototype Classifiers are good to consider in sensitive applications since they
deliver mathematical precision and are comprehensible [10,27].

A key requirement of a modern transport pool is autonomous technology [37]. Imagine
what will happen to road users and valuable infrastructure when a self-driving truck
trained to learn and use the patterns on the road signs and markings is attacked by
an adversary who alters the road signs and markings in order for the truck to interpret
wrongly the road signs and markings [29]. The consequences will be catastrophic. In
medical diagnostic tools and robotic medical setups that are heavily reliant on machine
learning [1], when attacked by an adversary who abuses the system will also put the
lives of users in severe danger, and the consequences will be devastating. The same is
true for naive users of large language models like chatGPT [44] when wrong information
is churned out and consumed due to adversarial attacks.

The effects of adversarial attacks and many other reasons have driven researchers to
explore how adversaries attack machine learning models and the best defense mecha-
nisms to resist these attacks [32]. Hence, the robustness of a machine learning model
against adversarial attacks plays a crucial role in its safe deployment and utilization.

1.1 Motivation

Artificial intelligence, according to [13], is human-like intelligence being mimicked by
machines. One branch of artificial intelligence is machine learning, a discipline focused
on constructing models that can learn patterns within data and utilize these patterns
for making predictions [26–28]. Machine learning encompasses various learning frame-
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works, including supervised learning, unsupervised learning, and reinforcement learn-
ing [28,40].

In reinforcement learning, an agent engages with its environment over time. The agent
makes decisions, taking actions that transition it from one state to the next while receiv-
ing rewards or penalties for each action. Again, the model learns through a combination
of exploration by experimenting with new strategies and exploitation to improve previ-
ously learned techniques. Reinforcement learning maximizes the expected cumulative
reward over time through a policy, often modeled as a Markov Decision Process. An
example of reinforcement learning is autonomous robotics [25,28,40].

Unsupervised learning presents a model with an unlabeled dataset, often denoted as
A = {a1, . . . ,aN}, a training set and N represents the number of training instances.
Unsupervised learning aims to find meaningful structural properties in the data to learn
patterns and derive insights from the unlabeled dataset for decision-making. Examples
of unsupervised learning include clustering, where data points are grouped based on
similarity, and dimensionality reduction, which seeks to simplify data representation by
reducing the number of features while preserving essential information [26,28].

Supervised learning focuses on establishing a connection from an input a to an output
y. A labeled example dataset guides the supervised learning process, typically repre-
sented as A = {a1, . . . ,aN,y1, . . . ,yN}. In this context, A is commonly referred to as the
training set, and N signifies the total number of training examples. If the output variable
{y1, . . . ,yN} falls into a finite set of categories or nominal values, expressed as {1, . . .
, C}, the specific task is recognized as classification. On the other hand, if {y1, . . . ,yN}
assumes real numerical values, the problem is termed regression [17,18,28].

This thesis considers classification learning. Moreover, the datasets (MNIST dataset
[22] and CIFAR-10 dataset [21]) used for the experiments in chapter four are labeled
image datasets. The machine learning algorithms for the classification learning consid-
ered in this thesis are nearest prototype classifiers, including Kohonen Learning Vector
Quantization [19], Generalized Learning Vector Quantization [35], Generalized Matrix
Learning Vector Quantization [6, 36] and Generalized Tangent Learning Vector Quanti-
zation [34].

A good machine learning model’s vital attributes include good generalization ability.
Generalization refers to a machine learning model’s ability to predict a given unknown
instance [11]. What about the robustness of the machine learning model against noise
in data and adversarial attacks? Machine learning has taken center stage in our day-to-
day activities, and as a result, the security of its associated algorithms against adversar-
ial attacks is under severe scrutiny as to how reliable and robust the machine learning
algorithms are, and their ability to withstand adversarial attacks [32]. Adversarial at-
tacks are carefully crafted inputs designed to mislead a machine learning model during
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classification [32]. This crafted input can change or alter the output (misclassification)
and also can lead the classifier to predict output to a different class as desired by the
attacker [32, 33]. An adversarial example of an input a is defined as a minimum per-
turbation δ such that the input data is classified wrongly (lies on the decision boundary
or is located in another class). The method that gives rise to an adversarial example
is known as adversarial attack [33, 41]. Analysis of decision boundaries is crucial in
studying learning dynamic and numerical stability of an algorithm. Learning dynamic
refers to the performance of a classifier to changes as it is trained on new data or as
its hyperparameters are adjusted. On the other hand, the numerical stability of a model
refers to the performance of the model in the face of minor errors, perturbations, or
uncertainties arising from the inherent limitations of approximation errors during com-
putation. A model is deemed stable when minor alterations in the initial conditions lead
to negligible changes in the final solution, signifying its ability to remain accurate and
reliable. [2,7,32,42]. Saralajew et al. [32] shows that robustness and generalization are
two distinct phenomena and thus must be noted clearly without confusion.

Crammer et al. [11] present bounds of Nearest Prototype Classifiers (NPCs) and prove
that the sample margin is the upper bound of the hypothesis margin using Euclidean dis-
tance. Saralajew et al. [33] also proved that the sample margin is the upper bound of the
hypothesis margin using semi-norms. Hein et al. [47] confirm the findings of [33] using a
semi-metric but this time with a derived larger bound for certified robustness accuracy of
a NPC. In this thesis, we discuss the generalization ability of NPCs through the analysis
of their margin and further extend the discussion to their ability to withstand adversarial
perturbation. Certification is key when considering an algorithm’s robustness against
adversarial attacks; therefore, we discuss how to certify a given NPC and [32, 34] give
a lead in the research of adversarial attacks concerning interpretable models.

1.2 Outline of the Thesis

In chapter one, we provided an introduction and outlined the motivation behind the the-
sis. Chapter two delves into the discussion of Learning Vector Quantization, followed
by an exploration of the learning dynamics and numerical stability of nearest prototype
classifiers in chapter three. We conducted experiments in chapter four and analyzed
our findings. Finally, chapter five encompasses the presentation of conclusions and
suggestions.
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2 Learning Vector Quantization

Learning Vector Quantization (LVQ) is an interpretable machine learning model intro-
duced as an improvement to the nearest neighbor classifier [11]. For example, the K-
nearest neighbor algorithm classifies a given instance based on the majority vote from
its k-nearest neighbors within the training dataset. The distances between the input data
and all training instances are computed and the algorithm selects the k-closest samples.
The new instance is given the class label belonging to the most common class among
the k neighbors of the training instances [39, 43]. In the LVQ algorithm, a considerably
small dataset termed prototypes are chosen appropriately to represent the entire train-
ing data. Compared to the K-nearest neighbor algorithm, LVQ cuts down computational
cost and can handle and train reasonably large datasets [11]. In the LVQ algorithm,
two important things are requisite: prototypes and a (dis-)similarity measure [33]. The
question arises regarding how to distribute prototypes to maximize classification accu-
racy efficiently. T. Kohonen came out with a heuristic for distributing the prototypes in an
iterative way given in [20].

