
MASTER THESIS

Mr.
Raghuveera Kori

Numerical Comparison of
Eigenvalue and Eigenvector

Determination by Oja Sanger,
Jacobi Rotations and the Power

method

2021

Faculty of Applied Computer and Life Sciences

MASTER THESIS

Numerical Comparison of
Eigenvalue and Eigenvector

Determination by Oja Sanger,
Jacobi Rotations and the Power

method

Author:
Raghuveera Kori

Study Programme:
Applied Mathematics for Network and Data Sciences

Seminar Group:
MA17w1-M

First Referee:
Prof. Dr. Thomas Villmann

Second Referee:
Dr Marika Kaden

Mittweida, July 2021

Thanks to

my parents,
for filling confidence in me and blessing me.

Special thanks to

Prof. Dr. Thomas Villmann,
for the kind support and guidance,

Dr. Marika Kaden,
for proofreading the manuscript,

and giving valuable feedback
throughout the thesis.

Bibliographic Information

Kori, Raghuveera: Numerical Comparison of Eigenvalue and Eigenvector Determination by Oja
Sanger, Jacobi Rotations and the Power method, 77 pages, 26 figures, Hochschule Mittweida,
University of Applied Sciences, Faculty of Applied Computer and Life Sciences

Master Thesis, 2021

Abstract

Computationally solving eigenvalue problems is a central problem in numerical analysis and as
such has been the subject of extensive study. In this thesis we present four different methods
to compute eigenvalues, each with its own characteristics, strengths and weaknesses. After
formally introducing the methods we use them in various numerical experiments to test speed
of convergence, stability as well as performance when used to compute eigenfaces, denoise
images and compute the eigenvector centrality measure of a graph.

I

I. Contents

Contents . I

List of Figures . II

List of Tables . III

1 Introduction. 3

2 Preliminaries . 5

Matrix norms . 5

Computational cost and big-O notation . 6

2.1 The Eigenvalue Problem . 6

Matrix diagonalization . 7

2.2 Numerical stability and Conditioning . 8

2.3 Covariance matrix and Principal Component Analysis. 12

2.3.1 Principal Component Analysis for dimension reduction. 13

2.4 Graphs and eigenvector centrality . 14

3 Numerical methods for computing eigenvalues and eigenvectors. 17

3.1 Oja and Oja-Sanger’s method. 18

3.1.1 Hebbian learning . 18

3.1.2 Oja’s method . 20

3.1.3 Oja-Sanger’s Method . 24

3.2 Jacobi’s method . 29

3.2.1 Givens rotation . 30

3.2.2 The algorithm . 33

3.3 Power method . 37

Inverse Power Method . 38

4 Numerical simulations . 41

4.1 Convergence of methods . 41

4.2 Stability . 47

4.3 Computing eigenfaces . 50

4.4 Denoising images . 56

I

4.5 Computing eigenvector centrality . 59

5 Conclusion . 61

Bibliography . 63

A Python code . 65

A.1 Base class. 65

A.2 Oja’s method . 68

A.3 Oja-Sanger’s method . 70

A.4 Jacobi’s method . 72

A.5 Power method . 75

II

II. List of Figures

4.1 Convergence of |λ1− λ̃ k
1 | for Oja’s method . 42

4.2 Convergence of K k =
∣∣∣∣Λ− Λ̃k

∣∣∣∣
2 for Oja-Sanger’s method . 42

4.3 Convergence of |λ1− λ̃ k
1 | for Oja-Sanger’s method . 43

4.4 Convergence of |λ2− λ̃ k
2 | for Oja-Sanger’s method . 43

4.5 Convergence of |λ99− λ̃ k
99| for Oja-Sanger’s method . 44

4.6 Convergence of C k =
∣∣∣∣Λ− Λ̃k

∣∣∣∣
2 for Jacobi’s method . 44

4.7 Convergence of |λ1− λ̃ k
1 | for Jacobi’s method . 45

4.8 Convergence of |λ2− λ̃ k
2 | for Jacobi’s method . 45

4.9 Convergence of |λ99− λ̃ k
99| for Jacobi’s method . 46

4.10 Convergence of K k =
∣∣∣∣Λ− Λ̃k

∣∣∣∣
2 for Jacobi’s method with I = 500 46

4.11 Convergence of |λ1− λ̃ k
1 | for the Power method . 47

4.12 Convergence of |λ1− λ̃
k,σ
1 | for Oja’s method.. 48

4.13 Convergence of K k =
∣∣∣∣Λ− Λ̃k,σ

∣∣∣∣
2 for Oja-Sanger’s method. 49

4.14 Convergence of K k =
∣∣∣∣Λ− Λ̃k,σ

∣∣∣∣
2 for Jacobi’s method. 49

4.15 Convergence of |λ1− λ̃
k,σ
1 | for the Power method.. 50

4.16 Some example images from the ATT faces data set . 51

4.17 The first 3 eigenfaces as computed by Oja-Sanger’s method . 52

4.18 Original faces and their projection πK(fi) on the first K = 10 principal components

compute with the Oja-Sanger method . 52

4.19 The first 3 eigenfaces as computed by Jacobi’s method . 53

4.20 Original faces and their projection πK(fi) on the first K = 10 principal components

computed with the Jacobi’s method . 53

4.21 The first 3 eigenfaces as computed by Jacobi’s method with 100 inverse iterations

applied afterwards . 54

4.22 Original faces and their projection πK(fi) on the first K = 10 principal components

as computed with the Jacobi’s method with 100 additional inverse iterations 54

4.23 The first 6 principal components u1,u2, . . . ,u6 obtained from the MNIST data set with

Oja-Sanger’s method. 57

II

4.24 For 5 randomly selected indexes i = 1,2, . . . ,2000, the three rows show xi, x̃i and

π20(x̃i) respectively, when using the Oja-Sanger’s method. The numbers above the

second and third row are the noise and projection error respectively. 58

4.25 The first 6 principal components u1,u2, . . . ,u6 obtained from the MNIST data set with

Jacobi’s method. 58

4.26 For 5 randomly selected indexes i = 1,2, . . . ,2000, the three rows show xi, x̃i and

π20(x̃i) respectively, when using Jacobi’s method. The numbers above the second

and third row are the noise and projection error respectively. 59

III

III. List of Tables

4.1 Degree and eigenvector centrality (computed with the Power method) for the most

central 20 vertices in the Reddit data set. 60

1

List of Symbols

We will denote with

• N,Z and R the sets of natural, integer and real numbers respectively;
• R+ the set of positive real numbers;
• a≡ b (mod N) the congruence modulo N ∈N of two numbers a,b∈R (i.e. ∃k∈Z

s.t. a−b = kN);
• |a| the absolute value of an integer or real number;
• Rn the R-vector space of dimension n ∈ N;
• ||·|| the norm on an R-vector space V , i.e. a function f : V → R s.t.

– ∀x,y ∈V f (x+ y)≤ f (x)+ f (y)
– ∀x ∈V,∀s ∈ R f (sx) = |s| f (x)
– ∀x ∈V f (x)≥ 0 and f (x) = 0⇐⇒ x = 0;

• {ai j}1≤i≤m
1≤ j≤n

⊂ Rm×n an m×n matrix with i, j-th entry equal to ai j ∈ R;

• Ai j the i, j-th entry of a matrix A ∈ Rm×n;
• A· j the j-th column of a matrix A ∈ Rm×n;
• Ai· the i-th row of a matrix A ∈ Rm×n;
• AT the transpose of a matrix A ∈ Rm×n for m,n ∈ N;
• A−1 the inverse of a matrix A ∈ Rm×n for m,n ∈ N, if this exists;
• |A| the determinant of a matrix A ∈ Rm×n;
• tr(A) the trace of a square matrix A ∈ Rn×n, i.e. tr(A) = ∑

n
i=1 Aii

• δi j for i, j ∈ Z the so-called Kronecker-delta defined by δi j = 1 if i = j and δi j = 0
if i 6= j;

• diag(d1,d2, . . . ,dn)=D∈Rn×n a so-called diagonal matrix with elements d1,d2, . . . ,dn

on the diagonal, i.e. Di j = diδi j for i = 1,2, . . . ,n, j = 1,2, . . . ,n;
• In ∈ Rn×n, or simply with I if n is clear from the context, the so-called identity

matrix diag(1,1, . . . ,1);
• {an}n∈N ⊆ S a succession in a set S, i.e. a function f : N→ S s.t. f (n) = an;

we will also simply denote the succession with {an}n∈N if it is obvious from the
context it has values in S;

• an → α the convergence of the succession {an}n∈N ⊂ R to α ∈ R, i.e. ∀ε ∈
R, ε > 0, ∃N ∈ N s.t. ∀n > N |an−α|< ε ;

• vn→ w the component-wise convergence of the succession {vn}n∈N ⊂Rk to w ∈
Rk, i.e. ∀i = 1,2, . . . ,k vni→ w where vn = (vn1,vn2, . . . ,vnk).

2

Chapter 1: Introduction 3

1 Introduction

Given a matrix A ∈ Rm×n, a number λ ∈ R and a vector v are called eigenvalue and
eigenvector of A if Av = λv. Why is this simple definition so important? In first instance
one could make the argument that eigenvalues are intrinsic properties of the linear map
associated to A, since they are invariant under a change of basis, and thus independent
of the particular reference we choose in Rn. Because of this and other fundamental
properties, their study is thus certainly worthwhile from a theoretical point of view, and in
fact they always occupy a big share of the first lectures one receives in Linear Algebra.

Secondly, they have extensive applications in applied mathematics, physics, engineer-
ing, and really any science that at any point has to use linear operators. To give just a
few examples, they are used in the theory of any Hamiltonian system such as those that
appear in quantum mechanics: the diagonalization of the Hamiltonian operator is used
to describe how a system evolves through time. They can be used to discern between
attractive and non-attractive equilibriums in the theory of dynamical systems, where ar-
bitrary differential equations are locally approximated with linear operators. Finally, and
we shall see and example of this in Chapter 4 of this Thesis, they can be used to com-
pute the principal component analysis of an arbitrary data set, allowing one to achieve
a good low-dimensional approximation of the data.

In this thesis we will present 4 numerical methods to solve the eigenvalue problem: Oja,
Oja-Sanger, Jacobi and the Power method. Each of these have different origin and can
be applied to different classes of matrices. Oja and Oja-Sanger’s in particular have an
interesting history, which we will give a brief overview of in Section 3.1.1: they were born
in the context of simple neural networks as a rule to update the weights that had better
behavior than the previously standard Hebbian rule.

The structure of this thesis is as follows: in Chapter 2 we will introduce some notation as
well as some fundamental results from linear algebra, statistics and graph theory that
we will need in the main part of the thesis. In Chapter 3 we will introduce the eigenvalue
methods themselves, discussing in detail the main properties, the convergence, the
convergence rate as well as the algorithms and their complexities. For each method we
will further manually compute a few iterations on a small matrix.

Finally in Chapter 4 we will put the methods to the test in five different contexts: we will
compare the convergence rate on a randomly generated matrix, we will then add noise
to this matrix to test the stability, we will use them to compute the so-called eigenfaces,
to denoise images and finally to compute the eigenvector centrality of a graph.

4

Chapter 2: Preliminaries 5

2 Preliminaries

In this Chapter we want to briefly establish some notation and fundamental results that
we will need in the main Chapters of the Thesis.

Given a norm ||·|| on Rn, a vector v ∈Rn is of unitary norm if ||v||= 1; the normalization
of v is 1

||v||v, which is always of unitary norm. Two vectors v,w ∈ Rn are orthogonal if

vT w = 0. Vectors v1,v2, . . . ,vn ∈ Rn are said to be orthonormal if they are all of unitary
norm and orthogonal with one another, i.e. (vi)

T v j = 0 for all i, j = 1,2, . . . ,n, i 6= j.

We will say a matrix A ∈ Rn×n is symmetric if A = AT ; we will say it is orthogonal if
AAT = AT A = I, or equivalently if it is invertible and its inverse is also its transpose.

Two matrices A and B in Rn×n are said to be symmetric if there exists an invertible
S ∈ Rn×n such that A = S−1BS.

Matrix norms

Given a matrix A ∈ Rm×n an induced matrix norm ||·|| is a norm on Rm×n s.t.

||A||= sup
x∈Rn

x 6=0

||Ax||
||x||

. (2.1)

Remark 2.1 An induced norm always satisfies the sub multiplicative property :

∀A ∈ Rm×n , ∀B ∈ Rn×k ||AB|| ≤ ||A|| ||B|| . (2.2)

Proof: From the definition of induced norm we have that for all non-zero y ∈ Rn, ||A|| ≤
||Ay||
||y|| and for all non-zero x ∈Rk, ||AB|| ≤ ||ABx||

||x|| . Therefore, given x ∈Rk s.t. Bx 6= 0, we
have

||AB|| ≤ ||A(Bx)||
||x||

=
||A(Bx)||
||Bx||

||Bx||
||x||

≤ ||A|| ||B|| .

