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Abstract:

Machine learning models for timeseries have always been a special topic of interest due to
their unique data structure. Recently, the introduction of attention improved the capabilities
of recurrent neural networks and transformers with respect to their learning tasks such as
machine translation. However, these models are usually subsymbolic architectures, making
their inner working hard to interpret without comprehensive tools. In contrast, interpreta-
ble models such learning vector quantization are more transparent in the ability to interpret
their decision process. This thesis tries to merge attention as a machine learning function
with learning vector quantization to better handle timeseries data. A design on such amodel
is proposed and tested with a dataset used in connection with the attention based transfor-
mers. Although the proposed model did not yield the expected results, this work outlines
improvements for further research on this approach.
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1 Introduction

Attention has gained a lot of popularity in recent years since its introduction in 2014 [1, 2].
Especially since the introduction of the transformer networks [3], which utilize attention in
their layers, attention has become a viable component in the processing of sequential data.
Learning sequential data in conjunction with Learning Vector Quantization (LVQ) learning
schemes is a special topic of interest because of the special data structure sequential data
provides. Attempts have been in the past to combine learning on sequential data together
with LVQ based algorithms, utilizing techniques such as using recurrent processing [4] or
special distance measures embedded into LVQ [5].

This thesis aims to integrate attention based learning with LVQ. The objective is to keep pro-
cessing as straightforward as possible to retain interpretability, or at least, to not complicate
the interpretation of such a model. Therefore, attention will be discussed in great depth to
gain a comprehensive understanding of its vast variety of existing designs. Based on this
understanding, a design will be proposed to be set up in conjunction with LVQ.

Preliminary knowledge will be provided in Preliminaries. This includes basic information
on topics discussed in this thesis, covered in Machine Learning Concepts and Mathematical
Concepts. When appropriate, these basics will be referenced to facilitate easy navigation for
the reader through the thesis. Knowledgable readers may skip Preliminaries and proceed
directly to the next chapter.

In upcoming chapter, attention will be explored in great depth, as previously mentioned.
First, attention will be analyzed from a neurological and psychological (neuroscientific) per-
spective. Given othermodels have been inspired by biologicalmodels in the past, this section
will start by analyzing the potential connection between recent AttentionModel (AM) and the
biological background. Subsequently, attention will be discussed in regard to its application
inmachine learning. Attention is probably most known for its use in transformermodels. To
fully grasp the origins and purpose of attention, an evolutionary presentation into Recurrent
Neural Networks (RNN) models and the development of attention will be presented. Having
built an introductary understanding on attention and its fundamentals, attention will be pre-
sented in its generalized form. There, all parameters will be defined and presented in all its
variations. A comprehensive review of attention and its different designs will be presented.
The attention chapter will be concluded with a taxonomy on attention.

Next, LVQ will be explained, along its variations: Generalized Learning Vector Quantization
(GLVQ) and Generalized Matrix Learning Vector Quantization (GMLVQ). With all these fun-
damentals brought together, different variations of an attention-based LVQ model will be
introduced. The proposed model design will be composed out of an attention layer, a down-
sampling layer and LVQ layer forming the backend layer. Various model configurations will
be tested with different hyperparameter settings in the experiments chapter. Results and
potentional enhancements in the model’s design will also be discussed there.
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Note that throughout this thesis, vectors will be presented boldfaced in lowercase letters, i.e.
x,α, and matrices will be boldfaced in capital letters, i.e. A,Ω. Sequences will usually be
written as (xi)ni=1 for a sequence of length n beginning with an element at i = 11. The scalar
product of two vectors x1,x2 ∈ Rn is denoted by xT

1 x2. Due to the wide range of topics
introduced in this thesis, some of will receive only a brief explanation. Interested readers
can consult the provided sources for more in-depth information.

1In the chapter Conclusion under Input Dimensionality and Embedding Representation Dynamics, a sequence will
be given as a lowercase lettered matrix x to use the notation of the referenced paper.



Chapter 2: Preliminaries 3

2 Preliminaries

This chapter introduces concepts and definitions which are helpful to get a deeper under-
standing on upcoming topics. These might be already known to an experienced reader.
Therefore, it is not strictly necessary to read this chapter to understand the main topic of
this thesis. These preliminaries will be referenced, such that in doubt the reader will be able
to backtrack definitions and to get a deeper understanding on the discussed topics. The pre-
liminaries include machine learning concepts and mathematical concepts. Note, these topics
are deeply intermingled since they associate on a wide scale.

2.1 Machine Learning Concepts

Neural Networks

An artificial neuron is a computing unit inspired by its biological counterpart. For the sake of
brevity it will be referred as neuron. It takes some weighted input and outputs a scalar value.
Usually, a greater number of such neurons are arranged in a way such that they are capable
of solving learning tasks. Such constructions are called neural networks.

Definition 2.1 (Neuron)
Let x ∈ Rn be some input to the neuron [6, p.10] and w ∈ Rn associated synaptic weights.
Denote the bias as b ∈ R. The pre-activation computation u is calculated as

u =

n∑
i=1

xiwi + b

= wTx+ b

The resulting calculation is then fed into the activation function yielding the output y of the
neuron.

y = f(u)

When speaking about activation functions usually non-linear activation functions are consid-
ered. The usage of linear activation functions is only able to separate linearly separable data
for any number of used neurons [7, p.168][8]. Further, by Cybenko’s theorem it was also
shown, that the usage of non-linear activation functions being discriminatory and sigmoidal
(monotonically increasing and bounded) can approximate any continuous function with a
single hidden layer of finite neurons arbitrarily well [9, 10].
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Definition 2.2 (Activation Function)
An activation function f is a monotonically increasing mapping

f : R → U ⊆ R

Its role is to add non-linearity to solve learning tasks on non-linearly separable data [11].

Remark 2.3
If U is bounded such activation functions are called squashing functions [11].

Example 2.4
Table 2.1 shows widely known activation functions. More examples and a comprehensive
taxonomy can be found in [8, 11].

Name Function Range U ∈ R

Identity id(a) = a (−∞,∞)

Heaviside H(a) =

{
0 if a < 0

1 else
{0, 1}

Bipolar B(a) =

{
−1 if a < 0

1 else
{−1, 1}

Sigmoid σ(a) = 1
1+exp(−a) (0, 1)

Hyperbolic Tangent tanh(a) = exp(x)−exp(−x)
exp(x)+exp−x (−1, 1)

Rectified Linear Unit (ReLU) ReLU(x) = max(0, x) (0, 1)

Swish Swish(x) = x
1+exp(−βx) (−∞,∞)

Table 2.1: Exemplary Activation Functions

Property 2.5
Activation functions should hold the following properties to learn non-linear and abstract
features [8].

1. Non-linearity
2. Computational Efficiency
3. Smoothness/Differentiability
4. Statistical preservation
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Feedforward Network

Feedforward networks are neural networks where information flows only in one direction. A
data point x ∈ R is fed into an input layer of neurons and the computed information flows
into succeeding layers, until an output is calculated. The layer, which processes the input, is
called the input layer. Additionally, the layer, which computes the output, is called the output
layer, while all the intermediate layers, are called the hidden layers [7, pp.163].

Convolutional Neural Network

Convolutional neural networks (CNN) are feedforward networks, which are widely used in
pattern recognition learning tasks. Often these pattern recognition tasks are performed on
image data. The special mechanism, they apply, is creating feature extraction maps in a con-
volutional layer. Convolution is the process of sliding a filter over the pattern data, creating
a convolved output. This data is then averaged and subsampled. These processing steps
make the pattern recognition insensitive to shifts and distortions [6, p.201].

Supervised and Unsupervised Learning

In supervised learning tasks the dataset is presented in such a way, that each datasample is
associated with either a labeled or a target (classification and regression respectively). The
learning scheme is centered around finding a function f , which estimates f(x) = ŷ with ŷ

being the prediction and y being either the target or class associated with the datasample x

[7, p.102].

Unsupervised learning, on the other hand, does not make use of labels, such that these learn-
ing algorithms receive only the data x ∈ X as input. In this learning scheme the objective
is to learn either the datastribution or to cluster the complete dataset into different clusters
with similar features [7, p.102].

Regression

Regression can be considered as a specific type of supervised learning task. A regression
model is amapping f : Rn → R for some data samplex ∈ Rn. The predicted value is a scalar
ŷ ∈ R [7, p.98]. In such learning tasks, we can consider the given data as a set of random
variables, where the random variable, to be predicted, is called the response. The response is
denoted as ŷ. The remaining random variables are considered independent and are called
regressors. These relate to the features of the data space X ⊆ Rn and the input variables
x ∈ X themselves [6, p.68]. Note, though we can consider the data as a representation of
random variables, the values which we learn on are fixed observations.
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Classification

Similar to Regression, a classification is a specific type of learning task. Classification can be
learned in a supervised and unsupervised learning scheme. Instead of estimating a value on
some given input, the model predicts a class for such input. Let x ∈ Rn some labeled data
sample with C different labels. A prediction model f : Rn → [0, 1]C returns a distribution
of probabilities over all given classes {1, . . . , C} [12, p.179]. Models making predictions on
class affiliations are also known as classifiers. A label is an affiliation of the data sample x to
a class. The indication function c : Rn → {1, . . . , C} returns the predefined label of some
labeled data sample, i.e. the label of x is given as c(x). The component, with the highest
probability returned by the probabilistic predictionmodel, will represent the given prediction
by the model.

Other classifiers can also be defined as f : Rn → {1, . . . , C}, where the classifier returns only
the predicted class instead of a probability distribution, hence a correct prediction f(x) for
some arbitrary data sample x ∈ Rn is given as f(x) = c(x) [7, p.97].

Kernel

A kernel, denoted asK : U×U → R, defines an inner product within a feature space F , with
the important property that there exists a mapping function ϕ : U → F . What makes this
property significant is that the kernel value k(x,y) = ⟨ϕ(x), ϕ(y)⟩ = ϕ(x)Tϕ(y) can be com-
puted directly within the data space, without requiring explicit knowledge of the mapping to
the feature space. Kernels find extensive use in machine learning, particularly for address-
ing non-linear problems using linear classifiers. They achieve this by transforming the input
data into higher-dimensional spaces where it becomes linearly separable. The function ϕ

responsible for mapping data into higher-dimensional spaces is referred to as feature map,
and the resulting space is known as the feature space. Importantly, these feature maps are
inherently non-linear in nature [7, p.137][13].

Training, Test and Validation sets

To be able to generalize on a dataset with a given learning task, we need to prepare the given
data in various ways. One key preparation step is to properly split the dataset into training,
test and validation sets. A training set is used to adjust parameters for a given machine learn-
ing model. Here, the objective is to create a model which is able to generalize from the given
training set with respect to the learning task. The test set is used to check the quality of the
model’s ability to generalize on the given learning task [12, p.2-3]. If the model performs
poorly on the test set, but very well on the training set, the model is said to over-fit[12, p.6].
The more complex, versatile and large the training set is and the better it represents the
complexity of the learning task, the more over-fitting can be avoided [12, p.9]. The validation
set is taken from the training set and is used to compare the model’s performance with dif-
ferent hyperparameter configurations. Hyperparameters are pre-configurable parameters
in machine learning models [12, p.32].
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a special gradient descent learning scheme for some
machine learning model f ∈ F. Gradient descent is an iterative optimization method, where
weight vectors w ∈ Rn at time t are updated based on a calculated gradient of the given
weight vector and the training set with respect to an overall error function E [14, pp.421].
The error function quantifies the regression or prediction error of the model with respect
to its inputs. Further, the error function is required to be differentiable. The overall loss is
described over the local losses l of the given data samples. The error function is given as

E(f,X,W ) =
1

n

n∑
i=1

l(f(xi), yi) (Discrete Case)

=

∫
xi∈X

l(f(xi), yi) dP (z) (Continuous Case)

with

f ... machine learning model
x ∈ X ⊆ Rn... data sample taken from training set
y ∈ Y ⊆ R ... label or regression value associated with a data sample
W ... set of learnable parameters
l ... local loss function
P (z) ... data distribution
z ... a pair of data sample and label (x, y)

The objective is to minimize the loss function by using the gradient to update the weight
vectors. The update for some learnable parameterw ∈ W at time t+ 1 is given as

w(t+ 1) = w(t)− α
∂l(X,W )

∂w(t)

The hyperparameter α > 0 denotes the learning rate and the size of the training set is given
as |X| = n. If the learning rate is properly chosen according to themagnitude of the gradient,
convergence can be guaranteed [15][16, pp.30].