2.1 Kohonen Learning Vector Quantization

Let A = {a1,a2, . . . ,aN} ⊆ Rn and c(a) ∈ C= {1,2, . . . ,C}, be training set and their
corresponding class labels respectively. Define P= {p1,p2, . . . ,pM}⊆Rn to be the set
of prototypes where p ∈ P are equipped with corresponding class c(p) ∈ C. Appro-
priately each prototype is allocated to one class and at least a prototype is responsible
for a class. The goal is to distribute the prototypes given an arbitrary instance such that
the classification accuracy is maximized utilizing the nearest prototype principle where
the prototype closest to the instance is selected as the competition winner [17, 18, 20].
Thus:

F (a) = argmin
k

d (a,pk) with k = {1, . . . ,M} (2.1)

where d is an appropriate dissimilarity measure usually taken as the Euclidean distance
[20] and the winner prototype is pF(a). After the winner prototype (pF(a)) is determined,
it is updated as:

∆pF(a) = γ ·κ (a, F (a)) ·
(
a−pF(a)

)
; 0 < γ ≪ 1 (2.2)

where γ is the learning rate and

κ (a, F (a)) =

{
+1, c(a) = c

(
pF(a)

)
−1, c(a) ̸= c

(
pF(a)

) (2.3)
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LVQ classifier and its variants achieve a scheme known as the attraction and repulsion
scheme [20]. During training, the algorithm updates the position of the prototypes itera-
tively in the feature space to maximize classification accuracy by computing the distance
between the input data and the prototypes and then determining which prototype is clos-
est to the input data [20]. The algorithm pulls the prototype closer to the input data (
attraction) if the closest prototype belongs to the correct class and vice versa [20]. In
this way, the attraction and repulsion scheme is realized. The adaptation of LVQ 1 is
heuristically inclined and to enhance the learning dynamics, T. Kohonen came out with
other variants like LVQ 2 and LVQ 3, which are also heuristics [20].

2.2 Generalized Learning Vector Quantization

Sato and Yamada [35] came up with a variant of LVQ model. They named it Gener-
alized Learning Vector Quantization (GLVQ) with a differentiable cost function, which
addresses the problem of the heuristic adaptation in Kohonen LVQ [20]. The cost func-
tion is given by:

J = ∑
a∈A

f (µ (a)) (2.4)

where

µ (a) =
d (a,p+)−d (a,p−)

d (a,p+)+d (a,p−)
∈ [−1,1] (2.5)

is the classifier function [18, 35]. In the classifier function, p+ defines the optimum
matching prototype vector belonging to the correct class given that c(a) = c

(
pF(a)

)
, p−

is defined as the optimum matching prototype vector belonging to the compliment class
of p+ where c(a) ̸= c

(
pF(a)

)
and d is an appropriate chosen dissimilarity measure.

In the cost function, f defines a monotonically increasing function frequently chosen as
the sigmoid function; for example,

f (v) =
1

1+ exp(−v)
(2.6)

or
f (v) = id(v) = v (2.7)

the identity function [18]. If there is a correct classification, the dissimilarity measure
between the input and the optimum matching prototype vector belonging to the correct
class becomes smaller than between the input and the optimum matching prototype
vector belonging to the incorrect class. Therefore, the classifier function becomes neg-
ative and vice versa [31, 35]. The classifier function µ(a) together with the sigmoid
function is differentiable, and therefore optimization can be achieved using stochastic
gradient descent learning (SGDL). The given update rule is as follows:
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∆p±
∝ ε · ∂J

∂p± (2.8)

Taking into account the dissimilarity as the squared Euclidean distance [18, 35], we
update both p+ and p− since they contribute to the determination of the local error.
Their derivatives are given by:

∂J
∂p± =

∂J
∂ µ

· ∂ µ

∂d (a,p±)
· ∂d (a,p±)

∂p±

=±4 · ∂ f
∂ µ

· d (a,p∓)

(d (a,p±)+d (a,p∓))2 ·
(
a−p±) (2.9)

The update rule then becomes positive for p+ and negative for p− realizing the attraction
and repulsion scheme, which is the main framework of LVQ models [20,34,35,45].

2.3 Generalized Matrix Learning Vector Quantization

In GLVQ, we consider that all the weights assigned to the input vectors are equivalent
and that the dissimilarity measure (Euclidean distance) employed is also suitable [16].
Instead of assigning equal weight to each instance, in matrix learning, a relevance ma-
trix is mapped to the instance to learn the weights based on their importance to improve
classification accuracy and reduce computational cost. The necessary condition is that
the dissimilarity measure is differentiable [6,36]. A dissimilarity measure for the Gener-
alized Vector Quantization, which uses a full matrix of relevance, is given as:

dΛ (a,p) = (a−p)T
Λ(a−p) (2.10)

We require that Λ is a positive definite to get a squared Euclidean distance in an appro-
priate transformed space [6]. When Λ is positive definite, we can decompose it into:

Λ = Ω
T

Ω, Ω ∈ Rm×n (2.11)

It follows from (2.10) that:

dΛ (a,p) = (a−p)T
Ω

T
Ω(a−p)

dΛ (a,p) = (Ω(a−p))2

dΛ (a,p) = dΩ (a,p)

(2.12)
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From (2.11), if m = n, the resulting dissimilarity takes the form of the squared Euclidean
distance of linearly projected data where Ω is interpreted as a projection matrix [46].
The choice of Ω helps to achieve a good classification, and because (2.12) is a squared
Euclidean distance, we can adapt the GLVQ cost function in (2.4). The resulting cost
function is [6,9] :

JGMLV Q (P,Ω) = ∑
a∈A

J (a,P,Ω) (2.13)

with
J (a,P,Ω) = f (µ (a,P,Ω))

and

µ (a,P,Ω) =
dΩ (a,p+)−dΩ (a,p−)

dΩ (a,p+)+dΩ (a,p−)
,∈ [−1,1].

f (µ (a,P,Ω)) depends on both the prototypes P and Ω and therefore we learn both P
and Ω by SGDL and (2.13) is optimized as [6,9]:

∆Ω ∝ −∂J (a)
∂ f

· ∂ f
∂ µ

·

(
∂ µ

∂d+
Ω
(a)

·
∂d+

Ω
(a)

∂Ω
+

∂ µ

∂d−
Ω
(a)

·
∂d−

Ω
(a)

∂Ω

)
(2.14)

∆p±
∝ −∂J (a)

∂ f
· ∂ f

∂ µ
·

±2d∓
Ω
(a)(

d+
Ω
(a)+d−

Ω
(a)
)2 ·

∂d±
Ω
(a)

∂p± (2.15)

and d±
Ω
(a) is used as a shorthand form for dΩ (a,p±) [30].

2.4 Generalized Tangent Learning Vector Quantization

We introduce Generalized Tangent Learning Vector Quantization (GTLVQ), a variant of
LVQ with some definitions.

Definition 2.1 (Orthogonal matrix): A real matrix A is orthogonal if AT A = AAT = I.
Equivalently AT = A−1 and that the matrix A is non-singular.

