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Abstract

In this paper, we conduct experiments to optimize the learning rates for the Generalized

Learning Vector Quantization (GLVQ) model. Our approach leverages insights from cog-

nitive science rooted in the profound intricacies of human thinking. Recognizing that

human-like thinking has propelled humankind to its current state, we explore the applica-

bility of cognitive science principles in enhancing machine learning.

Prior research has demonstrated promising results when applying learning rate methods

inspired by cognitive science to Learning Vector Quantization (LVQ) models. In this

study, we extend this approach to GLVQ models. Specifically, we examine five distinct

cognitive science-inspired GLVQ variants: Conditional Probability (CP), Dual Factor

Heuristic (DFH), Middle Symmetry (MS), Loose Symmetry (LS), and Loose Symme-

try with Rarity (LSR).

Our experiments involve a comprehensive analysis of the performance of these cogni-

tive science-derived learning rate techniques across various datasets, aiming to identify

optimal settings and variants of cognitive science GLVQ model training. Through this

research, we seek to unlock new avenues for enhancing the learning process in machine

learning models by drawing inspiration from the rich complexities of human cognition.

Keywords: machine learning, GLVQ, cognitive science, cognitive bias, learning rate op-

timization, optimizers, human-like learning, Conditional Probability (CP), Dual Factor

Heuristic (DFH), Middle Symmetry (MS), Loose Symmetry (LS), Loose Symmetry with

Rarity (LSR).
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Chapter 1

Introduction

One of the main aspects of machine learning methods is the implementation of learn-
ing rates. Selecting the correct learning rate method is a big problem since different
learning rate methods change learning rates during the training differently; hence, the
same model learns differently. This paper uses different learning rate optimizer methods
implemented from cognitive bias methods for GLVQ. The cognitive (science) learning
rate optimizers have been researched with one of the sub-models of the LVQ model; how-
ever, not with the GLVQ model. To uncover the performance of the learning rate methods
with GLVQ, in this paper, we investigate the learning rate changes during the training
using some datasets that offered open-source and extra datasets we created.

LVQ is a prototype-based machine learning method that Kohonen (1995) introduced
in his work “Self-Organizing Maps” [1]. LVQ is a computing-friendly machine learning
model. According to Kohonen (1990), in another work, LVQ has similar accuracy rates
to Neural Networks with smaller computing power [2]. Instead of weight vectors such
as Neural Network algorithms, LVQ, and branches of LVQ, use part of the data to train
the model for classification [1]. LVQ provides a more human-like learning system than
Neural Network provides. We use the GLVQ model in this paper.

There are several learning rate methods introduced throughout the beginning of LVQ.
One of them we use is optimized GLVQ (OGLVQ). Changing any LVQ model to an opti-
mized version is mentioned in the “Self-Organizing Maps” book by Kohonen (1995) [1].
We show how to optimize GLVQ to OGLVQ in our paper while mentioning the GLVQ
method.

Cognitive learning rate optimizers have been mentioned by Takahashi et al. (2010) in
the paper “Cognitive Symmetry: Illogical but Rational Biases”; these cognitive learning
rate optimizers are CP (Conditional Probability), DP (Contingency Model), DFH (Dual
Factor Heuristic), RS (Rigidly Symmetric), MS (Middle Symmetry), LS (Loose Sym-
metry), and LSR (Loose Symmetry with Rarity) [3, 4]. However, the research lacks a
learning rate analysis. The methods CP, DFH, MS, LS, and LSR show high performance
(with > .9 determination coefficients) on human data from the paper “Contributions of
specific cell information to judgments of interevent contingency” by Wasserman et al.
(1990) [5] done by Takahashi et al. (2010) [3]. These cognitive learning rate methods are
valuable for further research, which we do in this paper.

In addition to CP, LS from cognitive learning rate methods, eLS (enhanced loose sym-
metric) introduced and compared performance against famous machine learning classifi-
cation methods such as neural networks (NN), support vector machine (SVM), random
forest (RF), and logistic regression (LR) in the paper “A machine learning model with
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human cognitive biases capable of learning from small and biased datasets” (Taniguchi
et al., 2018) [6]. The cognitive learning rate methods are implemented under the Naı̈ve
Bias model. The results include accuracy and F1 scores analysis, showing that cognitive
models compete well with other classification models.

Some of these learning methods we discussed, CP, RS, and LS, have been analyzed
deeply under the Self-incremental LVQ (SILVQ) model in the paper “Self-incremental
learning vector quantization with human cognitive biases” (Manome et al., 2021) [7].
The paper also includes analysis under the learning rate change with one dataset, Glass
dataset [8, 7]. The paper compares the performances of OLVQ and LVQ with different
initial learning rates and SILVQ with three cognitive learning methods. We extend this
research with new datasets and a different base model, GLVQ.

Learning of the LVQ model is present if the learning rate is decreasing near 0 during
the training period. Accuracy can still increase in some cases, even though learning rates
do not change, corresponding to no learning. So, just examining accuracy scores does not
give us much answer if the model is learning or not. However, examining the learning
rate change during the training would give us some answers. The papers by Takahashi et
al. (2010) [3] and Taniguchi et al. (2018) [6] lack a deep analysis of the learning rates.
We included the best-performing cognitive learning rate methods from the paper “Cog-
nitive Symmetry: Illogical but Rational Biases” [3], CP, DFH, MS, LS, and LSR, in our
analysis, including OGLVQ as a comparison model. Our task is to discover the learning
rate analysis on the GLVQ model, using the mentioned learning rate methods and sup-
porting the results with accuracy and F-1 scores. For this task, we use various datasets,
some of these datasets used in the paper “Self-incremental learning vector quantization
with human cognitive biases” by Manome et al. (2021) [7]: Ionosphere dataset [9], Iris
dataset [10], and Sonar dataset [11], additionally an open-source Breast Cancer Wiscon-
sin dataset [12], and custom IFE Blood Samples datasets: NSP and SP datasets created
by Saruhan (2023) in the report “Informational Image Data Pre-processing: IFE Blood
Samples” [13]. In this paper, we name GLVQ models, which use learning rate optimiz-
ers implemented from cognitive learning rate methods as CGLVQ (cognitive GLVQ) to
simplify the refer of the group.
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Chapter 2

Methods

2.1 Data Preparation
Before introducing the datasets we use, we first need to learn some tools to use on

those datasets. We use the Fourier transform and normalization for data preparation.

2.1.1 Fourier Transform
Fourier transform on R is a mathematical operation that transforms the input into

the frequencies. The frequency function by Fourier transform gives a complex-valued
function on C. There are two Fourier transform types: Continuous Fourier Transform
(CFT) and Discrete Fourier Transform (DFT or DtFT) [14].

CFT

As we can understand from the name, the Continuous Fourier Transform uses a con-
tinuous function, x(t), as a time signal function with frequency function f to transform
into frequency representation, X(f). There are two versions of CFT, where one is Di-
rect in Equation (2.1.1), and the other one is Inverse in Equation (2.1.2) [14]. The inverse
Fourier transform allows us to return to the original signal from frequency transformation.
If we take i2 = −1 (imaginary unit), then:

Direct:

XCFT(f) =

∫ ∞

−∞
x(t) · e−i2πftdt (2.1.1)

Inverse:

xCFT(t) =

∫ ∞

−∞
X(f) · ei2πftdf (2.1.2)

Since our transform function has ei, is the complex value we can dissect the exponent
to cos and i sin values for simplicity as Equation (2.2), and rewrite the Fourier equation
like in Equation (2.3).

Since;
eiθ = cos(θ) + isin(θ), ∀θ ∈ [0, 2π) (2.2)
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Then;

XCFT(f) =

∫ ∞

−∞
x(t) · e−i2πftdt

=

∫ ∞

−∞
x(t) · cos(2πft)dt− i

∫ ∞

−∞
x(t) · sin(2πft)dt

(2.3)

DFT

DFT is the discrete counterpart of CFT and is used when we have discrete valued
inputs (discrete-time signals). We are interested in DFT since the inputs we use for the
LVQ model in this paper are discrete values. In DFT, we take x(n) for time signals instead
of x(t) to indicate discreteness, where n ∈ N. Then, the DFT formula will be:

XCFT(f) =

∫ ∞

−∞
x(t) · e−i2πftdt

=⇒ XDFT(f) =
∞∑

n=−∞

x(n ·∆t) · e−i2πf(n·∆t)

(2.4)

As we can see from the Equation (2.4), DFT has a similar calculation to CFT. The
difference is that instead of using integral, we are using infinite sums because of the
discreteness of DFT. Since the domain is discrete, we need to arrange the summation step
accordingly. If fs is the sampling frequency, we can denote the period as ∆t = 1

fs
. Then,

the time t would be t = n · ∆t. We can further transform the Equation (2.4) into the
Equation (2.5.1) and find the inverse of DFT equation as in the Equation (2.5.2) [14]:

Direct (Analysis):

XDFT(
f

fs
) =

∞∑
n=−∞

x(n) · e−i2π f
fs

n (2.5.1)

Inverse (Synthesis):

xDFT(n) =
1

fs

∫ fs/2

−fs/2

X(
f

fs
) · ei2π

f
fs

ndf (2.5.2)

Since ei2π
f
fs

n is periodic, we do not need to calculate the equation for both n > 0
and n < 0 to save time and calculation power [14]. Then, we can get the final equation,
Equation (2.6) for DFT with finite signals |S| = N [14].

XDFT(
f

fs
) =

1

N

N−1∑
n=0

x(n) · e−i2π f
fs

n, −fs/2 ⩽ f < fs/2 (2.6)

We do not directly transform the math into code but use a Python library, NumPy, to
use the Fourier transform. The function is the Fast Fourier transform, and it uses DFT.
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More on NumPy’s Fourier transform at:
https://numpy.org/doc/stable/reference/generated/numpy.fft.f
ft.html

2.1.2 Normalization
Normalization is a statistical process to reduce the feature ranges to the same scale.

It is essential to use normalization in some datasets since some features in datasets might
have bigger range differences than others, and this difference shifts decision-making to
the bigger range in machine learning methods. The weight vector can adjust the range
difference in weight vector-based machine learning models. However, in prototype-based
models, we do not have many options.

We use squared Euclidian distance in LVQ models, and the closeness to the given
sample selects the winner. Suppose one of the features has a greater range difference than
other features. In that case, that feature contributes the overall distance more than other
features, resulting in the model’s decision on the given sample being based mostly on that
feature.

There are several normalization methods, and the common ones are min-max scaling
(scaling to a range), clipping, log scaling, and z-score [15]. We use scaling to a range
method in our paper, so we talk about it. If someone is curious about other methods,
please visit the link by developers.google or source [15] to learn more.

Min-max scaling

The scaling method scales the features in the range [0, 1]. The method transforms the
feature xi of array x into x̂i by:

x̂i =
xi −min(Xi)

max(Xi)−min(Xi)
(2.7)

Here in the Equation (2.7), min(Xi) and max(Xi) represent the minimum an maxi-
mum values of the ith element between all the feature arrays in a given dataset X, respec-
tively.

2.2 Creating Datasets from IFE Data

2.2.1 What is un/structured data?
First, we need to understand what structured and unstructured data is. Structured data

is the data that we can store in spreadsheets. These data have column names and rows
for each data. Structured data columns can be strings, numerical, datetime, Boolean, or
null values. Anything other than structured data, we call all data unstructured data. This
data type contains image data, video data (which is also a type of image data with order),
audio data, and text data. We would be using image data to train our algorithms, so we
talk about how we use the image data to train machine learning algorithms and skip the
other unstructured data types. We mentioned that machine learning algorithms require
numerical values, but an image is hard to imagine as a numerical value. The idea of using
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images as data for machine learning is to use pixel values of the data. Of course, we can
use raw pixel values to train the algorithm, but to increase performance, we can convolute
the pixel values for different algorithms. The machine learning methods in this paper use
structured data, so we will not go deep into the concept and how to use unstructured data
for machine learning.

2.2.2 Cross-correlation
We use (discrete) cross-correlation to detect the bars in our data. That is why, first,

we need to understand what cross-correlation is. Since our data contain 2-dimensional
images, we talk about 2-dimensional cross-correlation on images. Cross-correlation is
similar to convolution, and the only difference is that in convolution, we rotate the sec-
ond component (kernel) and then do the cross-correlation operation. If the kernel values
are uniform, then the output of cross-correlation and convolution would give the same
result. (Discrete) cross-correlation in Equation (2.8) and (Discrete) convolution in Equa-
tion (2.9).

x(n) ∗ y(n) =
∞∑
k=0

y(k) · x(n+ k) (2.8)

x(n)⊗ y(n) =
∞∑
k=0

y(k) · x(n− k) (2.9)

There are many ways to use cross-correlation in mathematics and computer science.
Cross-correlation and convolution are used mostly with images to extract information
from the image. Cross-correlation starts with a kernel (in a 2-dimensional case, we can
see a kernel as a 2-dimensional array or a matrix). The kernel values run over all the
image data. For every step, the kernel does an elementwise multiplication with the rows
and columns of the matrix to create a combined value for the given position regarding
kernel values. For example, if the kernel size is a 3 × 3 matrix with 1

9
for each of the

kernel values, then the kernel takes the mean of the image values with radius 1 pixel. So,
using the cross-correlation (or convolution) operation makes our image more compact or
blurry depending on the kernel’s step size (stride). The kernel values can get any value,
and different kernel values can find different aspects of the data that cross-correlation
works on. We saw how to blur the image by taking the mean of surrounding pixel values.
However, if we pick the top row of the 3×3 cross-correlation kernel as +1

3
and the bottom

row as −1
3
, the kernel finds the horizontal lines in the given image data.

After deciding the kernel size and values, we must also decide the kernel’s step size.
As we mentioned, step size also changes the interpretation of the convoluted image. If we
take a 3× 3 kernel and step size = 3, the image will shrink to one-third. However, if we
take step size to 1 for the same example, we achieve a blurred image with the same size
as the original image.

Lastly, we have a padding option for the cross-correlation and convolution. The
padding adds empty spaces to our image’s border. We add padding to adjust the image
shape to our liking. Without any padding, the edge of the image will always be convoluted
with the edge value of the kernel, but if we add padding, we give the edge values of the
image a better chance to be in the center of the kernel.
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We do not need a rectangular kernel or padding or stride to the width and height of the
image. We can choose different sizes for stride and padding to width and height values.
After passing through one convolution operation, the new image size changes for height
and width given in Equation (2.10.1) and (2.10.2), respectively.