A properly sized training set is required to properly generalize on a given learning task. With
a growing training set, the computational complexity of the gradient descent method grows
according to the model’s computational complexity. SGD is a simplification of the gradient
descent method by taking a random sample x ∈ Rn from the training set and estimating the
overall gradient [7, p.147-148][16, p.422]. Here, instead of only a single sample, also a mini
batch B = {x1, . . . ,xm} with m being the batch size can be used. The update for learnable
parameterw for SGD is given as

w(t+ 1) = w(t)− α
∂E({x},W )

∂w(t)
(Single Sample Version)

= w(t)− α
∂E(B,W )

∂w(t)
(Batch Version)
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where the learning rate is for convergence conditioned with [16, p.424]

∞∑
i=1

α2
i < ∞

∞∑
i=1

αi = ∞

αi ≥ 0

Entropy

Entropy will be discussed mostly as an information theoretical concept, as introduced by
Shannon [17]. For clarity, we will briefly refer to the thermodynamic branch, where entropy
was introduced. In the context of information theory, entropy is a quantitative measure on
information density [18, p.4]. More strictly speaking, entropy can be interpreted as the amount
of randomness of a random variable, ameasure of uncertainty of a random variable or as average
quantity of information obtained by observing a random variable [18, p.20]. LetW be a channel
encoding some input sequence (xi)

n
i=1, transmitting the sequence and lastly decoding to an

output sequence (yi)ni=1. Such a channel can be interpreted as a conditional probability2 [18,
p.6]

W (y1, . . . , yn | x1, . . . , xn) = p(y1, . . . , yn | x1, . . . , xn) (2.1)

Definition 2.6 (Shannon Entropy)
Let X be a discrete random variable over a probability distribution PX with pi = P (X = xi)

and xi ∈ X . The Shannon entropy [17][18, p.20] ofX is given as

H(X) = H(PX) = EPX
[− logPX(X)]

= −
∑
xi∈X

P (X = xi) logPX(X = xi)

= −
∑
xi∈X

pi log pi

In statistical mechanics, a related branch of thermodynamics, the probability of a microstate
i with some energy εi is given as

pi =
exp

(
−εi
kbT

)
∑

j exp
(
−εj
kbT

)

2The source differentiates between a source encoder/decoder and channel encoder/decoder. For the sake
of simplicity, we omit these distinctions. At a later point in this thesis, recurrent neural networks will be
introduced. These estimate for an input sequence an output sequence. The given form looks very similar.
This is used in distribution functions in sparsemax and entmax later on.
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This equation is known as the Boltzmann distribution [17]. Here, kb is the Boltzmann constant
and T the temperature. The attentive reader will quickly notice, by setting kbT = −1, we
yield the softmax function. Note, p(εi) ∝ e−βεi , which shows the relation to exponential
distribution families. From the Boltzmann distribution and the expectation of the energy
level U =

∑
i piεi the Gibbs-Boltzmann-Shannon Entropy can be derived [19].

Definition 2.7 (Gibbs-Boltzmann-Shannon Entropy)
LetX be some discrete random variable over a probability distribution PX with pi = P (X =

xi). Then, the Gibbs-Boltzmann-Shannon Entropy [19, 20] is given as

HS(X) = HS(PX) = EPX
[− lnPX(X)]

= −
∑
xi∈X

pi ln pi

Remark 2.8
Note, in some literature a more physical representation of the Gibbs-Boltzmann-Shannon en-
tropy is given as [17]

HS(X) = −kb
∑
xi∈X

pi ln pi

incorporating the Boltzmann-constant kb.

Remark 2.9
By deriving the Gibbs-Boltzmann-Shannon from a thermodynamic perspective, we connected
the softmax function to entropy and set e as the basis of the log function.

Next, we will introduce the Gini Entropy, which is also known as the Gini index. It is commonly
known as a measure for income inequality in the field of economics [21, p.39]. In machine
learning, it is known as cost function used in decision trees for optimally constructing such
trees [12, p.681]. We define the Gini Entropy according to [20].

Definition 2.10 (Gini Entropy)
Considering the same assumptions as in Gibbs-Boltzmann-Shannon Entropy, we define the
Gini entropy for pi = P (X = xi) as

HG(X) =
1

2

∑
xi∈X

pi(1− pi)
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Lastly, we will introduce a generalization3. Tsallis generalized on issues like the behavior
of self-gravitating systems (black holes, galaxies), neutral plasma, single hydrogen atoms or
a single spin in an external magnetic field, where the Gibbs-Boltzmann calculations do not
hold [23]. First, we define the q-logarithm [22].

Definition 2.11 (q-logarithm)
Let x ∈ R+ and q ∈ R. We define the q-logarithm as

lnq x =

{
lnx if q = 1
x1−q−1
1−q otherwise

Property 2.12
Let lnq be the q-logarithm. We have

lim
q→1

lnq x = lnx

Property 2.12 follows by applying L’Hospital’s rule in solving the limit.

Definition 2.13 (Tsallis Entropy)
Considering the same assumptions as in the previous entropy definitions, we define the
Tsallis entropy [22–24] for pi = P (X = xi) as

HT
q (X) =

∑
xi∈X

pi lnq

(
1

pi

)

=
1

1− q

∑
xi∈X

pqi − 1



Assuming we do not have an indifferent probability distribution, implying we cannot assign
probabilities pi = 1

n for 1 ≥ i ≥ n, we are given the task to find probabilities pi to some
given constraint, i.e. the mean value. This is commonly known as underdetermined problem,
because there are many probability values which can satisfy the constraint [25, p.38]. The
maximumentropy principlemaximizes the entropy given such constraint. In otherwords, we
estimate the probabilities for a random variable X given limited information about the sys-
tem, while still maximizing the entropy. By solving this task, the optimal set of probabilities
p∗ with respect to the entropy is the least biased solution in terms of making assumptions
about the given system [26] [25, p.38-39].

3Among others, the Rényi entropy generalizes the entropy concept. Since there is no further use for other
entropies, we omit an investigation of other entropies. For the sake of completeness, it is mentioned at this
point. More on the Rényi entropy and an axiomatization of entropy can be found in [22].
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Definition 2.14 (Maximum Entropy Principle)
LetX be a random variable with probability pi = P (X = xi). Themaximum entropy principle
maximizes the entropy H(X) given a constraint E[ϕα(X)] = µ̂α with ϕα(X) : X → R, α ∈
N and E being the expectation value4. Hence, the maximum entropy principle finds a set
of probabilities p∗ = [p∗1, . . . , p

∗
n], which maximizes the entropy. This defines the following

optimization problem

p∗ = argmax
p∈∆d

H(p)

subject to the expectation

E[ϕα(X)] = µ̂α

Note, the probability simplex∆d will be explained in detail in Affine Spaces and Simplices.

Remark 2.15
Assume we have an entropy optimization problem without constraint. Maximizing the en-
tropyH(X) yields pi = 1

n and minimizing the entropy yields setting some pi = 1 [26].

2.2 Mathematical Concepts

Basic Similarity

Definition 2.16 (Basic Similarity)
The basic similarity [27] is defined for some objects in the object spaceX as a mapping

sim : X ×X −→ R

with ∀x, y ∈ X

(1) Minimum Principle: sim(x, x) ≤ sim(x, y)

sim(x, x) ≤ sim(y, x)

(2) Non-negativity: sim(x, y) ≥ 0

Remark 2.17
In [27], a comprehensive taxonomy is built around the concepts similarity and dissimilar-
ity. The properties given in definition 2.16 define the most basic form of similarity. Further
similarities add further properties.

4Here, the function ϕα determines the kind of expectation value computed. For instance, if we choose ϕ2(x) =
x2, we effectively compute the second moment with the expectation value function [25, p.38].
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Affine Spaces and Simplices

Definition 2.18 (Affine Space)
Let V be a vector space and L a set of points. Then the tuple (L, V ) is called an affine space
[28, p.289], if each pair of points in L can be associated with a vector in V , hence

∀a, b ∈ L : ∃ #»

ab ∈ V

with the following conditions

∀a, b, c ∈ L :
#»

ab+
#»

bc = #»ac ∈ V

∀a, b, c ∈ L : ∃!d ∈ L :
#»

ab =
#»

cd ∈ V

∀a, b ∈ L and for all scalars γ : ∃!c ∈ L : #»ac = γ
#»

ab

Remark 2.19
The order of the points a, b ∈ L in the vector

#»

ab ∈ V is important. The point a is the initial
point and b is the terminal point.

Remark 2.20
In linear spaces, a vector can be located with respect to its origin. This property is dismissed
in affine spaces. Here, only the magnitude and direction of vectors, built by points, are con-
sidered. For this reason affine spaces can be called uniform [28, p.291]. Therefore, the order
of points ,as stated in remark 2.19, is important.

Proposition 2.21 (Vector Construction by Points)
Let V be a vector space, then (V, V ) is an affine space by considering a, b ∈ V as points and
setting L = V . Then the corresponding vector in V can be defined by points in L as [28,
p.290]

#»

ab = b− a

x

y

#»a

a

#»

b

b

#»

ab

Figure 2.1: Example with #»a = (1, 3) ∈ V and
#»

b = (3, 1) ∈ V and their respective points a, b ∈ L = V

and the vector
#»

ab ∈ V
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Definition 2.22 (Affine Combination)
Let (ai)ni=1 be a family of points in L and (γi)

n
i=1 a family of scalars with

∑n
i=1 γi = 1. The

association of points with weights are weighted points (ai, γi)ni=1. Then

n∑
i=1

γiai

is called the barycentric combination, affine combination, convex combination or barycenter of
points ai assigned to weights γi [29, p.19][30, p.8].

Definition 2.23 (Geometric Independence)
A set of points {ai}ni=0 ⊆ L is called geometrically independent [31, p.2] if for any scalar γi it
holds

n∑
i=0

γi = 0 ∧
n∑

i=0

γiai = 0 =⇒ γi = 0 for 0 ≥ i ≥ n

Proposition 2.24 (Geometric and Linear Independence)
Let {ai}ni=0 ⊆ L then we have

{ai}ni=0 is geometrically independent ⇐⇒ {ai − a0}ni=1 is linearly independent [31, p.3]

Proof: Let {(ai, γi)}ni=0 be a set of weighted geometrically independent points. We have

n∑
i=0

γiai = 0

n∑
i=1

γiai + γ0a0 = 0

Note, ai are geometrically independent, hence γi = 0 for 0 ≥ i ≥ n, we can write

n∑
i=1

γiai −
n∑

i=1

γia0 = 0

n∑
i=1

γiai − γia0 = 0

n∑
i=1

γi(ai − a0) = 0

Proposition 2.25 (Geometric Independence in Kn)
At maximum n+1 points can be geometrically independent inKn. This follows directly from
proposition 2.24.
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Definition 2.26 (n-Plane)
Let {(ai, γi)}ni=0 be a set of geometrically independent weighted points in some affine space
(L, V ). The n-plane P [31, p.3] is the set of points spanned by the affine combination

P =

{
n∑

i=0

γiai

∣∣∣∣∣
n∑

i=0

γi = 1

}

An n-plane P through a0 parallel to the vectors {ai − a0}ni=1 = { #     »a0ai}ni=1 is the set

P =

{
a0 +

n∑
i=1

γi(ai − a0)

∣∣∣∣∣
n∑

i=1

γi = 1

}

Example 2.27
Let (R2,R2) be an affine space. The set of geometrically independent points {(1, 1), (5, 5)}
define a 2-plane and the set of geometrically independent points {(3, 1), (5, 5), (1, 5)} define
a 3-plane

x

y

(a) 2-plane in R2

x

y

(b) 3-plane in R2

Figure 2.2: n-planes in R2

Definition 2.28 (Standard n-Simplex)
Let (Rn+1,Rn+1) be an affine space. The n-plane defined by a vector of scalars γi ∈ R with

∆n =

{
(γ1, . . . , γn)

∣∣∣∣∣
n∑

i=1

γi = 1 ∧ γi ∈ [0, 1]

}

is called the standard n-simplex [32, p.103].