For p ∈ [1,∞] the p-norm of a vector v = (v1,v2, . . . ,vn) ∈ Rn is defined as ||v||p =

6 Chapter 2: Preliminaries

(∑n
i=1(vi)

p)
1
p if p 6= ∞ and ||v||

∞
= maxi=1,2,...,n |xi| =. For p = 2 we have the Cauchy-

Schwarz inequality for two vectors u,v ∈ Rn:

|uT v| ≤ ||u||2 ||v||2 . (2.3)

The induced p-norm for a matrix A ∈ Rm×n is denoted with ||A||p i.e.

||A||p = sup
x∈Rn

x 6=0

||Ax||p
||x||p

. (2.4)

In the special case of p = 1,∞ the p-norms of a matrix A ∈ Rm×n can be equivalently
defined as

||A||1 = max
1≤ j≤n

m

∑
i=1
|Ai j| (2.5)

||A||
∞
= max

1≤i≤m

n

∑
j=1
|Ai j| (2.6)

respectively.

We will also use the Frobenius norm ||·||F which is defined for a matrix A= {ai j}1≤i≤m
1≤ j≤n

∈ Rm×n

as ||A||F =
(

∑
m
i=1 ∑

n
j=1 |ai j|2

)
.

Computational cost and big-O notation

We will define the computational cost of an algorithm as the number of elementary
machine operations required for its completion - this is usually given as a function of one
of the inputs of the algorithm. When we talk about computational cost we will often use
the so called big-O notation: given two successions {an}n∈N ⊂ R and {bn}n∈N ⊂ R+,
we will say that a is O(bn) if ∃N ∈N, K ∈R s.t. ∀n>N |an| ≤Kbn. Intuitively this means
that asymptotically {|an|}n∈N cannot diverge faster than {bn}n∈N.

2.1 The Eigenvalue Problem

In this thesis we will consider various numerical methods to solve the real eigenvalue
problem: given a matrix A ∈ Rn×n, find a number λ ∈ R and a vector v ∈ Rn, x 6= 0
with

Av = λv . (2.7)

Chapter 2: Preliminaries 7

Such λ and v are called eigenvalue and eigenvector of A respectively. Eigenvalues
and eigenvectors are fundamental concepts in linear algebra and extensively treated in
books such as [19], [16] and [8].

Proposition 1 If A ∈ Rn×n is invertible and has eigenvalue λ with eigenvector v, then

1. αλ is an eigenvalue of αA with same eigenvector;

2. λ−1 is an eigenvalue of A−1 with the same eigenvector;

3. if B = S−1AS, where S ∈ Rn×n is invertible, then B has also λ as eigenvalue.

Proof: For the first part, we have (αA)v == α(Av) = αλv. For the second we have

A−1v = A−1 1
λ
(λv)

=
1
λ

A−1(Av)

=
1
λ

v .

Finally, we have

B = (S−1AS)⇒ BS−1 = S−1A

⇒ B(S−1v) = λS−1v ,

i.e. S−1v is eigenvector of B with eigenvalue v.

We recall that a homogeneous linear system Ax = 0, for A ∈ Rm×n, has only the zero
solution x = 0 if and only if |A| 6= 0 or equivalently if and only A is invertible. Using this
basic fact we can define a polynomial with coefficients in R that has the eigenvalues
of A as all and only roots: the characteristic polynomial p(t) of real variable t ∈ R of a
matrix A ∈ Rn×n is defined as p(t) = |A− tI|, and we have that p(t) = 0 if and only if
there exists v s.t. (A− tI)v = 0, i.e. if and only if there exists an eigenvector v of A with
eigenvalue t.

Matrix diagonalization

We will say that a matrix A ∈ Rn×n is 6 diagonalizable if there exists an invertible matrix
P s.t. the matrix P−1AP is a diagonal matrix. In the following proposition we state
fundamental properties of diagonalizable matrices, for proofs of which see [19] or [16].

8 Chapter 2: Preliminaries

Proposition 2 Let A ∈ Rn×n, then:

• A is diagonalizable if and only if there exists u1,u2, . . . ,un ∈ Rn that form a basis
of Rn and that are also eigenvectors of A;

• if A is symmetric, then it is diagonalizable with A = PDP−1, its eigenvalues are all
real, its eigenvectors can be chosen to be an orthonormal basis of Rn and P can
be chosen to be orthogonal.

2.2 Numerical stability and Conditioning

In this section we want to give a brief overview of the topics of numerical stability and
conditioning in so far as they concern the eigenvalue problem. A much more in-depth
treatment can be found for example in [3] and [18].

Suppose we have a given problem and a space X whose elements are specific in-
stances of this problem, and suppose we have a space of solutions Y . Suppose both X
and Y are equipped with a norm and suppose there is a function f : X→Y that we inter-
pret as the function associating a specific problem x ∈ X to its exact solution y = f (x);
furthermore suppose we have an algorithm f ? : X → Y which attempts to approximate
f . Let x ∈ X be a specific problem we wish to solve and define y? = f ?(x) as the ap-
proximate solution proposed by the algorithm: in general this will not be the same as the
exact solution, i.e. y? 6= f (x). Let then ∆x ∈ X be such that f (x+∆x) = y?, i.e. x+∆x
represents the problem that f ? actually solved. We can define the forward error as

Fx =
||y?− y||
||y||

,

and the backward error as

Bx =
||∆x||
||x||

.

The forward error is the relative error committed in the output of the algorithm, while the
backward error is the relative error in the inputs when considering the instance of the
problem the algorithm actually solved. An algorithm is called backwards stable or simply
stable if the backward error is small for all x.

It is useful to introduce KKKx, the condition number associated to the specific problem x,
which is the smallest possible number such that

Fx ≤ KKKxBx (2.8)

holds independently of the chosen algorithm f ? (see [5] for a more formal definition).
If we are able to determine the condition number for a given problem, we then have a

Chapter 2: Preliminaries 9

measure of which specific instances of X it is possible to solve accurately. In fact, if KKKx

is small, then a small perturbation in the inputs of the algorithm (i.e. a small Bx) will
result in a small error in the outputs (i.e. small Fx). We will use equation 2.8 in Section
4.2 to estimate the stability of various eigenvalue methods.

For example, consider the linear system problem of finding x 6= 0 such that Ax = b for a
given invertible matrix A ∈ Rm×n and vector b ∈ Rn. Here we would have X = Rm×n×n,
Y = Rn and f (A,b) = A−1b. With these hypothesis we have

Proposition 3 Given the above hypothesis, consider the perturbation δb ∈ Rn, and let
δx ∈ Rn be such that x+δx is a solution to the perturbed system, i.e.

A(x+δx) = b+δb . (2.9)

Then we have

||δx||
||x||

≤
∣∣∣∣A−1∣∣∣∣ ||A|| ||δb||

||b||
. (2.10)

Proof: From 2.9 and from Ax = b it follows Aδx = δb. Using the sub multiplicative
property for induced norms we have

||δx||=
∣∣∣∣A−1

δb
∣∣∣∣

≤
∣∣∣∣A−1∣∣∣∣ ||δb|| , (2.11)

and

||b||= ||Ax||

≤ ||A|| ||x|| ,

which implies

1
||x||
≤ ||A||||b||

. (2.12)

The thesis then follows from 2.11 and 2.12.

In [3] an analogous result (albeit with a more technical proof) is shown for when a per-
turbation ∆A ∈ Rm×n is considered on A. We can conclude that in the case of solving a
linear system Ax = b the condition number can be defined as KKK = ||A||

∣∣∣∣A−1
∣∣∣∣; we will

denote this particular condition number with KKK(A).

For the eigenvalue problem 2.7 we have X = Rn×n, Y = R1×n, f (A) = (λ ,v). In order
to obtain the condition number for the eigenvalue problem, we need the following which

10 Chapter 2: Preliminaries

is known as Bauer-Fike Theorem and its Corollary:

Theorem 2.2 Let ||·|| be an induced matrix norm such that ||D||= max1≤i≤n |di| holds
for any diagonal matrix D = diag(d1,d2, . . . ,dn), let A ∈ Rn×n be a diagonalizable ma-
trix, i.e. there is an invertible matrix Q s.t. Q−1AQ = D = diag(λ1,λ2, . . . ,λn) where
λ1,λ2, . . . ,λn are the eigenvalues of A. Furthermore let ∆A ∈ Rn×n be any other n× n
matrix and let µ be an eigenvalue of A+∆A. Then there exists λ eigenvalue of A s.t.

|µ−λ | ≤ KKK(Q) ||∆A|| . (2.13)

Proof: If µ = λĩ for some λĩ then the thesis is trivial. Suppose thus µ 6= λi for all i, and
let v ∈ Rn be s.t. (A+∆A)v = µv; then we have

∆Av = (µI−A)v

= (µI−QDQ−1)v

= Q(µI−D)Q−1v .

By multiplying the first and last terms in the previous equation by Q−1 on the left we
obtain

(µI−D)Q−1v = Q−1
∆Av

= (Q−1
∆AQ)Q−1v .

Now we multiply on the left by (µI−D)−1 and obtain

Q−1v = (µI−D)−1Q−1
∆AQ(Q−1v) ,

and using the sub multiplicative property for induced matrix norms on square matrices
we have ∣∣∣∣Q−1v

∣∣∣∣≤ ∣∣∣∣(µI−D)−1∣∣∣∣ ∣∣∣∣Q−1
∆AQ

∣∣∣∣ ∣∣∣∣Q−1v
∣∣∣∣ . (2.14)

Since (µI−D) = diag(µ−λ1,µ−λ2, . . . ,µ−λn), its inverse is

(µI−D)−1 = diag((µ−λ1)
−1,(µ−λ1)

−2, . . . ,(µ−λn)
−1)

and thus ∣∣∣∣(µI−D)−1∣∣∣∣= max
1≤i≤n

|(µ−λi)
−1| .

Chapter 2: Preliminaries 11

We can then divide both terms in 2.14 by
∣∣∣∣Q−1v

∣∣∣∣ and obtain

1≤ max
1≤i≤n

|(µ−λi)
−1|
∣∣∣∣Q−1

∆AQ
∣∣∣∣

≤ max
1≤i≤n

|(µ−λi)
−1|
∣∣∣∣Q−1∣∣∣∣ ||Q|| ||∆A||

= max
1≤i≤n

|(µ−λi)
−1|KKK(Q) ||∆A|| ,

and thus

min
1≤i≤n

|µ−λi|=
1

max1≤i≤n |µ−λi|

≤ KKK(Q) ||∆A|| .

Remark 2.3 Examples of matrix norms satisfying the hypothesis on diagonal matrices
are ||·||1 , ||·||2 and ||·||

∞
.

Corollary 2.4 Under the same hypothesis as for Theorem 2.2, there exists λ eigen-
value of A s.t.

|λ −µ|
|λ |

≤ KKK(Q)
∣∣∣∣A−1

∆A
∣∣∣∣ (2.15)

Proof: Let v be s.t. (A+∆A)v = µv, then

A−1(A+∆A)v = µA−1v .

Define now M = µA−1 and N =−A−1∆A; we have

(M+N)v = µA−1v−A−1
∆Av

= A−1(A+∆A)v−A−1
∆Av

= v ,

i.e. v is an eigenvector of eigenvalue 1 for M+N. Note that if λ1,λ2, . . . ,λn are the eigen-
values of A, then because of Proposition 1 the eigenvalues of M are µ/λ1,µ/λ2, . . . ,µ/λn.
Applying Theorem 2.2 to M +N then gives us that there must exist λ eigenvalue of A

12 Chapter 2: Preliminaries

s.t.

|λ −µ|
|λ |

=
∣∣∣µ
λ
−1
∣∣∣

≤ KKK(Q) ||N||

= KKK(Q)
∣∣∣∣A−1

∆A
∣∣∣∣ .

From Corollary 2.4, we can deduce that for the eigenvalue problem 2.7 for a diagonaliz-
able matrix A=Q−1AQ we can define the conditioning number as KKK(Q)= ||Q|| ||Q−1||.

2.3 Covariance matrix and Principal Component
Analysis

We want here to establish some basic notions of statistics that we will need in the main
Chapters of the thesis - these are all subjects that are extensively treated in introductory
books to probability and statistics, such as [13].