• Hin = input height

• Win = input width

• Hout = output height

• Wout = output width

Hout = ⌊
Hin + 2× Hpadding − Hdilation × (Hkernel size − 1)− 1

Hstride
+ 1⌋ (2.10.1)

Wout = ⌊
Win + 2× Wpadding − Wdilation × (Wkernel size − 1)− 1

Wstride
+ 1⌋ (2.10.2)

The equations in (2.10) are adapted from PyTorch documentation.

For more information:
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.ht
ml#torch.nn.Conv2d

2.2.3 Where is our data coming from?
We use IFE (immunofixation electrophoresis) test results to create datasets for our

models to test. Our data is image data and contains 6 bars. We will not use the image
as the input for our machine learning methods; instead, we will transform the image data
into structured data to train the OGLVQ and CGLVQ methods.

IFE samples can be either blood or urine samples, but the IFE data uses blood sam-
ples [13]. The test can help to diagnose various diseases. The IFE test can detect problems
such as [17]:

• Help in the diagnose and monitoring of lymphoma, chronic lymphocytic leukemia,
or monoclonal gammopathies, such as multiple myeloma

• Investigate abnormal findings on other laboratory tests, such as total protein, albu-
min level, elevated calcium levels, or low white or red blood cell counts

• Evaluate someone for an inflammatory condition, an autoimmune disease, an infec-
tion, a kidney or liver disorder

Note: Adapted from Testing.com. (2021, March 24). Protein Electrophoresis, Immunofix-
ation Electrophoresis, Testing.com https://www.testing.com/tests/protei
n-electrophoresis-immunofixation-electrophoresis/ [17].
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The IFE test is used to detect the abnormal globulin values in the sample. Immunoglob-
ulins are proteins in the blood that contain a pair of heavy and light chains. α (Alpha),
γ (Gamma), and µ (Mu) are the heavy chains, and these heavy chains combine with one
of the light chains; κ (Kappa) or λ (Lambda), to form immunoglobulin as seen on the
Figure 2.1.

Figure 2.1: Immunoglobulin structure.

Note: From ”Monoclonal Immunoglobulin (Ig), Monoclonal antibody, Immunofixation
Electrophoresis (IFE)” by Labpedia.net. (2020, January 25) https://labpedia.n
et/monoclonal-immunoglobulin-ig-monoclonal-antibody-immunof
ixation-electrophoresis-ife/ [16].

IFE test samples have 6 bars: SP (Serum Protein Electrophoresis) bar or Marker bar,
γ bar, α bar, µ bar, κ bar, and λ bar from left to right can also be seen in Figure 2.2a.
In Figure 2.2b, we see the SP bar contains 6 bands, namely; albumin, α − 1 (Alpha-
1), α − 2 (Alpha-2), β − 1 (Beta-1), β − 2 (Beta-2), µ (Mu), and γ (Gamma) from
top to bottom. The SP bar quantitively measures the albumin and globulins in the blood
sample, so we cannot compare which globulin is abundant in the sample by just looking at
the SP bar [18]. However, just checking the SP bar, we can detect if any of the globulin
in the sample is abnormal, which would be useful to distinguish healthy and unhealthy
patients. Except for the SP bar, the rest of the bars in IFE results measure the globulins
qualitatively, so we can compare the bars and find which globulins are abundant in the
blood sample.
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(a) Sample IFE image. (b) Sample image’s SP part. These
band name positions are just represen-
tative to show the order of the band
names, and should not be taken as ex-
act correct places for the bands.

Figure 2.2: IFE and SP images.

Note: Adapted from ”Informational Image Data Preprocessing: IFE Blood Samples [Un-
published manuscript]” by M. Saruhan, Applied Mathematics for Network and Data Sci-
ences, Mittweida University of Applied Sciences, p. 2 [13].

When an immunoglobulin is more abundant than it should be, we name the case the
abundant immunoglobulin’s name. For example, if the sample is marked as IgM-λ, the
test found immunoglobulin µ-λ more than it should be in the sample. We have eight
different diagnoses in our dataset, of which 6 of the types are labeled as unhealthy results
with abundant immunoglobulin: IgA-κ, IgA-λ, IgM-κ, IgM-λ, IgG-κ, IgG-λ in their
blood, one is healthy and the last one is unclear diagnosis.

We mentioned alpha and gamma for bands in the SP bar and bars in the IFE test
results. While α and γ in IFE results represent the globulins, they do not represent the
same in the SP bar. In the SP bar, α and γ are just band names. The similar name
usage might be confusing, so read carefully that we talk about α bands in the SP bar or
α globulin in IFE results.

The machine that gives the immunofixation results groups the albumin and globulin
by their electrical charge [19]. The grouping can be mostly visible in the SP bar since
the bar has albumin and different globulins altogether in the sample. Albumin is the
most abundant in the blood sample and has the most negative charge than globulins [18].
Because of this reason, albumin has a distinct thickness and position in the SP bar.
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2.2.4 Transforming to structured data
We need to pre-process the bar image data into structured data to prepare it for use in

GLVQ models. We use the pre-processing of bar image data according to the report from
Saruhan (2023), and the pre-processing we use in this paper is taken from that report [13]
until we transform the data into a dataset. According to the report [13], we need one ref-
erence image for creating an albumin mask to find the SP bar position on each image file,
another reference image for approximating the length of the bars, and one last reference
image for finding the approximate distance between each bar.

After extracting the albumin mask from the respective reference image, we create a
kernel (matrix) that is the same size as the albumin mask and has values one everywhere.
We use this kernel to calculate the cross-correlation with the images to find the albumin’s
position in every image in our data. The kernel runs over any image and finds the position
where it gets its maximum value. Since the albumin on each image file has a high pixel
value, we expect to get the maximum value at the exact place of the albumin. However,
to find the position of the albumin, we use a kernel with value one, and we do not need
to convolute the kernel across the whole image. We know the albumin is located on the
top-left part of each image, so checking the maximum value of the cross-correlation at
the top-left part would be enough. An example of how the search with the albumin mask
works can be seen in Figure 2.3.

Figure 2.3: Finding mask’s maximum value to detect albumin on test image.

Note: Adapted from ”Informational Image Data Preprocessing: IFE Blood Samples [Un-
published manuscript]” by M. Saruhan, Applied Mathematics for Network and Data Sci-
ences, Mittweida University of Applied Sciences, p. 2 [13]

Since we now can locate the SP bar, we can use it on our second reference image,
approximating the length of the bars. After finding the SP bar in our second image, we
find the length of the bar by checking the values of the SP bar from bottom to top. We
find the position where the pixel values at the SP bar position pass a given threshold and
mark the transaction position as the bottom of the SP bar. We can see the example of

10



CHAPTER 2. METHODS 2.2. CREATING DATASETS FROM IFE DATA

how to find the bottom line of the bar in Figure 2.4. Since we already found the top of the
albumin with the albumin mask, we take the top of the albumin, the same as the top of
the SP bar, and calculate the difference from the bottom line we found. The difference
would be the length of the SP bar.

Figure 2.4: Finding bottom index of the bar.

Note: Adapted from ”Informational Image Data Preprocessing: IFE Blood Samples [Un-
published manuscript]” by M. Saruhan, Applied Mathematics for Network and Data Sci-
ences, Mittweida University of Applied Sciences, p. 2 [13]

After finding the SP bars’ position and length in every image, we need to find the
other bars. To find other bars, we use our third reference image. We use reference images
because every bar pair distance is nearly the same in every image. So, we can find the
distances from one image and implement them to others, which saves us lots of compu-
tational power and time. In this image, we first use an albumin mask to locate the SP
bar to find our starting point. After finding the SP bar, we create a bar mask using the
dimensions of the SP bar we found using albumin and length reference images. Same
process as SP location using albumin mask, we use SP bar mask to locate other bars.
The SP bar mask also has values one everywhere. Since every bar is ordered next to each
other, we do not want to go all the way in the bar row and calculate the cross-correlation
of the mask and the image. If we do that, we locate the bar with the maximum value
with the kernel, which might not be the next bar after the SP bar. So, we need to take
cross-correlation until the end of the next bar. Figure 2.5 shows how the method finds
the second bar, γ bar. After finding the second bar, we can use the same process on the
second bar to find the third bar, and so on. Lastly, to find the distances between each bar,
we can use the distance information on other images to find the other bars after finding
the SP bar via an albumin mask.
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Figure 2.5: Example: Using detected SP bar as a mask to find other bars.

Note: Adapted from ”Informational Image Data Preprocessing: IFE Blood Samples [Un-
published manuscript]” by M. Saruhan, Applied Mathematics for Network and Data Sci-
ences, Mittweida University of Applied Sciences, p. 2 [13].

Now, we have all the bar locations in all the images, so it is time to extract the bar
values to structure and organize data. We extract the bar values in the image’s grayscale
since we want to take the mean values for each row. As we mentioned, the positions of
the bars are approximate. To get the correct value of the bars with confidence, we take the
mean values of each row of the bar from the center of the bar with some small radius. This
process helps us not to count the border of the bars since borders contain the background
value of the images and could give us the wrong measure if we include the borders.

After reading each of the bar values for all our images, we get six arrays: SP , γ, α, µ,
κ, and λ. The bar images and the corresponding value graphs are given in Figure 2.6. We
have bar values to use as input for our models, but another way to use bars as input is to
use the frequency of each bar. IFE bars (especially SP bars) have density changes in color.
Since we have bars with color grading, to find the density of the bar values, we transform
the bar values into the frequency of the values with the help of the Fourier transform.
The Fourier transform is taken here because the bars’ pixel values might differ for similar
samples. Some samples might have tinted than others. However, if we look at the Fourier
transform (DFT in this case) of each bar, we would be looking at the frequency of the bar,
which differentiates the sudden changes on the bar better than without using the Fourier
transform. We use DFT on all the bars separately on IFE blood test data because we do
not want any relation between the end of each bar and the top of the next bar.
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(a) Test IFE image.

(b) Graphs, created by reading the grayscale test image’s bars.

Figure 2.6: Extracting the image values into structured data.

Note: Adapted from ”Informational Image Data Preprocessing: IFE Blood Samples [Un-
published manuscript]” by M. Saruhan, Applied Mathematics for Network and Data Sci-
ences, Mittweida University of Applied Sciences, p. 2 [13].

After we take each bar’s Fourier transform separately, we combine the results in one
1-dimensional array since to use the bar values in a machine learning method as input, we
need to flatten the bar values into a 1-dimensional array.

According to Leung (2016), the SP bar is used quantitively, showing if the patient is
sick or not but not what kind of sickness [18]. The SP bar is useful for distinguishing
sick patients, so we should include it in our dataset. However, the sickness is also shown
in the other bars, and the SP bar and the SP bar have broader values than others, which
results in models taking the SP bar into account more than the other bars. So, to test both
approaches, we create two datasets: one with the SP bar included and one without the
SP bar. We name the dataset that the SP bar included as SP and the dataset that does not
have the SP bar as a feature named as NSP (noSP).

We also have labels for the images which are given to us. The labels contain “IgA-κ”
(Ak), “IgA-λ” (Al), “IgM-κ” (Mk), “IgM-λ” (Ml), “IgG-κ” (Gk), “IgG-λ” (Gl), “without
any sickness” (wo), and “unclear decision” (ud). “Unclear decision” cannot be used with
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the other labels since it does not give us a clear answer. We store the remaining labels
next to the bar values for each image data we transform.

At the end, we have two values in each row for both of the datasets; one is the input,
which is the combination of the bar values we read, and the second one is the label of the
data, which has seven different class discluding unclear decision as a label.

2.3 Datasets

Let us start by introducing the datasets we use in this paper. The datasets Glass, Iono-
sphere, Iris, and Sonar datasets we use, used in the results of the report “Self-incremental
learning vector quantization with human cognitive biases” [7]. Additionally, we added the
Breast Cancer Wisconsin Dataset [12] to our experiments to increase the variety. Since
the features have distinct range differences, we use normalization on the Breast Cancer
Wisconsin and Iris Dataset.

2.3.1 Breast Cancer Wisconsin dataset

The Breast Cancer Wisconsin dataset was collected and computed from a digitized
image of a fine needle aspirate (FNA) of a breast mass [12]. Dataset has two classes: Di-
agnosis “Malignant” (M) and “Benign” (B), which are the diagnoses given to the patient.
The dataset contains ten central values:

• radius (mean of distances from the center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness (local variation in radius lengths)

• compactness (perimeter2 / area - 1.0)

• concavity (severity of concave portions of the contour)

• concave points (number of concave portions of the contour)

• symmetry

• fractal dimension (“coastline approximation” - 1)

These values branch into 30 features by taking each value’s mean, standard error, and
worst (largest) [12]. Since Breast Cancer Wisconsin dataset have various range between
its feature values, we use normalization on the dataset. Number of samples for each class
in the dataset is given in Figure 2.7.
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Figure 2.7: # Samples for each class of Breast Cancer Wisconsin dataset.

This dataset is available through Kaggle:
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin
-data

This database is also available through the UW CS FTP server:
ftp: ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/

Also can be found on the UCI Machine Learning Repository:
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wiscon
sin+%28Diagnostic%29

2.3.2 Iris dataset
The Iris dataset is a well-known dataset used by biologist Ronald Fisher (1936) in his

paper The use of multiple measurements in taxonomic problems as an example of linear
discriminant analysis [10]. The dataset contains three iris species as classes: “Iris-setosa,”
“Iris-virginica,” and “Iris-versicolor,” with 50 samples each. The dataset has four features
for each sample:

• length of the sepals (range: 4.3cm – 7.9cm)

• width of the sepals (range: 2.0cm – 4.4cm)

• length of the petals (range: 1.0cm – 6.9cm)

15



2.3. DATASETS CHAPTER 2. METHODS

• width of the petals (range: 0.1cm – 2.5cm)

Since the range difference of the Iris dataset’s features differs from each other when
we take the feature difference between prototypes and the samples, we will see the biggest
contribution to the distance comes from the length of the petals. Hence the decision
mostly relies on the length of the petals because the length of the petals has the highest
range difference between the features. We use normalization on the dataset’s features to
eliminate the unequal decision power between the features.

Number of samples for each class in the dataset is given in Figure 2.8.

Figure 2.8: # Samples for each class of Iris dataset.