Remark 2.29
The vertices spanning the standard n-simplex are the unit vectors in Rn+1.
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Definition 2.30 (n-Simplex)
Let {ai}ni=0 be a set of geometrically independent points in the affine space (Rm,Rm) and γi
some scalars. The convex hull defined by

∆n =

{
n∑

i=0

γiai

∣∣∣∣∣
n∑

i=0

γi = 1 ∧ γi ∈ [0, 1]

}

is called the n-simplex [31, p.4].

x

y

z

(a) Standard 3-Simplex

x

y

z

(b) 3-Simplex in R3

Figure 2.3: Illustration of Simplices

Remark 2.31
While the barycentric coordinates γi of the n-plane can be negative, they must be non-nega-
tive in simplices.

Remark 2.32
The standard simplex is also known as the probability-simplex. A coordinate p = (p1, . . . , pn)

∈ ∆n contains probabilities over a discrete probability distribution on a random variable
X , i.e. pi = Pi(X = xi). Hence, the standard simplex is an n-manifold of all probability
distributions p [33, p.7].
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3 Attention

3.1 Neuroscientific Motivation

Before delving into mathematical and technical considerations about the most recent de-
velopments of attention [34], we will consider attention from a biological and psychological
perspective to get a better grasp on the semantics of the term and how we capture the me-
chanics of it mathematically.

Hommel published a paper “No one knows what attention is” in 2019 arguing that the term
is misused in the field of cognitive science [35]. Hommel further suggests that the term atten-
tion encapsulates toomany concepts which differ vastly or even are mutually exclusive up to
some degree. The struggle of neuroscientists to find a uniform definition for attention has
been ongoing for the past decades. Three different problems of the understanding attention
from a neurological point of view have been given by Hommel.

1. When considering attention as a set of cognitive and neural mechanisms which maxi-
mize the efficacy an efficiency regarding a task, we face the issue that almost any cog-
nitive mechanism falls into this point of view. This renders this understanding of atten-
tion redundant.

2. Attention is used in different contexts to explain opposing ideas, such as to be the
cause as well as to be the result from such an idea.

3. Facing overlapping semantical meaning of definitions with other concepts, i.e. atten-
tion and intention, lead to the approach of reducing the semantic overlap by pruning
the definitions. The problem of this approach is not taking into consideration that
these concepts are nested in a neurological dynamic not allowing having distinct static
definitions.

Since there was no success to find a coherent definition for attention, it is hard to pin down
the term attention to a specific region of the brain. Though the semantic variations of atten-
tion themselves can be linked to brain areas up to some degree of certainty. To enhance
the understanding of attention, we introduce some different notions of attention used in
neurosciences.

Proposition 3.1 (Attention by Arousal)
Attention is the ability to engage with an environment. The level of attention can be deter-
mined by the arousal, alertness or vigilance of a subject. The highest level of attention can be
found between the lowest and highest level of arousal. This is known as the Yerkes-Dodson-
curve, which resembles an inverted U-shape [36].

In proposition 3.1 we find a very generic and basic approach on how to define attention
[36]. Here peak attention is balanced between a mental under- and mental overload. This
phenomena is described by the Yerkes-Dodson curve shown in Figure 3.1. There the perfor-
mance is the measure for the level of attention shown. Attention can be further analyzed
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by focusing on different sensory inputs. In this neuroscientifc motivation the sensory input
discussed will be the visual sensory system. Given this restriction we can more easily point
out the different mechanics attention can actually involve.

Figure 3.1: Yerkes-Dodson Curve [36]

Attention can also be defined by a more biologically focused approach.

Proposition 3.2 (Attention as system of organs)
Attention is a system of organs with its own unique anatomy, connectivity, neuromodulators,
and functions [37].

We further discuss attention with the focus on the visual sensory system. Notice upcoming
proposals will still be held general, but can easily be referred to the visual sensory system.
Later on the discussion of attention mechanics will be specific to the visual system mecha-
nisms.

There are many ways how to further break down the term attention. In neuroscience we
can find alerting, orienting, executive, selective, divided, sustained attention andmanymore
[36–39]. In this introduction to the concepts of attention we will focus on selective attention.

Proposition 3.3 (Selective Attention)
Selective attention is the ability to filter stimuli within a sensory scopewith respect to a certain
filtering objective [40].

Attention can on the one hand be thought as a person focusing on a certain thing, while
on the other hand we can also consider it to be a person switching immediately to some
unexpected emerging impulse. These notions are captured by the following propositions.

Proposition 3.4 (Top-Down Attention)
In top-down attention the subject is given some sort of task where the subject actively is
trying to localize the requested stimulus [41].
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Proposition 3.5 (Bottom-Up Attention)
In bottom-up attention the subject is experiencing the stimulus passively, such that the exci-
tation can happen involuntarily. The cause for such excitation is the appearance of saliencies.
Saliencies are features which stand out in the environment attracting attention. These can be
described with saliency maps, which specify the features which cause this type of attention
[41].

Appending to proposition 3.5 these saliencies can be ranked by the level of sensitivity with
respect to the excitation, i.e. how low the threshold for excitation is to be found. Such salien-
cies can be color and size ranked as an effective saliency or the number of appearances and
closure of objects to be rather weak saliencies. A comprehensive list of such saliency ranking
can be found in [41].

As previously discussed the term attention can be ambiguous. Though we segment the con-
cept of attention into more refined terms, these can still be semantically overlapping. Given
a search task the subject will actively try to localize a certain feature in its visual field. Since
the subject is in themode of top-down attention, it can still be guided by stimuli of bottom-up
attention.

Example 3.6
Assume the task is to identify a letter of a given color in a text, i.e. a red letter in an otherwise
uniformly black text. Though, the subject clearly received a search task, the search can be
guided by stimuli in the peripheral vision, such that the eye movement is directed to the
salient stimulus [36, 41]. This is phrased as bottom-up attention guides top-down attention.

We can now further distinct how attention is being applied. The subject does not necessarily
need to look at the given feature of interest to be found by the search task. Hence, we can
distinguish by actually looking at the to be found letter and just being aware of its presence
without looking at it. These situations can be described by the concepts overt and covert
spatial attention.

Proposition 3.7 (Covert Attention)
Covert attention can be characterized by selectively focusing on a stimulus without conscious
awareness or overt movement of the sensory system towards the stimulus. This allows to mon-
itor the environment and react if a stimuli presents itself as relevant [42].

Proposition 3.8 (Overt Attention)
Contrary to covert attention the sensory system focuses on the stimulus causing the excitation.
Synonymously this type of attention can be named directed attention [42].
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Note, covert attention can be justified biologically. The retina’s point of sharpest resolution
is the fovea. Since it is a limited computational resource it is important to direct this sensor
with care [36]. At first glance the concepts of top-down/bottom-up and covert/overt attention
seem to be equivalent. But the concepts of these categories can overlap to some degree,
while still being different enough to not be equivalent.

Example 3.9
The situation of driving a car illustrates these concepts in a single scenario.
Covert Attention

A person driving a car needs to be aware of objects in traffic without redirecting its
sensory system towards such objects while still being aware of them peripherally. The
person needs to emphasize its focus on the location where the car is heading, i.e. the
road, which defines the purpose of covert attention. Such covert objects might be
pedestrian stepping, guardrails or any other obstacles.

Overt Attention
The direction of the sensory system to the road and immediate traffic illustrates overt
attention. Also considering an ambulance appearing and seeing it in the rear-view mir-
ror is overt attention, since the sensory system, i.e. visual system, is directed towards
the ambulance.

Top-Down Attention
As the driver is presumably heading for a destination, they are actively looking for land-
marks, street signs or following directions from the navigation system.

Bottom-Up Attention
Given some flashing lights appear in the peripheral view of the driver, i.e. ambulance
flashing lights, then this can trigger bottom-up attention.

Considering example 3.9 we can notice an overlap between these concepts, while still having
distinct considerations. Bottom-up and covert attention share the same property here of an
ambulance entering the peripheral vision, while bottom-up attention canbe considered to be
an automatic experiencing of the stimulus and covert attention a selective choice of a covert
stimulus. Still, we have the distinct effects such as that the bottom-up attention guides the
covert attention to become aware of the stimulus without redirecting our sensory system
towards the stimulus.

We enhance this example slightly, such that the driver is listening to the news on the radio,
where the information is shared that an ambulance is supposed to appear to the driver’s
vision. Then we can expect the driver to perform top-down attention actively searching for
the ambulance. If the ambulance’s flashlight appear peripherally, they can cause bottom-up
attention which then guides the top-down attention to the given search object. This example
shows that the distinction of attention concepts can have overlaps, while still beingmotivated
by different mechanics.

Proposition 3.10 (Spatial Attention)
Spatial attention characterizes selectively processing a stimulus causing alertness for atten-
tion at a specific location in a person’s surrounding space [36].
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Visual spatial attention can be also be connected with the terms bottom-up/top-down and
covert/overt attention as we did previously [36]. Consider example 3.9 where we have the
flashlights from the ambulance in our peripheral vision. Since the attention is directed to the
location of the ambulance, we could consider it visual spatial covert bottom-up attention. Now
consider the modification of the example that the person got notified via radio such that it
should be possible to see such an ambulance. The person now actively looks for it in specific
locations of its view, hence this is visual spatial overt top-down attention.

Proposition 3.11 (Feature Attention)
Feature attention also characterizes selectively processing a stimulus with a specific fea-
ture/saliency of the sensory domain, allowing for the detection and prioritization of infor-
mation relevant to the task at hand [36].

Figure 3.2: Illustration of the perception of the features color and orientation and how they are pro-
cessed distinctively. Each feature is associated on a master map to a location [43].

The same considerations can be done for feature attention as we did with spatial attention.
Considering again example 3.9 with the same scenario of having flash lights from the am-
bulance in the person’s peripheral vision. This could also be considered visual feature covert
bottom-up attention if we emphasize that the person is not focusing on the location but in-
stead on the feature of the salient stimulus. Also for the second scenario we can change it to
visual spatial overt top-down attention if again the focus is on the feature of the to be searched
object instead of its location.
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For visual attention we can identify that perception of visual features such as color, shape,
letters, words or clock times is each bound to a specific set of neurons [41]. This obser-
vation was shown by Treisman and Gelade with the introduction of Feature-Integration The-
ory of Attention (FIT), which among other things states that the first processing of stimuli to
the sensory system is done on each feature in parallel [44]. This preprocessing is named
preattentive processing. These features are roughly coded as spatial locations into a master
map. Though this observation was done on the visual sensory system, it also holds for other
sensory systems such as the auditory system [45]. It should be noted that original FIT was
adapted to certain aspects, where it did not hold specific conditions [43].

Figure 3.3: Attention Experiment

The binding of different features to an object has a possible side-effect of illusory conjunc-
tions. Consider the following experiment, that a subject is given a visual stimulus with col-
ored shapes. Figure 3.3 illustrates the situation with the neural computation. If the subject
is asked to name the shapes or colors it is likely that the subject is able to name them. But if
the subject is asked to name them in conjunction amix up is common. As Figure 3.2 suggests
locally neighboring elements are subject to be mixed up in their conjunction [41].

This section should highlight how diffuse the concept of attention is and that it is necessary
to be very precise when speaking about attention in a neuroscientific manner. Also, the
manifold of interpretations and views on attention can inspire approaches on how to model
neural models involving these concepts. This is only a brief introduction and motivation on
the term attention from a neuroscientific view. There are many more aspects which can be
considered, possibly leading to new concepts in machine learning.

3.2 Computational Attention

In the previous section, we introduced some neuroscientific findings regarding attention.
Such findings are subject to creating computational models mimicking the analyzed bio-
logical mechanisms and/or psychological behavior. In this thesis, we will foremost discuss
attention-based neural networks as they were introduced in encoder-decoder Recurrent
Neural Networks (RNN) [1, 2]. Note, there have been attempts to develop attention based
models before. For instance, there is a model emphasizing on using feature integration the-
ory. There, a saliency map is utilized to spatially detect objects of interest as it was discussed
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in proposition 3.5[46, 47]. Also, other types of bottom-up approaches have been developed
which can be found in [48]. Interestingly, recently it has been discussed that CNN (see pre-
liminary section Convolutional Neural Network) perform selective attention [49].5

Already in 1964, ideas similar to the attention of modern network architectures have been
developed. Here, some non-negative function δ maps over all data points (xi)

n
i=1 with a

query xj to compute a weight αi [50–52].