Let xxx = (xxx1,xxx2, . . . ,xxxd) be a random vector with values in Rd and suppose we have
N independent samples x1,x2, . . . ,xN ∈ Rd that are realizations of xxx; this means they
are empirical measurements of xxx obtained by some experiment. In Section 4.3 we will
deal with a data set composed of gray-scale face images, i.e. each face is an element
in [0,1]d for some d. In that case xxx will be "a random picture of a human face" and
x1,x2, . . . ,xN will be the actual faces in the data set.

We will denote the mean of xxx with E[xxx] and to simplify computations we will always
suppose xxx to be centered, i.e. E[xxx1] = E[xxx2] = . . . = E[xxxd] = 0. We define the sample
mean X = 1

N ∑
N
i=1(x

i), where with (xi) j we mean the j-th component of xi. Because we
are supposing xxx to be centered, we will also suppose for the sample mean to be 0 for
all components, i.e.

∀ j = 1,2, . . . ,d
1
N

N

∑
i=1

(xi) j = 0 .

We further define the data matrix associated to the N independent samples of xxx as
the matrix X ∈ RN×d having xi as i-th row; (xi) j is thus also the entry i, j of the data
matrix.

For the centered random vector xxx, the covariance is defined as C = E[xxxxxxT] ∈Rd×d ; the
k, l-th entry of C is given by the random variable E(xxxkxxxl). The sample covariance is

Chapter 2: Preliminaries 13

defined as the matrix C ∈Rd×d matrix whose k, l-th entry is given by 1
N−1 ∑

N
i=1(x

i)k(xi)l .
We can write

C =
1

N−1
XT X , (2.16)

in fact consider the k, l-th entry of XT X : this is the scalar product of the k-th and l-th
column of X , i.e.

(XT X)k,l =
N

∑
i=1

(xi)l(xi)k .

Observe that both C and C are real symmetric matrices and thus have a set of orthonor-
mal eigenvectors. Let λ1,λ2, . . . ,λd be the eigenvalues of C and suppose |λ1| ≥ |λ2| ≥
. . .≥ |λd|; the corresponding orthonormal eigenvectors u1,u2, . . . ,ud are called principal
components of xxx. In practice we are only able to compute eigenvectors of C because
we have only access to the samples of the random vector; we will call these principal
components of the data in X . It can be seen (for example [17]) that one can equivalently
define the principal components as the orthonormal directions along which the data has
the maximum variance, i.e.

u1 = argmax
||w||=1

V[Xw]

u2 = argmax
||w||=1
wT u1=0

V[Xw]

...

ud = argmax
||w||=1

wT u1=wT u2=...=wT un=0

V[Xw] ,

where with V[Xw] =E[(Xw−E[Xw])2] we indicate the variance of the vector Xw, which
has as components the projections of the data samples (rows of X) onto the direction
w.

2.3.1 Principal Component Analysis for dimension reduction

Principal Component Analysis is often used for dimension reduction, i.e. for obtaining a
lower-dimensional approximation of an input data set. Suppose x1,x2, . . . ,xN ∈ Rd are
independent samples from a random vector xxx ∈ Rd , suppose X ∈ RN×d is the associ-
ated data matrix and C ∈ Rd×d the associated sample covariance matrix with eigenval-
ues |λ1| ≥ |λ2| ≥ . . .≥ |λd| and corresponding eigenvectors u1,u2, . . . ,ud .

14 Chapter 2: Preliminaries

If we choose K ∈N, K < d, we can define a K-dimensional approximations of each data
sample xi as the vector xi

|K =
(
(xi)T u1,(xi)T u2, . . . ,(xi)T uK

)
∈RK . In fact, knowing this

vector we can reconstruct the projection of xi onto the subspace generated by the first
K principal components, which is defined as

π
K(xi) =

K

∑
j=1

((xi)T u j)u j ∈ Rd .

Even for low values of K, πK(xi) is generally a good approximation of xi because of
the property that the first principal components encapsulate most of the variance in the
data. The higher the value of K the better the approximation is, the trade-off being we
need to compute and store more scalar products to obtain xi

|K or equivalently πK(xi). If

K = d then πK(xi) = xi.

2.4 Graphs and eigenvector centrality

In this Section we want to give a brief introduction to the notion of graphs and specifically
eigenvector centrality; we will need these in Section 4.5. The main reference in this
Section will be [10].

Graphs are used in the study and analysis of complex networks, such as those de-
rived by social media, scientific paper citations or computer networks. Each of these
examples is described in graph theory as a set of vertices (social media users, scien-
tific authors, server computers) and a set of edges that encodes some form of relation
between vertices (being a follower, citing another author, being connected).

Formally, a graph is a structure describing the relations between certain entities; specif-
ically we will say G is a directed graph if G = (V,E), where V = {v1,v2, . . . ,vn}, n∈N, is
a set whose elements are known as vertices and E ⊆V ×V is a set of pairs of vertices
whose elements are known as edges. The graph is directed because the pairs that con-
stitute edges are ordered - for non-directed graphs the pairs are unordered. We will be
exclusively interested in directed graphs, which we will simply call graphs for brevity.

In the study of complex networks an important concept is that of centrality: a centrality
measure is a function µ : V → R+ that assigns a score to each vertex, where vertices
that are more important should receive a higher score. There are various competing
definitions for centrality measures, the simplest of which being that of degree central-
ity. The degree of a vertex v ∈ V is defined as the number of incoming edges in v, i.e.
|{w ∈V |(w,v) ∈V}|, and the degree centrality measure simply associates this number
to each vertex. This means that, according to the degree centrality, the most important
vertices are the ones with most incoming edges. While this may be a good enough
measure in some situations, in most applications it is quite crude and not very useful in

Chapter 2: Preliminaries 15

identifying important vertices. In fact typically in a network different vertices have differ-
ent importance, and simply counting the number of incoming edges does not account
for the fact that an incoming edge from a vertex that is itself important should count
more.

An attempt to solve this problem is to require that the measure on any node v ∈ V be
proportional to the sum of the measures for all other nodes in V connected to v, i.e.

∀v ∈V µ(v) = K ∑
w∈V

(w,v)∈E

µ(w) (2.17)

for some K ∈ R. This requirement on µ can be translated into an eigenvector problem;
to see this we need to define the adjacency matrix A∈ {0,1}n×n associated to the graph
G, whose i, j-th element Ai j is defined by

∀i, j = 1,2, . . . ,n Ai j =

{
1 if (vi,v j) ∈ E
0 otherwise.

By defining x = (µ(v1),µ(v2), . . . ,µ(vn)) ∈ Rn, we can then rewrite 2.17 as

∀i = 1,2, . . . ,n xi = K
n

∑
j=1

Ai jx j (2.18)

for some K ∈ R, which in vector form becomes

Ax =
1
K

x . (2.19)

Then if we find an eigenvector x of A with positive entries and eigenvalue λ we could
define the centrality measure as

∀i = 1,2, . . . ,n µ(vi) = xi , (2.20)

and 2.17 would be satisfied with K = 1
λ

.

The eigenvector centrality of a graph G is then defined as the eigenvector of its adja-
cency matrix A corresponding to the largest eigenvalue and with positive entries; thanks
to the following, known as Perron-Frobenius Theorem, we are guaranteed the largest
eigenvalue is unique and it indeed has a corresponding positive eigenvector.

Theorem 2.5 Let A ∈ Rn×n be a square matrix with positive entries, i.e. Ai j ≥ 0 for
all i, j = 1,2, . . . ,n, then there exists λ ∈ R, λ > 0 which is an eigenvalue of A such
that |µ| < λ for any other eigenvalue µ of A and there exists an eigenvector u =

(u1,u2, . . . ,un) corresponding to λ with all positive entries, i.e. ui > 0 for all i= 1,2, . . . ,n.

16

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 17

3 Numerical methods for computing
eigenvalues and eigenvectors

In this Chapter we will describe four methods to compute a numerical solution to the
eigenvalue problem 2.7: the Oja, Oja-Sanger, Jacobi and Power method. Each of these
have different characteristics that we will describe in detail in this Chapter and further
test on a real-world data set in Chapter 4.

As noted in [14], a method for calculating the eigenvalues of a matrix is necessarily
an iterative method. Indeed, any polynomial can be considered as the characteristic
polynomial of the companion matrix associated with it. So if it were possible to have
a direct method of calculating eigenvalues, this would mean that we can calculate all
the roots of a polynomial of arbitrary degree in a finite number of operations which is
impossible due to the famous theory of Galois.

While Oja and the Power method give an approximation of only the largest eigenvalue
and its respective eigenvector, Jacobi and Oja-Sanger’s method will give approximation
of all of them.

We will start by describing Oja and its variant Oja-Sanger, which have the particularity
that they can be applied only on a covariance matrix XT X where X is a data matrix. They
will converge to eigenvalues and eigenvectors of XT X without the need to compute this,
but using only the rows of X in the computation. In practice this is a big advantage
because it spares computing the product XT X , which for high-dimensional data points
can be considerably expensive. For these two Sections our main references will be [4]
and [11].

Jacobi’s method instead can be applied to any symmetric matrix A. Differently than Oja-
Sanger’s method, for each iteration it will improve the approximation of all eigenvalues,
while Oja-Sanger’s method will only improve one eigenvalue at the time. For this Section
our main reference will be [18].

Finally the Power method is the only of the considered method that has no special
requirements on the matrix A: it can always be used. For this section our main reference
will be [2].

Please not that, unless otherwise specified, in this whole Chapter we will denote the
2-norm ||·||2 in Rn simply with ||·|| for simplicity of notation.

18 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

3.1 Oja and Oja-Sanger’s method

Oja and Oja-Sanger’s method were introduced in the context of neural network theory,
and although they can work to find eigenvalues and eigenvectors for a covariance matrix
coming from any type of data, we think it is useful to give a brief overview of their origin
to better understand how they work. Thus we will start this Section by giving a brief
overview of Hebbian learning, which is the theory of neural network they are part of.
This is to be considered a brief and non-technical overview: a complete and in-depth
discussion can be found for example in [4].

We will then be able to describe in detail Oja and Oja-Sanger’s methods in Sections
3.1.2 and 3.1.3. Our main reference for these Sections will be [11].

3.1.1 Hebbian learning

Oja’s method was first proposed in 1982 by Erkki Oja in [12] as variant of Hebbian
learning in the context of neural networks. Hebbian learning is a neuroscientific theory
claiming that synapses between neurons increase in strength if the neurons are both
activated in a very short time span. This evolution of synapses can be modeled mathe-
matically as the change in weights in a neural network, which in the simplest case is a
linear function W : Rn→ R defined represented by a vector w ∈ Rn and is defined by

∀x ∈ Rn W (x) = wT x

=
n

∑
i=1

wixi .
(3.1)

In the theory of neural networks this would be called a simple linear neuron: the weights
wi represent the strength of the incoming n connections with other neurons and wT x
represents the output of the neuron. The particularity here is that the neuron is subject
to learning, a process that will iteratively update the weights wi in order to obtain a
specific behavior of the neuron that will depend on the application.

Modern neural networks (so-called deep neural networks) consist of very complex ar-
chitecture composed of millions of simple neurons, and the learning is done by defining
an error function at the output of the network, computing the contribution of each weight
via back-propagation (essentially the differentiation chain-rule) and minimizing this via a
technique called gradient descent - see for example [6].

Hebbian learning instead is not trying to minimize a specific error function, but is sim-
ply updating directly the weights based on the input data, and namely it defines the

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 19

succession of vectors {wn}n∈N ⊂ Rd by
w0 = x0

wn+1 = wn +αynxn ∀n≥ 1
yn = (wn)T xn ∀n ∈ N ,

(3.2)

where α ∈ (0,1] is known as the learning rate and {xn}n∈N ⊂Rd the sequence of input
data; 3.2 is known as Hebb’s rule. At each step n the simple neuron 3.1 is applied,
its output stored in yn ∈ R and a portion α of it used to multiply the new input xn; the
resulting vector is then used to update wn. By drawing a connection with the theory
of dynamical systems, in [11] it is shown that 3.2 will grow the weights {wn}n∈N in the
direction of the first principal component of the input data: this is very useful for us,
because we could then take a data matrix X ∈ Rd×N , with N ∈ N input samples, and
iterate 3.2 to obtain an approximation of the principal component, i.e. the eigenvector of
XT X with largest eigenvalue (see Section 2.3).