This dataset is available through Kaggle:
https://www.kaggle.com/datasets/sims22/irisflowerdatasets

2.3.3 Ionosphere dataset
The Ionosphere dataset is donated by Vince Sigillito and sourced by Space Physics

Group, Applied Physics Laboratory at Johns Hopkins University. The data is created
by measuring the ionosphere to see if there are any free electrons in the ionosphere or
not. The data is binary classification with “Good” (G) and “Bad” (B) as class names.
“Good” indicates there is evidence that there is some type of structure in the ionosphere,
and “Bad” shows there is no structure. The feature size is 34, and there are 351 samples
in the Ionosphere dataset. Features are signals generated by 16 high-frequency antennas
with total transmitted power on the order of 6.4 [9]. In Figure 2.9 we see the sample
distribution of the dataset.
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Figure 2.9: # Samples for each class of Ionosphere dataset.

This dataset is available through Kaggle:

https://www.kaggle.com/datasets/prashant111/ionosphere

Or through UC Irvine Machine Learning Repository:

https://archive.ics.uci.edu/dataset/52/ionosphere

2.3.4 Sonar dataset

The Sonar is created by Terry Sejnowski at the Salk Institute and the University of Cal-
ifornia at San Deigo with the collaboration of R. Paul Gorman of Allied-Signal Aerospace
Technology Center [11], and the dataset is used in the study “Analysis of Hidden Units in
a Layered Network Trained to Classify Sonar Targets.” Sonar dataset contains sonar sig-
nals bouncing off metal cylinders of “Mines” (M) and “Rocks” (R) under various angles
and conditions [11]. The dataset contains 111 “Mines” and 97 “Rocks” samples. Each
sample contains 60 features in the range between 0.0 and 1.0, representing the energy
in a particular frequency band. In their experiment, Gorman, R. P., and Sejnowski, T. J.
achieved accuracy between 77.1% and 90.4% on a test set using neural networks varying
between 0 to 24 hidden layers [11]. Figure 2.10 shows the sample distribution of the
Sonar dataset.
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Figure 2.10: # Samples for each class of Sonar dataset.

This dataset is available through Kaggle:

https://www.kaggle.com/datasets/rupakroy/sonarcsv

2.3.5 SP and NSP datasets

Besides open-source datasets, our private datasets were created from the IFE blood
test data we mentioned in the Section 2.2. The first dataset we created from IFE test data
takes the Fourier transforms of all the bars, including SP bars, and groups the samples
into “Normal” and “Abnormal” classes. Every group except “wo” and “ud” is labeled
“Abnormal,” and “wo” data turns into “Normal.” We do not take into account undefined
data. While selecting prototypes for this dataset, we first select the prototypes from each
sick group and then join them. We select one prototype from the “Normal” class for
each “Abnormal” class prototype. The prototypes selected from the “Abnormal” class are
divided equally by every group contributing to the class. Figure 2.11 shows the sample
number of each class before grouping the labels into two groups, while Figure 2.12 shows
the sample number of each class after labeling the classes into two groups, “Normal” and
“Abnormal.”
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Figure 2.11: # Samples for each class of SP and NSP dataset.

Figure 2.12: # Samples for each class of SP and NSP dataset after grouping classes into
two groups.
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The second dataset we created from IFE test data takes all the bars except the SP bar
while applying the Fourier transform. We apply the same logic to the first dataset we
created from IFE test data and divide the samples into “Normal” and “Abnormal” classes.
Since each bar on IFE data has a length of 184 pixels (values), while the SP dataset has
1104 entries as a feature-length for each sample, NSP dataset has 920 entries. Both of
the created IFE datasets have the same sample size of 1486 samples. We use the Fourier
transform in both IFE datasets since the bars of IFE blood samples are examined by the
coloration (frequency) change rather than the coloration value.

2.4 Models

2.4.1 GLVQ
There are many LVQ sub-models, but all the sub-models have the same principle:

all prototype-based supervised learning algorithms. In a prototype-based algorithm, we
use no weight vectors but prototypes (ω), a small group of our data. When we train the
model, the prototypes move closer or farther away from the trained data depending on the
situation and the sub-model. Ultimately, the distance of features of the sample from the
selected prototypes’ final values makes the decision. Since we use GLVQ (Generalized
LVQ) [20] as the sub-model of LVQ in this paper, we first explain the construct of GLVQ.

GLVQ has been coined out by Sato and Yamada (1995) [20]. As with all the other
LVQ models, GLVQ has prototypes with classes and local learning rates for each ω. First,
we set the initial learning rate (ϵ(0)), which (de)amplifies the prototypes’ movement speed
to the given direction. Learning rate at time t (ϵ(t)) changes depending on the current
state of the ω and prediction. We use different types of learning rate updates for different
learning rate update approaches. Each ωi can have different ϵ, namely local ϵ (ϵi), which
makes each ω learn on a different scale.

After choosing our ϵ(0), we must choose our prototypes. Prototypes must include
all the class types. If one of the class representatives would be missing, then we would
not have a prediction for the given class. We measure the distance between each training
sample and all the prototypes. Generally, squared Euclidian distances are used for the
distance measurement for LVQ. The Equation (2.11.1) shows squared Euclidian distance
with real-valued arrays. When we transform data with Fourier transform, data become
complex-valued inputs. The calculation we use is still squared Euclidian distance for
complex values, which is the Equation (2.11.2), where xc ∈ Cn is a complex-valued array
with xc = a+ i · b, where a, b ∈ Rn.

• n: number of features in x

• xi: ith feature value of x

• yi: ith feature value of ωj

• dr(x, ωj): distance for real values between x and ωj features

• dc(xc, ωc
j) distance for complex values between x and ωj features

Then:
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dr(x, ωj) =
n∑

i=1

(xi − yi)
2 (2.11.1)

dc(x
c, ωc

j) =
n∑

i=1

(|xc
i − yci |2) (2.11.2)

GLVQ has two winner ω, and both are updated. The first winner is the closest ω to the
sample x with the same class with distance noted as d+(x), and the second winner is the
closest ω to the sample with a different class with distance noted as d−(x). We can define
a µ(x) of sample array x as a relative distance in Equation (2.12). According to Sato and
Yamada (1995), when the µ(x) value for x is negative, the prediction is correct and false
otherwise [20].

µ(x) =
d+(x)− d−(x)
d+(x) + d−(x)

(2.12)

µ(x) calculation is used in cost function (l(x)) like in the Equation (2.13) to calculate
the error of the model’s current state. Error is used to update the model to a local minimum
error state by using the derivative of l(x).

l(x) = f(µ(x)) (2.13)

To use µ(x) in the cost function, first µ(x) must go under an activation function f
(which is primarily the Sigmoid function (σ) in the Equation (2.14)). The winners updated
in the direction of the sample with amplitude of the ϵ(t) and ∂l(x)

∂ω
.

σ(µ(x)) =
1

1 + e−µ(x)
(2.14)

The first winner ω (ω+) is updated by the attraction in the Equation (2.15.1), while we
apply repulsion on the second winner (ω−) in the Equation (2.15.2) [20]. These calcula-
tions come from ∂l(x)

∂ω
. Attraction makes ω+ move closer to the given sample by its local

ϵ value, ϵ+; while repulsion makes the ω− move further away from the sample with ϵ−.
This way, next time, ω+ would have a better chance to be the winner for the same sample
while ω− would have less chance to be the winner.

Attraction:

ω+(t+ 1) = ω+(t)− ϵ+
∂l(x)
∂ω+

(2.15.1)

Repulsion:

ω−(t+ 1) = ω−(t)− ϵ−
∂l(x)
∂ω− (2.15.2)

The OGLVQ model and CGLVQ models are structured above the GLVQ model.
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2.4.2 Learning rate optimizers

We use GLVQ to create a more human-like learning system for the learning algorithm.
A component in every machine learning algorithm is the ϵ, which controls the learning
speed of each training sample. Taking the ϵ(0) high might seem reasonable to create
a fast learning machine learning method, but the reality is far away from that. A high
ϵ(0) causes the method to fixate on the last training sample, which would diminish the
knowledge learned from the previous training samples. On the other hand, if the ϵ(0) is
too low, there would be no learning from the training set. That is why we need to find an
adequate ϵ(0) with optimal learning rate update for the method since an optimal ϵ gives
a better prediction. For this paper, we use the optimized learning rate method for GLVQ
from Kohonen (1995) [1] and learning rate methods from cognitive science [6, 3, 7].

Optimized GLVQ

We use an Optimized Learning Rate on GLVQ as a basis for our experiments. In the
book “Self-Organizing Maps” by Kohonen (1995) [1], the schema of OLVQ1 is given, but
we implement only the learning rate part of the GLVQ to construct OGLVQ. The paper
explains that the optimal learning rate for LVQ1 comes from the prototype update [1].
Assumption here is that when updating ωi(t + 1), ωi(t) contains trance of ϵi(t − 1). So
to reach the optimal ϵi(t), we take the ωi(t+1) update equation on GLVQ for both of the
ω updates, change the ωi(t) values with ϵi(t − 1) and solve the equation for ϵi(t). The
winner ω(t) updates for squared distance can be seen in the Equation (2.16.1) and (2.16.2)
respectively for GLVQ under squared Euclidian distance and σ as activation function.

ω+(t+ 1) = ω+(t)− ϵ+ · ∂l(x)
∂ω+

=
∂l(x)
∂µ

· ∂µ

∂d+(x)
· ∂d

+(x)
∂ω+

= ω+(t) + ϵ+(t) · σ(µ(x)) · [1− σ(µ(x))] · 4d−(x)
[d+(x) + d−(x)]2

· [x − ω+(t)]

(2.16.1)

ω−(t+ 1) = ω−(t)− ϵ− · ∂l(x)
∂ω−

=
∂l(x)
∂µ

· ∂µ

∂d−(x)
· ∂d

−(x)
∂ω−

= ω−(t)− ϵ−(t) · σ(µ(x)) · [1− σ(µ(x))] · 4d+(x)
[d+(x) + d−(x)]2

· [x − ω−(t)]

(2.16.2)
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To find the optimized learning rate update equation of GLVQ, we use the Equa-
tions (2.16.1) and (2.16.2) to generate The Equations (2.17.1) and (2.17.2) respectively.

ϵ+(t) = [1− ϵ+(t)] · σ(µ(x)) · [1− σ(µ(x))] · 4d−(x)
[d+(x) + d−(x)]2

· ϵ+(t− 1) (2.17.1)

ϵ−(t) = [1 + ϵ−(t)] · σ(µ(x)) · [1− σ(µ(x))] · 4d+(x)
[d+(x) + d−(x)]2

· ϵ−(t− 1) (2.17.2)

At the end, if we re-arrange the Equations (2.17.1) and (2.17.2) for ϵ(t), the OGLVQ
ϵ(t) equations gives us the Equations (2.18.1) and (2.18.2) respectively.

ϵ+(t) =
ϵ+(t− 1)

1 + [4ϵ+(t− 1) · σ(µ(x)) · [1− σ(µ(x))] · d−(x)
[d+(x)+d−(x)]2 ]

(2.18.1)

ϵ−(t) =
ϵ−(t− 1)

1− [4ϵ−(t− 1) · σ(µ(x)) · [1− σ(µ(x))] · d+(x)
[d+(x)+d−(x)]2 ]

(2.18.2)

The Equations (2.18.1) and (2.18.2) are our learning rate updates for winner proto-
types for each time step t for OGLVQ.

The Python code of OGLVQ can be found in Appendix A or on the following GitHub
page:
https://github.com/mertsaru/Cognitive-GLVQ/blob/main/OGLVQ.py

Cognitive bias optimizers

Since we use LVQ, which mimics human-like learning, we try to find the optimal
learning rate with the help of cognitive science. There are many learning rate methods
proposed which are connected to human reasoning. Cognitive science gives us two con-
cepts in human reasoning: symmetry bias and mutual exclusivity bias. Even though these
biases are not always logical, they are supported by cognitive science [21]. Several meth-
ods are derived from these cognitive science assumptions, and these methods have been
observed to increase LVQ models’ performance [3, 7].

Symmetry bias (S) in human reasoning is assuming (q =⇒ p) from (p =⇒ q) [7].
Even though (p =⇒ q) does not have a logical connection with (q =⇒ p), humans
are prone to assume that these logical sentences are equal (cited from Manome et al.
(2021) and Taniguchi et al. (2018) which of these sources cited the Japanese translation
of Shinohara et al. (2007) [3, 6, 4]). An example of symmetry in human reasoning would
hear “if the weather was rainy, then the ground is wet. (p =⇒ q)” and assuming “only
if the ground is wet, then the weather was rainy a while ago. (q =⇒ p)” [22].

Another logical thinking humans have is mutual exclusivity bias (MX), after hearing
(p =⇒ q), assuming (¬p =⇒ ¬q) [6, 7]. Here ¬p corresponds to negation of p,
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not p. An example of mutual exclusivity is when a kid is hearing “if you don’t clean
up your room, then you will not be allowed to play (p =⇒ q)” from their mother and
interpret the sentence as “if I clean up your room, then my mom will allow me to play.
(¬p =⇒ ¬q)” by mutual exclusivity [22]. These two logical biases, symmetry and
mutual exclusivity bias (q =⇒ p ∧ ¬p =⇒ ¬q), can be combined into a biconditional
relationship (p ⇐⇒ q), which we can also see in Figure 2.13 [3].

Figure 2.13: Relation between cognitive biases.

Note: From “Cognitive Symmetry: Illogical but Rational Biases” by T. Takahashi, M.
Nakano, and S. Shinohara, Symmetry Culture and Science. 21. 1-3, p. 7 https://ww
w.researchgate.net/publication/285850238_Cognitive_Symmetry_
Illogical_but_Rational_Biases [3].

It is not always easy to see that the connection is off in the example. However, if we
take an example where p is “the shoe is white” and q “a star is printed on it,” symmetric
bias infers “if a star is printed on a shoe, then the shoe is white” (q =⇒ p) and mutual
exclusivity bias infers “if the shoe is not white, then a star is not printed on it” (¬p =⇒
¬q) which are certainly not correct to assume from hearing “if the shoe is white, then a
star is printed on it (p =⇒ q)” [6].

The Table 2.1 shows the co-occurrence table of p and q’s relationships.

q ¬q
p a b
¬p c d

Table 2.1: Co-occurrence frequency for event p and event q.

Note: Adapted from “Self-incremental learning vector quantization with human cognitive
biases” by N. Manome, S. Shinohara, T. Takahashi, Y. Chen, and U. Chung, Scientific
Reports 11(1), p. 3 (https://doi.org/10.1038/s41598-021-83182-4) [7].