δ(xj ,xi) = αi

This weight αi represents the relevance of the data point xi to the query xj . This is then
weighted with the according response yi. Then, as a prediction, we have ŷ for the query xj

ŷ =
1

n

n∑
i=1

αiyi (3.1)

There is no biological motivation to be found in the original papers describing this procedure
for smooth regression analysis (see Regression). Yet, interpreting this with the neuropsycho-
logical knowledge on attention, this construction resembles the detection of saliencies with
respect to some specific observation. Further, it should be noted that it was suggested to
find the optimal function δ by trial and error.6

Ongoing, we will discuss different kinds of attention models and show in which context they
were implemented. Certain models will be briefly explained, since they are not of main inter-
est in this thesis. For further reading, sources are given at the introduction of such a model.
To give appropriate context to the development of these models, necessary underlying ar-
chitectures will be introduced briefly.

3.2.1 Prerequisites

As mentioned before, the Attention Model (AM) was introduced to improve on encoder-de-
coder RNN. Basic RNN are neural networks with a special architecture which can process
input data of variable length, i.e. sequential data [7, p.364].

Definition 3.12 (RNN)
Let (xi)

n
i=1 ⊆ Rk be sequential data of variable length n. A RNN is a neural network taking

the sequence x as input and processing it sequentially. At each time step t a hidden state
h ∈ Rl is being computed memorizing information of the previously processed inputs. We
have

ht = f(ht−1,xt,Θ)

where

5As a sidenote, CNN are also used to better interpret the visual system from a biological perspective. Currently,
very similar processing is assumed to happen in the biological processing of optic input to the image process-
ing of CNN[49].

6The family of functions δn eligible for this process has some specific conditions like δn converges to the Dirac
function as n→∞.
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f ... is a non-linear activation function
Θ... are the learning parameters
t ... as index referring to an input 1 ≤ t ≤ n for (xi)

n
i=1

Note, this general definition focuses on the recursive architecture without explaining how
predictions ŷ are generated. RNNs can have different constructions; to give a better under-
standing on RNNs, an example is presented.

Example 3.13
An RNN could be constructed as follows

at = b1 +Wht−1 +Uxt

ht = tanh(at)

ot = b2 + V ht

ŷt = softmax(ot)

with

at ∈ Rl ... input to the activation function
b1 ∈ Rl ... recursion bias
ht ∈ Rl ... hidden state at time t

tanh ... non-linear activation function
W ∈ Rl×l ... recursive linear map
xt ∈ Rk ... input vector at time t

U ∈ Rk×l ... input linear map
ot ∈ Rm ... output state at time t

b2 ∈ Rm ... output bias
V ∈ Rl×m... output linear map
softmax ... post-processing to obtain normalized probabilities
ŷt ∈ Rm ... output of normalized probabilities at time t

Note, in this example the learnable parameters are Θ = {U ,V ,W , b1, b2} according to
definition 3.12. Figure 3.4 illustrates the given example.

Remark 3.14
Given a basic RNN with (xi)

n
i=1 as input and (yi)

n
i=1 as output probabilities, such a RNN pa-

rameterizes the conditional probability p(y1, . . . ,yn | x1, . . . ,xn) [53]. Hence, at time t the
RNN estimates [54]

p(yt | x1, . . . ,xt−1)
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(a) Compact RNN Illustration of Example 3.13 (b) Unrolled RNN Illustration of Example 3.13

Figure 3.4: Example 3.13 illustrated in two different principles. The compact illustration displays the
recurrence as a memory cell. The unrolled illustration on the other hand shows the infor-
mation flow over time, where each sequence element xi is inserted separately.

There are many kinds of RNN depending on their architectures and their outputs. As stan-
dard RNN are very prone to vanishing/exploding gradients due to parameter sharing7, they
were improved by the introduction of gating cells such as long short term memory (LSTM)
cells [55, 56]. Such gating cells control the flow of information in a sophisticated way, such
that special learning properties arise. LSTM cells, for instance, are able to learn to forget in-
formation over the sequential computation of succeeding cells. Up until this point, network
architectures allowed mapping sequential data (xi)

n
i=1 ⊆ Rk to an output vector y ∈ Rm or

to another sequence of the same length (yi)
n
i=1. To allow a mapping to sequential data of

different length from the input length n, the encoder-decoder architecture was introduced
[57].

Definition 3.15 (Encoder-Decoder RNN)
Let fE be a RNN called the encoder with

ht = fE(ht−1,xt,ΘE)

and ΘE being the learnable parameters for the encoder [57, 58]. The encoder computes
from the hidden state(s) ht a context vector8 c ∈ Rl. In its most basic form, the last hidden
state hn = c.

Let fD be a RNN called the decoder with

p(yt | y1, . . . ,yt−1) = fD(st−1,yt−1, c,ΘD)

7Parameter sharing refers to the idea of weights being the same variable over all time steps t, hence, they are
shared over all inputs of the sequence.

8As encoder-decoder networks were introduced, the last hidden state is set to be the context vector hn = c
[57]. Note, there are variations on how the context is being computed. If we have a bidirectional recurrent
neural network (BRNN), then the context vector can be a concatenation of hidden states of the forward (

−→
h t)

and backward (
←−
h t) directed RNN [2], i.e. h =

[−→
h T

t ;
←−
h T

t

]T
.
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calculating the conditional probability of yt given y1, . . . ,yt−1 and ΘD being the learnable
parameters of the decoder, yt−1 the generated output of the previous time step and st−1

being the hidden state of the decoder at time t− 1 [54]

st = g(st−1,yt−1, c,ΘD)

Here g is a non-linear activation function generating desired outputs, i.e. probability distri-
butions.

Remark 3.16
An encoder-decoder RNN parameterizes the conditional distribution

p(x1, . . . ,xt′ | y1, . . . ,yt) (3.2)

Note, contrary to remark 3.14 where the input length was equal to the output length, here
input and output length can be different [59].

The general idea behind the encoder-decoder architecture is to compress important infor-
mation of the input sequence (xi)

n
i=1 into a context vector c ∈ Rl. As shown in definition 3.15,

the decoder is a recurrent architecture, processing additionally the context vector and the
previous output to generate the current output. Usually, both the encoder and decoder
make use of gating cells [54, 57, 58]. Since the context vector c holds all the information
used to process the output in the decoder, it needs to hold all relevant information with
respect to the learning task, such that the decoder can produce viable results.

3.2.2 Attention Model

Encoder-decoder RNN face the short-coming of not being able to fully capture the context of
longer inputs depending on the size of the context vector c, and tomodel alignment between
the input and output sequence [50]. To tackle these issues, the attention model (AM) was
introduced.

Definition 3.17 (Attention Model)
Let (hi)

n
i=1 ⊆ Rl be the hidden states of a RNN to the corresponding input sequence (xi)

n
i=1.

The attention model computes for each hidden state hi a corresponding weight αij ∈ R such
that the context vector cj at decoding position j is given as

cj =
n∑

i=1

αijhi (3.3)

= αT
j H

withH = [h1; . . . ;hn] being a matrix of concatenated hidden states [50].
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The attention model illustrates how the principle of attention is realized in encoder-decoder
RNN. Definition 3.17 does not show yet, how the attentionweights are determined. To better
understand how attention is implemented, we introduce how it was proposed originally [2].

Proposition 3.18 (Attention Based Encoder-Decoder RNN)
Let fE be an encoder-, fD a decoder-RNN, g a generating output function9 and (xi)

n
i=1 ⊆ Rk

an input sequence. Then the network architecture can be described as follows

ht = fE(xt,ht−1) (Encoder Hidden State)

si = fD(si−1,yi−1, ci) (Decoder Hidden State)

yi = g(yi−1, si, ci) (Output)

ci =

n∑
j=1

αijhj (Context Vector)

αij =
exp(eij)∑n
k=1 exp(eik)

(Attention Weight)

eij = a(si−1,hj) (Energy)

where a is an alignment model of the form of a feed-forward neural network. The index t

describes the input sequence into the encoderwhile the index idescribes the input sequence
into the decoder.

Contrary to the classical encoder-decoder RNN architecture, we now have for each hidden
state si a corresponding context vector ci. The context vector is computed as a weighted
sum over all hidden states ht, with weights being the attention values αij (see equation 3.3).
Architecturally speaking, each attention weight αij can be interpreted as an alignment be-
tween some hidden state ht of the encoder and the hidden state sj−1 of the decoder [50].
A more global interpretation is that it weighs some input token xi to some output token yj .
The attention weights are calculated using the softmax function to determine a probability
distribution, such that

∑
i αij = 1 for some fixed j. Figure 3.5 illustrates how attention is

embedded into encoder-decoder RNN.

As the first attention based encoder-decoder RNN was introduced [2], the encoder was a
BRNN (see figure 3.6). The purpose of a BRNN is to capture relations not only in one direction,
but in both directions. Assuming we have as input a sentence, then a BRNN should capture
the context in both directions. Take the sentence “John really liked the band, he was at each
concert”. Without the information of “concert” at the end of the sentence, the meaning of
band can be ambiguous, i.e., some radiowave length or thin piece ofmaterial for the purpose
of wrapping something. Therefore, capturing the context in both directions allows relating
concert to band. Note, the context vector therefor captures relations from both directions.

9In example 3.13 the softmax function was used.



Chapter 3: Attention 27

Figure 3.5: Attention Encoder-Decoder Illustration according to ‘Attention Based Encoder-Decoder
RNN’ on page 26

3.2.3 Generalized Attention

In the previous subsections, we have had a historical presentation on the evolution of atten-
tion in modern machine learning architectures. Since the original introduction by [2], other
implementations have emergedwith transformers being currently themost famous architec-
tures among those [3]. With the manifold of different implementations of attention based
models introduced in the last decade, a classification on different attention implementations
can be made. First we discuss a generalization of attention. Further, we continue to classify
attention.

Definition 3.19 (Generalized Attention)
LetA be the attentionmapping taking as input a query q ∈ Rdq , a keymatrixK = [k1; . . . ;kn]

∈ Rn×dk anda valuematrixV = [v1; . . . ;vn]Rn×dv . The attentionmapping returns aweighted
sum over a key value pairs (ki, q) ∈ K ×Q with respect to the query q ∈ Q. [50, 60]

A(q,K,V ) =
∑
i

p(a(ki, q)) ∗ vi

where the operation ∗ is some multiplicative operation and
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Figure 3.6: Attention implementation into BRNN according to [2]

p... a distribution function
a... an alignment function

The functions p and a will be explained in Alignment Function and Distribution Function re-
spectively.

Remark 3.20
Considering the regression analysis introduction highlighted by equation 3.1, the query is
represented by the data sample q = xj . The key matrix also consists of the data samples
K = X = [x1, . . . ,xn] and the values are represented by the labels V = Y = [y1, . . . ,yn].
The non-negative function δ is responsible for the distribution and alignment at the same
time. We conclude

A(xj ,X,Y ) = ŷ =
1

n

n∑
i=1

δ(xj ,xi)yi

Remark 3.21
Considering the initial implementation of attention into the encoder-decoder RNN networks
in proposition 3.18, we have as distribution function the softmax function and the alignment
function is a feed-forward network. Further, the value and key matrix consists of the hidden
states of the encoder V = K = H = [h1, . . . ,hn]. Hence, we have

A(si−1,H,H) = ci =
n∑

j=1

p(a(si−1,hj))hj
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As remark 3.20 and remark 3.21 illustrate, it is possible to further analyze attention over
the implementation of the aggregation and alignment function. Another way of classifying
attention is how the variables are chosen. As we can see, the choice of query, key and value
can be different.

Alignment Function

Definition 3.22 (Alignment Function)
The alignment function

a : Rdk × Rdq → R

measures the compatibility or similarity between a key ki ∈ Rdk and a query q ∈ Rdq . The
resulting value can be referred as the energy or alignment score between query and key [50,
60].