Definition 2.2 (Orthogonal complement): Let V be a finite-dimensional vector space
over the field F with an inner product and U a subspace of V . The orthogonal com-
plement of U denoted as U⊥ is the set of all vectors in V that are orthogonal to every
vector in U :

U⊥ = {v ∈V | ⟨u,v⟩= 0 for every u ∈U}

Definition 2.3 (Orthogonal projection, PU ): Let U be a finite-dimensional subspace of
the vector space V . The definition of orthogonal projection of V onto U is the operator



8 Chapter 2: Learning Vector Quantization

PU ∈L (V ) defined as follows: For v ∈V , we write v = u+w where u ∈U and w ∈U⊥.
Then PU v = u. The operator, PU , has the properties that:

• PU ∈ L (V )

• PU u = u for all u ∈U

• PU w = 0 for all w ∈U⊥

• PU
2 = PU

Tangent distance learning introduced by [38], applied in machine learning centers on
assigning a local geometry of data manifold. Thus, in Generalized Tangent Learning
Vector Quantization (GTLVQ), prototypes are not considered as points but rather as a
set of points called manifold [34]. The ability of tangent learning to incorporate informa-
tion about local changes helps models that use tangent distance to be robust against
systemic variations (transformation) like rotation and reflections of new samples fed to
the classifier [34]. The considerations while using GTLVQ are that the input ai is a pa-
rameterized data manifold Ai(γ) where γ ∈Rs is a parameter vector and ai = Ai(O) [34].
In the like manner, we define pj to be parameterized prototype manifold Pj(θ) where
θ ∈ Rr is a parameter vector and pj = Pj(O) with r,s ≪ n [34]. The goal is to compute
the shortest possible path between the two manifolds proposed in [34] as:

D̃∗ (Ai,Pj
)
= min

γ,θ
{d
(
Ai(γ),Pj(θ)

)
} (2.16)

where d is an appropriate dissimilarity measure between the two parameterized man-
ifolds. Computing the shortest possible path between the manifolds is a minimization
problem. In this regard, we consider a linear approximation using Taylor approximation
of the given manifolds Ai(γ) at ai [34]. The approximation is given by:

Ai (γ)⋍ ai +Biγ (2.17)

where

Bi =
∂Ai (γ)

∂γ

∣∣∣∣
γ=0

is the set of tangent subspace basis vectors at ai where ai ∈ Rn, γ ∈ Rs, we obtain
Bi ∈ aiγ

T with dim(Bi)=s [34]. Similarly, we obtain for prototype manifold Pj(θ) at pj the
approximation as [34]:

Pj (θ)≃ pj +C jθ (2.18)

where

C j =
∂Pj (θ)

∂θ

∣∣∣∣
θ=0

is the set of tangent subspace basis vectors at pj where pj ∈ Rn, θ ∈ Rr, we obtain
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C j ∈ pjθ
T with dim(C j)=r [34]. Combining (2.17) and (2.18) yields a two-sided tangent

distance defined as:

D̃
(
ai,Bi,pj,C j

)
= min

γ,θ
{d
(
ai +Biγ,pj +C jθ

)
} (2.19)

where d defines an appropriate dissimilarity measure for the vectors [34]. It turns out
that, for an optimum distance given an input a, we compute the minimum path between
the input and the prototype manifold [34]. This distance is termed one-sided tangent
distance. The one-sided tangent distance yields an equivalent result as the two-sided
tangent [34]. The computation of the one-sided tangent distance is given by:

D̃
(
ai,pj,C j

)
= min

θ
{d
(
ai,pj +C jθ

)
} (2.20)

Taking into consideration the squared Euclidean distance as the dissimilarity d and in-
corporating it into (2.20) yields:

D
(
ai,pj,C j

)
= min

θ
{
(
ai − (pj +C jθ)

)2} (2.21)

We optimize (2.21) to find the minimum as:

∂D
(
ai,pj,C j

)
∂θ

= 0

which gives:
θ =CT

j (ai −pj) (2.22)

Given that the matrix C j is orthogonal as defined in (2.1). The second partial derivative
is computed to show if the optimum θ is minimum. Therefore, the optimum θ is minimum
if the outcome is positive. It holds that:

∂ 2D
(
ai,pj,C j

)
∂θ∂θ

= I

Moreover, I, the identity matrix is symmetric and has positive eigenvalues, and therefore
the minimum θ is the optimum value [3,34]. Substituting (2.22) into (2.21) gives:

D
(
ai,pj,C j

)
=
(
ai − (pj +C jCT

j (ai −pj))
)2

(2.23)

D
(
ai,pj,C j

)
=
(
(ai −pj)− (C jCT

j (ai −pj))
)2

D
(
ai,pj,C j

)
=
(
(ai −pj)(I −C jCT

j )
)2

D
(
ai,pj,C j

)
=
(
Ω j(ai −pj)

)2

D
(
ai,pj,C j

)
= dΩ j

(
ai −pj

)
(2.24)
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Where Ω j defines an orthogonal projector onto the complement of the linear subspace
defined by the basis vectors of C j and that D

(
ai,pj,C j

)
gives the shortest path defined

between ai and the affine subspace defined by pj +C jθ taking into consideration, the
dissimilarity as the Euclidean squared distance [3,34]. Comparing the GMLVQ equation
(2.12) with GTLVQ equation (2.24), if we restrict Ω = Ω j GMLVQ realizes GTLVG. The
tangent distance (2.24) is then adapted into the GLVQ classifier function (2.5) and the
update of the translation follows the SGDL vividly explained in [34].
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3 Learning Dynamics and Numerical
Stability of LVQs

In this chapter, we analyze the margins of LVQs and their relevance in determining the
learning dynamics, generalization abilities, and numerical stability of the LVQ variants.

3.1 Relevance of Margin Analysis in Determining the
Learning Dynamics and Generalization Abilities of
LVQs

Analysis of margins is crucial in determining the learning dynamics and generalization
abilities of LVQ variants of algorithms. It measures the confidence of a classifier for pre-
dictions [11]. Learning dynamics refers to the model’s behavior during training regarding
the model’s convergence and the time it takes to terminate. Generalization refers to the
model’s ability to predict a given unknown instant. A good classification rule depends
on where the decision boundary is [5,11]. Crammer et al. [11] relate the sample margin
to support vector machine and define it as:

Definition 3.1 (Sample margin): The sample margin is the distance between an in-
stance and the decision boundary induced by the classification rule.

The sample margin is difficult to compute in LVQ models. An alternative margin is the
hypothesis margin.

Definition 3.2 (Hypothesis margin): The hypothesis margin is the distance a classifier
can travel without changing how it labels any sample points.

Definition 3.3 (Semi-metric): A mapping A×A → R is a semi-metric if the following
properties are satisfied for all a, ã, ā ∈ A:

• d (a, ã)≥ 0 (non-negativity)

• d (a, ã) = d (ã,a) (symmetry)

• d (a, ã)≤ d (a, ā)+d (ā, ã) (triangle inequality)

A semi-metric with additional property that d (a, ã) = 0 =⇒ a = ã is a metric.
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Definition 3.4 A mapping A×A → R is a semi-norm if the following properties are
satisfied for all a, ã ∈ A:

• ∥a∥ ≥ 0 (non-negativity)

• ∥αa∥=| α | ∥a∥ (absolute homogeneity)

• ∥a+ ã∥ ≤ ∥a∥ +∥ã∥ (triangle inequality)

A semi-norm with additional property that ∥a∥= 0 =⇒ a = 0 is a norm.

Problem Setting
Let p∗ be the closest prototype to a with the same class label and p∗ be the closest
prototype to a with the condition that c(p∗) ̸= c(p∗) and given a dissimilarity d, then:

d (a,p∗)−d (a,p∗)< 0 (3.1)

implies that the point a is correctly classified, else it is assigned to the wrong class. We
consider the following setting and use it to derive bounds for the hypothesis margin [11].
Let d(a,p) be the Euclidean distance and denote Mh(A,P) as the hypothesis margin
defined in (3.2) and Ms(A,P) the sample margin defined in (3.1)

Lemma 3.5 ( [11]) Let a∈Rn be an input for the LVQ with prototype set P= {p1, . . . ,pk}.
Let p∗ be the closest prototype to a with the same label and p∗ be the closest prototype
to a such that c(p∗) ̸= c(p∗). Then the hypothesis margin Mh(A,P) of P with respect to
a is :

Mh({a},P) = 1
2
(d (a,p∗)−d (a,p∗)) (3.2)

Lemma 3.6 ( [11]) Let A = {a1, . . . ,am} be a sample and P = p1, . . . ,pk be the set of
prototype, then:

Mh(A,P)≤ Ms(A,P) (3.3)

Lemma (3.5) and (3.6) follows with a theorem that gives a bound for the generalization
error considering the number of prototypes, the size of the sample, the margin and the
margin error of the training sample [11].