We can map the logic relations to machine learning logic by assuming p as the pre-
dicted label is prototype i’s label and q as the predicted result is correct, provided by
Manome (2021) [7]. If we take L(x) as the sample x label, L(ωx) as the predicted proto-
type label (or winner class for short) of sample x, and L(ωi) as prototype i’s label, then
the co-occurrence frequency table be like in the Table 2.2.
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L(x) = L(ωx)(q) L(x) ̸= L(ωx)(¬q)
L(ωi) = L(ωx)(p) ai bi
L(ωi) ̸= L(ωx)(¬p) ci di

Table 2.2: Co-occurrence frequency for each prototype ωi.

Note: Adapted from “Self-incremental learning vector quantization with human cognitive
biases” by N. Manome, S. Shinohara, T. Takahashi, Y. Chen, and U. Chung, Scientific
Reports 11(1), p. 5 (https://doi.org/10.1038/s41598-021-83182-4) [7].

We defined two biases (S and MX), and now we define other essential properties of
the probabilistic model. One is excluded middle (XM), a natural condition of whether an
event occurs, and another one is called estimation relativity (ER) [3]. Below in Table 2.3,
we list the biases and properties respective to their logical dictation [3]. B denotes the
probabilistic formula, and B(q|p) represents how strong someone subjectively believes
that q occurs after p happened [3]. If the relationship holds, we say B has the respective
bias or property.

Symmetry bias (S): B(q|p) ∼ B(p|q)

Mutual exclusivity bias (MX): B(q|p) ∼ B(¬q|¬p)

The law of excluded middle (XM): B(q|p) ∼ 1−B(¬q|p)

Estimation relativity (ER): B(q|p) ∼ 1−B(q|¬p)

Table 2.3: Biases, bias properties.

Note: Adapted from “Cognitive Symmetry: Illogical but Rational Biases” by T. Taka-
hashi, M. Nakano, and S. Shinohara, Symmetry Culture and Science. 21. 1-3, p. 7 http
s://www.researchgate.net/publication/285850238_Cognitive_Sym
metry_Illogical_but_Rational_Biases [3].

There are many ways to implement one or a couple of these logical biases in learning
rate optimizers. Since we do not want to clutter the paper with many cognitive learning
rate optimizers, we filter and pick the ones that show higher performance according to
Table 2.4.

CP DP DFH RS MS1,0 LS LSR

H03 0.000 0.000 0.964 0.158 0.968 0.969 0.971
AS95 0.823 0.781 0.905 0.761 0.885 0.904 0.782

WDK90 0.944 0.844 0.961 0.888 0.962 0.969 0.922

Table 2.4: Determination coefficients of cognitive models.

Note: The text and human data collected from Hattori (2003) (H03) [23], Anderson &
Sheu (1995) (AS95) [25], and Wasserman et al. (1990) (WDK90) [5].
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Note: Adapted from “Cognitive Symmetry: Illogical but Rational Biases” by T. Taka-
hashi, M. Nakano, and S. Shinohara, Symmetry Culture and Science. 21. 1-3, p. 15 http
s://www.researchgate.net/publication/285850238_Cognitive_Sym
metry_Illogical_but_Rational_Biases [3].

CGLVQ optimizers

CP model This model is a conditional probability (CP) model. The model is the
most basic among others. CP only satisfies XM [3]. If we use the probability notation
p, q and the Table 2.2, t for time, the causal relationship between events (R(t)) of the CP
would be the following [3, 7]:

RCP(q|p)(t) =
a(t)

a(t) + b(t)
(2.19)

We can see that CP satisfies XM by looking at the following equation [3]:

RCP(q|p)(t) =
a(t)

a(t) + b(t)

= 1− b(t)

a(t) + b(t)

= 1−RCP(¬p|q)(t)

(2.20)

DFH model The Dual factor heuristic (DFH) model (cited from Takahashi et al.
(2010) [3] which cites from Hattori (2001) [24] Japanese translation and Hattori (2003) [23])
is one of the models that work best for a human-like model [22, 3]. DFH is derived from
CP and defined by the product of CP and its inverse [3]:

RDFH(q|p)(t) =
√

RCP(q|p)(t) ·RCP(p|q)(t)

=
a(t)√

[a(t) + b(t)] · [a(t) + c(t)]

(2.21)

DFH satisfies the S bias, as we can see in the following equation [3]:
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RDFH(q|p)(t) =
√
RCP(q|p)(t) ·RCP(p|q)(t)

=
√

RCP(p|q)(t) ·RCP(q|p)(t)

= RDFH(p|q)(t)

(2.22)

MS model According to Takahashi et al. (2010), [3], representing human cognition,
we should use neither too much symmetry nor no symmetry but somewhere in between.
That is why we have a middle symmetry (MS) model. MS has parameters α and β to
control the magnitude of the symmetry. MSα,β has the following equation [3]:

RMSα,β(q|p)(t) =
a(t) + β · d(t)

a(t) + β · d(t) + b(t) + α · c(t)
(2.23)

MS0,0 corresponds to the CP model. According to Takahashi et al. (2010) [3], when
α = 1 and β = 0, Hattori (2003) achieved good performance with Human dataset with
causal inductive experiments [3, 23]. With the given parameters, MS1,0 equation would
look like [3]:

RMS1,0(q|p)(t) =
a(t)

a(t) + b(t) + c(t)
(2.24)

MS1,0 is symmetric, so it has S bias but lacks MX bias [3].
We use MS1,0 model in this paper, and from now on, we mention MS1,0 as MS for

simplicity.

LS model Loose symmetry derived from the CP model is used as a parameter in
the MS model to create a model with both S and MX biases. For LS, we take α =
RCP(p|q)(t) = a(t)

a(t)+c(t)
and β = RCP(p|¬q)(t) = b(t)

b(t)+d(t)
in RMSα,β(q|p)(t). According to

Takahashi et al. (2010) [3], which sources the Japanese translation of Shinohara et al.
(2007) [4], reported performing well in purely inductive and decision-theoretic (recur-
sively inductive-deductive) tasks. The equation of LS is [3, 7]:

RLS(q|p)(t) =
a(t) + b(t)

b(t)+d(t)
d(t)

a(t) + b(t)
b(t)+d(t)

d(t) + b(t) + a(t)
a(t)+c(t)

c(t)
(2.25)

LS model satisfies XM and loosely satisfies S, MX biases, and ER [3].
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LSR model The final model we use is loose symmetry under the rarity assump-
tion (LSR) [3]. As we can understand from the name, LSR derives from the LS model.
The rarity assumption [26] has been considered important in human causal inference.
The assumption here is, that events p and q probabilities are small, which makes d(t) =
P (¬p|¬q) much higher than other components since the correlation of any two events is
highly unlikely [22]. For example, any random event and you start your car in the morning
are most likely not correlated with each other [22]. The equation of LSR can be achieved
by diverging d(t) → ∞ in the LS model [3].

RLSR(q|p)(t) = limd(t)→∞RLS(q|p)(t)

= limd→∞
a(t) + b(t)

b(t)+d(t)
d(t)

a(t) + b(t)
b(t)+d(t)

d(t) + b(t) + a(t)
a(t)+c(t)

c(t)

=
a(t) + b(t)

a(t) + 2b(t) + a(t)
a(t)+c(t)

c(t)

(2.26)

According to the Table 2.4 from Takahashi et al. (2010) [3], LSR fits the Human data
from H03 [23] slightly better than LS.

The Python code of the optimizers can be found in Appendix A or on the following
GitHub page:

https://github.com/mertsaru/Cognitive-GLVQ/blob/main/optimize
r.py

Updating learning rates with CGLVQ

The learning rate update of any CGLVQ optimizer is described in Figure 2.14. The
methods first count the co-occurrence frequency for all the prototypes in each training
sample to calculate Ri of each ωi. After finding the co-occurrence frequency of the given
ωi, the Ri is calculated by the chosen cognitive science learning rate optimizer method
according to Manome et al. (2021) [7].
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Figure 2.14: Training structure of CGLVQ models.

Note: From “Self-incremental learning vector quantization with human cognitive biases”
by N. Manome, S. Shinohara, T. Takahashi, Y. Chen, and U. Chung, Scientific Reports
11(1), p. 3 (https://doi.org/10.1038/s41598-021-83182-4) [7].

After finding the Ri(t) of the ωi(t) we can calculate its ϵi(t) at time t by [7]:

ϵi(t) = 1−Ri(t) (2.27)

However, the Equation (2.27) would give us ϵi(t) ∈ [0, 1], since Ri(t) ∈ [0, 1] for any
CGLVQ learning rate optimizer and ∀t ∈ [0,∞). To adjust the ϵi(t) of the model to the
range of ϵi(0), we take ϵi(t) as:

ϵi(t) = ϵ(0)(1−Ri(t)) (2.28)

to make ϵi(t) ∈ [0, ϵ(0)],∀t ∈ [0,∞).
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The Python code of CGLVQ can be found in Appendix A or on the following GitHub
page:
https://github.com/mertsaru/Cognitive-GLVQ/blob/main/cognitiv
e_GLVQ.py

2.5 Test Measures

When training the data, we need a measure to understand how useful the machine
learning classification model is. For that, we have different types of test measures. The
most used and well-known method is the accuracy method, which is useful when the
classes have an equal or close number of (balanced) samples in the dataset. If the sample
numbers for classes are not equal (imbalanced), we have an F score to have a prediction
power of the method. According to Kaden et al. (2014) [27], the F score performs better
for the dataset with imbalanced class samples than for accuracy.

Another way to deal with datasets that have imbalanced class samples is to create
artificial data for the missing classes. These methods are either using Generative AI to
create artificial data from scratch or using data augmentation methods on the existing data
to stretch, discolor, rotate, and more on the existing data to create new samples. However,
these artificial data creation methods are not always helpful. There are some datasets that
one cannot create artificially. Secondly, using a Generative adversarial network (GAN)
to generate new data would also have problems since we need labels for generated data.
However, finding the labels in the original data is hard for the human eye, and we do
not have a label-generating model for the unlabeled data. So, we do not discuss how to
create data artificially, but we talk about what we can do when we have a dataset where
the classes are imbalanced.

Accuracy score

Accuracy is easy to understand and apply. We predict everything in the test set after
training the model with the training set. To get the accuracy score, we divide the correctly
predicted samples by the number of all samples in the test set, like in Equation 2.29.

accuracy score =
# correct classification

# total samples
(2.29)

As we mentioned earlier, the accuracy is reasonable when the samples for each class
are balanced. Let us examine what would happen if we use accuracy on an imbalanced
sample of classes. For this example, we assume that the Test dataset 1 has 100 samples
where 99 have class label 0 and 1 has class label 1. Let the model for classification label
every input to class label 0. Then, according to the accuracy equation, the model’s accu-
racy would be 99% for Test dataset 1 (2.30.1). If we calculate the accuracy for the same
model but with an evenly distributed test dataset, where Test dataset 2 has 50 samples
for class 0 and 50 samples for class 1 out of 100, the accuracy would be 50% with Test
dataset 2 (2.30.2). So, with an unequal number of samples for each class, accuracy would
be a misinterpretation of the model’s prediction reliability.
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Test set 1 accuracy score:

# correct classification
# total samples

=
99

100
= 99% (2.30.1)

Test set 2 accuracy score:

# correct classification
# total samples

=
50

100
= 50% (2.30.2)

F score

F1 score, or more generally Fβ score, comes in handy when we cannot rely on accu-
racy measurement. The F1 score is a subclass of Fβ score, which is calculated by recall
(ρ) and precision (π) of the model. We need to dive into prediction cases to understand
the recall and precision. We start with the binary classification model.

Let us start naming the classes as class 0 and class 1. For every prediction in a binary
classification model, we have four options:

• The model predicts the sample x belongs to class 0, and it is correct (True positive
(TP))

• The model predicts the sample x belongs to class 0, and it is wrong (False positive
(FP))

• The model predicts the sample x belongs to class 1, and it is correct (True negative
(TN))

• The model predicts the sample x belongs to class 1 and it is wrong (False negative
(FN))

If L(x) represents the label of x and L(ωx) represents the prediction label of x, then
we can see the confusion matrix of class 0 in Table 2.5.

L(x) = 0 L(x) ̸= 0

L(ωx) = 0 TP FP
L(ωx) ̸= 0 FN TN

Table 2.5: Co-occurrence frequency for each prototype ωi.

Then recall (ρ) and precision (π) follows as:

ρ =
TP

TP + FP
(2.31)

π =
TP

TP + FN
(2.32)

and the Fβ-score for the model would be:
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Fbeta =
(1 + β2) · π · ρ
(β2 · π) + ρ

(2.33)

Since we use the F1 score, the measurement we use in our results would be:

F1 =
2π · ρ
π + ρ

(2.34)

The problem with F scores is that the score’s output does not tell us how reliable the
model is. We know with what percentage the model predicts the samples for the accuracy
score, but the F scores do not give us such an answer. Most of the time, the F score of one
class is not equal to the second class’s F1 score in classification problems. If we check
the example Table 2.6, for class 0, the F1 score is equal to 0.8. The Table 2.6 can be
rewritten for class 1 as Table 2.7. However, when we check the F1 score of class 1 for the
same table, the score would be 0.6̄. So, it is hard to understand what the F1 score means.
However, it gives us a nice comparison between models and reflects the accuracy change
of the model while using imbalanced samples for classes in the dataset.

Class 0
L(x) = 0 L(x) ̸= 0

L(ωx) = 0 50 5
L(ωx) ̸= 0 20 25

Table 2.6: Example: confusion matrix for class 0.

Class 1
L(x) = 1 L(x) ̸= 1

L(ωx) = 1 25 20
L(ωx) ̸= 1 5 50

Table 2.7: Example: confusion matrix of the Table 2.6, rewritten for class 1.

Regarding the Table 2.6 and Table 2.7 and using the F1 score on same ωx, we achieve
the following equations for each class:

F1(class = 0) =
2 · 50

55
· 50
70

50
55

+ 50
70

= 0.8 (2.35)

F1(class = 1) =
2 · 25

45
· 25
30

25
45

+ 25
30

= 0.6̄ (2.36)

To get a single score for the dataset, we combine the F1 scores. F1 scores can be
combined by taking the average of the scores or the average by multiplying each class’s
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weight with their corresponding F1 score, or we can examine the F1 scores for each class
in a dataset separately. The latter would be hard to comprehend, and the average of all F1
scores has its own problems. In our analysis, we take the F1 score for each model epoch
as the weighted average of the class F1 score. This method can be used to find common
F1 scores for multiclassification problems.