Remark 3.23
For a given key ki we calculate the energy/alignment score

ei = a(ki, q) (3.4)

yielding a vector of energies e = [e1, . . . , edk ].

Example 3.24 gives an overview over common alignment function implementations10 [50,
60]. There are many ways, how the alignment between query and key can be computed. An
illustration can be found in figure 3.7. One straight forward approach is to compute the dot-
product between key and query [3, 61]. For this to be possible, both query and keymust have
the same vector space dimensionality q,ki ∈ Rd (equation 3.6 and equation 3.7). Another
category of alignment functions deals with the issue of having key and query vectors not
being of the same dimensional vector space dimensionality. These alignment functions are
general alignment functions. There, some learnable matrix W ∈ Rdk×dq or W ∈ Rdq×dk

maps the vectors into the according dimensional representation to calculate the dot-product
again [61–63]. Hence, we have some expression of the form qTWki which is called a bilinear
term [62] (equation 3.8, equation 3.9 and equation 3.10).

10Note, for the scaled dot product there is a typo in [60]. Here, nk is used as down-scaler in the denominator. As
a reminder, nk is the number of key vectors. In the original paper in [3] the dimensionality of the key vectors
dk is used.
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Example 3.24 (Alignment Functions)
Some examples of alignment functions are listed below andwill be explained in the following
text.

similarity a(ki, q) = sim(ki, q) (3.5)

dot product a(ki, q) = qTki (3.6)

scaled dot product a(ki, q) =
qTki√
dk

(3.7)

general a(ki, q) = qTWki (3.8)

biased general a(ki, q) = ki(Wq + b) (3.9)

activated general a(ki, q) = act
(
qTWki + b

)
(3.10)

generalized kernel a(ki, q) = ϕ(q)Tϕ(ki) (3.11)

concat a(ki, q) = wT
impact (W [q;ki] + b) (3.12)

additive a(ki, q) = wT
impact (W1q +W2ki + b) (3.13)

deep a(ki, q) = wT
impE

L−1 + bL (3.14)

E(l) = act
(
WlE

(l−1) + bl
)

(3.15)

E(1) = act
(
W1 +W0q + b1

)
(3.16)

location-based a(ki, q) = a(q) (3.17)

feature-based a(ki, q) = wT
impact (W1ϕ1(K) +W2ϕ2(K) + b) (3.18)

A further approach is to use a similarity measure (equation 3.5). In the paper [64] referred
to by [50, 60] the cosine measure is used to compute the compatibility of q and ki

sim(ki, q) =
qTki

||q|| ||ki||

with
sim : Rd × Rd −→ [−1, 1]

Though this measure is widely known as cosine similarity, it should be noted by some rather
recent taxonomy of similarity and dissimilarity measures it can not be considered a similarity
measure. Clearly, the cosine measure is neither in agreement with the non-negativity nor
with theminimumprinciplewhich has been introduced in preliminary sectionBasic Similarity.
The paper [27] provides a comprehensive taxonomy on similarity and dissimilaritymeasures,
which can give inspiration for other approaches to implement alignment functions. Further,
also more complex objects could be processed considering the similarity and dissimilarity
properties.

The generalized kernel method estimates the dot product by mapping q and ki into higher
dimensional spaces using random feature map kernels [65](equation 3.11). This method
was introduced as an improvement on the transformer neural networks, which are called
performers. Attention usually suffers from its high computational cost for estimating the
attention weights. Therefore many heuristic restrictions weremade to cut down on the com-
putational cost. The generalized kernel method introduced by performers has been proven
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Figure 3.7: Illustration of a basic attention mechanism having some query q and scoring it against
keys ki with the alignment function a(q,ki). The result is an alignment value ai.

to perform at least equally accurate to transformers in almost linear time and sub-quadratic
memory consumption, while transformers scale quadratically. A brief introduction on ker-
nels can be found in preliminary section Kernel.

Another category of alignment functions is the combination of query and key. The first
method is concatenating the query with the key into a unified vector [q;ki]. The concate-
nation is then mapped by a learnable matrix W and further mapped by an activation func-
tion. The resulting vector is thenmultipliedwith the learnable importanceweightwT

imp (equa-
tion 3.12)[61]. Instead of concatenating, also the separate processing with distinct matrices
W1 andW2 is possible, to thendo the sameprocessing as in the previousmethod(equation 3.13)
[2]. Doing this processing of the activated additionmultiple times is then referred as the deep
method (equation 3.14)[66].

Also, it is possible to calculate alignment scores solely from the query itself, which is known
as location-based attention [61](equation 3.17). Concerning feature-based attention, the im-
provement is made on the mechanic, that attention usually considers a set of items for scor-
ing values with items having a fixed granularity size. For instance, in a natural language
processing (NLP) learning task, there each letter can be an item or token. Clearly, this is in
principle not ideal for scoring attention values learning semantics on a character based level.
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Hence, feature-based attention learns to score by grouping these items with structural affil-
iation. As illustrated in equation 3.18, only the key is used to calculate the attention score
[67].

Distribution Function11

The distribution function the energies calculated by the alignment function and maps them
into a distribution space. We aim to generalize the notion of distribution function with re-
spect to attention, though some used distribution functions do not hold the given definition.

Definition 3.25 (Distribution Function)
The distribution function pi maps a specific energy ei ∈ e over all energies e ∈ Rdk an impor-
tance value or weight with respect to the key ki [50, 60]

p : Rdk −→ ∆dk

pi : R −→ [0, 1]

with the property ∑
ei∈e

p(ei) = 1 (Normalization)

with ∆dk being the dk − 1-dimensional probability simplex [20, 69] as introduced in the pre-
liminary section Affine Spaces and Simplices.

Example 3.26 (Distribution Functions)
Some examples of distribution functions are listed below and will be explained in the follow-
ing text.

logistic sigmoid pi(e) =
1

1 + exp(−ei)
(3.19)

softmax pi(e) =
exp(ei)∑

ej∈e exp(ej)
(3.20)

sparsemax p(e) = argmin
p∈∆dk

||p− e||2 (3.21)

entmax pα(e) = argmax
p∈∆dk

pTe+HT
α (p) (3.22)

Different distribution functions are listed in example 3.26. Note, logistic sigmoid given in
equation 3.19 does not hold the normalization property given in definition 3.25 for the gen-
eral case12[7, p.177][70]. Softmax can be considered the normalized logistic sigmoid in the
general case of more than 2 variables. This distribution function can be considered as dense

11Also referred to as aggregation function in other sources [50, 60]. The term aggregation function does not
actually hold the definition, violating the domain/codomain and non-decreasing property [68, p.3]. Though
some properties of an aggregation function apply, it is important for clarity to point out the imprecise usage
of this term.

12Logistic sigmoid can be considered normalized in the use-case of Bernoulli distributions[7, p.177]
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distribution function [50]. A dense distribution function produces for every possible outcome
an output, which we refer to as probability from here on, which is always greater than 0,
since13

softmax : Rd −→ (0, 1)d ⊂ ∆d

There are use-cases where this is an undesired property, and it is required to truncate prob-
able outputs. This can be the case for NLP applications, where in certain scenarios specific
words or characters are practically impossible. Assume that the first two letters produced
by the decoder of an encoder-decoder RNN are “Th”. In English, it’s highly unlikely, if not
impossible, for the letter “z” to follow. Dense distribution functions would still compute a
probability greater than 0. Though, it is possible to truncate these by a threshold [69], sparse
distribution functions, i.e. sparsemax and entmax, deal with this issue within the function
itself.

Figure 3.8: Illustration showing the transition of distribution functions with different α parameters.
Taken from [20]

In the derivation of sparsemax in equation 3.21 and entmax in equation 3.22, the entropy
is used as a regularizer such that maximum entropy principle can be used. These concepts
are introduced in a more comprehensive manner in preliminary section Entropy. In [20], it
is shown how to reformulate distribution functions with the help of entropy solving an op-
timization problem as shown by the maximum entropy principle shown in definition 2.14.
The optimization problem can be solved using Lagrangian multipliers14 with inequality con-
straints, yielding the suggested sparse distribution functions. This can be seen in appendix
A.2 of [20] . Clearly, entmax uses the Tsallis entropy. Just as the Tsallis entropy HT

q = HT
α is

able to shift between different entropies through the parameter α, the entmax distribution
function is also capable of shifting between different distribution functions. By setting α = 1,
we yield the softmax function and for α = 2 sparsemax. Hence, by increasing α, we increase
the sparsity of the distribution function as can be seen in figure 3.8

13Due to summing over exponential values, themapping can never become 0 or 1 andwill always be in between.
14In the derivation, convex analysis is crucial for understanding all the intricacies involving the optimization

itself and the requirements to apply such optimization methods. For a more comprehensive analysis for
the suggested sparse functions and the reformulation into maximum entropy problems, [20, 30, 71] are
recommended resources.
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3.2.4 Attention Taxonomy

In the previous subsection Generalized Attention, we described how attention can be con-
structed mathematically. These constructions can be classified considering different proper-
ties of the attention model. We conclude the introduction of attention with such a classifica-
tion. We will consider 4 categories, namely number of sequences, abstractions, positions and
representations. If not otherwise cited, this taxonomy will refer to [50].

Number of Sequences

In the classification of number of sequences, we consider howmany sequences are fed into an
AM. First, we consider distinctive attention, where two different sequences are used. One
sequence will represent keys and the other one will represent queries. These can usually
be found in translation tasks, where the model tries to learn aligning some input sentence
to some output sentence. Bahdanau used this technique when introducing AM into RNN.
Remark 3.21 explains the attention construction. Here, the input is the context vector hj cre-
ated by the sequentially processed input xj . The context vector represents the key k = hj .
It is then aligned to the output sequence generated by the RNN si−1, which is the represen-
tation of the query q. Bahdanau states it as follows: the attention weight “[...] scores how
well the inputs around position j and the output at position i match.”

In a co-attention model, multiple input sequences are used at the same time, learning at-
tention weights together. In the source [72], a visual question answering (VQA) learning task
is described where a model is given a question along with a picture and is expected to pro-
vide a correct answer in relation to the image. Consider an image with a traffic light; then a
question could be given as “What color does the traffic light have?”. In this paper, the authors
propose to not only use attention on the image, but also on the input sequence. Therefore,
two different input sequences are used for the AM. Both input sequences, image and ques-
tion, will be aligned, such that the model becomes more robust against different variations
of the same question, i.e. the model learns to extract the most important information of the
sentence to properly output the correct answer.

Lastly, there are also self attention models (or also inner attention or intra attention). In
these models, both query and key are taken from the same sequence. That is, only one
sequence is used for composing such an AM. The most famous model using this category is
the transformer network as it was introduced in [3]. Here, multiple attention layers employ
linearly transformed representations of the same sequence to determine queries and keys.
Such a model is used to capture dependencies between a sample of a sequence and all the
other corresponding sequence elements.

Number of Abstraction Levels

Attention can be used on different abstraction layers. Considering the co-attentionmodel in
[72], the alignment is computed on different abstraction layers, i.e. on a word, phrase15 and
sentence level. In this work, a hierarchical model is proposed, where the computed attention
15We consider here a phrase to be a sequence of 1,2 or 3 consecutive words in a sentence.
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on the word level is combined with the on top sitting abstraction layer, hence the phrase
level. The same mechanism applies with the phrase level and the on top sitting sentence
level. Such an interdependence in the computation of attention between different abstrac-
tion levels is calledmulti-level attention.

Figure 3.9: In the transformer multi-level attention and multi-representational attention can be ob-
served. Since each encoder or decoder layer are stacked Nx times, attention is computed
at different abstraction layers, hence multi-level attention. Each encoder or decoder layer
makes use ofmulti-head attention which is categorized asmulti-representational attention.
Figure is taken from [3].

Another model, which can be considered applying multi-level attention, is the transformer
network. In the transformer network, multiple layers of attention are stacked, such that we
have a hierarchical architecture with different levels of abstraction [3] (See figure 3.9).

If amodel computes attention only on a single input sequence, without embedding any other
attention abstraction layers, it is called single-level attention.
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Number of Positions

Another category considers the positions of the input sequence fromwhich attention is calcu-
lated. If generally all elements of the sequence are used for calculating the attention values,
it is considered to be global attention or also soft attention. Since such an approach can
be computationally very expensive due to its quadratic memory consumption and time com-
plexity, there is also the approach to use a sliding window over a sequence, such that only a
limited part of the sequence is used for the computation of the attention values [61]. Since
attention is performed only on a slice of the sequence, it is called local attention.