However, there is one big problem: while the direction of {wn}n∈N will converge to that of
the first principal component, the norm may explode and lead to an overflow condition,
i.e. numbers bigger than the maximum number a computer can do computations with.
The obvious solution would be to normalize the weights by their euclidean norm at each
iteration, i.e. modifying the definition of wn+1 in 3.2 like this:

wn+1 =
wn +αynxn

||wn +αynxn||2
. (3.3)

While this would work, the solution proposed by Oja in [12] is more computationally
efficient, and it is derived by considering the right side of 3.3 as a function f (α) and
writing the Taylor expansion of f in α? = 0, obtaining

wn+1 = f (α?)+ f ′(α?)α +O(α2) for small α . (3.4)

Since f (0) = wn

||wn|| and, as shown in [21], f ′(0) = yn(xn−wnyn), we can suppose w0 to
be of unitary norm and define

w0 = x0

wn+1 = wn +αy(xn− ywn)

yn = (wn)T xn ∀n ∈ N ,

(3.5)

which is known as Oja’s rule. Because the right side in the definition of wn+1 is derived
from 3.4 by simply ignoring the O(α2) term, we can assume that for small α the suc-
cession {wn}n∈N will now be of bounded norm. Applying Oja’s rule will thus converge to
a principal component of the data, as shown in the next Section. However, if we choose
a learning rate α that is too big, the approximation deriving from the Taylor expansion
doesn’t hold anymore and we may still incur in overflow when computing wn+1, just like
for Hebb’s rule.

20 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

3.1.2 Oja’s method

We can now properly introduce Oja’s method. Suppose xxx is a random vector with values
in Rd and suppose without loss of generality it has zero mean, i.e. E[x] = 0; furthermore
suppose we can draw an infinite number of samples {xn}n∈N ⊂ Rd from xxx - when we
introduce the Algorithm, we will introduce the necessary modifications needed to oper-
ate on only a finite number N ∈ N of samples. Finally let C = E[xxxxxxT] be the covariance
matrix and C the respective sample covariance matrix - see Section 2.3.

We state once again here Oja’s rule for the succession of weights {wn}n∈N ⊂ Rd :
w0 = x0

wn+1 = wn +αy(xn− ywn)

yn = (wn)T xn ∀n ∈ N ,

(3.6)

where α ∈ [0,1) is the learning rate. Proving convergence of {wn}n∈N to a w? is not
straightforward and requires some connections with the theory of dynamical systems:
in [12] Oja claims that if the covariance matrix has eigenvalues λ1 > λ2≥ . . .≥ λd (note:
λ1 6= λ2) and if the step α is not constant for all iterations but rather defined as αn = 1

n ,
then wn converges to the asymptotically stable solutions of the associated differential
equation

d
dt

w(t) =Cw(t)− (w(t)TCw(t))w(t) , (3.7)

where w(t) for t ∈R is the continuous version of the weights wn. However, we can easily
prove that, if {wn}n∈N converges, then the limit vector must indeed be an eigenvector of
C. We have in fact the following:

Theorem 3.1 If wn→w?, then w? is an eigenvector of C with eigenvalue λ ? =E[(yn)2].
Furthermore, ||w?||= 1.

Proof: Since wn→ w? we have that εn := wn+1−wn→ 0. Observe that since by defini-
tion yn = (xn)T wn ∈ R we have

ε
n = wn+1−wn

= αyn(xn− ynwn)

= α
(
xn(xn)T wn− (yn)2wn) .

Averaging over the input data samples we have C = E[xn(xn)T] and thus

Cwn = E[(yn)2]wn +
εn

α
,

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 21

which in the limit for n→ ∞ gives us

Cw? = λ
?w? .

Now consider

E[(yn)2] = E[
(
(wn)T xn)((xn)T wn)]

= (wn)TE[xn(xn)T]wn .

In the limit n→ ∞ this gives us

λ
? = (w?)TCw?

= λ
?(w?)T w?

= λ
? ||w?||2 ,

which implies ||w?||= 1.

Regarding the rate of convergence of 3.6, in [1] the authors give an overview of results
for rates of convergence of the Oja and Oja-Sanger methods: the proofs of these are
all highly technical and out of the scope of this manuscript. For Oja’s method they claim
the difference between the approximated and the correct eigenvalue λ1 will be below ε

after O
(

λ1
(λ1−λ2)2 · 1

ε

)
iterations, where λ1 > λ2 > .. . > λd are the eigenvalues of C.

The pseudo code for Oja’s method is given in Algorithm 1. Since in practice we never
have an infinite number of data samples, we substitute xn from equation 3.6 with xk with
k ≡ i (mod N), i.e. we repeatedly iterate through the data samples. The assignment
at line 8 is equivalent to (but computationally more efficient because it avoids a sum of
i elements) writing λNEW ← 1

i+1 ∑
i−1
k=0(y

k)2, where yk are the values of y from previous
iterations.

Each iteration consists only of elementary vector operations and thus the cost is simply
O(d), thus the total computational cost in the worst case is O(I d).

In practice, when we need to compute the first eigenvector of the covariance matrix
XT X , the Oja method has the advantage of needing only the data matrix X and thus
spares the potentially costly computation of XT X .

22 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

Algorithm 1 Oja’s method

Require: data matrix X ∈ RN×d , learning rate α ∈ R, tolerance ε ∈ R, maximum itera-

tions I ∈ N
Ensure: w ∈ Rd approximation of first eigenvector of XT X , λ approximation of respec-

tive eigenvalue

1: Randomly initialize w0 ∈ Rd

2: λOLD← 0
3: for i = 0,1, . . . ,I do

. % Repeatedly iterate through the N rows of X

4: k ≡ i (mod N)

5: x← Xk ·

6: y← xT wi

7: wi+1← wi +αy(x− ywi)

8: λNEW← λOLD
max{1,i−1}

i+1 + y2

i+1

9: if |λOLD−λNEW|< ε then

10: Break loop

11: end if

12: λOLD← λNEW

13: end for

14: w← wi

15: λ ← λNEW

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 23

Example 3.2 The data matrix

X =

−3.4 −1 −2.2
3.6 −1 0.8
3.6 1 −3.2
−3.4 1 1.8
−0.4 0 2.8

consists of 5 centered (i.e. with mean 0) data points in R3 and has sample covariance
matrix

C =
1
4

XT X

=

 12.3 0 −2.1
0 1 0
−2.1 0 6.7

 ,

with largest eigenvalue 13 and associated eigenvector u = [0.94868,0,−0.31622]. Sup-
pose now we set the step to α = 0.01 and we initialize w0 by sampling from a normal
distribution with mean 0 and standard deviation 0.25 obtaining w0 = [0.18,−0.1,0.16].
The first iteration of Oja’s rule would then give

y1 = 0.18 · (−3.4)+−0.1 · (−1)+0.16 · (−2.2)

=−0.864 ,

w1 =

 0.18
−0.1
0.16

−0.00864

 −3.4
−1
−2.2

+0.864

 0.18
−0.1
0.16

=

 0.20803
−0.09061
0.17781

 .

The estimation of the eigenvalue after one iteration would then be 0.8642 = 0.7465. The

24 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

second iteration would give

y2 = 0.20803 ·3.6+−0.09061 · (−1)+0.17781 ·0.8

= 0.98178 ,

w2 =

 0.20803
−0.09061
0.17781

+0.0098178

 3.6
−1
−0.8

−0.98178

 0.20803
−0.09061
0.17781

=

 0.17264
−0.09955
0.15450

 .

The estimation of the eigenvalue after two iterations would then be 0.8642+0.981782

2 =

0.8552. It would look that, while the eigenvector approximation w2 is a much bet-
ter approximation of u than w0, the eigenvalue is still very far from the correct value
13. However the relative errors for the eigenvector approximation is worse than for the
eigenvalue: ∣∣∣∣w2−u

∣∣∣∣
2

||u||2
= 1.7038

|0.8552−13|
|13|

= 0.9342 .

3.1.3 Oja-Sanger’s Method

Oja-Sanger’s method is a variant of Oja’s method that enables one to compute ap-
proximation of all eigenvalues and eigenvectors of the covariance matrix. It consists of
recursively applying Oja’s method on a transformed version of the data matrix X ; the
transformations are computed at the beginning of each iteration and have the effect of
projecting the data onto a space orthogonal to that generated by the previously com-
puted eigenvectors. With this frame, Oja’s rule will successively approximate all the
eigenvectors, by decreasing order of their respective eigenvalues. For this Section our
main references will be [4] and [11].

We will be using in this Section the same hypothesis and notations as in the prece-
dent one. Oja-Sanger’s method is based on a modification of equation 3.6 to obtain
approximations w1,w2, . . . ,wd of all d eigenvectors of C:

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 25

w0

i = x0
i

wn+1
i = wn

i +αyi(xn
i − yn

i wn
i) ,

yn
i = (xn

i)
T wn

i ∀n ∈ N ,

(3.8)

where for all n ∈ N {
xn

1 = xn

xn
i = xn

i−1− yn
i−1wn

i−1 ,
(3.9)

where α ∈ [0,1) is the learning rate and i = 1,2, . . . ,d is the index corresponding to
the eigenvector; this is known as Oja-Sanger’s rule. Because xn

i depends on quantities
referring with index i−1, the application of these formulas must consist of an outer and
inner loop: the outer loop will iterate on i, going from 1 to d. The inner loop corresponds
to iterating 3.8 for n = 0,1, . . ., which is simply Oja’s rule applied to {xi−1}n∈N, to ob-
tain an approximation of wi. For a certain i in the outer loop, the inner loop is using
only quantities from previous iterations of the outer loop; in other words, to compute
approximations wk only values wi,xi,yi with i≤ n are used.

The definition of xn
i in 3.9 is similar to the so-called Gram-Schmidt orthogonalization

process (see for example [19], [16] or [8]): suppose the first I ≤ d iterations of the outer
loop already gave a good approximation of the eigenvectors w?

1,w
?
2, . . . ,w

?
I of C, then

the transformed data xn
I+1 will be (in the limit for n→ ∞) orthogonal to all these already

computed eigenvectors. In fact we have:

Theorem 3.3 Suppose the random samples are limited in norm, i.e. ∃K ∈ R s.t. for
all i,n ∈ N we have ||xn

i || ≤ K, and suppose that wn
i → w?

i for all i = 1,2, . . . ,d. Then
w?

1,w
?
2, . . . ,w

?
d are eigenvectors of C, are orthonormal and for all i = 1,2, . . . ,d we have

∀ε > 0 ∃N s.t. ∀k ≤ i ∀n≥ N |(w?
k)

T xn
i+1|< ε . (3.10)

Proof: Observe that from 3.9 and from the definition of yn
i = (xn

i)
T wn

i = (wn
i)

T xn
i in 3.8

we have:

(w?
k)

T xn
i+1 = (w?

k)
T xn

i − yn
i (w

?
k)

T wn
i

= (w?
k)

T xn
i − (wn

i)
T xn

i (w
?
k)

T wn
i . (3.11)

To prove the Theorem we will use induction on i. For the base case i = 1 = k Oja-
Sanger’s rule reduces to Oja’s rule and from Theorem 3.1 we know w?

1 is an eigenvector
of C and ||w?

1||= 1. Since wn
1→w?

1, we can choose N ∈N s.t. for all n≥N we can write
wn

1 = w?
1 + ε̄ with ||ε̄|| ≤ ε?1 , where ε?1 ∈ R will be specified later. Then, for n ≥ N, 3.11

26 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

becomes

(w?
1)

T xn
2 = (w?

1)
T xn

1− (w?
1 + ε̄)T xn

1(w
?
1)

T (w?
1 + ε̄)

= (w?
1)

T xn
1− (w?

1)
T xn

1(w
?
1)

T w?
1− (w?

1)
T xn

1(w
?
1)

T
ε̄− ε̄

T xn
1(w

?
1)

T w?
1− ε̄

T xn
1(w

?
1)

T
ε̄ .

Since (w?
1)

T w?
1 = ||w?

1|| = 1, the first two terms cancel. Taking the absolute value and
using Cauchy-Schwarz’s inequality we then have∣∣(w?

1)
T xn

2
∣∣≤ ||(w?

1)|| ||xn
1|| ||(w?

1)|| ||ε̄||+ ||ε̄|| ||xn
1|| ||(w?

1)|| ||(w?
1)||+ ||ε̄|| ||xn

1|| ||(w?
1)|| ||ε̄||

= 2 ||xn
1|| ||ε̄||+ ||xn

1|| ||ε̄||
2

≤ 2Kε
?
1 +K(ε?1)

2 .

Because the discriminant of the quadratic equation (in ε̄?1)

K(ε̄?1)
2 +2Kε̄

?
1 − ε = 0

is 4K2 +4Kε > 0, we can surely choose ε̄?1 s.t.
∣∣(w?

1)
T xn

2

∣∣≤ ε for all n≥ N.

For the induction step, supposing the Theorem is true for all i ≤ ī− 1 we will prove it
for ī. Since we have wn

ī → w?
ī , we can choose N ∈ N s.t. for all n ≥ N we can write

wn
ī = w?