So, to use accuracy as an effective measure, we conduct separate experiments. We
select an equal number of samples for classes in the dataset to get accurate accuracy
scores. Besides that, we also use the dataset with imbalanced class samples and examine
the F1 score. By conducting two experiments with different sample sizes, we would
investigate the models we use in different situations and better understand the models’
powers.

2.6 The Experiments
We used two experiments on the datasets in this paper. For both of the experiments,

each dataset uses the same prototype set. First, we took an equal number of samples
for each class in every dataset. In this experiment, the accuracy score is essential to
look at. For our second test, we distributed the samples unevenly between classes. The
second experiment compares F1 scores. We used two experiments with different sample
sizes because, in real-world data, we do not have equally divided sample sizes most of
the time. Sometimes, with unbalanced sample sizes, we can get different results than
balanced sample sizes, and we want to see the models’ performance in both cases.

We ran the same experiment three times with different ϵ(0): 0.1, 0.03, and 0.01. We
randomly selected the prototypes and sample sets for each dataset in every experiment.
After selecting the samples for the test set, training set, and prototypes, we used the same
samples for each test and dataset. The prototypes are selected by comparing accuracy
scores on experiment 1 using OGLVQ with ϵ(0) = 0.1 and taking the prototype sample
with the highest accuracy score among 20 different random ω set and dataset sampling.
Prototype and dataset selection is still (semi-)random since we use seeds in random se-
lection.

We have two plot graphs in both experiments for each test: the corresponding measure
score of the experiment and learning rate values. We look at the learning rate values to see
if the model is learning appropriately or not. Since ϵi differs for each prototype in GLVQ
models, we have many learning rate plots in our graphs, differentiated labels by color. We
associate learning rate in CGLVQ models with learning since learning rate in CGLVQ is
positively related to a (L(ωi) = L(ωx) =⇒ L(x) = L(ωx)) in the Table 2.2 in all the
models, and a is correctly predicted. So, an increase of a would decrease the ϵi(t) since
ϵi(t) = ϵ(0) · (1− R), and R in positive relation with a for all cognitive science learning
rate optimizers.
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Results

The first thing to realize when looking at the learning rate graphs of the models is
that every line on the learning rate graph of OGLVQ models represents each prototype’s
ϵi while in the CGLVQ model, it turns into class-based ϵ. We did nothing different for
learning rate graphs for the CGLVQ; the graph still shows the ϵi of each ωi, but every ω
that shares the same class has the exact ϵi. This observation is because, in standard GLVQ
or OGLVQ, ϵi are updated for the ω+ and ω− for that sample. However, in the CGLVQ
models, ϵ update is based on classes. This ϵ update of CGLVQ happens because all of the
ωi in the same class share exact co-occurrence tables.

3.1 Experiment 1 (Balanced Dataset)

3.1.1 Breast Cancer Wisconsin dataset

Prototypes for each class: 3

The learning process reflects the models’ learning rate graph. The change in the learn-
ing rate graph indicates that the model adapts to a given dataset. We would like to see
decreasing ϵi for all prototypes, which means the given model is learning positively. For
Breast Cancer Wisconsin dataset on experiment 1 with OGLVQ, every CGLVQ model
except the CP model increases accuracy and decreases ϵi values, which brings positive
learning as we can see the results of the models below. CGLVQ models shows good ϵi
curves with low ϵ(0), 0.01. The CP model also shows positive learning at the beginning
of the process with ϵ(0) = 0.01 but decreases accuracy afterward and increases ϵB of
class “Benign.” Still, CP is adapting to the model but not doing a good job regarding
other models. Performance-wise, CGLVQ models except CP shows similar performance
to OGLVQ.

Here is a small note to be careful about the axis of the given plots. With smaller ϵ(0),
it is harder to visualize the motion of learning rates in the same scale as higher ϵ(0). So,
the changes on the learning rate graphs do not reflect equal change with different ϵ(0).
We investigate if there is a change in learning rates and, if so, in which direction.
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(a) Training set (b) Test set

Figure 3.1: Breast Cancer Wisconsin balanced dataset sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.2: Breast Cancer Wisconsin dataset accuracy score and learning rate results
under CP model using balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.3: Breast Cancer Wisconsin dataset accuracy score and learning rate results
under DFH model using balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.4: Breast Cancer Wisconsin dataset accuracy score and learning rate results
under MS model using balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.5: Breast Cancer Wisconsin dataset accuracy score and learning rate results
under LS model using balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.6: Breast Cancer Wisconsin dataset accuracy score and learning rate results
under LSR model using balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.7: Breast Cancer Wisconsin dataset accuracy score and learning rate results
under OGLVQ model using balanced dataset.

3.1.2 Iris dataset

Prototypes for each class: 3

If we check the results of the Iris dataset, we see all models’ accuracy scores start
at 1 for at least one initial rate test. That indicates the dataset is already divided nicely
for classification. Even though accuracy is high initially, that does not mean the model
cannot learn. The model tries to find a nice line between data samples to divide samples
as perfectly as possible. We see some decrease in accuracy scores of the CP model for any
ϵ(0), which also affects the ϵi values during the training of the experiment. With accu-
racy getting lower, ϵi for all prototypes get higher, which indicates the model is learning
badly. It classifies worse with every epoch that passes. For other CGLVQ models, we
see that accuracies are stable at high accuracy scores, between 90% and 100%. Besides,
the learning rates stuck in a constant value (for DFH(ϵ(0) = 0.01), DFH(ϵ(0) = 0.1),
MS(ϵ(0) = 0.1), LS(ϵ(0) = 0.1), LSR(ϵ(0) = 0.01), LSR(ϵ(0) = 0.1)) or zigzagging
between a value range (for DFH(ϵ(0) = 0.03), MS(ϵ(0) = 0.01), MS(ϵ(0) = 0.03),
LS(ϵ(0) = 0.01), LS(ϵ(0) = 0.03), LSR(ϵ(0) = 0.03)). We can interpret this zigzagging
effect as the model is indecisive about where to draw the line between the classes since at
least one test sample is close to two different classes, and prototypes cannot decide. So,
there is not much learning going on in CGLVQ models. However, in the OGLVQ model
with low ϵ(0) such as 0.01 and 0.03, we see better ϵi curves diminishing to 0, indicating
that the model adapts and learns greatly.
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(a) Training set (b) Test set

Figure 3.8: Iris balanced dataset sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.9: Iris dataset accuracy score and learning rate results under CP model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.10: Iris dataset accuracy score and learning rate results under DFH model using
balanced dataset using balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.11: Iris dataset accuracy score and learning rate results under MS model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.12: Iris dataset accuracy score and learning rate results under LS model using
balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.13: Iris dataset accuracy score and learning rate results under LSR model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.14: Iris dataset accuracy score and learning rate results under OGLVQ model
using balanced dataset.

3.1.3 Ionosphere dataset

Prototypes for each class: 3

Ionosphere dataset results of experiment 1 for all models look promising, even though
we do not have high or constantly increasing accuracy scores. All the models learn with
proper ϵ(0) (CP with ϵ(0) 0.01 and 0.03, MS with ϵ(0) 0.01 and all other CGLVQ models)
during their training period, as we can see by the decrease of ϵi values. The CP model
with ϵ(0) = 0.1 graph looks bad for learning as we can see on Figure 3.16c because of the
increasing ϵg, but ϵg curve might be the result of the high ϵ(0) since other CP models with
lower ϵ(0) have a nice ϵg curves. So ϵ(0) = 0.1 might be overshooting for the CP model in
this case. Additionally, the OGLVQ models’ learning rate graphs do not look promising
(Figure 3.21). Even if we see an increase in accuracy, learning rates of class “Bad” during
the learning tends to increase or stay stable, which ends up in bad decision-making for
class “Bad” with the model.
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(a) Training set (b) Test set

Figure 3.15: Ionosphere balanced dataset sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.16: Ionosphere dataset accuracy score and learning rate results under CP model
using balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.17: Ionosphere dataset accuracy score and learning rate results under DFH model
using balanced dataset using balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.18: Ionosphere dataset accuracy score and learning rate results under MS model
using balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.19: Ionosphere dataset accuracy score and learning rate results under LS model
using balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.20: Ionosphere dataset accuracy score and learning rate results under LSR model
using balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.21: Ionosphere dataset accuracy score and learning rate results under OGLVQ
model using balanced dataset.

3.1.4 Sonar dataset

Prototypes for each class: 3

Like earlier datasets, all models have nice ϵi curves and an increase in accuracy, ex-
cept CP models in this experiment. For all ϵ(0) of the CP model, ϵM for class “Mines”
increases. That increase happens because ωM of “Mines” could not predict its class well
anymore, which results in lower accuracy for the model. Still, this might be because of the
high ϵ(0), but other models have better accuracies with their best ϵ(0). In this dataset, we
get a nice ϵi decrease and accuracy score increase in the models DFH, MS, LS, LSR, and
OGLVQ. However, in Sonar dataset, we see again that the CP model is the least favorable
among other CGLVQ models.
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(a) Training set (b) Test set

Figure 3.22: Sonar balanced dataset sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.23: Sonar dataset accuracy score and learning rate results under CP model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.24: Sonar dataset accuracy score and learning rate results under DFH model
using balanced dataset using balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.25: Sonar dataset accuracy score and learning rate results under MS model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.26: Sonar dataset accuracy score and learning rate results under LS model using
balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.27: Sonar dataset accuracy score and learning rate results under LSR model
using balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.28: Sonar dataset accuracy score and learning rate results under OGLVQ model
using balanced dataset.

3.1.5 SP and NSP datasets

Prototypes for each class: 12

Both datasets we created from IFE data (NSP and SP) have similar results. We see flat
accuracy score near 60% for any model with any ϵ(0) used to generate our results. We
have also flat ϵi curves for any CGLVQ models. Our ϵ(0) might be small for the dataset,
and using higher ϵ(0) than the ones we used might give us more answers if the dataset
can fit with CGLVQ models. On the other hand, the OGLVQ model has a stable increase
or decrease ϵi curves, but in the end, it does not show a change in the accuracy of the
models. The change in learning rates does not always indicate that the model is learning.
In this case, the change in learning rates is linear, and that might be happening because
of the structure of the OGLVQ learning rate optimizer. Since we see flat graphs for both
accuracy and learning rates, we can also say the datasets are too noisy to be trainable by
our models. For now, we do not experiment with higher ϵ(0) and conclude that the dataset
is not trainable with our models.

To not create a couple of pages long of the same accuracy results and similar, flat
learning rate results, with the only difference being the starting point of the learning rates,
we add results of one CGLVQ model, the CP model, to represent all other CGLVQ mod-
els. Even though OGLVQ accuracy scores are equal to other CGLVQ models, the shape
of the learning rate graph is different, which is why we also include OGLVQ results on the
view. We add one CGLVQ example, CP model, for SP dataset and one for NSP dataset.
The actual results of other models can be found in Appendix B.
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(a) Training set (b) Test set

Figure 3.29: SP and NSP balanced datasets sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.30: SP dataset accuracy score and learning rate results under CP model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.31: SP dataset accuracy score and learning rate results under OGLVQ model
using balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.32: NSP dataset accuracy score and learning rate results under CP model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.33: NSP dataset accuracy score and learning rate results under OGLVQ model
using balanced dataset.

3.2 Experiment 2 (Imbalanced Dataset)

3.2.1 Breast Cancer Wisconsin dataset

Prototypes for each class: 3

In experiment 2 of Breast Cancer Wisconsin dataset, we have a different story than the
first experiment. Even if F1 scores change over time and have high F1 scores, learning
rates does not move much for any CGLVQ model. The high F1 score for the models starts
from the beginning of the models’ training, which indicates that sample space does not
have much noise and/or prototypes divides the sample space nicely. CGLVQ models have
no learning regarding experiment 1, as we can understand from the flatness of the learning
rate graphs. Additionally, the OGLVQ model’s learning rate graphs look somewhat okay.
Even if we see some of the learning rates decrease over time, one of the ϵi for class
“M” does not decrease to 0 like other prototypes for the dataset. This ωi, which shows
bad learning, might be an outlier for the given dataset sample, and having this prototype
might be coming because of using a smaller sample-sized class, “M.”
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(a) Training set (b) Test set

Figure 3.34: Breast Cancer Wisconsin imbalanced dataset sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.35: Breast Cancer Wisconsin dataset F1 score and learning rate results under CP
model using imbalanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.36: Breast Cancer Wisconsin dataset F1 score and learning rate results under
DFH model using imbalanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.37: Breast Cancer Wisconsin dataset F1 score and learning rate results under MS
model using imbalanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.38: Breast Cancer Wisconsin dataset F1 score and learning rate results under LS
model using imbalanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.39: Breast Cancer Wisconsin dataset F1 score and learning rate results under
LSR model using imbalanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.40: Breast Cancer Wisconsin dataset F1 score and learning rate results under
OGLVQ model using imbalanced dataset.

3.2.2 Iris dataset

Prototypes for each class: 3

The same results of Breast Cancer Wisconsin’s experiment 2 can be said for most of
the Iris datasets’ experiment 2. The F1 score graphs are flat for any model, and CGLVQ
models except the CP model all have near flat learning rates or learning rates are stuck in
two values and changing periodically. Since the change in ϵi does not move much during
the training, we say the model does not learn for these models. Even though the F1 scores
for the CP model results are stable and high, learning rates are not good. For any result of
the CP model on Iris dataset, we see an increase in “Iris-virginica’s” ϵ, while a decrease
in “Iris-versicolor’s” ϵ during training. Both classes have a smaller sample size than the
“Iris-setosa” class; however, one is learning while the other is not. We could say “Iris-
virginica” might have the outlier prototypes for the given dataset sample if we did not see
the results of OGLVQ. Like CGLVQ models, the OGVLQ model also has a flat F1 score.
However, ϵi trend for OGLVQ is on decrease for ϵ(0) = 0.01. Here, the “Iris-virginica”
learning rates decreases with time. So, we cannot say the prototypes are outliers. On
the other hand, one ω of the “Iris-versicolor” class’s ϵ is higher than all other prototypes,
which is the opposite of what we observed in the CP model with different learning rates.
These results are not unexpected since we take small sample numbers for some classes
in the dataset to create an imbalanced class samples environment. Because of the small
dataset size, the models might be having a hard time adjusting the model to the sample
space and hence learning rates.
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(a) Training set (b) Test set

Figure 3.41: Iris imbalanced dataset sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.42: Iris dataset F1 score and learning rate results under CP model using imbal-
anced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.43: Iris dataset F1 score and learning rate results under DFH model using im-
balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.44: Iris dataset F1 score and learning rate results under MS model using imbal-
anced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.45: Iris dataset F1 score and learning rate results under LS model using imbal-
anced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.46: Iris dataset F1 score and learning rate results under LSR model using imbal-
anced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.47: Iris dataset F1 score and learning rate results under OGLVQ model using
imbalanced dataset.