In hard attention models, on the other hand, sequence elements are selected by some
means for the attention calculation. The scope of calculation decreases and therefore the
overall computational complexity decreases significantly due to the quadratic computational
complexity of the attention algorithm. In [73], the selection is done stochastically. Due to this
procedure of stochastically selecting sequence elements, themodel loses its differentiability.

Number of Representations

Multi-representational AM take different representations of the same input and integrate
the corresponding outputs. The input is transformed by some means like linear mappings
to extract distinct features, such that the attention algorithm can extract different features.
In the transformer network in an attention layer, a multi-head attention computation is per-
formed [3]. An attention-head Hi is an independent set of learnable attention parameters.
Consider that an attention layer consists of h different attention-heads and that Qi,Ki,Vi

represent the query, key, and value matrices respectively. Then each attention-head receives
a different set of linearly transformed queries, keys and values by using distinct linear map-
ping WQ

i ,WK
i and W V

i . These linear projections are dimensionally reduced queries, keys
and values [34]. The inputs to the attention-heads therefore are different abstractions of the
original input matrices Q,K and V . The resulting vectors are then concatenated and then
again projected which represents the integration of the outputs (see figure 3.10).

Another variation is multi-dimensional attention. Here attention weights α are calculated
for each feature dimension separately. In [74], the authors proposed modifications to RNN-
based attention embeddings. Consider the following attention implementation where a key
xi (= ki) is being aligned to some query q

A(q, (xi)
n
i=1,w) =

n∑
i=1

wTσ
(
W (1)xi +W (2)q

)
whereW (1),W (2) are linear transformations andwT represents the value vector of the gen-
eral attention scheme. By choosing a linear mappingW instead of a value vector, the result
is a vector α rather than scalars. In this setup, each component, αi of α, represents an
attention weight specific to a dimension.

If none of the multi-representational classifications apply this category is omitted.
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Figure 3.10:Multi-head attention is displayed. Different layers of Linear transformation and Scaled
Dot-Product Attention can be seen. Each layer forms an attention-head performing atten-
tion calculations independently. Figure is taken from [3].

Remark 3.27
The original attention based encoder-decoder model according to proposition 3.18 can be
categorized into soft, distinctive, single-level attention[50].
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4 Learning Vector Quantization

4.1 Introduction

Learning Vector Quantization (LVQ) is a prototype based classificationmachine learning algo-
rithm originally introduced by Teuvo Kohonen in 1990 [75, pp.245]. Given a labeled dataset
D = {(xi, yi) ∈ Rn × {1, . . . , C} | i = 1, . . . ,m} with C different classes and m data sam-
ples. For each given class of the dataset prototypes w ∈ Rn are initialized affiliated to the
given class, hence the class affiliation is given by c(w) ∈ {1, . . . , C}. The objective is to place
the prototypes optimally in Rn such that they discriminate the data samples with respect
to their labels. Prototypes are relocated during the learning process to improve the data
representation.

Further we discuss the original LVQ1 algorithm introduced by Kohonen. It gives a good in-
tuition on how LVQ algorithms generally work. If not otherwise noted, information is taken
from [75, pp.245].

Definition 4.1 (LVQ1 Prediction)
Let x ∈ Rn be some arbitrary data sample for which the class affiliation c(x) ∈ 1, . . . , C is to
be predicted by the LVQ1 classifier. Further, w ∈ W ⊆ Rn are prototypes with a fixed class
affiliation c(w) ∈ {1, . . . , C}. Predicting the class affiliation of x is given by

ws = arg min
w∈W

dE(x,w)

= arg min
w∈W

||x−w||E

with dE being the Euclideandistance, ||·||E being the Euclidean normandws being the closest
prototype to the given data sample x. The data sample is predicted to be c(x) = c(ws).

Remark 4.2
These kinds of algorithms are generally calledWinner Takes All (WTA) competitions [6, p.425]
[75, p.XI]. Here, all prototypes compete to be closest to a given data sample by some distance
measure, to be the winner of the competition. In definition 4.1ws is the winning prototype.

For predictions to have a high accuracy, prototypes must discriminate optimally. Therefore,
a learning scheme for the prototypes is defined. Over a period of time steps (also known as
epochs) random data samples are picked from the datasetD to challenge the prototypes on
how well they discriminate input data samples.

Definition 4.3 (LVQ1 Learning Scheme)
Let x(t) ∈ Rn be a data sample at time t and ws(t) ∈ W the winning prototype of the WTA
competition with class affiliation c(ws(t)) ∈ {1, . . . , C}. Then the update to the prototypes
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is described as follows

ws(t+ 1) = ws(t)−∆ws

∆ws = −(x−ws)γ(x,ws)

with γ being a function returning if the classes of the data sample x andws match.

γ(x,ws) =

{
1 if c(ws) = c(x)

0 else

Remark 4.4
Contrary to the chapter about attention and the processing of timeseries, t is the timestep
in the learning process. The prototypes will be updated along the learning process, and they
have different states at different times t.

Because the algorithm is a heuristic and there is no differentiable loss function, there is no
mathematical guarantee for convergence [76].

Remark 4.5
The relocation process is usually differentiated in repulsion and attraction (see figure 4.1).
A prototype is repelled if during the learning process for a random data sample x and the
winning prototypews we have γ(x,ws) = 0, and it is attracted if we have γ(x,ws) = 1.

(a) LVQ Attraction Scheme (b) LVQ Repulsion Scheme

Figure 4.1: Attraction and repulsion visualization with LVQ. The randomly chosen data sample x and
the closest prototypew are highlighted in yellow.

4.2 Generalized Learning Vector Quantization

To extend LVQ to achieve the guarantees which SGD provides, Sato and Yamada improved
LVQ by integrating a differentiable cost function in 1995 [77]. The resulting algorithm is
named Generalized Learning Vector Quantization (GLVQ).
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Definition 4.6 (GLVQ Classifier Function)
Let x,w+

x ,w
−
x ∈ Rn with w+

x being the closest prototype to x with the same class affiliation
andw−

x being the closest prototype to xwith a different class affiliation. Further, denote the
following distances

d+ = d(x,w+
x ) (Distance Function of Same Class)

d− = d(x,w−
x ) (Distance Function of Different Class)

The classifier function µ is given as [77]

µ(x) =
d+ − d−

d+ + d−

With the help of the classifier the following cost function can be given.

Definition 4.7 (GLVQ Cost Function)
Let ϕ be some monotonically increasing, non-linear activation function (see Activation Func-
tion), then the cost function can be given as [77]

EGLVQ =

m∑
i=1

ϕ(µ(xi))

with

X ⊆ Rn ... being the training set
W ⊆ Rn ... being the set of prototypes
m ... being the number of training vectors
fGLVQ ... being the model determining the winning prototypes
ϕ(µ(xi))... local cost.

By having a differentiable and, with respect to the data samples x, separable cost function,
we can properly apply SGD. Therefore, the local gradient can be used for giving the update
rule of the learning process.

Definition 4.8 (GLVQ Update Rule)
Given the same conditions as in GLVQ Classifier Function, the update rule for the winning
prototypes can be given as

w± = w± − α
∂ϕ

∂w±

with w± ∈ {w+,w−} and α being the learning rate. Assuming the distance measure d± is
chosen to be the squared Euclidean distance d2E , hence

d± = dE(x,w
±)2 = ||x−w±||2E
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then the update rule can be given as

w+ = w+ + α
∂ϕ

∂µ

d−

(d+ + d−)2
(x−w+)

w− = w− − α
∂ϕ

∂µ

d+

(d+ + d−)2
(x−w−)

4.3 Generalized Matrix Learning Vector Quantization

For these LVQ algorithms, the assumption is made that the data samples are distributed
isotropic clusters, meaning the variance of the data samples are roughly the same across all
dimensions [78][7, p.66]. A conventional metric is not able properly learn on the inconsis-
tent scaling of such non-isotropic data distributions. In Generalized Matrix Learning Vector
Quantization (GMLVQ) a special metric is introduced to counter this issue.

Definition 4.9 (GMLVQ Distance)
Let x,w ∈ Rn andΛ ∈ Rn×n being a positive definite matrix. The GMLVQ distance is given as

dΛ(x,w) = (x−w)TΛ(x−w)

withΩ ∈ Rm×n in the decomposition

Λ = ΩTΩ

For the learning process, the same cost function as in GLVQ (definition 4.7) is used. Next to
the prototypes, also the projection matrixΩ has to be learned.

Definition 4.10 (GMLVQ Gradients)
Let all parameters be as given in GMLVQDistance andGLVQClassifier Function. The gradient
for a matrix component Ωij ∈ Ω is given as

∂ϕ

∂Ωij
=

∂ϕ

∂µ

∂µ

∂d±Ω

∂d±Ω
Ωij

= −2α
∂ϕ

∂µ
·
(
µ+(x)

(
(xj − w+

j )(Ω(x−w+))
)
i

− µ−(x)
(
(xj − w−

j )(Ω(x−w−))
)
i

)
with

∂dΩ
∂Ωij

= 2(xj − wj)(Ω(x−w))
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and the gradient for the winning prototypesw± [79] is given as

∂ϕ

w+
= 2α

∂ϕ

∂µ+
· µ+(x)Λ(x−w+)

∂ϕ

w− = −2α
∂ϕ

∂µ− · µ−(x)Λ(x−w−)

Remark 4.11
To prevent the algorithm from degeneration it is suggested to normalize the matrix Λ with
conditioning the diagonal to [78, 79] ∑

i

Λii = 1
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5 Attention Learning Vector Quantization

A successful LVQ model is dependent on a (dis-)simalarity measure for prototypes to be op-
timally placed with respect to the data samples. Timeseries data are difficult to use with the
basic principle LVQ algorithms use. First, time series data can be of different lengths. This
property makes conventional dissimilarity measures, like the Euclidean distance, practically
useless, since they rely on data samples to be of same length, i.e. same dimensionality. Jain
and Schultz managed to extend the LVQ algorithm to accommodate for time series of dif-
ferent lengths by making use of Dynamic Time Warping (DTW) as a distance measure16[5].
In DTW, points of time are aligned by warping them according to a cost function creating a
warping path which accumulates to a cost which is interpreted as a distance between two
time series. Hereby, we can identifiy the principle of dynamic timewarping as aligning two
time series sequentially. This procedure is suitable for data which in classification tasks are
very similar and differ mostly in their warping properties.

A second difficulty is the interdependency of different time points in time series. As pointed
out in Prerequisites, RNN architectures try to capture these beyond the sequential alignment
used in DTW. Ravichandran et al. introduced a recurrent architecture in the LVQ learning
scheme [4]. Here an RNN network transforms a time series (xi)

din
i=1 to a vectorial representa-

tion of fixed length; i.e. Rec((xi=1)
din) = x̃ with din being the length of the sequence and dx

being the dimensionality of the vectors of the sequence. Prototypes are chosen as timeseries
aswell and are mapped through the network like the data samples are.

As pointed out earlier, RNN architectures have the issue of data samples being inserted se-
quentially resulting in slow computation depending on the length of the timeseries. This
thesis makes the attempt to utilize findings from transformer networks and the AM. First,
we will introduce positional encoding whichmade transformers[3] overcome the limitation of
feeding data sequentially to models processing sequential data and then proceed with de-
scribing the attention based LVQ models. In RNN models positional information is captured
by the recursive computation, hence, the sequential input. In transformers positional infor-
mation is encoded based on the dimensional component and the position of a vector in the
given sequence17.