Theorem 3.7 ( [11]) Let A = {a1, . . . ,am,y1, . . . ,ym} ∈ {Rn ×Y}m be the training set
with given labels drawn from D denoting an underlying data distribution.

• for all samples, ∥ai∥ ≤ R for some constant R ≥ 0
• let P be the set of prototypes with k prototype from each class
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• let θ ∈ (0, 1
2)

• let Mθ
h (A,P) =

1
m | {i : Mh({ai},P)}< θ |

• let eD(P) be the generalization error: eD(P) = Pr(a,c(y))∼D[P(a) ̸= y]
• let ε > 0 , with probability 1− ε taking into account the choices fo data:

for all P:

eD ≤ Mθ
h (A,P)+

√
8
m

(
d log2 32m

θ 2 + log
4
ε

)
(3.4)

with

d = min
(

n+1,
64R2

θ 2

)
2k|Y | logek2 (3.5)

is called Vapnik–Chervonenkis (VC) dimension.We note the following from theorem
(3.7): First of all, the bound for the generalization error does not depend on the input di-
mension (n) directly [11]. Second, while the cardinality of prototypes (P) per given class
grows, the (VC) dimension grows. Consequently, using too many prototypes per class
may lead to low performance [11]. Hence, we choose a nontrivial optimum number of
prototypes. After selecting a desirable number of prototypes, we find a margin threshold
θ such that the empirical margin error Mθ

h is small for a large margin threshold θ [11].
However, a large margin threshold θ leads to a high margin error. This contrast can be
dealt with by introducing an appropriate loss function [11]. We can use the procedure
in [4] to define a loss function for a LVQ that maximizes the hypothesis margin.

One of the primary aims of learning a classifier is to achieve a good generalization, and
LVQ that optimizes the hypothesis margin together with a loss function when trained well
delivers a good generalization [7]. Amongst the several LVQ variants, GLVQ optimizes
the hypothesis margin. LVQ performance drops if an appropriate dissimilarity measure
is not employed. Therefore, LVQ variants (GRLVQ, GMLVQ, GTLVQ) that incorporate
dissimilarity measures that adapt the GLVQ dissimilarity are also margin optimizers [7,
15]. The question arises if all LVQ variants that optimize the hypothesis margin are also
robust against adversarial attacks. In the next section, we analyze LVQ variants that
optimize the hypothesis margin and their robustness against adversarial attacks.

3.2 Numerical Stability of LVQ Algorithms

In the introduction, information on adversarial examples is given. The method that gives
rise to an adversarial example is known as an adversarial attack. There are two funda-
mental categories of adversarial attacks: black-box and white-box attacks, as discussed
in [29, 32]. In a black-box attack, the adversary lacks information about the model’s
parameters and has no prior knowledge of the input data [29, 32]. For example, the
boundary attack is a notable instance of a black-box attack [8]. However, in a white-box
attack, the adversary possesses prior knowledge of both the model’s input and its pa-
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rameters [29, 32]. White-box attacks encompass techniques such as the fast gradient
sign method [14] and the momentum iterative method [12]. This chapter considers an
adversarial attack characterized by a specified bound ε > 0, ensuring that the attack
generates an adversarial example, δ with a maximum perturbation magnitude of ∥δ∥.
This form of adversarial attack is called an ε-limited adversarial attack [24, 33]. Again,
we discuss in this chapter the ability of an NPC to withstand adversarial attacks; thus,
the NPC’s numerical stability and robustness are presented.

The question of whether all LVQ variants that optimize the hypothesis margin are also
robust against adversarial attacks is answered by Saralajew et al. [32]. For a LVQ to
be robust against adversarial attacks, the LVQ variant in question should optimize the
hypothesis margin in an appropriate space [32]. Therefore, GLVQ and GTLVQ are ro-
bust against adversarial attacks while GMLVQ is not, and LVQ variants that maximize
the hypothesis margin do not necessarily guarantee robustness [32]. Therefore, robust-
ness and generalization should be studied as two different concepts. Again Saralajew
et al. [33] opine that adversaries are related to the analysis of margin and use the semi-
norm defined in definition (3.4) to derive bounds for the hypothesis margin similar to
equations (3.2) and (3.3).

Theorem 3.8 ( [33]) Let the data space A be a vector space defined over the field of
real or complex numbers, d(a,p) = ∥a−p∥ be a dissimilarity induced by a semi-norm
∥.∥ and A be a set of inputs. Then, the hypothesis margin of P with respect to A yields
a lower bound on the sample margin of P with respect to A:

Mh(A,P)≤ Ms(A,P) (3.6)

Corollary 3.9 ( [33]) Given the labeled data point (a,c(a)) that is correctly classified by
an NPC according to theorem (3.8) and a corresponding perturbation δ that changes
the assigned class label, then, the following inequality is true and has tight bounds
(existence of data points for which the equality is true)

Mh({a},P)≤ Ms({a} ≤ ∥δ∥. (3.7)

Hein et al. in [47] provide a bound for the adversarial perturbation using the semi-metric
given in definition (3.3) as dissimilarity.

Definition 3.10 Let a ∈Rn be an input for a Nearest Prototype Classifier with prototype
set P = {p1, . . . ,pk}. Let p∗ be the closest prototype to a with the same label and p∗ be
the closest prototype to a such that c(p∗) ̸= c(p∗). The minimal adversarial perturbation
δd (a) of a ∈ A of a NPC taking the dissimilarity d as a semi-metric is defined as:
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δd (a) = min{r | max
a∈Bd(a,r)

(d (a,p∗)−d (a,p∗))} ≥ 0 (3.8)

where
Bd(a,r) = {ã ∈ A | d (ã,a)≤ r} (3.9)

and in equation (3.8) r is the radius of the smallest ball around a such that at least a
point in Bd(a,r) is classified differently other than its intended class. If a is not classified
correctly, we set δd (a) to 0. Thus

d (a,p∗)−d (a,p∗)≥ 0 ; set δd (a) = 0 (3.10)

Theorem 3.11 ( [47]) Let d be a dissimilarity defined in (3.3), and a ∈ A an instance
correctly classified by an NPC. Let p∗ be the closest prototype to a with the same label
and p∗ be the closest prototype to a such that c(p∗) ̸= c(p∗). Then it holds for the
minimal adversarial perturbation δd (a) of a ∈ A:

δd (a)≥ max{0,ψ} (3.11)

where

ψ =
1
2
(d (a,p∗)−d (a,p∗)) (3.12)

We reiterate that in equation (3.11) we take the maximum of equation (3.10) or (3.12).
Equation (3.12) is the hypothesis margin derived by Crammer et al. [11] and that if we
choose the dissimilarity d as the semi-norm defined (3.4) we get the hypothesis margin
derived as the lower bound of the sample margin by Saralajew et al. [33].
We define next the minimal adversarial perturbation given the dissimilarity lq ∈ {1,2,∞}
for measuring the perturbation and a corresponding dissimilarity lt ∈ {1,2,∞} for the
NPC [47].