ī + ε̄ with ||ε̄|| ≤ ε?ī , where ε?ī ∈ R will be specified later.

We distinguish two cases, and namely if k = ī and k < ī. For k = ī and n ≥ N, 3.11
becomes

(w?
ī)

T xī+1 = (w?
ī)

T xn
ī − (w?

ī + ε̄)T xn
i (w

?
ī)

T (w?
ī + ε̄) ,

and, with computations that are completely analogous for the base case i = 1 = k, one
can show that ε̄?ī can be chosen small enough to have |(w?

ī)
T xī+1|< ε .

Suppose now that j < ī and n≥ N, equation 3.11 then becomes

(w?
k)

T xī+1 = (w?
k)

T xn
ī − (w?

ī + ε̄)T xn
i (w

?
k)

T (w?
ī + ε̄)

= (w?
k)

T xn
ī − (w?

ī)
T xn

i (w
?
k)

T w?
ī − (w?

ī)
T xn

i (w
?
k)

T
ε̄− (ε̄)T xn

i (w
?
k)

T w?
ī − (ε̄)T xn

i (w
?
k)

T
ε̄ .

The second and fourth term in the last expression are null, because (w?
k)

T w?
ī = 0. Fur-

thermore because of the induction hypothesis, we can suppose |(w?
k)

T xn
ī |< ε1 for large

enough n and for some ε1 ∈ R yet to determine. Using again the Cauchy-Scwharz
inequality we then have

|(w?
k)

T xī+1| ≤ ε1 +
∣∣∣∣xn

ī

∣∣∣∣ ||ε̄||+ ||xīn|| ||ε̄||
2

≤ ε1 +Kε
?
ī +K(ε?ī)

2 .

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 27

Consider the quadratic equation

K(ε?ī)
2 +Kε

?
ī + ε1− ε = 0 ;

its discriminant is K2−4K(ε1−ε) which, if we choose ε1 <
K2

4K +ε , is positive. Thus fur
such a choice of ε1 a choice of ε?ī can be made so that

|(w?
k)

T xn
ī+1|< ε

holds for all n≥ N.

Remark 3.4 The hypothesis in the previous Theorem on the boundedness of the data
samples is always verified when, as it usually happens in practice, we have a limited
number of data samples and a limited number of iterations.

Regarding the convergence rate of Oja-Sanger’s method, in [1] the authors claim the

error will be below ε after O
(

∑
d
i=1 λi

(λ1−λ2)2 · 1
ε

)
iterations, where λ1 > λ2 > .. . > λd are the

eigenvalues of C.

Algorithm 2 Oja-Sanger’s method

Require: data matrix X ∈ RN×d , learning rate α ∈ R, tolerance ε ∈ R, Oja iterations

I ∈ N
Ensure: w1,w2, . . .wd ∈ Rd approximation of eigenvectors of XT X , λ1,λ2, . . . ,λn ∈ R

approximations of respective eigenvalues

1: X1← X

2: for i = 1,2 . . . ,d do

3: wi,λi← Oja(Xi,α,ε,I) . apply Oja’s rule on Xi

4: for k = 1,2, . . . ,N do

5: yk
i ← (xk

i)
T wi

6: xk
i+1← xk

i − yk
i wi . xk

i is the k-th row of Xi

7: end for

8: Xi+1← stack x1
i+1,x

2
i+1, . . . ,x

N
i+1 as row vectors

9: end for

The pseudo code for Oja-Sanger’s method is given in Algorithm 2. The computational
cost of one iteration is dominated by the application of Oja’s rule; the total cost in the
worst case will then be O(I d2).

One of the big advantages of of Oja-Sanger’s method is that we can easily modify line
2 to iterate simply over i from 1 to only a certain K < d, in the case we only need

28 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

approximations of the first K eigenvectors and eigenvalues. This is often the case when
we interested in the principal component analysis of some data set, as we will be in
Section 4.3.

Furthermore, just like for Oja’s method, Oja-Sanger’s method does not require the po-
tentially very costly computation of the covariance matrix XT X in order to approximate
its eigenvectors.

Example 3.5 We take the same data matrix as in Example 3.2, whose sample covari-
ance matrix has eigenvalues 13,6 and 1 with eigenvectors

u1 =

 0.94868
0

−0.31622

 , u2 =

 0.31622
0

0.94868

 , u3 =

 0
1
0

 .

Suppose we set a step of α = 0.01 and a tolerance of ε = 1−6; the first iteration of
the Oja-Sanger method will then be equivalent to Oja’s method on the data with these
parameters. After 41 iterations it achieves a residue below the tolerance and yields:

w?
1 =

 0.94868
1−12

−0.31622

λ
?
1 = 10.4 .

Then by iterating on the rows of X1 = X the values xk
2 for k = 1,2, . . . ,5 are computed

and give the matrix

X2 =

−1 −1 −3
0.6 −1 1.8
−0.6 1 −1.8
0.2 1 0.6
0.8 0 2.4

 .

In the next iteration Oja’s method is applied to X2; after 55 iterations it achieves a residue
below the threshold and yields

w?
2 =

 0.31622
6 ·1−8

0.94869

λ
?
2 = 4.8 .

After 96 iterations we then have approximations of the first two eigenvalues and eigen-

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 29

vectors with relative errors:

||w?
1−u1||2
||u1||2

= 1−12

|10.4−13|
|13|

= 0.2

||w?
2−u2||2
||u2||2

= 1−5

|4.8−6|
|6|

= 0.2 .

3.2 Jacobi’s method

Jacobi’s method allows one to compute approximations of all eigenvalues and eigenvec-
tors of a symmetrical matrix A∈Rn×n, and it does so by a series of geometrical transfor-
mations known as Givens rotations that are applied to the matrix. The Givens rotations
allow to find a sequence of invertible matrices {Qk}k∈N such that Ak =(Qk)−1AQk and

lim
k→∞

Ak = lim
k→∞

(Qk)−1AQk = D

where D is a diagonal matrix with the eigenvalues of A on the diagonal. Since the
matrices are all similar to the original matrix A, they have the same eigenvalues (see
Proposition 1).

Differently than Oja-Sanger’s method, at each iteration Jacobi’s method improves the
approximation of all the eigenvalues and eigenvectors simultaneously. It is however
not possible to restrict the method to find approximation of only a limited number of
eigenvalues and eigenvectors, like it’s possible with Oja-Sanger’s method.

We will start in Section 3.2.1 by introducing the matrices associated to Givens rotations
and some of their properties. This will allow us in Section 3.2.2 to describe Jacobi’s
method, prove its convergence and convergence rate as well as computational cost.
For both Sections our main reference will be [18].

30 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

3.2.1 Givens rotation

The Givens matrix Qpq
θ

is defined by :

Qpq
θ

=

(p) (q)
1 0 0
...

. . .
...

...
...

... cos(θ) . . . −sin(θ)
... (p)

...
...

. . .
...

...
... sin(θ) . . . cos(θ)

... (q)
...

...
...

...
...

. . .
...

0 1

, (3.12)

i.e. it is a modification of the identity matrix with cos(θ) in position p, p, −sin(θ) in
position p,q, sin(θ) in position q, p and cos(θ) in position p, p. A basic property at the
heart of Jacobi’s method iterations is that when we apply the so-called Givens rotation

(Qpq
θ
)−1AQpq

θ

to A we are modifying only the rows and columns p and q. In fact we have:

Proposition 4 Let A∈Rn×n be a symmetrical matrix with Apq 6= 0 and B=Qpq
θ

−1AQpq
θ

;
then B differs from A only in rows and columns p and q, is symmetric and if

θ =
1
2

arctan
2Apq

Aqq−App

then Bpq = Bqp = 0

Proof: By applying a permutation to the rows and columns of the matrices, we can
always assume without loss of generality that p and q are the last indices. We can thus
write

B =Qpq
θ

−1AQpq
θ

=

(
I 0
0 R−1

θ

)Ãpq ãpq

ãT
pq

app apq

aqp aqq

(I 0
0 Rθ

)
(3.13)

=

(
B11 B12

B21 B22

)
, (3.14)

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 31

where

Rθ =

(
cosθ −sinθ

sinθ cosθ

)
,

Ãpq is the sub matrix extracted from A by eliminating columns p and q while ãpq is the
sub matrix obtained by extracting only those columns.

We will now consider each block of B separately. For B11 we have

B11 =

(
IÃpq +0

(
ap ·
aq ·

))
I +(. . .)0

= Ãpq ,

i.e.

bi j = ai j ∀i, j 6= p,q .

For B12 and B21, considering that Rθ is orthogonal and ãpq symmetric, we have

B12 = ãpqRθ

= R−1
θ

ãT
pq

= B21 .

Component-wise we obtain

bp j = b jp = ap j cosθ −aq j sinθ ∀ j 6= p

bq j = b jq = aq j sinθ +aq j cosθ ∀ j 6= q .

Finally, consider

B22 = R−1
θ

(
app apq

aqp aqq

)
Rθ

=

(
bpp bpq

bqp bqq

)
,

(3.15)

which is again symmetric (and thus the whole B is symmetric). Identification of the

32 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

coordinates gives

bpp = app cos2
θ +aqq sin2

θ −apq sin2θ

bqq = app sin2
θ +aqq cos2

θ +apq sin2θ

bpq = apq cos2θ +
app−aqq

2
sin2θ .

By choosing θ ∈ (−π

4 ,
π

4) such that tan2θ =
2apq

aqq−app
(or θ = π

4 if aqq = app) we obtain
bpq = bqp = 0 and the Proposition is proved.

To prove the next Proposition we will need the following Lemma, which establishes the
invariance of the Frobenius norm under an orthogonal rotation.

Lemma 3.6 Let Q be orthogonal; then ||QA||F = ||A||F

Proof: By the cyclic property of the trace 1, we have

||QA||2F = tr(QA(QA)T)

= tr(QAAT QT)

= tr(QT QAAT)

= tr(AAT)

= ||A||2F .

Let’s define the squared sum of off-diagonal elements of matrix A as

Γ(A) = ∑
i 6= j
|Ai j|2 . (3.16)

To prove convergence of the Jacobi method in the next Section, we will need the fol-
lowing Proposition which clarifies how a Givens rotation affects the value of Γ(A). We
have

Proposition 5 Let A ∈ Rn×n be a symmetrical matrix with Apq 6= 0 and define B =

Qpq
θ

−1AQpq
θ

with θ = 1
2 arctan 2Apq

Aqq−App
. Then B has the same eigenvalues of A and

Γ(B) = Γ(A)−2|Apq|2 . (3.17)

1 tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 33

Proof: Since B is symmetric to A, from Proposition 1 it follows they must have the same
eigenvalues. By applying Lemma 3.6 to 3.15 we are able to obtain

|bpp|2 + |bqq|2 = ||B22||2F

=

∣∣∣∣∣∣∣∣(app apq

aqp aqq

)∣∣∣∣∣∣∣∣2
F

= |app|2 + |aqq|2 +2|apq|2 ,

where we are again using the block matrix notation from the proof of Proposition 4. We
then have

Γ(B) = ||B||2F −∑ i|bii|2

= ||A||2F −∑ i 6= p,q|aii|2− (|bpp|2 + |bqq|2)

= Γ(A)+ |app|2 + |aqq|2− (|bpp|2 + |bqq|2)

= Γ(A)−2|apq|2 .

3.2.2 The algorithm

We saw in Proposition 5 that applying a Givens rotation with to a matrix does not The
idea of Jacobi’s method is to iteratively apply Givens rotations eliminating off-diagonal
elements while preserving eigenvalues. The Jacobi method is an iterative method de-
fined on a symmetric matrix A ∈ Rn×n as follows:{

A0 = A

A(k+1) = Q(k)−1
A(k)Q(k)

where Q(k) = Qpq
θ

with p,q ∈ argmax
i, j
|a(k)i j |

and θ =
1
2

arctan
2a(k)pq

a(k)qq −a(k)pp

.

(3.18)

Note that the choice of θ at iteration k is exactly what we need in order for Q(k)−1
A(k)Q(k)

to have a 0 in its p,q-th entry - see Proposition 4. This means that at each iteration k we
choose the largest off-diagonal element in Ak and apply a Givens rotation to eliminate
it. In the following Theorem we use the results from the previous Section to prove the

34 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

convergence and convergence rate of the Jacobi method.

Theorem 3.7 The sequence Γ(A(k)) converges to 0 with rate of convergence
√

1− 1
N

where N = n(n−1)
2 and thus the diagonal elements of A(k) converge to the eigenvalues

of A.