Definition 5.1 (Positional Encoding)
Let X = (xi)

din
i=1 ⊂ Rdx×din be the matrix representation of a zero-padded data sequence,

i.e. setting a fixed length and filling it up with zero vectors 0 ∈ Rdx . The positional encoding

16Strictly speaking, DTW, by theoretical mathematical conditions, is not a distance measure, while empirically
holding the given properties. It does not hold the triangle inequality in theory. Empircally, it actually holds
the triangle inequality; therefore, it can be interpreted as loose triangle inequality [80, p.10][81]

17It should be noted that there is research on positional encoding itself. We omit further analysis on positional
encoding and utilize the additional positional encoding as used in the transformer. For further interest refer
to [82, 83].
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matrix [34] P is given as

P(pos,2i) = sin
(

pos

10000
2i
d

)
P(pos,2i+1) = cos

(
pos

10000
2i
d

)
The positional encoded data sequenceXP ⊂ Rdx×din is given as

XP = X + P

Remark 5.2
This type of positional encoding using adding sinus and cosinusmappings is called sinusoidal
position embeddings. Since the values which are added are fixed this kind of positional en-
coding is considered absolute position encoding [82].

The positional encoded data matrix XP is then used to learn the components needed for
the LVQ AM. Going forward from here, different attention based LVQ models will be intro-
duced. Therewill be two versions: one AM for GLVQ and another for GMLVQ. Since AM suffer
from quadratical time and space complexity, and timeseries data can be long in sequence
length, the computational burden can grow very fast. Therefore, downsampling layers will
be introduced into the models at different points of the algorithm.

5.1 Post Attention Downsampled Learning Vector Quantization

Definition 5.3 (LVQ Attention Layer)
Let XP ∈ Rdx×din be the positionally encoded data matrix. Further, denote WK ,WQ ∈
Rdk×dx and WV ∈ Rdv×dx the linear transformation matrix for keys, queries and values,
where all matrices denoted withW are learnable parameters. Further, denote bK , bQ ∈ Rdk

and bV ∈ Rdv as the respective learnable biases. Keys, queries K,Q ∈ Rdk×din and values
V ∈ Rdv×din are calculated as

K = WKXP + bK1T

Q = WQXP + bQ1T

V = WV XP + bV 1T

The attention matrixA ∈ Rdv×din is calculated as

A = V · softmax
(
KTQ√

dk

)

Figure 5.1 illustrates the processing steps. In the upcoming processing, it is planned to stack
the entries of the attention matrix into a vectorial representation. Since it can be expected
that the attention matrix to be big in dimensionality a downsampling step for dimensionality
reduction is included to make the integration into LVQ computationally feasible. Especially
in the GMLVQ version we will initialize another matrix where the input dimensionality will
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Figure 5.1: Illustration of the processing steps according to 5.3

have input size of the vectorized matrix. This can easily blow up memory requirements to
infeasible sizes, which is why downsampling, i.e. dimensionality reduction, is necessary at
some point in this algorithm.

Definition 5.4 (Post Attention Downsampling Layer)
Let WD ∈ Rdd×din be the downsample matrix with the respective bD ∈ Rdd bias which both
are learnable parameters. The downsampling is given as

D = σ
(
WDAT + bD1T

)
with σ being some non-linear activation function and D ∈ Rdd×dv . The hyperparameter dd
configures the downsample dimensionality.

Remark 5.5
The attention matrix might hold non-linear information. Given the assumption that these
exist, we want to capture the non-linearities by adding the non-linear activation function
into the processing steps. It should be noted, that this processing step is expected to lose
interpretability to some extent.

Now the downsampled matrix D should be vectorized, therefore we define the following
function.
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Definition 5.6 (Matrix Vectorization)
LetC ∈ Rn×m be a matrix withC = [c1, . . . , cm] and c ∈ Rn. We define the matrix vectoriza-
tion as

vec : Rn×m → Rn·m

vec(C) =

c1
...
cm



Remark 5.7
In Matrix Vectorization a matrix is considered as a sequence of vectors. These vectors are
stacked in the order they are positioned in the matrix.

At this point, everything is set to perform a LVQ learning scheme with the preprocessed data.

Definition 5.8 (LVQ Layer)
Let f : X̂ → {1, . . . , C} be an GLVQ or GMLVQ model with X̂ ⊆ Rdlvq being the embedded
data set and dlvq = dd · dv being its dimension. Further, denote x̂ ∈ X̂ the input to the
respective LVQ model. We define

x̂ = vec(D)

withD being the downsampledmatrix from Post Attention Downsampling Layer. The vector
x̂ is normalized before parsing it into the LVQ algorithm, such that the last computation step
is given as

f

(
x̂

||x̂||E

)
= ŷ

with ŷ being the predicted class to the embedded data sample x̂.

Remark 5.9
In LVQ Layer the GLVQ and GMLVQ models are initialized and calculated according to the
descriptions of sections Generalized Learning Vector Quantization and Generalized Matrix
Learning Vector Quantization. Since all processing steps are continuous transformations,
we can apply SGD to the whole learning process and backpropagate errors.

Remark 5.10
Contrary to conventional LVQ learning schemes the prototypes are not embedded in the
same space as the original datapoints X ∈ Rdx×din but rather in the embedding space x̂ ∈
Rdlvq .

Generally speaking, Attention LVQ transforms time series of different lengths into a vectorial
representation or embedding of fixed length, as can be seen in figure 5.2. The attention
layer should try to learn the interdependencies between different points of time in the data
sample timeseries to learn patterns which are related over different sections of the series.
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As mentioned earlier, DTW focuses on a sequential alignment, while attention learns to align
over all the time points. The processing in AM comes at the cost that, in full resolution, i.e.
din = dv = dd, we have a quadratic time and space complexity over the length of the time
series for each of the matrix multiplications in the attention layer.

Figure 5.2: Processing steps in Post Attention Downsampled Learning Vector Quantization. On the
left-hand side the different layers are displayed which have been explained in the accord-
ing definitions. On the right-hand side some examplary data illustration with dimensional-
ity highlighting is showed andhowdata is transformedduring the transformation process.

5.2 Pre Attention Downsampled Learning Vector Quantization

Since the computations are mostly the same, except for the order of computation and the
resulting dimensionality, the description will be shortened to only highlight the differences
between the algorithm designs. The Pre Attention Downsampling Layer will be mostly the
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same as the Post Attention Downsampling Layer, except the activation function is removed,
since [84] has already shown some success without the use of an activation function at this
stage of processing. For this reason the pre-attention layer will be defined properly.

Definition 5.11 (Pre Attention Downsampling Layer)
LetWD ∈ Rdd×din the downsample matrix with the respective bD ∈ Rdd bias. The downsam-
pling is given as

D = WDXT
P + bD1T

Next, there will be the LVQ Attention Layer with some changes in the dimensionalities, which
are the following

• the input to the attention layer isD ∈ Rdx×dd instead ofXP

• the linear projections in the attention layer are of dimensionalities
– K,Q ∈ Rdk×dd

– V ∈ Rdv×dd

– A ∈ Rdv×dd

The algorithm steps of the Pre AttentionDownsampled Learning Vector Quantization version
is given as

1. the positionally encoded data sample XP is input into Pre Attention Downsampling
Layer

2. the downsampled matrixD is input into LVQ Attention Layer
3. the matrixA is being vectorized and the input to LVQ Layer is vec(A) = x̂
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6 Experiments

6.1 Dataset

The dataset for this work is chosen to be as similar in its data structure to word embeddings18

as possible, since AM models were originally introduced for NLP. In word embeddings, we
have timeseries (xi)

n
i=1 with each xi ∈ Rk being some k-dimensional vector. Usually, k

ranges from 50 to 1024 [85–88]. Since NLP-driven models have shown promising success
using such word embeddings with k > 1 in connection to attention [88], the requirement for
a dataset is to have a multivariate timeseries to align closely with the described conditions.

For this reason, the aeroelastic simulations of wind turbines affected by leading edge erosion
dataset is used [84]. This dataset contains simulated data on erosion of wind turbines, where
different sensors in a rotor blade measure different attributes from which erosion should
be detected. This erosion can affect the rotor’s structural integrity and/or the rotor’s perfor-
mance and therefore efficacy. For this matter the data is presented in 10 different classes,
each describing different degredation states of the blade and aerodynamic properties. Each
degredation class can be interpreted as a severity level of degredation. The simulated time-
series contain 4 different features, i.e. angle of attack, drag coefficient, lift coefficient and inflow
velocity. Each timeseries consists of 60 001 samples, where the sampling rate is 100Hz. Ap-
proximately every 6 days over 20 years, a sample is generated such that 1 200 different data-
points are generated on a wind turbine. The authors provide a set of 18 preselected training-
and test sets with either ballanced or unballanced class distributions (see figure 6.1). More-
over, transformers were used on this dataset, which provides a good benchmark.

6.2 Hardware System

The experiments will be exclusively run on a discrete graphics processing unit (GPU). Specif-
ically, a single NVIDIA A100 80 gigabytes (GB) SXM GPU will be used. Preprocessing steps
will be run on an AMD Epyc 7713 64-Core Processor with about 2 terrabytes (TB) of memory
available.

6.3 Data Preparation

As highlighted in Attention Learning Vector Quantization, attention suffers from quadratic
memory and computation growth over the input length n of the sequence, i.e. O(n2). Since
in some experiments the downsampling layer follows the attention layer, some preprocess-
ing steps need to be taken to manage memory consumption.

18Word embeddings are dense vectorial representations ofwords, where the vector representation has semantic
meaning embedded to them [7, p.452].
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(a) Ballanced Distribution in Training Set 4

(b) Unballanced Class Distribution in Training Set 2

Figure 6.1: Overview of Given Class Distributions

Referring the PyTorch documentation for sizes of datatypes [89], we find that a float is 32 bits
or 4 bytes in size, depending on the central processing unit (CPU) architecture used. Consider
we choose the parameters of an attention based LVQ model as follows

din = 60 001

dx = 4

dk = 1024

dv = 1024

dd = 10 000

dlvq = 10 000 · 1024 = 10 240 000

The memory consumption used just by the weight matrices and the processing matrices is
given in table 6.1. Note that the memory requirements for the GMLVQ matrix Ω is about
400 TB in this scenario, which renders running such a model on current hardware systems
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Parameter
Size in MBytes for
Post Attention LVQ

Size in MBytes for
Pre Attention LVQ

WQ,WK 0.016 0.016
WV 0.016 0.016
WD 2288.857 2288.857
Q,K 234.379 39.063
V 234.379 39.063
A 234.379 39.063
D 0.153 0.153
Ω 400000000 400000000
x̂ 39.063 39.063

Table 6.1: Sizes of an Exemplary Model Configuration with GMLVQ used in the LVQ Layer

completely unfeasible. Therefore, it is absolutely necessary to manage the model’s input to
reduce dimensionality as much as possible either by the learnable matrixWD or by prepro-
cessing it before feeding it into the model.

For understanding how the frequencies are distributed and how densely information is rep-
resented over the sampling frequency, a Fast Fourier Transform (FFT) is performed. The plots
can be seen in figure 6.2. FFT decomposes a signal into its base frequency components and
shows the signal’s frequency distribution over a timeframe [90, pp.129, pp.49]. According to
the Nyquist-Shannon theorem19 [90, p.30] it is evident from figure 6.2a, 6.2c and 6.2d that
the use of a low-pass filter would erase information from the data, as frequency spikes can
be found at the folding frequency20. Therefore, in some experiments, no filter is applied,
while in others, only each 6-th sample is used. This reduces the length to 1

6 of its original size,
i.e. n = 10 001. Figure 6.3 displays the impact of downsampling by a factor of 6.

This reduction in length of the timeseries is justified by over the substantial growth of the GM-
LVQ’s projectionmatrixΩ, due to the dimensionality of dlvq×dlvq with dlvq = dd ·dv according
to definition 5.8. Since GLVQ is not using the projection matrixΩ, a model configuration can
be designed that doesn’t exceed the memory constraints of the GPU. Data will be prepared
at higher resolution and also lower resolutions to properly determine if learning cabilities
can be observed.

Trainingsets for the model have been chosen as suggested by the authors of the dataset.
Additionally, multiple prepackaged trainingsets will be combined to achieve a larger data
representation. In this scenario, sets 4 upto 15 will be put together. In any case, the train-
ingsets have been selected such that all classes are represented as ballanced as possible. For
the classification, only classes 0, 1, 6, 9 are used, as the authors also ran experiments with
this configuration [84]. Using all 10 classes would introduce an additional source of error
and uncertainty regarding the model’s performance. Also, in [84] the smaller set achieved
the best results with an accuracy of 96.04%.

19The Nyquist-Shannon Theorem states that the sampling frequency must be at least twice the maximum fre-
quency that should be sampled.