Let I be the index set of prototypes P and Iy be the index set of prototypes (pi) that
correctly assigns a given instance to a class and Ic

y be the index set of prototypes (pj)

such that:
I = Iy ∪ Ic

y and Iy ∩ Ic
y = /0

Again, we let p∗ be the closest prototype to a with the same label and p∗ be the closest
prototype to a such that c(p∗) ̸= c(p∗).

Definition 3.12 The minimal adversarial perturbation δ
q
t (a) of ã ∈ A of a Nearest Pro-

totype Classifier taking the dissimilarity lt - metric for measuring the NPC and an lq-
metric as a dissimilarity for measuring the perturbation where t,q ∈ {1,2,∞} is defined
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as:
δ

q
t (a) j = min

r∈R,ã∈A
r (3.13)

with the constraint that dt(ã,pi)−dt(ã,pj)≥ 0 : ã ∈ Bq(a,r) (3.14)

If dt (ã,p∗)−dt (ã,p∗)> 0 ; set δ
q
t (a) = 0 (3.15)

The following theorem states how to compute δ
q
t (a)

Theorem 3.13 ( [47]) Let a ∈ A ⊂ Rn be an input and denote Iy the index set of proto-
types that correctly assign a given instance to a class and Ic

y be its complement.Then
define for every j ∈ Ic

y :
δ

q
t (a) = min

j∈Ic
y

rq
t (a) j (3.16)

where
rq
t (a) j = min

ã∈Rn
dq (ã,a) (3.17)

subject to:

dt(ã,pi)−dt(ã,pj)≥ 0 for all i ∈ Iy; ã ∈ A

Lower bound is derived for δ
q
t (a) by relaxing the optimization problem in (3.17) to get

ρ
q
t (a). Let i ∈ Iy and j ∈ Ic

y , we the compute:

ρ
q
t (a)i, j = min

ã∈Rn
dq (ã,a) (3.18)

with constraint:

dt(ã,pi)−dt(ã,pj)≥ 0; ã ∈ A (3.19)

The next theorem (3.14) shows for a given A ∈ [0,1]n the time complexity required to
optimise rq

t (a) j.

Theorem 3.14 ( [47]) The time complexity for computing rq
t (a) j as an optimization prob-

lem in (3.17) given that t,q ∈ {1,2,∞} for a given A ∈ [0,1]n is summarize in table (3.1)



Chapter 3: Learning Dynamics and Numerical Stability of LVQs 17

lq- threat model

lp -
distance

l1 l2 l∞
l1 NP-hard NP-hard Polynomial
l2 Polynomial Polynomial Polynomial
l∞ NP-hard NP-hard NP-hard

Table (3.1) Time complexity of rq
t (a) and δ

q
t (a)

It is clear from table (3.1) that the computation and optimization problem in (3.17) is
difficult to compute for l∞-NPC for all threat models (l1, l2, l∞). The l2-NPC is certified for
all threat models (l1, l2, l∞) and l1-NPC are certified for l∞-thread model.

Theorem (3.15) shows for a given A = Rn the time complexity required to optimise
ρ

q
t (a)i, j.

Theorem 3.15 ( [47]) The time complexity for computing ρ
q
t (a)i, j as an optimization

problem in (3.18) given that t,q ∈ {1,2,∞} for a given A ∈ Rn is summarize in table
(3.2)

lq- threat model

lp -
distance

l1 l2 l∞
l1 NP-hard NP-hard O(d logd)
l2 Θ(d) Θ(d) Θ(d)
l∞ Θ(d) O(d logd) Θ(d)

Table (3.2) Time complexity of ρ
q
t (a)i, j

Table (3.2) depict that, l2 and l∞-NPC can be certified for all threat model (l1, l2, l∞) and
l1-NPC can be certified for (l∞) threat model. It follows from theorems (3.14) and (3.15)
that we can compute a lower bound for δ

q
t (a).

Lemma 3.16 ( [47]) It holds that

min
j∈Ic

y
max
i∈Iy

ρ
q
t (a)i, j ≤ δ

q
t (a)

Again, let (i∗, j∗) ∈ Iy× Ic
y be the prototype pair that gives the lower bound and let ã∗ be

the minimizer of ρ
q
t (a)i, j. Then if ã∗ satisfies

dt(ã∗,pi)−dt(ã∗,pj)≥ 0 for all i ∈ Iy

then min
j∈Ic

y
max
i∈Iy

ρ
q
t (a)i, j = δ

q
t (a)
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We finally state the bound for δ t
t (a) in theorem (3.17) given by Hein et al. [47].

Theorem 3.17 ( [47]) The lower bound on δ t
t (a) of lemma (3.16) is at least as good as

the one of theorem (3.11). That is:

max{0,ψ} ≤ min
j∈Ic

y
ρ

t
t (a)i∗, j ≤ min

j∈Ic
y

max
i∈Iy

ρ
t
t (a)i, j

where

ψ =
1
2
(d (a,p∗)−d (a,p∗))

and
i∗ = argmin

i∈Iy
dt(a,pi) (3.20)

3.3 Certification of a NPC

In [33], Saralajew et al. certify a given NPC by optimizing a signed version of the hy-
pothesis margin, termed the signed hypothesis margin.

Definition 3.18 (Signed hypothesis margin): Given a labeled instance (a,c(a)) and
prototype set P. The signed hypothesis margin of an instance is given by:

Mc
h (a,c(a),P)) =

{
Mh ({a},P) if a is correctly classified
−Mh ({a},P) if a is wrongly classified

(3.21)

An absolute distance difference ∆d (a) is defined as:

∆d (a) = d
(
a,p−)−d

(
a,p+

)
(3.22)

where p+ and p− denote the optimum matching prototype vector belonging to the cor-
rect class, respectively, the optimum matching prototype vector belonging to the incor-
rect class as defined in (2.5). From the definition of the hypothesis margin in [33], we
have:

∆d (a) = d
(
a,p−)−d

(
a,p+

)
≤ d (a,p∗)−d (a,p∗)

∆d (a)≤ 2.Mc
h (a,c(a),P)) (3.23)

and equality holds if
p+ = p∗ or p+ = p∗

Let A be labeled training set and we denote #A as the cardinality of A. Let also P denote
a set of prototypes with labels. From (3.23), an upper bound exists for the robust test
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error under ε-limited adversarial attack and is expressed as [33]:

errorε(A,P) =
1

#A
·#{(a,c(a)) ∈ A | ∆d(a)≤ 2ε} (3.24)

Hence, maximizing ∆d(a) or minimizing −∆d(a) leads to maximizing the adversarial
robustness and −∆d(a) is termed as the triplet loss [33]. For adversarial attacks not up
to ε-limited attack, optimize:

1
#A ∑

(a,c(a))∈A
ReLU(2ε −∆d(a)) (3.25)

To avoid the computation of square roots, one might employ the squared semi-norms
computed as:

d2 (a,p+
)
−d2 (a,p−)=−∆d(a) ·

(
d
(
a,p+

)
+d
(
a,p−)) (3.26)

Hence, a NPC becomes robust against adversarial attacks if optimization uses the triplet
loss [33]. However, optimizing a NPC using the triplet loss may cause training instability.
To curb this problem of instability in training, employ normalization techniques as in
(2.5) [33].