3.2.3 Ionosphere dataset

Prototypes for each class: 3

Ionosphere dataset shows some exciting results on experiment 2. In the experiment,
we see great results of F1 score from MS, LS, and LSR with ϵ(0) = 0.1, even better
than OGLVQ results. These F1 scores also reflect these models’ ϵi curves. LS model
with ϵ(0) = 0.1 has a nicely decreasing ϵb for class “Bad” (b) while the other class,
“Good” (g), does not change much (Figure 3.52c). We can still see a slight change in the
learning rates with smaller ϵ(0) of the LS model. These models still learn and increase
the F1 score during training, but ϵ(0) is probably small to show significant steps, and to
gain better results, we can increase the training time t. For MS and LSR models with
ϵ(0) = 0.1 (Figures 3.51c and 3.53c), we see not much of a change in learning rates, but
we still see a change of learning rates with increasing F1 score. Higher ϵ(0) can show
the performance of the models faster. When we look at OGLVQ, the learning rate graphs
for all the runs with different ϵ(0) look bad. We see a similar situation in the experiment
1 results of Ionosphere dataset, but this time, all the learning rates of the prototype class
“Bad” are on rise for OGLVQ model. It looks like fitting “Bad” in the sample space is
hard for the OGLVQ model. It is good to mention that, in experiment 2, we used 19
“Bad” samples in the training set. So, with this small sample space, it is impressive to see
CGLVQ models, mostly LS, having great results.
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(a) Training set (b) Test set

Figure 3.48: Ionosphere imbalanced dataset sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.49: Ionosphere dataset F1 score and learning rate results under CP model using
imbalanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.50: Ionosphere dataset F1 score and learning rate results under DFH model using
imbalanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.51: Ionosphere dataset F1 score and learning rate results under MS model using
imbalanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.52: Ionosphere dataset F1 score and learning rate results under LS model using
imbalanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.53: Ionosphere dataset F1 score and learning rate results under LSR model using
imbalanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.54: Ionosphere dataset F1 score and learning rate results under OGLVQ model
using imbalanced dataset.

3.2.4 Sonar dataset

Prototypes for each class: 3

CP model on Sonar dataset has decreasing F1 scores with increasing ϵR on the “Rock”
class. For DFH and MS tests with any ϵ(0) values, we see a slight decrease but not much
change in ϵi values during the training; however, LS and LSR test with any ϵ(0) have
increasing F1 scores and decreasing ϵi values. ϵ decrease on LS is mainly in “Rock”
class; on LSR, the ϵ decrease is observed in the “Mine” class. The better ϵR for LS, which
has the smaller training sample in our imbalanced sample space, results in a better F1
score for the model. If we check OGLVQ learning rate graphs in Figure 3.61, we also see
that the “Rocks” class has difficulty decreasing its learning rates. Ultimately, we observe
that the DFH, MS, LS, and LSR models have better results than the OGLVQ model with
a smaller and imbalanced dataset.
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(a) Training set (b) Test set

Figure 3.55: Sonar imbalanced dataset sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.56: Sonar dataset F1 score and learning rate results under CP model using im-
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.57: Sonar dataset F1 score and learning rate results under DFH model using
imbalanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.58: Sonar dataset F1 score and learning rate results under MS model using
imbalanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.59: Sonar dataset F1 score and learning rate results under LS model using im-
balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.60: Sonar dataset F1 score and learning rate results under LSR model using
imbalanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.61: Sonar dataset F1 score and learning rate results under OGLVQ model using
imbalanced dataset.

3.2.5 SP and NSP datasets

Prototypes for each class: 12

Similar to experiment 1 of NSP and SP, experiment 2 reinforces that these datasets
are not possible to be trainable with the models we used, even with imbalanced datasets
of NSP and SP. We can see that the models do not train by looking at the F1 scores and
learning rates of the models for both datasets. Higher ϵ(0) might give us more answers if
the dataset is trainable or not. OGLVQ results of experiment 2 are similar to the results of
experiment 1.

Similar to experiment 1, we only include the CP and OGLVQ models for both the SP
and NSP datasets, and the actual results can be found in Appendix B.
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(a) Training set (b) Test set

Figure 3.62: SP and NSP imbalanced datasets sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.63: SP dataset F1 score and learning rate results under CP model using imbal-
anced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.64: SP dataset F1 score and learning rate results under OGLVQ model using
imbalanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.65: NSP dataset F1 score and learning rate results under CP model using imbal-
anced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure 3.66: NSP dataset F1 score and learning rate results under OGLVQ model using
imbalanced dataset.
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Chapter 4

Discussion

With our experiments, we investigated the CGLVQ models concerning their learning
rate changes and revealed the power of the models. The learning capability of humankind
is higher than that of other species in the world, at least as we know it now. Also, learn-
ing might not be logical like machines. Tracing the human biases on machine learning
models helps us to copy human-like learning, which allows us to create more human-like
machines.

Unfortunately, our custom datasets, NSP and SP, were untrainable with our setup of
the models; hence, we could not get much information from these datasets. On the other
hand, with other datasets we used, which are open-source datasets, we found CGLVQ is
adapting the sample spaces of these datasets and learning through the training. We had
great results with our Experiment 1, which has datasets with balanced class samples for
the training. In Experiment 1, CGLVQ models, except the CP model, are as competitive
as the OGLVQ model. Even with the Ionosphere dataset, CGLVQ models outperform
OGLVQ model. This experiment found that MS and LSR models perform better with the
Ionosphere dataset. In contrast, LSR has the only good performance with the Iris dataset
compared to other CGLVQ models.

Experiment 2 showed us another power of the CGLVQ models. We used imbalanced
datasets on the models by reducing the sample size for one of the classes in the datasets.
With an imbalanced dataset experiment, we found that there are 3 CGLVQ models that
shine: MS, LS, and LSR. These models outperformed OGLVQ with imbalanced and small
datasets, Ionosphere and Sonar datasets, and showed better learning rate graphs in their
results. The LS model showed the biggest performances among other CGLVQ models
concerning the F1 score.

One thing to note is that CGLVQ uses class-based learning rates rather than prototype-
based ones. This behavior might seem like a bad idea in theory since the sample space
might not be divided linearly, and updating the learning rates of the prototypes in the same
class might cause problems. However, our experiments show great results, even better
than OGLVQ. Still, because of the class-based learning rate adaptation, these CGLVQ
models might perform worse than other LVQ models in a noisier sample space.

In summary, we found in this paper that the cognitive science learning rate optimizer
approaches have great results, especially MS, LS, and LSR. These results align with
the findings of Takahashi et al. (2010) [3]. However, the findings of Takahashi et al.
(2010) [3] show good performance with CP and DFH learning rate methods according to
Table 2.4. Still, our results found that these optimizers do not perform much compared to
other learning rate methods. So, we can conclude that we can continue more research to
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improve MS, LS, and LSR. There are many more cognitive science learning rate methods
created from cognitive biases to optimize the learning rates that we can use on GLVQ
models we did not include. One can expand the research, including other models we did
not include and new models based on cognitive biases.

Since we noted that we used and experimented on datasets with simple (not noisy)
sample space, it would be great to have further experiments with (reasonably) nosier
datasets. In that way, we can see how the selected CGLVQ models generally perform
with noisier datasets. Solving less noisy datasets is easy for most models. However, we
see the models’ usefulness when the dataset is harder to solve since it is closer to real-
world problems.

Finally, we can say that CGLVQ models, especially MS, LS, and LSR, have better
results than OGLVQ model. Since CGLVQ learning rate optimizers come from cognitive
science, the models provide more human-like learning for machine learning, which helps
us to create more human-like models while also allowing us to understand the model’s
reasoning.
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Appendix A

GLVQ Codes

The project’s Python codes can be found in the following link also and can be used freely:
https://github.com/mertsaru/Cognitive-GLVQ

Or you can follow the codes for OGVLQ, CGLVQ and optimizers for CGLVQ here:

OGLVQ

1 """
2 The model is Optimized GLVQ (OGLVQ) model.
3 Turning any LVQ model to optimized version of it introduced by Kohonen

(1995, pp. 175-189) in "Self-Orgazing Maps" (DOI:https://doi.org
/10.1007/978-3-642-97610-0), please refer to the paper when needed.

4 Optimization effects the model’s learning rate update.
5

6 the model includes two performance measures:
7

8 - Accuracy
9 - F-Score (weighed average)

10

11 To use the model please import the file and use the class CGLVQ. Then
use class method train with the following parameters:

12 num_epochs: train time
13 training_set: adjust the training set as: list[tuple[np.array, np.

array]],
14 test_set: adjust the test set as: list[tuple[np.array, np.array]],
15 validation_set: if you want to use validation set adjust the

validation set as: list[tuple[np.array, np.array]] = None,
16 f_score_beta: beta value of the F score, default = 1 any float

value can be used,
17 sample_number: Number of training samples each class uses. It is

needed to calculate the weighted F scores
18

19 One can use the following methods to see the results:
20 lr_graph: shows the learning rate graph for each prototype
21 acc_graph: shows the accuracy graph
22 f1_graph: shows the f1 score graph
23

24 methods use matplotlib.pyplot library. Title can be added to the
graphs as string by adding the title in the method as parameter.

25 """
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26

27 import numpy as np
28 import copy
29 import matplotlib.pyplot as plt
30

31 __author__ = " Mert Saruhan "
32 __maintainer__ = " Mert Saruhan "
33 __email__ = " mertsaruhn@gmail.com "
34

35

36 class OGLVQ:
37 def __init__(self, prototypes: list, learning_rate: float):
38 self.feature_size = len(prototypes[0][0])
39 prototypes_copy = copy.deepcopy(prototypes)
40 self.prototypes = self.create_prototype_dict(prototypes_copy,

learning_rate)
41 self.datatype = prototypes[0][0].dtype
42 self.labeltype = prototypes[0][1].dtype
43 self.epoch = 0
44 self.history = {
45 "lr": {i: [] for i in range(len(prototypes))},
46 "loss": [],
47 "accuracy": [],
48 "f_score": [],
49 }
50 self.classes = self.get_class(prototypes)
51 self.colors = self.get_colors(prototypes)
52

53 def get_colors(self, prototypes) -> dict:
54 """
55 Divides prototypes into color groups by classes in dictionary

form
56 For now there are 3 colors: blue, red, green
57 The function used in __init__
58 """
59 color_list = ["#5171fF", "#fF7151", "#519951"]
60 unique_class = self.get_class(prototypes)
61 return {unique_class[i]: color_list[i % 3] for i in range(len(

unique_class))}
62

63 def get_class(self, prototypes) -> np.ndarray:
64 """
65 Gets the distinct class groups.
66 The function used in __init__
67 """
68 list_labels = []
69 for p in prototypes:
70 list_labels.append(p[1][0])
71 unique_class = list(set(list_labels)) # get rid of duplicates
72 unique_class.sort()
73 unique_class = np.array(unique_class, dtype=self.labeltype)
74 return unique_class
75

76 def create_prototype_dict(self, prototypes, learning_rate) -> dict:
77 """
78 Creates each prototype’s local values in __init__ part.
79 """
80 prototypes_dict = {}
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81 for i, p in enumerate(prototypes):
82 prototypes_dict[i] = {"feature": p[0], "label": p[1], "lr":

learning_rate}
83 return prototypes_dict
84

85 def sigmoid(self, x) -> float:
86 """
87 Activation function for loss
88 """
89 return 1 / (1 + np.exp(-x))
90

91 def prediction(self, x) -> tuple:
92 """
93 Function has one parameter, test features
94 Returns tuple of (winner prototype, winner class)
95

96 Test features should be same lenght as the prototypes
97

98 Winner prototype is the closest prototype to the parameter
entered

99 Winner class is the class of the winner prototype
100

101 Function has different distance functions for real values and
complex values

102

103 Real values: sum of square of feature diffrences
104 Complex values: sum of absolute value of feature diffrences
105 """
106 distance = None
107 for prototype, values in self.prototypes.items():
108 if self.datatype == np.csingle:
109 dist_p_x = np.sum(np.abs(values["feature"] - x) ** 2)
110 else:
111 dist_p_x = np.sum((values["feature"] - x) ** 2)
112

113 if distance is None:
114 distance = dist_p_x
115 winner_class = values["label"]
116 winner_prototype = prototype
117 elif dist_p_x < distance:
118 distance = dist_p_x
119 winner_class = values["label"]
120 winner_prototype = prototype
121 return winner_prototype, winner_class
122

123 def local_loss(self, x) -> tuple:
124 """
125 Local loss used in model training
126 The model is GLVQ model, so we calculate two winners:

winner_true, winner_false
127

128 Winner_true: closest prototype to the sample with same class
than the sample

129 Winner_false: closest prototype to the sample with different
class than the sample

130

131 Function returns loss, winner_true to sample distance,
winner_true, winner_false to sample distance, winner_false as tuple
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132 All these values used in prototype update
133 """
134 x_feature, x_label = x
135 d_1 = None
136 d_2 = None
137 for prototype, values in self.prototypes.items():
138 if self.datatype == np.csingle:
139 dist_p_x = np.sum(np.abs(values["feature"] - x_feature)

** 2)
140 else:
141 dist_p_x = np.sum((values["feature"] - x_feature) ** 2)
142

143 if values["label"] == x_label:
144 if d_1 is None:
145 d_1 = dist_p_x
146 winner_true = prototype
147 elif dist_p_x < d_1:
148 d_1 = dist_p_x
149 winner_true = prototype
150 else:
151 if d_2 is None:
152 d_2 = dist_p_x
153 winner_false = prototype
154 elif dist_p_x < d_2:
155 d_2 = dist_p_x
156 winner_false = prototype
157

158 loss = self.sigmoid((d_1 - d_2) / (d_1 + d_2))
159 return loss, d_1, winner_true, d_2, winner_false
160