Proof: Define µ = |apq|= maxi, j |a(k)i j |. Since all matrices in the Jacobi sequence have
n×n elements, the number of off-diagonal elements is 2N = n(n−1); we thus have

µ
2 ≤ Γ(A(k))2 ≤ 2Nµ

2

⇒−2µ
2 ≤−Γ(A(k))2

N
.

From Proposition 5 it then follows

Γ(A(k+1))2 = Γ(A(k))−2µ
2

≤ Γ(A(k))2− Γ(A(k))2

N

= Γ(A(k))2(1− 1
N
) ,

or

Γ(A(k+1))

Γ(A(k))
≤
√

1− 1
N

.

Remark 3.8 Since A(k) = Q−1AQ with Q = Q(0)Q(1) . . .Q(k−1) orthogonal, the columns
of Q approach the eigenvectors of A

In Section 6.5.2 of [18] it is reported that, one can achieve even quadratic convergence,
by a simple modification of Jacobi’s method 3.18 that consists in another choice of
the p,q indices, namely row-wise ((1,2),(1,3), . . . ,(1,n),(2,3),(2,4), . . . ,(2,n), . . .(n−
1,n)).

In Algorithm 3 the pseudo code for Jacobi’s method is given. Building the matrix X on
line 8 can be done in O(n) time thanks to the component-wise formulas found in the
proof of Proposition 4. The cost per iteration is then dominated by line 6 which is O(n2),
making the cost of the whole procedure O(I n2). As alternative stop criteria one could
set a threshold ε and check if the difference between diagonal elements of X between
two successive iterations falls below ε .

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 35

Algorithm 3 Jacobi’s method

Require: data matrix A∈Rn×n symmetric, tolerance ε ∈R, maximum iterations I ∈N
Ensure: u1,u2, . . . ,un approximation of eigenvectors of A and λ1, . . . ,λn ∈ R approxi-

mation of the respective eigenvalues.

1: X ← A

2: for i = 1,2, . . . ,n do

3: λ OLD
i ← xii

4: end for

5: for i = 1,2, . . . ,I do

6: p,q← argmaxi, j |xi j|

7: θ ← 1
2 arctan 2x(k)pq

x(k)qq −x(k)pp

8: Build X = Q(k)−1
XQ(k) . Use component-wise formulas from Proposition 4

9: all_below← True

10: for j = 1,2, . . . ,n do

11: λ NEW
j ← x j j

12: if |λ NEW
j −λ OLD

j | ≥ ε then

13: all_below← False

14: end if

15: λ OLD
j ← λ NEW

j

16: end for

17: if all_below == True then

18: Break loop

19: end if

20: end for

21: Q← Q0Q1 . . .Qi

22: for i = 1,2, . . . ,n do

23: λi← λ NEW
i

24: ui = Q· i
25: end for

36 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

Example 3.9 Let’s find the eigenvalues and eigenvectors of the following matrix, which
is different from the previous examples in order to simplify computations:

A =

 1
√

2 2√
2 3

√
2

2
√

2 1

 .

The highest value off diagonal is 2 correspond to a31 == 2: thus p = 1 and q = 3 and
app = 1,aqq = 1 and apq = aqp = 2. In this case θ = π

4 and the rotation matrix is given
by

Q0 =

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

=

1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

Then

A1 = Q1T
AQ1

=

 3 2 0
2 3 0
0 0 −1

 .

We repeat the same instructions on A1, obtaining a21 = a11 = 2: thus p = 1 and q = 2
and app = 3, aqq = 3 and apq = aqp = 2. Then again θ = π

4 and

Q2 =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

=

1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 .

Finally we obtain :

A2 = Q2T
A1Q2

=

 5 0 0
0 1 0
0 0 −1

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 37

which is an exact diagonalization of A1 (and thus A), i.e. Γ(A2)= 0. The eigenvalues and
eigenvectors given by the Jacobi method are then in this case exact: the eigenvalues
are (5,1,−1) and the eigenvectors the columns of

Q = Q1Q2

=

 −
1
2 −1

2 − 1√
2

1√
2

1√
2

0
1
2 −1

2
1√
2

 .

3.3 Power method

The Power method (also known as von Mises method) is the last iterative method for
the eigenvalue problem we will treat in this thesis. Out of the methods considered in
this thesis, the Power method is the only one that can be applied to non-symmetric
matrices. It converges exclusively to the largest eigenvalue (in absolute value) of the
matrix, however depending on the application this might be all that is needed: for exam-
ple in section 4.5 we will use the Power method to compute the eigenvector centrality
of a graph, which is given by the eigenvector associated to the largest eigenvalue of
the adjacency matrix. By a simple transformation on the matrix (which involves a matrix
inversion) the Power method can be made to converge to the smallest eigenvalue as
well - we will see this variant at the end of the section. For this whole section our main
reference will be [2].

Suppose A ∈ Rn×n with eigenvalues

|λ1|> |λ2| ≥ . . .≥ |λn|

and associated eigenvectors u1,u2, . . . ,un which we will suppose of unitary norm. The
power method is defined as the succession of values{

xk+1 = Axk

||Axk||
x0 ∈ R , x 6= 0

. (3.19)

In the following we prove convergence and convergence rate of the Power method.

Theorem 3.10 If (x0)T u1 6= 0, the power method converges for k→∞ to the first eigen-

vector xk→ u1 (with possibly opposite sign) with convergence rate O(
∣∣∣λ2

λ1

∣∣∣)
Proof: Suppose we can write x0 in the basis u1,u2, . . .un as x0 = α1u1 +α2u2 + . . .+

38 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

αnun where α1 = (x0)T u1 6= 0. We have:

xk+1 =
Axk∣∣∣∣Axk
∣∣∣∣

=
Akx∣∣∣∣Akx
∣∣∣∣

=
∑

n
i=1 αiλ

k
i ui∣∣∣∣∑n

i=1 αiλ
k
i ui
∣∣∣∣

=
λ k

1

|λ k
1 |

α1u1 +∑
n
i=2

(
λi
λ1

)k
αiui∣∣∣∣∣∣∣∣α1u1 +∑

n
i=2

(
λi
λ1

)k
αiui

∣∣∣∣∣∣∣∣ . (3.20)

Since λi
λ1

< 1for all i≥ 2, it follows that xk→ sgn(λ1)sgn(α1)u1. Since the dominant term

in the sum is
(

λ2
λ1

)k
, the convergence is O

(
|λ2

λ1
|k
)

.

Remark 3.11 The requirement that the first two eigenvalues are not the same, i.e. λ2 <

λ1, is essential, otherwise the series 3.20 will not in general converge.

Remark 3.12 We can use the Rayleigh quotient µk = xkT
Axk

xkT x
as approximation of λ1,

since uT
1 Au1
uT

1 u1
= λ1.

In Algorithm 4 the pseudo code for the power method is given. The cost of one iteration
is dominated by the matrix-vector multiplication and is thus O(n2); the total cost is then
O(I n2) where I is the number of iterations. Alternatively one could set a threshold ε

and iterate the power method until the difference between the approximated eigenvalues
at successive steps falls beneath ε .

Inverse Power Method

Using Proposition 1, it is straightforward to check that for any µ ∈ R \ {0} the matrix
(A−µI)−1 has same eigenvectors as A and eigenvalues (λi−µ): applying the power
method to this matrix is known as applying the inverse power method to matrix A. It will
converge to the eigenvector with eigenvalue closest to µ , as long as this is not the same
in absolute value to the second closest one. In particular with µ = 0, if λn−1 > λn, it will
converge to λn. The computational cost however will become O(n3) due to the cost of
inverting the matrix.

Chapter 3: Numerical methods for computing eigenvalues and eigenvectors 39

Algorithm 4 Power iteration method

Require: data matrix A ∈ Rn×n, tolerance ε ∈ R, maximum iterations I ∈ N
Ensure: x? ∈Rn approximation of first eigenvector of A and approximation of respective

eigenvalue λ

1: Initialize x ∈ Rn randomly

2: λOLD← xT Ax
xT x

3: for i = 0,1, . . . ,I do

4: x← Ax

5: x← x
||x||

6: λNEW← xT Ax
xT x

7: if |λNEW−λOLD|< ε then

8: Break loop

9: end if

10: λOLD← λNEW

11: end for

12: x?← x

13: λ = λNEW

Example 3.13 Let

A =

 −3 0 4
17 13 −7
16 14 −8

that has as greatest eigenvalue in absolute value λ1 = 10.93 and has as respective
eigenvector

u =

 −0.1967
−0.7014
−0.685

 .

We initialize x0 by sampling from a normal distribution with mean 0 and standard de-
viation 0.25 obtaining x0 = [0.0285,−0.3772,−0.4016]. The first iteration of the Power

40 Chapter 3: Numerical methods for computing eigenvalues and eigenvectors

method then gives us

x1 =
Ax0

||Ax0||

=
1

2.8384

 −1.6918
−1.6094
−1.6135

=

 −0.5960
−0.567
−0.5684

 ,

the second

x2 =
Ax1

||Ax1||

=

 −0.0259
−0.7226
−0.6907

 .

We can then use the Rayleigh quotient to obtain an approximation λ̃1 of λ1:

λ̃1 =
(x2)T Ax2

(x2)T x2

=
7.1416

1

= 7.1416 .

After two iterations the Power Method thus has given us approximations x2 of u and λ̃1

of λ1 with relative errors: ∣∣∣∣x2−u
∣∣∣∣

2
||u||2

= 0.17

|7.1416−10.93|
|10.93|

= 0.35 .

Chapter 4: Numerical simulations 41

4 Numerical simulations

In this final Chapter of the thesis we wish to compare the various methods on real-
world tasks. We implemented all the methods in Python 3 making extensive usage
of the numpy package to operate on vectors and matrices as well as use the built-in
numpy.linalg.eig function to have a benchmark for our methods.

The structure is as follows: in Section 4.1 we will plot the convergence rate of all the
methods on a matrix obtained from randomly generated data. In Section 4.2 we will
add Gaussian noise of increasing amplitude to this matrix in order to test the stability
of the methods. Finally in Section 4.3 we will use Jacobi’s and Oja-Sanger’s methods
to compute the principal component analysis of a data set composed by of photos of
faces - we will obtain the so-called eigenfaces which can be used for the task of face-
recognition.

4.1 Convergence of methods

In this section we test the convergence of the described methods which we implemented
in Python. We used the make_blobs function from the scikit-sklearn library to gen-
erate 5000 samples in R100 picked from the sum of 3 multi-dimensional Gaussian distri-
butions each with mean 0 and standard deviation 5. These samples are the rows of the
data matrix X ∈R5000×100; we will further call A = XT X the 100×100 covariance matrix
of X .

For all methods we set a tolerance ε = 1−7 and a maximum number of iterations
I = 100. We relied on numpy’s eig function (in the linalg module) to compute
λ1,λ2, . . . ,λn, the exact eigenvalues of A, which we always reordered in decreasing or-
der. We will instead denote with λ̃ k

i the approximation of eigenvalue i given at iteration
k by the considered method.

For Oja’s and the Power method we considered the convergence of a single eigenvalue
by looking at the value |λ1− λ̃ k

1 | for k = 1,2, . . . ,I . For Oja-Sanger’s and Jacobi’s
method we further looked at this quantity for the second eigenvalue, for the last and
second to last, as well as the cumulative convergence K k =

∣∣∣∣Λ− Λ̃k
∣∣∣∣

2, where Λ and
Λ̃k are vectors with the exact and approximated eigenvalues at iteration k respectively.

All the plots in this whole Chapter have a logarithmic scale on the y-axis to better distin-
guish the rapidly decreasing plots.

In Figure 4.1 the convergence of Oja’s method for the largest eigenvalue is shown, while
in Figure 4.2 the cumulative error for Oja-Sanger’s method is shown - note that here at

42 Chapter 4: Numerical simulations

0 0.1 0.2 0.3 0.4

2

5

1

2

5

10

2

5

100

2

5

1000

Convergence of eigenvalue 1 after 60 iterations

Time (s)

Er
ro

r

Figure 4.1: Convergence of |λ1− λ̃ k
1 | for Oja’s method

0 20 40 60

2

3

4

5
6
7
8
9

100

2

3

4

5
6
7
8
9

1000

Convergence of eigenvalues after 9885 iterations

Time (s)

Er
ro

r

Figure 4.2: Convergence of K k =
∣∣∣∣Λ− Λ̃k

∣∣∣∣
2 for Oja-Sanger’s method

Chapter 4: Numerical simulations 43

0 20 40 60

2

5

1

2

5

10

2

5

100

2

5

1000

Convergence of eigenvalue 1 after 60 iterations

Time (s)

Er
ro

r

Figure 4.3: Convergence of |λ1− λ̃ k
1 | for Oja-Sanger’s method

0 20 40 60
0.1

2

5

1

2

5

10

2

5

100

2

5

1000

Convergence of eigenvalue 2 after 85 iterations

Time (s)

Er
ro

r

Figure 4.4: Convergence of |λ2− λ̃ k
2 | for Oja-Sanger’s method

44 Chapter 4: Numerical simulations

0 20 40 60
0.01

2

5

0.1

2

5

1

2

5

10

2

Convergence of eigenvalue 99 after 9785 iterations

Time (s)

Er
ro

r

Figure 4.5: Convergence of |λ99− λ̃ k
99| for Oja-Sanger’s method

most 100 iterations are done for each eigenvalue, so the total number of iterations is at
most 10000. Because of the structure of Algorithm 2, the eigenvalues here converge
one a time. This can be seen by looking at the convergence of individual eigenvalues:
eigenvalues 1 and 2 (Figures 4.3 and 4.4 respectively) converge below the tolerance
after few iterations, while eigenvalue 99 (Figure 4.5) starts converging only after the
method finished with all the previous eigenvalues.