Hein et al. [47] certify a NPC using algorithm (1). Comparing theorems (3.11) and
(3.17), both have the bound on δ

q
t (a) existing for t = q and the same computational

complexity of | Iy |+ | Ic
y | operations [47]. A lower bound with a considerably low com-

putational cost exists if the box constraint (A = [0,1]n) is incorporated [47]. The lower
bound is realized by first certifying A = Rn which has a closed form, and thus the lower
bound for A = Rn also satisfies that of the restricted case A = [0,1]n [47]. Thus:

s j = ρ
q
t (a)i∗, j where i∗ is fixed (3.27)

Let (λ , j∗) = min
j∈Ic

y
ρ

q
t (a)i∗, j be the minimum and minimizer (3.28)

Let κ
q
t (a)i∗, j be the corresponding element given that A = [0,1]n but not A = Rn

(3.29)
Solve for κ

q
t (a)i∗, j only if κ

q
t (a)i∗, j∗ ≥ ρ

q
t (a)i∗, j (3.30)

The function to optimize is:

max
(Pi)i∈I

1
k

k

∑
r=1

min
{

min
j∈Ic

y
max
i∈Iy

ρ
q
t (ar)i, j , R

}
(3.31)

where
ρ

q
t (a)i, j = min

ã∈Rn
dq (ã,a)
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with constraint:

dt(ã,pi)−dt(ã,pj)≥ 0; ã ∈ A

and R denotes the cap on the margin to be enforced.

Algorithm 1 [47] Certification algorithm for correctly classified given point a
1: Compute: λ as lower bound on δ

q
t (a) using equation (3.16)

2: Compute: i∗, s j using equations (3.20) and (3.27) respectively.
3: Determine: (λ , j∗) using equation (3.28)
4: if minimizer ã∗of ρ

q
t (a)i∗, j∗ is feasible for rq

t (a) j∗ then
5: δ

q
t (a) = λ and return

6: else
7: λ is lower bound on δ

q
t (a)

8: end if
9: Compute: δ

q
t (a)

10: Initialize: Default parameters (t = 2) or (t,q) = (1,∞)
11: compute: µ = rq

t (a) j∗ and check if δ
q
t (a)≤ µ

12: for j = 1 to | Ic
y | do

13: if s j ≤ µ then
14: compute rq

t (a) j
15: if rq

t (a) j < µ then
16: µ = rq

t (a) j
17: end if
18: end if
19: δ

q
t (a) = µ

20: end for
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4 Experimental Results

4.1 Dataset

This chapter presents experiments to certify a given NPC based on the bounds pre-
sented in [33] and [47]. We conducted experiments using the MNIST dataset and then
the CIFAR-10 dataset. The MNIST dataset [22] is a real image dataset consisting of
70000 handwritten digits with 28×28 gray-scale pixels grouped into ten classes from 0
– 9. The MNIST dataset has 10000 instances for testing and the rest for training.

Figure (4.1) [23] MNIST dataset images sample

The CIFAR-10 dataset is a thirty-two by thirty-two (32× 32) color image dataset con-
sisting of 60000 samples, out of which 10000 instances are for testing and the rest for
training. The dataset has ten classes: cat, airplane, frog, automobile, deer, ship, dog,
truck, bird and horse, with each class consisting of 6000 images [21].
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Figure (4.2) [23] CIFAR-10 dataset samples images

4.2 Experimentation to Certify a NPC

In this thesis, we denote NPCs trained by the triplet loss [33] as FNPC and the NPCs
trained in [47] as PNPC. The experiments to get the exact certified values for FNPC
and PNPC require special hyperparameter tuning. To get the reported values in the re-
spective papers ( [33] and [47]), one might run the exact replicate flags from the GitHub
repositories provided by [33] and [47]. We used the same codes from the respective
GitHub repositories for the simulation in this thesis. Different hyperparameters are cho-
sen in the experiments to ascertain the behavior of both bounds given by FNPC and
PNPC and report accordingly.

4.2.1 Certification of FNPC using the MNIST dataset

Emphasizing, an upper bound exists for the robust test error under ε-limited adversarial
attacks for FNPC and is computed using the equation (3.24). To avoid the computation
of square roots, one might employ the squared seminorms using the equation (3.25).

Certification of FNPC requires foolbox for implementation. The prototype initialization
is done using the k-means algorithm. 128 prototypes per class were selected for train-
ing. Batch size of 128 and 1000 epochs with 0.001 learning rates were chosen for
FNPC-GLVQ and FNPC-GTLVQ to train and certify the MNIST dataset. Lower Bound
Robustness Test Accuracy (LRTA) and Upper Bound Robustness Test Accuracy (URTA)
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values for FNPC are simulated and the summary of the results are tabulated in (4.1) for
FNPC-GLVQ using the GLVQ loss and FNPC-GTLVQ using the ReLU loss.

Dataset ε Model Loss LRTA [%] URTA [%]

M
N

IS
T

0.001
GLVQ GLVQ 93.61 94.29

GTLVQ ReLU 93.26 93.98

0.01
GLVQ GLVQ 83.90 94.08

GTLVQ ReLU 83.79 93.41

0.1
GLVQ GLVQ 0.00 91.68

GTLVQ ReLU 0.001 90.74

0.3
GLVQ GLVQ 0.00 82.78

GTLVQ ReLU 0.00 83.25

0.5
GLVQ GLVQ 0.00 69.44

GTLVQ ReLU 0.00 72.10

Table (4.1) FNPC-GLVQ and FNPC-GTLVQ trained with l2 norm on the MNIST dataset

Figure (4.3) shows FNPC-GTLVQ model trained with l2 norm on the MNIST dataset.

Figure (4.3) FNPC-GLVQ model trained with l2 norm on the MNIST dataset
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Figure (4.4) FNPC-GTLVQ model trained with l2 norm on the MNIST dataset

Experimental results of Upper Bound Robustness Test Accuracy (URTA) and Lower
Bound Robustness Test Accuracy (LRTA) values are populated in table (4.1). The val-
ues obtained from URTA and LRTA are graphed for FNPC-GLVQ and FNPC-GTLVQ
in figures (4.3) respectively (4.4). It is evident that as perturbation increases, accu-
racy reduces for both LRTA and URTA until they stabilize or reach zero. URTA gives a
better robustness accuracy than the LRTA. FNPC-GTLVQ provides a better robustness
accuracy compared to the FNPC-GLVQ classifier.

Table (4.2) contains values for FNPC-GLVQ and FNPC-GTLVQ trained with l∞ norm on
the MNIST dataset.

Dataset ε Model Loss LRTA [%] URTA [%]

M
N

IS
T

0.001
GLVQ GLVQ 86.97 86.97

GTLVQ ReLU 94.34 94.34

0.01
GLVQ GLVQ 76.75 76.75

GTLVQ ReLU 93.82 93.82

0.1
GLVQ GLVQ 10.65 10.65

GTLVQ ReLU 93.60 93.60

0.3
GLVQ GLVQ 0.00 0.00

GTLVQ ReLU 93.51 93.51

0.5
GLVQ GLVQ 0.00 0.00

GTLVQ ReLU 92.52 92.52

Table (4.2) FNPC-GLVQ and FNPC-GTLVQ trained with l∞ norm on the MNIST
dataset
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Similar experiments are performed for FNPC trained with the l∞ norm and certified ro-
bustness values for URTA and LRTA are herein tabulated in (4.2). Outcome from table
(4.2) shows a similar pattern as in Table (4.1). However, the FNPC-GTLVQ model
is resilient and provides good accuracy results even as we increase the perturbation.
Notably, the URTA and LRTA coincide for FNPC-GLVQ and FNPC-GTLVQ models.