161 def train(
162 self,
163 num_epochs: int,
164 training_set: list[tuple[np.array, np.array]],
165 test_set: list[tuple[np.array, np.array]],
166 f_score_beta: float = 1.0,
167 sample_number: dict = None,
168 ) -> dict:
169 """
170 Trains the model returns history of the model as dictionary
171 history = {
172 history of learning rate for each prototype,
173 history of loss,
174 history of accuracy,
175 history of f-score (weighted f-score)
176 }
177 To reach history of any prototype’s learning rate use history["

lr"][prototype_number]
178

179 Parameters:
180 - num_epochs: number of epochs
181 - training_set: list of tuples (feature, label)
182 - test_set: list of tuples (feature, label)
183 - f_score_beta: beta value for f-score calculation default = 1
184 - sample_number: dictionary of sample numbers for each class (

class_name: sample_number)
185

186 sample number is used for weighted f-score calculation
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187 """
188 if len(self.classes) == 1:
189 print("Error: there is only one class in the prototypes")
190 return
191

192 if sample_number is None:
193 print("Error: sample_number is None")
194 return
195

196 sum_samples = sum(sample_number.values())
197 sample_weight = {
198 class_num: sample / sum_samples
199 for class_num, sample in sample_number.items()
200 }
201

202 if f_score_beta == int(f_score_beta):
203 f_name = int(f_score_beta)
204 else:
205 f_name = f_score_beta
206

207 for epoch in range(num_epochs):
208 # Clear loss
209 global_loss = 0
210 # Tranining
211 for x in training_set:
212 x_feature, x_label = x
213 loss, d_1, winner_true, d_2, winner_false = self.

local_loss(x)
214 _, x_prediction = self.prediction(x_feature)
215

216 # Update global_loss
217 global_loss += loss
218

219 common_multiplier = loss * (1 - loss) / ((d_1 + d_2) **
2)

220

221 # Update learning_rate
222 self.prototypes[winner_true]["lr"] = self.prototypes[

winner_true][
223 "lr"
224 ] / (
225 1
226 + (
227 1
228 * self.prototypes[winner_true]["lr"]
229 * 4
230 * common_multiplier
231 * d_2
232 )
233 )
234

235 self.prototypes[winner_false]["lr"] = self.prototypes[
winner_false][

236 "lr"
237 ] / (
238 1
239 + (
240 -1
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241 * self.prototypes[winner_false]["lr"]
242 * 4
243 * common_multiplier
244 * d_1
245 )
246 )
247

248 # Update prototypes
249 ## update winner_true
250 self.prototypes[winner_true]["feature"] += (
251 self.prototypes[winner_true]["lr"]
252 * 4
253 * common_multiplier
254 * d_2
255 * (x_feature - self.prototypes[winner_true]["

feature"])
256 )
257

258 ## update winner_false
259 self.prototypes[winner_false]["feature"] -= (
260 self.prototypes[winner_false]["lr"]
261 * 4
262 * common_multiplier
263 * d_1
264 * (x_feature - self.prototypes[winner_false]["

feature"])
265 )
266

267 # Calculate f-score and accuracy
268 correct = 0
269 f_dict = {}
270 for x in self.classes:
271 f_dict[x] = {"TP": 0, "FP": 0, "FN": 0, "TN": 0}
272

273 for x in test_set:
274 x_feature, x_label = x
275 _, x_prediction = self.prediction(x_feature)
276

277 ## accuracy counter
278 if x_prediction == x_label:
279 correct += 1
280

281 ## f-score counter
282 for class_name, value in f_dict.items():
283 if x_prediction == x_label:
284 if x_prediction == class_name:
285 value["TP"] += 1
286 else:
287 value["TN"] += 1
288 else:
289 if x_prediction == class_name:
290 value["FP"] += 1
291 else:
292 value["FN"] += 1
293

294 ## calculate accuracy
295 acc = correct / len(test_set)
296
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297 ## calculate f-score
298 for class_name, value in f_dict.items():
299 if value["TP"] == 0:
300 score = 0
301 else:
302 precision = value["TP"] / (value["TP"] + value["FP"

])
303 recall = value["TP"] / (value["TP"] + value["FN"])
304 score = (
305 (1 + (f_score_beta**2))
306 * precision
307 * recall
308 / (((f_score_beta**2) * precision) + recall)
309 )
310 f_dict[class_name] = score
311 weighted_f_score = 0
312 for class_name, value in f_dict.items():
313 weighted_f_score += value * sample_weight[class_name]
314

315 self.epoch += 1
316

317 # Update history
318 ## Update learning rate history
319 for i, values in enumerate(self.prototypes.values()):
320 self.history["lr"][i].append(values["lr"])
321 ## Update loss history
322 self.history["loss"].append(global_loss)
323 ## Update accuracy history
324 self.history["accuracy"].append(acc)
325 ## Update f-score history
326 self.history["f_score"].append(weighted_f_score)
327

328 if epoch % 10 == 0 or epoch == num_epochs:
329 print(
330 f"Epoch: {self.epoch}, Loss: {global_loss:.4f},

Accuracy: {acc*100:.2f} %, F_{f_name}_score: {weighted_f_score

*100:.2f} %"
331 )
332 return self.history
333

334 def lr_graph(self, title: str = None, marker: str = None) -> plt.
figure:

335 """
336 Shows learning rate graph for each prototype in combined graph
337 Prototypes are grouped by their class with different colors (

for now max 3 colors)
338

339 Function uses matplotlib.pyplot library so use markers
according to matplotlib.pyplot library

340 Parameters:
341 - title: title of the graph
342 - marker: marker of the graph
343 """
344 used_labels = []
345 fig, ax = plt.subplots(figsize=(10, 10))
346 for prototype_name, lr in self.history["lr"].items():
347 if self.prototypes[prototype_name]["label"][0] in

used_labels:
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348 label = None
349 else:
350 label = self.prototypes[prototype_name]["label"][0]
351 used_labels.append(label)
352 ax.plot(
353 range(self.epoch),
354 lr,
355 label=label,
356 color=self.colors[self.prototypes[prototype_name]["

label"][0]],
357 linestyle="dashed",
358 marker=marker,
359 )
360 plt.xlabel("Epoch (t)", fontsize=25, weight="bold")
361 plt.legend()
362 plt.yticks(fontsize=20)
363 plt.xticks(fontsize=20)
364 if title:
365 plt.title(title, fontsize=40)
366 plt.show()
367 return fig
368

369 def acc_graph(self, title: str = None):
370 """
371 Shows accuracy graph of the model
372

373 Function uses matplotlib.pyplot library so use markers
according to matplotlib.pyplot library

374 Parameters:
375 - title: title of the graph
376 """
377 fig, ax = plt.subplots(figsize=(10, 10))
378 ax.plot(
379 range(self.epoch),
380 self.history["accuracy"],
381 )
382 plt.xlabel("Epoch (t)", fontsize=25, weight="bold")
383 plt.ylim(0, 1.01)
384 plt.yticks(
385 np.arange(0, 1.01, step=0.2),
386 ["0%", "20%", "40%", "60%", "80%", "100%"],
387 fontsize=20,
388 )
389 plt.xticks(fontsize=20)
390 if title:
391 plt.title(title, fontsize=40)
392 plt.show()
393 return fig
394

395 def f1_graph(self, title: str = None):
396 """
397 Shows weighted f-score graph of the model
398

399 Function uses matplotlib.pyplot library so use markers
according to matplotlib.pyplot library

400 Parameters:
401 - title: title of the graph
402 """
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403 fig, ax = plt.subplots(figsize=(10, 10))
404 ax.plot(
405 range(self.epoch),
406 self.history["f_score"],
407 )
408 plt.xlabel("Epoch (t)", fontsize=25, weight="bold")
409 plt.ylim(0, 1.01)
410 plt.yticks(
411 np.arange(0, 1.01, step=0.2),
412 ["0%", "20%", "40%", "60%", "80%", "100%"],
413 fontsize=20,
414 )
415 plt.xticks(fontsize=20)
416 if title:
417 plt.title(title, fontsize=40)
418 plt.show()
419 return fig
420

421

CGLVQ

1 """
2 The model uses GLVQ as base model and have learning rate methods from

cognitive science
3 learning rate methods is in optimizers.py file
4 optimizers:
5 - Conditional Probalility
6 - Dual Factor Heuristic
7 - Middle Symmetry (alpha = 1, beta = 0)
8 - Loose Symmetry
9 - Loose Symmetry with Rarity

10

11 the model includes two performance measures:
12

13 - Accuracy
14 - F-Score (weighed average)
15

16 To use the model please import the file and use the class CGLVQ. Then
use class method train with the following parameters:

17 num_epochs: train time
18 training_set: adjust the training set as: list[tuple[np.array, np.

array]],
19 test_set: adjust the test set as: list[tuple[np.array, np.array]],
20 optimizer: import the optimizers from optimizers.py and use them as

optimizer=optimizer_name,
21 validation_set: if you want to use validation set adjust the

validation set as: list[tuple[np.array, np.array]] = None,
22 f_score_beta: beta value of the F score, default = 1 any float

value can be used,
23 sample_number: Number of training samples each class uses. It is

needed to calculate the weighted F scores
24

25 One can use the following methods to see the results:
26 lr_graph: shows the learning rate graph for each prototype
27 acc_graph: shows the accuracy graph
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28 f1_graph: shows the f1 score graph
29

30 methods use matplotlib.pyplot library. Title can be added to the
graphs as string by adding the title in the method as parameter.

31 """
32

33 import numpy as np
34 import copy
35 import matplotlib.pyplot as plt
36

37 __author__ = " Mert Saruhan "
38 __maintainer__ = " Mert Saruhan "
39 __email__ = " mertsaruhn@gmail.com "
40

41

42 class CGLVQ:
43 def __init__(self, prototypes: list, lr: float):
44 self.feature_size = len(prototypes[0][0])
45 prototypes_copy = copy.deepcopy(prototypes)
46 self.global_lr = lr
47 self.prototypes = self.create_prototype_dict(prototypes_copy,

lr)
48 self.datatype = prototypes[0][0].dtype
49 self.labeltype = prototypes[0][1].dtype
50 self.epoch = 0
51 self.history = {
52 "lr": {i: [] for i in range(len(prototypes))},
53 "loss": [],
54 "accuracy": [],
55 "f_score": [],
56 }
57 self.classes = self.get_class(prototypes)
58 self.colors = self.get_colors(prototypes)
59

60 def get_colors(self, prototypes) -> dict:
61 """
62 Divides prototypes into color groups by classes in dictionary

form
63 For now there are 3 colors: blue, red, green
64 The function used in __init__
65 """
66 color_list = ["#5171fF", "#fF7151", "#519951"]
67 unique_class = self.get_class(prototypes)
68 return {unique_class[i]: color_list[i % 3] for i in range(len(

unique_class))}
69

70 def get_class(self, prototypes) -> np.ndarray:
71 """
72 Gets the distinct class groups.
73 The function used in __init__
74 """
75 list_labels = []
76 for p in prototypes:
77 list_labels.append(p[1][0])
78 unique_class = list(set(list_labels)) # get rid of duplicates
79 unique_class.sort()
80 unique_class = np.array(unique_class, dtype=self.labeltype)
81 return unique_class
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82

83 def create_prototype_dict(self, prototypes, lr) -> dict:
84 """
85 Creates each prototype’s local values in __init__ part.
86 """
87 prototypes_dict = {}
88 for i, p in enumerate(prototypes):
89 prototypes_dict[i] = {"feature": p[0], "label": p[1], "lr":

lr}
90 return prototypes_dict
91

92 def sigmoid(self, x):
93 """
94 Activation function for loss
95 """
96 return 1 / (1 + np.exp(-x))
97

98 def prediction(self, x) -> str:
99 """

100 Function has one parameter, test features
101 Returns winner prototype number
102

103 Test features should be same lenght as the prototypes
104

105 Winner prototype is the closest prototype to the parameter
entered

106

107 Function has different distance functions for real values and
complex values

108

109 Real values: sum of square of feature diffrences
110 Complex values: sum of absolute value of feature diffrences
111 """
112 distance = None
113 for values in self.prototypes.values():
114 if self.datatype == np.csingle:
115 dist_p_x = np.sum(np.abs(values["feature"] - x) ** 2)
116 else:
117 dist_p_x = np.sum((values["feature"] - x) ** 2)
118

119 if distance is None:
120 distance = dist_p_x
121 winner = values["label"]
122 elif dist_p_x < distance:
123 distance = dist_p_x
124 winner = values["label"]
125 return winner
126

127 def local_loss(self, x) -> tuple:
128 """
129 Local loss used in model training
130 The model is GLVQ model, so we calculate two winners:

winner_true, winner_false
131

132 Winner_true: closest prototype to the sample with same class
than the sample

133 Winner_false: closest prototype to the sample with different
class than the sample
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134

135 Function returns loss, winner_true to sample distance,
winner_true, winner_false to sample distance, winner_false as tuple

136 All these values used in prototype update
137 """
138 x_feature, x_label = x
139 d_1 = None
140 d_2 = None
141 for prototype, values in self.prototypes.items():
142 if self.datatype == np.csingle:
143 dist_p_x = np.sum(np.abs(values["feature"] - x_feature)

** 2)
144 else:
145 dist_p_x = np.sum((values["feature"] - x_feature) ** 2)
146 if values["label"] == x_label:
147 if d_1 is None:
148 d_1 = dist_p_x
149 winner_true = prototype
150 elif dist_p_x < d_1:
151 d_1 = dist_p_x
152 winner_true = prototype
153 else:
154 if d_2 is None:
155 d_2 = dist_p_x
156 winner_false = prototype
157 elif dist_p_x < d_2:
158 d_2 = dist_p_x
159 winner_false = prototype
160

161 loss = self.sigmoid((d_1 - d_2) / (d_1 + d_2))
162 return loss, d_1, winner_true, d_2, winner_false
163

164 def train(
165 self,
166 num_epochs: int,
167 training_set: list[tuple[np.array, np.array]],
168 test_set: list[tuple[np.array, np.array]],
169 optimizer: callable,
170 validation_set: list[tuple[np.array, np.array]] = None,
171 f_score_beta: float = 1,
172 sample_number: dict = None,
173 ) -> dict:
174 """
175 Trains the model.
176 If validation_set is not None, the loss will be calculated with

the validation set.
177 Else, the loss will be calculated with the training set.
178