0 0.05 0.1 0.15 0.2
200

300

400

500

600

700

800

900
1000
1100
1200
1300
1400
1500

Convergence of eigenvalues after 100 iterations

Time (s)

Er
ro

r

Figure 4.6: Convergence of C k =
∣∣∣∣Λ− Λ̃k

∣∣∣∣
2 for Jacobi’s method

This is contrast with Jacobi’s method that improves the approximation for all eigenvalues
at each iteration. The convergence of the cumulative error for Jacobi’s method can be

Chapter 4: Numerical simulations 45

0 0.05 0.1 0.15 0.2
9

10

2

3

4

5
6
7
8
9

100

2

3

4

5
6
7
8
9

1000

Convergence of eigenvalue 1 after 100 iterations

Time (s)

Er
ro

r

Figure 4.7: Convergence of |λ1− λ̃ k
1 | for Jacobi’s method

0 0.05 0.1 0.15 0.2
200

250

300

350

400

450

500

550

600
650
700
750
800
850

Convergence of eigenvalue 2 after 100 iterations

Time (s)

Er
ro

r

Figure 4.8: Convergence of |λ2− λ̃ k
2 | for Jacobi’s method

46 Chapter 4: Numerical simulations

0 0.05 0.1 0.15 0.2

6
7
8
9

1

2

3

4

5
6
7
8
9

10

2

3

4

5

Convergence of eigenvalue 99 after 100 iterations

Time (s)

Er
ro

r

Figure 4.9: Convergence of |λ99− λ̃ k
99| for Jacobi’s method

0 0.2 0.4 0.6
10

2

3

4

5
6
7
8
9

100

2

3

4

5
6
7
8
9

1000

Convergence of eigenvalues after 500 iterations

Time (s)

Er
ro

r

Figure 4.10: Convergence of K k =
∣∣∣∣Λ− Λ̃k

∣∣∣∣
2 for Jacobi’s method with I = 500

Chapter 4: Numerical simulations 47

seen in Figure 4.6, while the convergence for eigenvalues 1, 2 and 99 can be seen
in Figures 4.7, 4.8 and 4.9 respectively. Compared to Oja-Sanger’s method, here the
cumulative error is much higher but very rapidly decreasing. Out of all the methods, the
Jacobi method seems to have the most unpredictable behavior, convergence of different
eigenvalues having very different behavior (e.g. eigenvalue 99 does not converge at all,
at least in the first 100 iterations) and in general with convergence going through various
phases and plateaus. This becomes apparent if we raise the number of iterations I to
500: we obtain the plot in Figure 4.10, which shows how the method converges goes
through 3 different phases with different convergence rates.

0.0006 0.0007 0.0008 0.0009 0.001 0.0011

1μ

100μ

0.01

1

100

Convergence of eigenvalue 1 after 33 iterations

Time (s)

Er
ro

r

Figure 4.11: Convergence of |λ1− λ̃ k
1 | for the Power method

Finally in figure 4.11 we plot the convergence of the Power method, that deceases
steadily and needs only 33 iterations to fall below tolerance.

4.2 Stability

In order to experimentally test the stability of the various methods, we took the same ma-
trix A ∈ R100×100 from the previous section and computed a noisy version Ãσ = A+Eσ ,
where the entries of Eσ are extracted from a normal distribution with mean 0 and vari-
ance σ , with σ = 0.001, 0.1, 1, 10. We then computed λ̃ k,σ by applying the various

methods on Ãσ and plotted |λ1− λ̃
k,σ
1 | for Oja’s and the Power method and

∣∣∣∣∣∣Λ− ˜Λk,σ
∣∣∣∣∣∣

2
for Oja-Sanger’s and Jacobi’s method (where Λ̃k,σ = (λ̃ k,σ

1 , λ̃ k,σ
2 , . . . λ̃ k,σ

n)); see Figures
4.12 - 4.15. If the difference between the exact eigenvalues and the eigenvalues com-
puted on Ã converges to 0 with the iterations, thanks to equation 2.8 and the consider-
ations in that Section we can conclude the method is stable.

48 Chapter 4: Numerical simulations

For σ = 0.001 and less so for 0.1 all methods still have a decreasing error. It is interest-
ing to note that in some cases with a higher value of σ the convergence can be actually
better: this is probably due to accumulation of numerical errors and is a phenomenon
that would net present itself if one did this test by plotting a statistic (such as the mean)
of multiple runs for different versions of the noisy matrix (for the same value of σ).
Finally we note that the Power Method is the only one that also for σ = 10 still has de-
creasing error, though it does not approach the tolerance, suggesting (together with the
predictability of its convergence plot in the previous Section) it is the most numerically
stable.

From these plots we can conclude that the most stable methods are the Power Method
if one is interested only in the greatest eigenvalue and Oja-Sanger’s if one is interested
in all the eigenvalues of a covariance matrix.

0 0.1 0.2 0.3 0.4 0.5 0.6
0.01

2

5

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

2
variable

sigma = 0.001
sigma = 0.1
sigma = 1
sigma = 10

Time (s)

Er
ro

r

Figure 4.12: Convergence of |λ1− λ̃
k,σ
1 | for Oja’s method.

Chapter 4: Numerical simulations 49

0 20 40 60

4

5

6
7
8
9

100

2

3

4

5

6
7
8
9

1000

variable
sigma = 0.001
sigma = 0.1
sigma = 1
sigma = 10

Time (s)

Er
ro

r

Figure 4.13: Convergence of K k =
∣∣∣∣Λ− Λ̃k,σ

∣∣∣∣
2 for Oja-Sanger’s method.

0 0.2 0.4 0.6

3

4

5

6
7
8
9

100

2

3

4

5

6
7
8
9

1000

variable
sigma = 0.001
sigma = 0.1
sigma = 1
sigma = 10

Time (s)

Er
ro

r

Figure 4.14: Convergence of K k =
∣∣∣∣Λ− Λ̃k,σ

∣∣∣∣
2 for Jacobi’s method.

50 Chapter 4: Numerical simulations

0 0.001 0.002 0.003

100μ

0.001

0.01

0.1

1

10

100

1000
variable

sigma = 0.001
sigma = 0.1
sigma = 1
sigma = 10

Time (s)

Er
ro

r

Figure 4.15: Convergence of |λ1− λ̃
k,σ
1 | for the Power method.

4.3 Computing eigenfaces

In this section we will apply Oja-Sanger’s and Jacobi’s method to a real-world data set,
the ATT (American Telephone and Telegraph) face data set [15]2, consisting of 400
gray scale 112× 92 images; see Figure 4.16. We resized all images to 56× 46 using
skimage.transform.resize function from the scikit-image library and vectorized
them by row stacking, obtaining a N× d data matrix X with N = 400 and d = 2576 =

56 · 46, where each row corresponds to an image. We further scaled the matrix X to
have zero mean using the sklearn.preprocessing.StandardScaler function from
the scikit-learn library.

Let the sample covariance matrix C ∈Rd×d associated to the data matrix X have eigen-
values |λ1| ≥ |λ2| ≥ . . .≥ |λd| with corresponding eigenvectors u1,u2, . . . ,ud . An eigen-
face is simply a 56×46 image that when vectorized by row stacking is equal to one of
these eigenvectors, and thus it corresponds to a principal component of X ; refer to Sec-
tion 2.3 for more details. We will interchangeably use the term eigenface, eigenvectors
of C or principal component of X in the following.

The eigenfaces can be used to obtain a compressed representation of the original im-
ages, simply by projecting an input image v∈R2576 onto the subspace generated by the
first K < 2576 eigenfaces. In fact, as explained in Section 2.3.1, we can compute the
K-dimensional vector v|K and from this πK(v), which is an approximation of v obtained
as linear combination of u1,u2, . . . ,uK . This can be useful if for example we consider
the problem of face recognition, which is the classification problem the authors that in-

2 available at https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/

https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/

Chapter 4: Numerical simulations 51

Figure 4.16: Some example images from the ATT faces data set

troduced the concept of eigenfaces had in mind [20]: given a new face image v, we
can associate it to one of the 400 faces f1, f2, . . . , f400 used for training by comparing
the K coefficients of the projection πK(v) with those of πK(f1),π

K(f2), . . . ,π
K(f400) and

classifying v as face

ĩ = arg min
i=1,2,...,400

∣∣∣∣πK(v)−π
K(fi)

∣∣∣∣
2 .

A smaller K means a worse approximation but a faster inference in the classification
task.

We set K = 10 and computed the eigenfaces with both Oja-Sanger’s and Jacobi’s
method. The advantage of the former is that, by modifying line 2 of Algorithm 2, we
can stop the iterations after exactly K eigenvectors are computed, since we don’t need
the rest.

Oja Sanger took 23 minutes and 52 seconds to compute the first 10 principal compo-
nents, with a total of 31369 iterations. In Figure 4.17 the first 3 eigenfaces are shown,
while in Figure 4.18 3 original faces f1, f2 and f3 are shown next to their projections
π10(f1),π

10(f2),π
10(f3).

Jacobi’s method took 26 minutes and 28 seconds to compute the 2000 iterations. In
Figure 4.19 the first 3 eigenfaces are shown, while in Figure 4.20 3 original faces f1, f2

and f3 are shown next to their projections π10(f1),π
10(f2),π

10(f3).

52 Chapter 4: Numerical simulations

(a) u1 (b) u2 (c) u3

Figure 4.17: The first 3 eigenfaces as computed by Oja-Sanger’s method

Figure 4.18: Original faces and their projection πK(fi) on the first K = 10 principal components
compute with the Oja-Sanger method

Chapter 4: Numerical simulations 53

(a) u1 (b) u2 (c) u3

Figure 4.19: The first 3 eigenfaces as computed by Jacobi’s method

Figure 4.20: Original faces and their projection πK(fi) on the first K = 10 principal components
computed with the Jacobi’s method

54 Chapter 4: Numerical simulations

(a) u1 (b) u2 (c) u3

Figure 4.21: The first 3 eigenfaces as computed by Jacobi’s method with 100 inverse iterations
applied afterwards

Figure 4.22: Original faces and their projection πK(fi) on the first K = 10 principal components
as computed with the Jacobi’s method with 100 additional inverse iterations

Chapter 4: Numerical simulations 55

We can observe that the eigenfaces obtained with Jacobi’s method and the correspond-
ing projections are much worse in quality with those obtained with Oja-Sanger’s. In an
attempt to try and improve the approximation of the first K eigenvectors, we applied 100
inverse iterations: supposing the eigenvalues λ̃i obtained with Jacobi, for i = 1,2, . . . ,K,
are good approximations of the exact eigenvalues, we applied the Power method to
(C− λ̃i)

−1 choosing as initialization value the approximation of the corresponding eigen-
vector obtained by Jacobi. As seen in Section 3.3, this will converge to the eigenvector
of C with eigenvalue closest to λ̃i, which we expected to be an improvement over the
eigenvector given by Jacobi’s method: results are shown in Figures 4.21 and 4.22. The
inverse iterations added a negligible 14 seconds of computation and improved visibly
the quality of the eigenfaces, though they still are not as good as those obtained with
Oja-Sanger’s method. We thus conclude that for this particular application Oja-Sanger’s
method is better: it allows to focus the computational effort on only the eigenvectors with
greatest eigenvalues, which are the only ones needed for projection of the images onto
the principal components. This theoretical consideration is reflected in the empirical
evidence: in less time it produces higher quality eigenfaces.

56 Chapter 4: Numerical simulations

4.4 Denoising images

In real-world applications it often happens that one has access only to noisy data (due
for example to imprecise measuring instruments) and wishes to denoise it, i.e. obtain
a transformation of the noisy data that is more closer to the hypothetical original data,
which in this scenario is not available. To evaluate a denoising method one usually
constructs a synthetic experiment, where some data set is considered the original data,
artificial noise is added to it and then the denoising method is applied to this noisy data.
We can thus measure (using for example the ||·||2 norm) if the denoised data is closer
to the original than the noisy data is.