4.2.2 Certification of PNPC using MNIST dataset

Experimentation to test PNPC requires torchvision, perceptual-advex, jax and jaxlib.
Batch size of 128 and 10 epochs with 128 prototypes per class were chosen to train
and certify the MNIST dataset using the PNPC. Table (4.3) shows the experiment’s
outcome.

Dataset ε Model LRTA [%] URTA [%]

M
N

IS
T

0.001
l2 PNPC 96.16 96.17
l∞ PNPC 26.48 26.49

0.01
l2 PNPC 96.05 96.18
l∞ PNPC 15.44 15.49

0.1
l2 PNPC 95.91 96.93
l∞ PNPC 28.13 28.67

0.3
l2 PNPC 93.40 97.25
l∞ PNPC 9.97 10.59

0.5
l2 PNPC 90.29 97.64
l∞ PNPC 17.53 19.99

Table (4.3) PNPC trained with l2 and l∞ metric for certified robustness accuracy on the
MNIST dataset
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Figure (4.5) PNPC trained with l2 metric on the MNIST dataset

Table (4.3) shows high robustness values for both LRTA and URTA and figure (4.5)
shows the visualization. As the perturbation (ε) increases, the URTA values increase
while the LRTA values decrease. The result in table (4.3) for PNPC is therefore in
contrast to FNPC values obtained in table (4.1), figure (4.3) whose values for both LRTA
and URTA begins with relatively high robustness values and both values reduces to zero
or stabilizers. Values obtained from PNPC trained with the l∞ norm from table (4.3)
depict values for both LRTA and URTA almost coinciding in contrast to those obtained
for FNPC in table (4.2) whose values for both LRTA and URTA coincided. In conclusion,
PNPC has a larger radius for certification than FNPC.

4.2.3 Certification of NPC using the CIFAR-10 dataset

Experiments are carried out to certify the adversarial robustness of FNPC and PNPC
using the CIFAR-10 dataset. For FNPC-GLVQ, one prototype per class with a 0.001
learning rate and 100 epochs are chosen. Also, batch size of 128 and the GLVQ loss
were employed in the training.

The same parameters used to certify the FNPC-GLVQ were used to certify FNPC-
GTLVQ, except for the number of epochs, which were 10 instead of 100, and ReLU
loss used instead of GLVQ loss.

The experiment to certify PNPC was performed with 64 prototypes per class, 10 epochs,
and batch size of 128. The outcome of the results are presented in table (4.4) ‘
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Dataset ε Model LRTA [%] URTA [%]

C
IF

A
R

-1
0

2
255

l2 PNPC 24.87 25.02
l2 FNPC-GLVQ 32.49 32.80

l2 FNPC-GTLVQ 39.06 39.58
l∞ PNPC 10.00 10.00

l∞ FNPC-GLVQ 21.05 21.05
l∞ FNPC-GTLVQ 37.34 37.34

8
255

l2 PNPC 10.00 10.00
l2 FNPC-GLVQ 31.35 32.69

l2 FNPC-GTLVQ 39.37 41.32
l∞ PNPC 10.00 10.00

l∞ FNPC-GLVQ 21.42 21.42
l∞ FNPC-GTLVQ 38.48 38.48

36
255

l2 PNPC 10.00 10.00
l2 FNPC-GLVQ 26.00 32.61

l2 FNPC-GTLVQ 32.43 40.34
l∞ PNPC 10.00 10.00

l∞ FNPC-GLVQ 20.36 20.36
l∞ FNPC-GTLVQ 38.87 38.87

Table (4.4) NPCs trained with l2 and l∞ dissimilarities for certified robustness accuracy
on the CIFAR-10 dataset

The observations from table (4.4) show that l2 FNPC-GLVQ LRTA and URTA decrease
as ε values increase, but the rate of decay is slow. The l∞ FNPC-GLVQ LRTA and URTA
values are equal for a given ε and thus lie on each other. The l2 FNPC-GTLVQ LRTA
and URTA values slightly increased and decreased as ε values increased. Again, the
l∞ FNPC-GTLVQ LRTA and URTA attained equal values as ε increases. The remark
is that there is a consistent pattern and behavior in both LRTA and URTA values when
FNPCs are certified using both the MNIST and CIFAR-10 datasets.

The certification of l2 PNPC using the CIFAR-10 dataset values from table (4.4) shows
that as ε is increased, the LRTA values decrease and the URTA values gained a minor
increase and decreased afterward. The l∞ values for both LRTA and URTA are equal to
a constant. The remark is that the behavior obtained for PNPC is equivalent to that of
the FNPC while certifying using the CIFAR-10 dataset.
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5 Discussion of Results, Conclusions and
Suggestions

This chapter examines the findings from the experiments conducted in chapter 4. Addi-
tionally, we provide an overview of the conclusions drawn from these findings and offer
relevant suggestions for future directions.

5.1 Discussion of Results

It is a fact that (semi-)norms induce (semi-)metrics and (semi-)norms have more re-
strictions than (semi-)metrics. Hein et al. use semi-metric in PNPC and Saralajew et
al. employ a semi-norm in FNPC. The bound provided by PNPC for certification of
adversarial robustness using the semi-metric might be larger and more general than
the bound presented by Saralajew et al. in FNPC for adversarial robustness using the
semi-norm. The values in tables (4.1), (4.2) and (4.3) confirm that PNPC provides a
larger bound than FNPC when both PNPC and FNPC were experimented with, using
the MNIST dataset.

What about the robustness of FNPC and PNPC against adversarial attacks? Every
instance certified by FNPC is expected to be certified by PNPC because of the expected
larger margin given by PNPC due to the use of semi-metric. However, the converse may
not necessarily be true and it is expected that FNPC yields higher robustness against
adversarial attacks than PNPC for numerical stability.

Values obtained for FNPC-GLVQ trained with the l∞ norm on the MNIST dataset from
table (4.2) were low. Similar low outcomes were reported for PNPC values presented in
table (4.3) when trained with the l∞ norm. Again, NPCs trained with l2 and l∞ norms for
certified robustness accuracy on the CIFAR-10 dataset yielded low values. The reason
for the low performance may be due to hyperparameter tuning. For example, the num-
ber of prototypes selected per class in this thesis were considerably lower than those
selected in FNPC and PNPC for training and certification for adversarial robustness.
However, the values obtained in this thesis are consistent with those obtained in FNPC
and PNPC, not necessarily in the performance but in behavior. Optimal performance
requires special hyperparameter tuning, as FNPC and PNPC publications reported.