179 Trains the model returns history of the model as dictionary
180 history = {
181 history of learning rate for each prototype,
182 history of loss,
183 history of accuracy,
184 history of f-score (weighted f-score)
185 }
186 To reach history of any prototype’s learning rate use history["

lr"][prototype_number]
187
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188 Parameters:
189 - num_epochs: number of epochs
190 - training_set: list of tuples (feature, label)
191 - test_set: list of tuples (feature, label)
192 - optimizer: function to update the learning rate
193 - validation_set: validation set list of tuples (feature, label

)
194 - f_score_beta: beta value for f-score calculation default = 1
195 - sample_number: dictionary of sample numbers for each class (

class_name: sample_number)
196

197 sample number is used for weighted f-score calculation
198

199

200 """
201

202 if len(self.classes) == 1:
203 print("Error: there is only one class in the prototypes")
204 return
205

206 if sample_number is None:
207 print("Error: sample_number is None")
208 return
209

210 sum_samples = sum(sample_number.values())
211 sample_weight = {
212 class_num: sample / sum_samples
213 for class_num, sample in sample_number.items()
214 }
215

216 if f_score_beta == int(f_score_beta):
217 f_name = int(f_score_beta)
218 else:
219 f_name = f_score_beta
220

221 for epoch in range(num_epochs):
222 # Clear accurence_frequncy
223 for values in self.prototypes.values():
224 values.update({"a": 0, "b": 0, "c": 0, "d": 0})
225

226 # Clear loss
227 global_loss = 0
228

229 for x in training_set:
230 x_feature, x_label = x
231 loss, d_1, winner_true, d_2, winner_false = self.

local_loss(x)
232 x_prediction = self.prediction(x_feature)
233

234 # Update global_loss
235 if validation_set is None:
236 global_loss += loss
237

238 # Update accurence_frequncy
239 for values in self.prototypes.values():
240 if values["label"] == x_prediction and x_label ==

x_prediction:
241 values["a"] += 1
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242 elif values["label"] == x_prediction and x_label !=
x_prediction:

243 values["b"] += 1
244 elif values["label"] != x_prediction and x_label ==

x_prediction:
245 values["c"] += 1
246 elif values["label"] != x_prediction and x_label !=

x_prediction:
247 values["d"] += 1
248

249 # Update learning rate
250 for values in self.prototypes.values():
251 optimizer(values=values, global_lr=self.global_lr)
252

253 # Update prototypes
254 common_multiplier = 4 * loss * (1 - loss) / ((d_1 + d_2

) ** 2)
255

256 ## update winner_true
257 self.prototypes[winner_true]["feature"] += (
258 self.prototypes[winner_true]["lr"]
259 * common_multiplier
260 * d_2
261 * (x_feature - self.prototypes[winner_true]["

feature"])
262 )
263

264 ## update winner_false
265 self.prototypes[winner_false]["feature"] -= (
266 self.prototypes[winner_true]["lr"]
267 * common_multiplier
268 * d_1
269 * (x_feature - self.prototypes[winner_false]["

feature"])
270 )
271

272 if validation_set is not None:
273 for x in validation_set:
274 loss, _, _, _, _ = self.local_loss(x)
275 global_loss += loss
276 global_loss /= len(validation_set)
277 else:
278 global_loss /= len(training_set)
279

280 # Calculate f-score and accuracy
281 correct = 0
282 f_dict = {}
283 for x in self.classes:
284 f_dict[x] = {"TP": 0, "FP": 0, "FN": 0, "TN": 0}
285

286 for x in test_set:
287 x_feature, x_label = x
288 x_prediction = self.prediction(x_feature)
289

290 ## accuracy counter
291 if x_prediction == x_label:
292 correct += 1
293
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294 ## f-score counter
295 for class_name, value in f_dict.items():
296 if x_prediction == x_label:
297 if x_prediction == class_name:
298 value["TP"] += 1
299 else:
300 value["TN"] += 1
301 else:
302 if x_prediction == class_name:
303 value["FP"] += 1
304 else:
305 value["FN"] += 1
306

307 ## calculate accuracy
308 acc = correct / len(test_set)
309

310 ## calculate f-score
311 for class_name, value in f_dict.items():
312 if value["TP"] == 0:
313 score = 0
314 else:
315 precision = value["TP"] / (value["TP"] + value["FP"

])
316 recall = value["TP"] / (value["TP"] + value["FN"])
317 score = (
318 (1 + (f_score_beta**2))
319 * precision
320 * recall
321 / (((f_score_beta**2) * precision) + recall)
322 )
323 f_dict[class_name] = score
324 weighted_f_score = 0
325 for class_name, value in f_dict.items():
326 weighted_f_score += value * sample_weight[class_name]
327

328 self.epoch += 1
329

330 # Update history
331 ## Update lr_history
332 for i, values in enumerate(self.prototypes.values()):
333 self.history["lr"][i].append(values["lr"])
334 ## Update loss_history
335 self.history["loss"].append(global_loss)
336 ## Update accuracy_history
337 self.history["accuracy"].append(acc)
338 ## Update f_score_history
339 self.history["f_score"].append(weighted_f_score)
340

341 if epoch % 10 == 0 or epoch == num_epochs:
342 print(
343 f"Epoch: {self.epoch}, Loss: {global_loss:.4f},

Accuracy: {acc*100:.2f} %, F_{f_name}_score: {weighted_f_score

*100:.2f} %"
344 )
345 return self.history
346

347 def lr_graph(self, title: str = None, marker: str = None) -> plt.
figure:
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348 """
349 Shows learning rate graph for each prototype in combined graph
350 Prototypes are grouped by their class with different colors (

for now max 3 colors)
351

352 Function uses matplotlib.pyplot library so use markers
according to matplotlib.pyplot library

353 Parameters:
354 - title: title of the graph
355 - marker: marker of the graph
356 """
357 used_labels = []
358 fig, ax = plt.subplots(figsize=(10, 10))
359 for prototype_name, lr in self.history["lr"].items():
360 if self.prototypes[prototype_name]["label"][0] in

used_labels:
361 label = None
362 else:
363 label = self.prototypes[prototype_name]["label"][0]
364 used_labels.append(label)
365 ax.plot(
366 range(self.epoch),
367 lr,
368 label=label,
369 color=self.colors[self.prototypes[prototype_name]["

label"][0]],
370 linestyle="dashed",
371 marker=marker,
372 )
373 plt.xlabel("Epoch (t)", fontsize=25, weight="bold")
374 plt.legend()
375 plt.yticks(fontsize=20)
376 plt.xticks(fontsize=20)
377 if title:
378 plt.title(title, fontsize=40)
379 plt.show()
380 return fig
381

382 def acc_graph(self, title: str = None) -> plt.figure:
383 """
384 Shows accuracy graph of the model
385

386 Function uses matplotlib.pyplot library so use markers
according to matplotlib.pyplot library

387 Parameters:
388 - title: title of the graph
389 """
390 fig, ax = plt.subplots(figsize=(10, 10))
391 ax.plot(
392 range(self.epoch),
393 self.history["accuracy"],
394 )
395 plt.xlabel("Epoch (t)", fontsize=25, weight="bold")
396 plt.ylim(0, 1.01)
397 plt.yticks(
398 np.arange(0, 1.01, step=0.2),
399 ["0%", "20%", "40%", "60%", "80%", "100%"],
400 fontsize=20,
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401 )
402 plt.xticks(fontsize=20)
403 if title:
404 plt.title(title, fontsize=40)
405 plt.show()
406 return fig
407

408 def f1_graph(self, title: str = None) -> plt.figure:
409 """
410 Shows weighted f-score graph of the model
411

412 Function uses matplotlib.pyplot library so use markers
according to matplotlib.pyplot library

413 Parameters:
414 - title: title of the graph
415 """
416 fig, ax = plt.subplots(figsize=(10, 10))
417 ax.plot(
418 range(self.epoch),
419 self.history["f_score"],
420 )
421 plt.xlabel("Epoch (t)", fontsize=25, weight="bold")
422 plt.ylim(0, 1.01)
423 plt.yticks(
424 np.arange(0, 1.01, step=0.2),
425 ["0%", "20%", "40%", "60%", "80%", "100%"],
426 fontsize=20,
427 )
428 plt.xticks(fontsize=20)
429 if title:
430 plt.title(title, fontsize=40)
431 plt.show()
432 return fig

Optimizers

1 """
2 File contains optimizer functions for the learning rate of cognitive

GLVQ (CGLVQ) model.
3 """
4

5 import numpy as np
6

7 __author__ = " Mert Saruhan "
8 __maintainer__ = " Mert Saruhan "
9 __email__ = " mertsaruhn@gmail.com "

10

11

12 # Update the learning rate of the prototypes
13 def middle_symmetry(
14 values: dict, global_lr: float, lr_alpha: float = 1, lr_beta: float

= 0
15 ) -> None:
16 """
17 updates the learning rate of the prototypes based on the middle

symmetry with alpha = 1 and beta = 0
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18 """
19 if values["a"] == 0:
20 R = 0
21 else:
22 R = (values["a"] + (lr_beta * values["d"])) / (
23 values["a"]
24 + (lr_beta * values["d"])
25 + values["b"]
26 + (lr_alpha * values["c"])
27 )
28 updated_lr = global_lr * (1 - R)
29 values.update({"lr": updated_lr})
30

31

32 def conditional_probability(values: dict, global_lr: float) -> None:
33 """
34 updates the learning rate of the prototypes based on the

conditional probability
35 """
36 if values["a"] == 0:
37 R = 0
38 else:
39 R = values["a"] / (values["a"] + values["b"])
40 updated_lr = global_lr * (1 - R)
41 values.update({"lr": updated_lr})
42

43

44 def dual_factor_heuristic(values: dict, global_lr: float) -> None:
45 """
46 updates the learning rate of the prototypes based on the dual

factor heuristic
47 """
48 if values["a"] == 0:
49 R = 0
50 else:
51 R = values["a"] / np.sqrt(
52 (values["a"] + values["b"]) * (values["a"] + values["c"])
53 )
54 updated_lr = global_lr * (1 - R)
55 values.update({"lr": updated_lr})
56

57

58 def loose_symmetry(values: dict, global_lr: float) -> None:
59 """
60 updates the learning rate of the prototypes based on the loose

symmetry
61 """
62 if values["a"] == 0:
63 if values["b"] == 0:
64 R = 0
65 else:
66 R = (values["b"] * values["d"] / (values["b"] + values["d"

])) / (
67 (values["b"] * values["d"] / (values["b"] + values["d"

])) + values["b"]
68 )
69 elif values["b"] == 0:
70 if values["c"] == 0:
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71 R = 1
72 else:
73 R = values["a"] / (
74 values["a"] + (values["c"] * values["a"] / (values["c"]

+ values["a"]))
75 )
76

77 else:
78 R = (
79 values["a"] + (values["b"] * values["d"] / (values["b"] +

values["d"]))
80 ) / (
81 values["a"]
82 + (values["b"] * values["d"] / (values["b"] + values["d"]))
83 + values["b"]
84 + (values["c"] * values["a"] / (values["c"] + values["a"]))
85 )
86 updated_lr = global_lr * (1 - R)
87 values.update({"lr": updated_lr})
88

89

90 def loose_symmetry_rarity(values: dict, global_lr: float) -> None:
91 """
92 updates the learning rate of the prototypes based on the loose

symmetry with rarity
93 Loose symmetry with rarity is loose symmetry when d -> infinty
94 """
95 if values["a"] == 0:
96 if values["b"] == 0:
97 R = 0
98 else:
99 R = 0.5

100

101 elif values["b"] == 0:
102 if values["c"] == 0:
103 R = 1
104 else:
105 R = values["a"] / (
106 values["a"] + (values["c"] * values["a"] / (values["c"]

+ values["a"]))
107 )
108 elif values["c"] == 0:
109 R = (values["a"] + values["b"]) / (values["a"] + (2 * values["b

"]))
110

111 else:
112 R = (values["a"] + values["b"]) / (
113 values["a"]
114 + (2 * values["b"])
115 + ((values["a"] * values["c"]) / (values["a"] + values["c"

]))
116 )
117 updated_lr = global_lr * (1 - R)
118 values.update({"lr": updated_lr})
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SP and NSP Results

SP Results

Experiment 1

(a) Training set (b) Test set

Figure B.1: SP and NSP balanced datasets sample distribution.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.2: SP dataset accuracy score and learning rate results under CP model using
balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.3: SP dataset accuracy score and learning rate results under DFH model using
balanced dataset using balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.4: SP dataset accuracy score and learning rate results under MS model using
balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.5: SP dataset accuracy score and learning rate results under LS model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.6: SP dataset accuracy score and learning rate results under LSR model using
balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.7: SP dataset accuracy score and learning rate results under OGLVQ model
using balanced dataset.
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Experiment 2

(a) Training set (b) Test set

Figure B.8: SP and NSP imbalanced datasets sample distribution.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.9: SP dataset F1 score and learning rate results under CP model using imbal-
anced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.10: SP dataset F1 score and learning rate results under DFH model using imbal-
anced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.11: SP dataset F1 score and learning rate results under MS model using imbal-
anced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.12: SP dataset F1 score and learning rate results under LS model using imbal-
anced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.13: SP dataset F1 score and learning rate results under LSR model using imbal-
anced dataset.

100



APPENDIX B. SP AND NSP RESULTS

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.14: SP dataset F1 score and learning rate results under OGLVQ model using
imbalanced dataset.
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NSP Results

Experiment 1

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.15: NSP dataset accuracy score and learning rate results under CP model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.16: NSP dataset accuracy score and learning rate results under DFH model using
balanced dataset using balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.17: NSP dataset accuracy score and learning rate results under MS model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.18: NSP dataset accuracy score and learning rate results under LS model using
balanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.19: NSP dataset accuracy score and learning rate results under LSR model using
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.20: NSP dataset accuracy score and learning rate results under OGLVQ model
using balanced dataset.

Experiment 2

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.21: NSP dataset F1 score and learning rate results under CP model using imbal-
anced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.22: NSP dataset F1 score and learning rate results under DFH model using
imbalanced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.23: NSP dataset F1 score and learning rate results under MS model using im-
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.24: NSP dataset F1 score and learning rate results under LS model using imbal-
anced dataset.

(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.25: NSP dataset F1 score and learning rate results under LSR model using im-
balanced dataset.
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(a) ϵ(0) = 0.01 (b) ϵ(0) = 0.03 (c) ϵ(0) = 0.1

Figure B.26: NSP dataset F1 score and learning rate results under OGLVQ model using
imbalanced dataset.
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