20The folding frequency refers to themaximum frequency which can be sampled by a given sampling frequency.
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(a) FFT Angle of Attack at Full Resolution

(b) FFT Drag Coefficient at Full Resolution

(c) FFT Inflow Velocity at Full Resolution

(d) FFT Lift Coefficient at Full Resolution

Figure 6.2: FFT of All Feature Timeseries from the Aeroelastic Simulations of Wind Turbines Dataset
at Full Resolution
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(a) FFT Angle of Attack at 1
6
Resolution

(b) FFT Drag Coefficient at 1
6
Resolution

(c) FFT Inflow Velocity at 1
6
Resolution

(d) FFT Lift Coefficient at 1
6
Resolution

Figure 6.3: FFT of All Feature Timeseries from the Aeroelastic Simulations of Wind Turbines Dataset
at 1

6 Resolution
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6.4 Experiment Observations

All experiments done have yielded the same result of not showing any generalization capabil-
ity by any means. One exemplary experiment configuration will be explained and displayed.
Other experiments have produced very similar results, which is why it is not necessary to
go into detail on them. Other configurations will be mentioned to make clear which other
configurations produced the same outcomes.

In the exemplary experiment, a pre downsampled GLVQ setup is used, such that the input
timeseries to the model is unfiltered. For this configuration, the goal is to utilize the 80 GB
as much as possible. The parameters are chosen as follows.

din = 60 000

dx = 4

dd = 10 000

dk = 4096

dv = 2048

with the activation function used in the downsample layer. In this scenario, about 65 GB
are used in GPU memory. The learning rate for SGD optimizer is 0.25. It is found that any
lower learning rate than 0.1 usually gets stuck and does not show any progress at all. Learn-
ing rates between 0.1 and 0.25 converge very slowly but show basically the same results if
enough epochs are computed. Furthermore, the batch size is set to 8. The training process is
performed over 20 epochs. It was observed that performance does not change when about
0.4 accuracy is reached. Figure 6.4 illustrates the metrics of the trainingprocess.

(a) Loss and Accuracy Performance over Trainingpro-
cess (b) Confusionmatrix for Classification Performance

Figure 6.4: Training Metrics

In figure 6.4a, it can be observed that the loss is miminimized very quickly and fluctuates
around 0.01. This is due to the relatively high learning rate. As pointed out earlier, there
are learning rates which converge slower, but these do not improve the classification perfor-
mance. Figure 6.4b might suggest that the model has tendencies to generalize to a minor
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extent. For this matter, the initial timeseries was stacked into a single vector, i.e. vec(X),
and trained on an GLVQ model. It was observed that the metrics were mostly consistent
with those illustrated in figure 6.4.

Since all models with pre-/post-attention GLVQ/GMLVQ performed similarly with different
model configurations with accuracies ranging from 0.34 to 0.43, it can be concluded that
this model fails to generalize. Other settings tested, which yielded the same results, can be
found in table 6.2. Note, tomake thememory requirements feasible for some configurations,
a 6.0 low-pass filtering/downsampling is applied before data is input into the model; hence,
din = 10 001. The code for the experiments can be found at [91].

Experiment din dx dk dv dd
Pre

Downsample
Post

Downsample
Downsample
Activation GLVQ GMLVQ

1 60001 4 1024 512 10000 X X
2 60001 4 682 341 5000 X X
3 60001 4 512 256 5000 X X
4 60001 4 256 256 5000 X X
5 10001 4 8192 4096 2500 X X X
6 10001 4 8192 4096 2500 X X
7 10001 4 1024 1024 2500 X X X
8 10001 4 1024 1024 2500 X X
9 10001 4 256 256 2500 X X X
10 10001 4 256 256 2500 X X
11 10001 4 4096 256 180 X X X
12 10001 4 4096 256 180 X X
13 10001 4 2048 256 160 X X X
14 10001 4 2048 256 160 X X
15 10001 4 512 256 128 X X X
16 10001 4 512 256 128 X X
17 10001 4 4096 256 180 X X X
18 10001 4 4096 256 180 X X
19 10001 4 2048 256 160 X X X
20 10001 4 2048 256 160 X X
21 10001 4 512 256 128 X X X
22 10001 4 512 256 128 X X

Table 6.2: Experiment Configurations

6.5 Conclusion

Though the loss could be minimized in the experiments, the generalization capabilities of
the model still appear to be rather random. An objective for this thesis was to design a
simple attention based LVQ model. A clear reason for the failure of this design cannot be
determined at the point of writing. There are speculations for the failure of the model’s
performance, with possible suggestions on how to solve these, which are outlined in this
chapter.

Attention Heads

In this model, only a single attention head was used, as it was an objective to keep themodel
as simple as possible. Multiple attention heads, contrary to a single attention head, are able
to align different positions of the input sequence and extract different features [3]. There is
the possibility that a single attention head significantly reduces the performance of a model,
as [92] suggests. Here, pruning of attention heads in regular transformer networks was
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tested to determine 1) the redundancy of certain attention heads and 2) increase the effi-
ciency of predicting by reducing parameters, i.e. attention heads. It was found that in some
attention layers, attention heads could be reduced down to a single attention head, whereas
in others, multiple attention heads are needed.

It is possible features could not be discriminated by a single attention head, and therefore,
multiple attention heads are needed. Furthermore, it is unclear if a single attention layer is
enough to extract features properly. As [84] has shown, good results can be achieved with
standard transformer architectures using multiple attention heads and multiple attention
layers, suggesting that attenion-basedmodels can be effective for this dataset. In transform-
ers, multiple attention heads are implemented by attaching a feed-forward neural networks
to the output of an attention layer and feeding its input into back into another attention
layer again [3]. Unlike transformers, interpretable models should not use feed-forward net-
works, as these lose interpretability due to their subsymbolic architecture. Hence, designing
multiple attention layers in an interpretable fashion remains an open task.

For further design testing, it would be possible to implementmultihead attention to increase
the ability extracting multiple features.

Embedded Prototypes

In LVQ models, prototypes are initialized in the space where the datapoints belong to [76].
This model faced the challenge to succesfully learn to place prototypes optimally in the em-
bedding space, i.e. the vectorized representation of the matrix of the last layer. The ad-
vantage of this approach is that predictions would have lower computational cost, since all
prototypes would be needed to be fed through the entire attention network to examine the
(dis)similarity to the data point. Initializing prototypes as timeseries presents another issue.
If prototypes are initialized randomly, the questions arises regarding which length should be
chosen for a suitable random initialization.

A method for initializing prototypes could be to determine the average of a set of timeseries
datapoints of the same class. An average for timeseries is known as Steiner Sequence [93].
Determining an average of a timeseries is not trivial as it is for points in Euclidean space. Us-
ing the average of points as used in Euclidean space would not typcially work, since phase
shifts over different timeseries could cause cancellation of frequencies and therefore, re-
move information. In addition to frequency cancellation, the potential difference in length
of such time presents another challenge. To determine a possible average for timeseries,
an algorithm known as COmpact Multiple Alignment for Sequence Averaging (COMASA) was
developed [93]. In this method, the average is determined by minimizing the distance of the
potential average to the sequences to be averaged. Here, DTW is utilized as a distance mea-
sure. Therefore, multiple averages can be computed for each class, which then could be the
initialized prototypes.



Chapter 6: Experiments 57

Learning Embedding and Embedded Prototypes

In the learning process, not only the positioning of the prototypes is being learned, but also
the embedding of the datapoints into the LVQembedding spaceRdlvq . For that, either a single
or a set of datapoints are randomly chosen according to (batch) SGD and the optimization is
then performed on the given datapoints. This could have the effect that the projection in the
attention layers is optimized for the given datapoints with respect to the closest prototypes,
but not for the other remaining datapoints. Therefore, it could be possible that the projec-
tion for the other datapoint is learned suboptimally, leading to non-coverging embedding of
the datapoints. Since by assumption, the embedding of the data point disperses to some de-
gree for the non-chosen data points, learning gets stuck. Additionally, the prototypes keep
moving while the embedding projections could vary over time due to the dispersion, prevent-
ing prototypes from converging to optimal positions for class discrimination. Following this
speculated effect, one should visualize it by tracking certain datapoints to see if, on the one
hand, the projection is actually optimizing for the chosen datapoints and, on the other hand,
the projection disperses for the other datapoints. Note, this issue could be related to 1) the
prototypes being initialized in the embedding space and 2) the lack of the feature extraction
ability of a single attention head and layer.

Another suggestion on how to proceed about this is to use an alternate learning scheme.
Therefore, prototypes should be initialized either distributed with some uniform distance
between them or by the suggested COMASA method. Then, as the first part of the alternat-
ing learning scheme, the projection by the attention layer should be learned, ensuring that
timeseries points will actually get projected close to the placed prototypes. In a second step,
the prototypes should be learned to optimally discriminate the datapoint embeddings. This
can be done in an alternating fashion until some criterion is met.

Input Dimensionality and Embedding Representation Dynamics

Thismodel faces similar challenges as transformers do due to the quadratic growth of projec-
tions and projectedmatrices with respect to the length of the timeseries. The authors of [84]
used the method time-windowing, originally introduced in vision transformers [94]. There,
the input x ∈ Rk×n is divided into l slices xi ∈ Rk×l called windows and being reduced in
dimensionality by some learnable embedding projection21 to z ∈ Rdmodel with dmodel being
the desired model dimensionality. These embeddings are then concatenated with a special
class token zclassRk which is a learnable parameter. Hence, we get an embedding

Z = [zclass, z1, . . . , zl]

This embedding representation is then positionally encoded and parsed into the attention
layers. After the attention processing, a representation Ẑ is obtained. For the classification,
the corresponding attention-embedded class token ẑclass is used for the classification pro-
cess. Figure 6.5 illustrates the processing of time-window embedding and further processing.

21The source [84] does not specify how the learnable embedding projection is constructed.
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Figure 6.5: Transformer setup in [84] with the special time-window embedding.

Not only does this help with reducing the computing and memory requirements in the at-
tention layers, it can also greatly reduce the size of GMLVQ’s projection matrix Ω, since the
complete matrix before the LVQ layer is vectorized. In the time-windowing method, only
the class token representation would be used. Further, this provides an alternative to the
vectorization vec(A) step to test.

Final Remarks

The above suggestions are not confirmed to actually help themodel improve its performance.
Most assertions can be linked to observations of similar, successfulmodels. Further research
can be done by designing and implementing these suggestions and verify if improvements
can be observed. There also are otherminor tweaks, which could be implemented, like using
different attention principles according to the attention taxonomy, using different alignment
or distribution functions or using other LVQ algorithms like Limited Rank GMLVQ [95]. These
tweaks should be considered as soon as an attention based LVQ learning scheme could be
designed showing any improvement in its performance.
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7 summary

This thesis analyzed attention from a psychological perspective, tracing its historical roots
and the generalization of attention with its different possible configurations. Additionaly,
some mathematical background for several topics was provided, along with machine learn-
ing terminology to help guide the reader through the topics discussed in this thesis. Espe-
cially, the topic attention proved to be rich in information and variations, suggesting that
there are many possibilities on how to design models that utilize attention.

Having built an understanding on attention, a design on an attention based LVQ model was
proposed and analyzed. For this, one objective was to keep the model as simple as possible
to ensure easy interpretability. Multiple variations were proposed for this design to accom-
modate different input sizes due to varying memory constraints. A multivariate timeseries
was used, which had proven to be successful in conjunction with transformer models that
heavily rely on attention. This dataset consisted of timeseries from wind blade rotors meant
for classification into four different degredation states. Several experiments were conducted
under various parametrizations and model designs.

In the experiments, it was shown that the proposedmodels fail to generalize on the learning
task. The reason for the failure could not be determined, but instead reasonable sugges-
tions were given based on experience of similar model designs and the inner workings of
the processing.

Further research can be done in testing the suggested improvements on the model’s de-
sign and examine whether any improvement can be seen in its classification performance.
The suggested improvements are significant design changes. If such changes show improve-
ments, other minor improvements, such as changing the alignment function, distribution
function, attention design or the LVQ backend can be tested. Given some successes are
found, also the interpretability of the attention matrices can be analyzed and see if they add
to the interpretability of LVQ algorithms.
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