5.2 Conclusions and Suggestions

This thesis compared NPCs learning dynamic and numerical stability regarding the
Crammer-normalization and the Hein-normalization for adversarial robustness. The
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bounds given by Saralajew et al. for adversarial robustness were discussed. Hein
et al. confirmed the bounds given by Saralajew et al. and further gave new bounds
in their PNPC, incorporating the box constraint in their work. Whereas Saralajew et
al. optimized the triplet loss and normalized at every training, Hein et al. enforced an
upper bound in their objective function to prevent individual training instances from at-
taining extremely high margins. Experimental outcomes from the use of the MNIST and
the CIFAR-10 real datasets indicate that even though the Hein normalization in PNPC
offers a larger bound and a more generalization of robustness certification for NPCs,
Saralajew et al. FNPC is more robust against adversarial attacks than PNPC due to the
restrictions introduced by the use of semi-norm as compared to the semi-metric utilized
in PNPC by Hein et al. Extensive work should be geared towards this area since it of-
fers applications in sensitive fields. Future work will look into adversarial robustness for
PNPC and FNPC bounds when both are trained and certified using the same dissimi-
larity measure (either semi-norm or semi-metric). Again we suggest that the adversarial
robustness of soft NPCs could be explored.
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6 Appendix

The code implementation of Provably Adversarially Robust Nearest Prototype Classi-
fiers referred to in this thesis as PNPC can be found at https://github.com/asirifiboa/
Provably-Adversarially-Robust-Nearest-Prototype-Classifiers and that of
Fast Adversarial Robustness Certification of Nearest Prototype Classifiers for Arbitrary
Seminorms also referred to FNPC in this thesis can be found at https://github.com/
asirifiboa/robust_NPCs



Chapter 6: Bibliography 31

Bibliography

[1] Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. Interpretable
machine learning in healthcare. In Proceedings of the 2018 ACM international
conference on bioinformatics, computational biology, and health informatics, pages
559–560, 2018.

[2] Edward Allen. Modeling with Itô stochastic differential equations, volume 22.
Springer Science & Business Media, 2007.

[3] Sheldon Axler. Linear algebra done right. Springer Science & Business Media,
1997.

[4] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexi-
ties: Risk bounds and structural results. Journal of Machine Learning Research,
3(Nov):463–482, 2002.

[5] James C Bezdek and Ludmila I Kuncheva. Nearest prototype classifier designs: An
experimental study. International journal of Intelligent systems, 16(12):1445–1473,
2001.

[6] Michael Biehl. Matrix learning in learning vector quantization. 2006.

[7] Michael Biehl, Anarta Ghosh, and Barbara Hammer. Dynamics and generalization
ability of lvq algorithms. Journal of Machine Learning Research, 8(2), 2007.

[8] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models. arXiv preprint
arXiv:1712.04248, 2017.

[9] Kerstin Bunte, Petra Schneider, Barbara Hammer, Frank-Michael Schleif, Thomas
Villmann, and Michael Biehl. Limited rank matrix learning, discriminative dimension
reduction and visualization. Neural Networks, 26:159–173, 2012.

[10] Nadia Burkart and Marco F Huber. A survey on the explainability of supervised
machine learning. Journal of Artificial Intelligence Research, 70:245–317, 2021.

[11] Koby Crammer, Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby. Margin anal-
ysis of the lvq algorithm. Advances in neural information processing systems, 15,
2002.

[12] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and



32 Chapter 6: Bibliography

Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 9185–9193,
2018.

[13] James H Fetzer and James H Fetzer. What is Artificial Intelligence? Springer,
1990.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[15] Barbara Hammer, Marc Strickert, and Thomas Villmann. On the generalization
ability of grlvq networks. Neural Processing Letters, 21:109–120, 2005.

[16] Barbara Hammer and Thomas Villmann. Generalized relevance learning vector
quantization. Neural Networks, 15(8-9):1059–1068, 2002.

[17] Marika Kaden, Mandy Lange, David Nebel, Martin Riedel, Tina Geweniger, and
Thomas Villmann. Aspects in classification learning-review of recent developments
in learning vector quantization. Foundations of Computing and Decision Sciences,
39(2):79–105, 2014.

[18] Marika Kaden, Martin Riedel, Wieland Hermann, and Thomas Villmann. Border-
sensitive learning in generalized learning vector quantization: an alternative to sup-
port vector machines. Soft Computing, 19:2423–2434, 2015.

[19] T. Kohonen. Improved versions of learning vector quantization. In 1990 IJCNN
International Joint Conference on Neural Networks, pages 545–550 vol.1, 1990.

[20] T Kohonen. Self-organizing maps, springer. 3th. 2001.

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[22] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[23] Seung-Hwan Lim, Steven R Young, and Robert M Patton. An analysis of image
storage systems for scalable training of deep neural networks. system, 5(7):11,
2016.

[24] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017.



Chapter 6: Bibliography 33

[25] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. A framework for
reinforcement learning and planning. arXiv preprint arXiv:2006.15009, 127, 2020.

[26] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of ma-
chine learning. MIT press, 2018.

[27] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[28] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[29] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communica-
tions security, pages 506–519, 2017.

[30] Jensun Ravichandran, Marika Kaden, Sascha Saralajew, and Thomas Villmann.
Variants of dropconnect in learning vector quantization networks for evaluation of
classification stability. Neurocomputing, 403:121–132, 2020.

[31] Sascha Saralajew. New prototype concepts in classification learning. 2020.

[32] Sascha Saralajew, Lars Holdijk, Maike Rees, and Thomas Villmann. Robustness
of generalized learning vector quantization models against adversarial attacks.
In Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering
and Data Visualization: Proceedings of the 13th International Workshop, WSOM+
2019, Barcelona, Spain, June 26-28, 2019 13, pages 189–199. Springer, 2020.

[33] Sascha Saralajew, Lars Holdijk, and Thomas Villmann. Fast adversarial robustness
certification of nearest prototype classifiers for arbitrary seminorms. Advances in
Neural Information Processing Systems, 33:13635–13650, 2020.

[34] Sascha Saralajew and Thomas Villmann. Adaptive tangent distances in general-
ized learning vector quantization for transformation and distortion invariant clas-
sification learning. In 2016 International Joint Conference on Neural Networks
(IJCNN), pages 2672–2679. IEEE, 2016.

[35] Atsushi Sato and Keiji Yamada. Generalized learning vector quantization. Ad-
vances in neural information processing systems, 8, 1995.

[36] Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices
in learning vector quantization. Neural computation, 21(12):3532–3561, 2009.

[37] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-



34 Chapter 6: Bibliography

making for autonomous vehicles. Annual Review of Control, Robotics, and Au-
tonomous Systems, 1:187–210, 2018.

[38] Patrice Simard, Yann LeCun, and John Denker. Efficient pattern recognition using a
new transformation distance. Advances in neural information processing systems,
5, 1992.

[39] Bo Sun, Junping Du, and Tian Gao. Study on the improvement of k-nearest-
neighbor algorithm. In 2009 International Conference on Artificial Intelligence and
Computational Intelligence, volume 4, pages 390–393, 2009.

[40] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[41] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[42] Remi Tachet, Mohammad Pezeshki, Samira Shabanian, Aaron Courville, and
Yoshua Bengio. On the learning dynamics of deep neural networks. arXiv preprint
arXiv:1809.06848, 2018.

[43] Kashvi Taunk, Sanjukta De, Srishti Verma, and Aleena Swetapadma. A brief review
of nearest neighbor algorithm for learning and classification. In 2019 International
Conference on Intelligent Computing and Control Systems (ICCS), pages 1255–
1260, 2019.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

[45] Thomas Villmann, Andrea Bohnsack, and Marika Kaden. Can learning vector
quantization be an alternative to svm and deep learning?-recent trends and ad-
vanced variants of learning vector quantization for classification learning. Journal
of Artificial Intelligence and Soft Computing Research, 7(1):65–81, 2017.

[46] Thomas Villmann, Andrea Bohnsack, and Marika Kaden. Can learning vector
quantization be an alternative to svm and deep learning?-recent trends and ad-
vanced variants of learning vector quantization for classification learning. Journal
of Artificial Intelligence and Soft Computing Research, 7(1):65–81, 2017.
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