Principal component analysis is sometimes used for denoising: if we suppose the input
data to be affected by independent and uncorrelated noise, this will affect equally all
the principal components. Then by projecting the data samples onto a small number
of components we can get rid of all the noise in the other components. In this Section
we will apply this procedure on the first 2000 images of the MNIST (Modified National
Institute of Standards and Technology) data set of handwritten digits [9]3. We used only
part of the data set in order to speed up the computation of the covariance matrix which
is very long when computed for the whole 70000 images in the data set. Since this is
again a case where we need to compute the first K > 1 eigenvectors of a covariance
matrix, we can test this method using only the Oja-Sanger and Jacobi methods.

We will call the images in the data set x1,x2, . . . ,xN with N = 2000; each image is 28×28
pixels and each pixel is an integer value from 0 to 255, i.e. xi ∈ {n ∈ N |n ≤ 255}28×28

for all i = 1,2, . . . ,N. With the exact same procedure as in the previous section, we
stacked the vectorized images as rows of a data matrix X ∈ {n ∈ N |n ≤ 255}N×d with
d = 784 = 28 ·28, which we further scaled to have zero mean. We then computed X̃ by
adding Gaussian noise with zero mean and standard deviation 50 to X ; we will call the
rows of X̃ the noisy images.

We used first Oja-Sanger’s and then Jacobi’s method to compute ũ1, ũ2, . . . , ũN , approxi-
mations of the eigenvectors of C̃, the sample covariance matrix corresponding to X̃ , with
corresponding eigenvalues |λ̃1| ≥ |λ̃2| ≥ . . .≥ |λ̃N |. We then computed the projections
πK(x̃1),πK(x̃2), . . . ,πK(x̃N) with K = 20 (see Section 2.3.1) and compared the noise
error

∣∣∣∣x̃i− xi
∣∣∣∣

2 with the projection error
∣∣∣∣πK(x̃i)− xi

∣∣∣∣
2. If the denoising procedure

works, the latter should be smaller than the former.

For Oja-Sanger’s method, again we can change line 2 of Algorithm 2 and stop the
iterations after exactly K eigenvectors are computed, since we do not need the rest.
Setting a maximum number of iterations I = 1000, a tolerance ε = 1−9 and a learning
rate α = 1−9, Oja-Sanger’s method required exactly 11 minutes to compute the first
20 principal components. The first 6 principal components can be seen in Figure 4.23

3 available at https://www.openml.org/d/554

https://www.openml.org/d/554

Chapter 4: Numerical simulations 57

while some original, noisy and denoised images can be seen in Figure 4.24 along with
the respective noise and projection errors.

1 2 3 4 5 6

Figure 4.23: The first 6 principal components u1,u2, . . . ,u6 obtained from the MNIST data set
with Oja-Sanger’s method.

For Jacobi’s method we set a maximum number of iterations I = 5000 and a tolerance
ε = 1−9. The method required 18 minutes and 7 seconds to compute. The first 6 prin-
cipal components can be seen in Figure 4.25 while some original, noisy and denoised
images can be seen in Figure 4.26 along with their respective noise and projection er-
rors.

We can see that for Oja-Sanger the denoising procedure worked: the projection errors
are lower than the noise errors. For Jacobi’s method however, which also required more
computation time, the projection error is actually worse, so we can say the denoising
procedure failed.

Once again we can then conclude that, for computing the Principal Component Analysis,
Oja-Sanger’s method is to be preferred over Jacobi’s: by concentrating the computation
time on only the needed K eigenvectors, it can achieve better results in less time.

58 Chapter 4: Numerical simulations

1389.70 1449.03 1426.14 1394.29 1362.85

1319.35 975.90 945.02 762.59 1006.00

Figure 4.24: For 5 randomly selected indexes i = 1,2, . . . ,2000, the three rows show xi, x̃i and
π20(x̃i) respectively, when using the Oja-Sanger’s method. The numbers above
the second and third row are the noise and projection error respectively.

1 2 3 4 5 6

Figure 4.25: The first 6 principal components u1,u2, . . . ,u6 obtained from the MNIST data set
with Jacobi’s method.

Chapter 4: Numerical simulations 59

1389.70 1449.03 1426.14 1394.29 1362.85

1887.17 1577.60 2153.44 1480.10 2902.35

Figure 4.26: For 5 randomly selected indexes i = 1,2, . . . ,2000, the three rows show xi, x̃i and
π20(x̃i) respectively, when using Jacobi’s method. The numbers above the second
and third row are the noise and projection error respectively.

4.5 Computing eigenvector centrality

In this section we want to compute the eigenvector centrality measure (see Section
2.4) for a graph generated from internal web links on the popular website Reddit, which
is composed of many different communities known as subreddits. Each vertex in the
graph corresponds to a vertex and there is an edge from vertex v to w if in some post
on subreddit v there is a link to subreddit w. The data set we used was created by the
authors of [7]4 by extracting the data from the Reddit website between January 2014
and April 2017; the generated graph consists of 35776 vertices and 124330 edges.

We read the data and created a graph object using the networkx Python package;
we then used the networkx.DiGraph.in_degree method to compute the degree cen-
trality of the vertices. To compute the eigenvector centrality we need to compute the
eigenvector corresponding to the largest eigenvalue of the adjacency matrix A; since
this is not symmetric and not a covariance matrix, the only method we can use here is
the Power method. We therefore set the tolerance ε = 1−12 and run the Power method,
which achieved the tolerance in 59 iterations that took 1.3 seconds. The results for the
most central 20 vertices for both the degree and eigenvector centrality are visible in
Table 4.1.

4 available at https://snap.stanford.edu/data/soc-RedditHyperlinks.html

https://snap.stanford.edu/data/soc-RedditHyperlinks.html

60 Chapter 4: Numerical simulations

Subreddit Degree centrality Subreddit Eigenvector centrality
askreddit 2161 subredditdrama 0.2848
iama 1646 drama 0.1811
pics 953 copypasta 0.1632
videos 879 circlejerkcopypasta 0.1610
todayilearned 816 shitliberalssay 0.1516
funny 757 conspiracy 0.1449
writingprompts 717 circlebroke 0.1439
worldnews 661 outoftheloop 0.1411
mhoc 595 bestofoutrageculture 0.1302
outoftheloop 592 justunsubbed 0.1194
gaming 584 self 0.1143
news 581 subredditcancer 0.1127
leagueoflegends 577 nostupidquestions 0.1079
pcmasterrace 478 the_donald 0.1056
explainlikeimfive 457 legaladvice 0.1053
subredditdrama 454 karmacourt 0.1049
technology 442 askreddit 0.1042
science 442 hailcorporate 0.1003
adviceanimals 440 help 0.0995
politics 410 circlebroke2 0.0942

Table 4.1: Degree and eigenvector centrality (computed with the Power method) for the most
central 20 vertices in the Reddit data set.

It can be seen that the centrality measures differ substantially, with few subreddits ap-
pearing in both lists. The "askreddit" subreddit is the first in degree centrality, but only
the 17-th for eigenvector centrality, while "outoftheloop" is 10-th for degree and 8-th for
eigenvector centrality. This is indeed one of those cases mentioned in Section 2.4 where
the degree centrality is not very useful: it simply ranks the subreddits by their popularity
(as in by how many different subreddits they are linked to). In fact "askreddit", "iama",
"pics" and "videos" are among the most popular subreddits of the whole website. The
eigenvector centrality instead is more nuanced, and selects subreddits that are linked to
by other important subreddits, even though they may be overall less popular.

Chapter 5: Conclusion 61

5 Conclusion

In this thesis we introduced the eigenvalue problem for a matrix A ∈ Rm×n, and in par-
ticular 4 different methods to numerically compute an approximation of these. After
introducing some fundamental concepts in Chapter 2, we moved on to describe the
methods themselves in Chapter 3.

We introduced the Oja and Oja-Sanger’s methods given a brief background of the Heb-
bian learning framework they originated in. These methods can be used in the case
of A being the sample covariance matrix of a data matrix X ∈ RN×d , which has N d-
dimensional samples as rows. In other words, they can be used to compute eigenvalues
and eigenvectors of XT X , with Oja computing only the greatest eigenvalue (and respec-
tive eigenvector), while Oja-Sanger giving the possibility to compute the first K ≤ d
eigenvectors and respective eigenvalues.

We then described Jacobi’s method, that can be used in the case of A being a symmet-
ric matrix. We introduced the Givens rotations which are at the heart of this method and
we studied how they can be used to nullify off-diagonal elements. We observed how,
differently than Oja-Sanger’s method, Jacobi’s method potentially improves the approx-
imation of all eigenvalues and eigenvectors at each iteration, simultaneously.

Then we described the Power method, which is perhaps the simplest of all the methods
and can be used to compute the dominant eigenvalue and respective eigenvector of any
matrix A

Finally in Chapter 4 we tested Python implementations of the 4 methods in 5 different
contexts: we studied the convergence on a randomly generated matrix, we added Gaus-
sian noise to this matrix and tested the stability of the methods, we tested Jacobi’s and
Oja-Sanger’s method to compute the Principal Component Analysis for the so-called
eigenfaces and for denoising images and finally we used the Power Method to compute
the eigenvector centrality of a graph.

We observed that the Power method is the most stable and has the most predictable
convergence, while Jacobi’s method has different convergence curves for different eigen-
values (with some not converging at all in the limited number of iterations we tested) and
it seems to change convergence behavior throughout its iterations.

For the eigenfaces and denoising applications (both of which rely on Principal Compo-
nent Analysis) in particular Oja-Sanger clearly performed faster and better than Jacobi’s
method, even when we helped this with some inverse iterations to improve the quality
of the eigenfaces.

62

Chapter 5: Bibliography 63

Bibliography

[1] Allen-Zhu, Z.; Li, Y.: First Efficient Convergence for Streaming k-PCA:a Global,
Gap-Free, and Near-Optimal Rate

[2] Beilina, L., Karchevskii, E., & Karchevskii, M. (2017). Numerical linear algebra:
Theory and applications. Springer International Publishing.

[3] Ciarlet, P. G., Ciarlet, P. G., Miara, B., Thomas, J. M. (1989). Introduction to numer-
ical linear algebra and optimisation. Cambridge University Press.

[4] Hertz, J. A. (2018). Introduction to the theory of neural computation. CRC Press.

[5] Higham, N. (2020). What Is a Condition Number? Blog post

[6] Kelleher, J. D. (2019). Deep learning. MIT press.

[7] Kumar, Srijan et al. (2018). Community interaction and conflict on the web. Pro-
ceedings of the 2018 World Wide Web Conference on World Wide Web

[8] Lipschutz, S., & Lipson, M. L. (2018). Schaum’s Outline of Linear Algebra. McGraw-
Hill Education.

[9] LeCun, Y. & Cortes, C. (2010). MNIST handwritten digit database.

[10] Newman, M. (2018). Networks. Oxford university press.

[11] Olsauhsen, B. (2012). Linear Hebbian learning and PCA. Lecture notes

[12] Oja E.: A simplified neuron model as a principal component analyzer. J Math Biol,
1982, 15: 267 - 273

[13] Pishro-Nik, H. (2016). Introduction to probability, statistics, and random processes.

[14] Roy, R., Chattopadhyay, M. (2013). Iterative methods for eigenvalue problem/

[15] Samaria, Ferdinando S., and Andy C. Harter (1994). "Parameterisation of a
stochastic model for human face identification." Proceedings of 1994 IEEE work-
shop on applications of computer vision. IEEE.

[16] Shilov, G. E. (2012). Linear Algebra. United States: Dover Publications.

[17] Smith, L.I (2002). A tutorial on Principal Components Analysis, lecture notes.

64 Chapter 5: Bibliography

[18] Stoer, J., Bulirsch, R. (2002). Introduction to Numerical Analysis. Springer.

[19] Strang, G. (1998). Introduction to linear algebra. United States: Wellesley-
Cambridge Press.

[20] Turk, M. and Pentland, A.P. Face recognition using eigenfaces. Computer Vision
and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Computer Society
Conference on 1991

[21] Vlachas, P. (2019). Oja’s rule: Derivation, Properties. Lecture notes Project Report

Appendix A: Python code 65

Appendix A: Python code

A.1 Base class

1 import numpy as np
2 import time
3 import datetime as dt
4 import pandas as pd
5

6 class BaseMethod ():
7 def __init__(self , ** kargs):
8 if ’maxiter ’ in kargs:
9 self.maxiter = int(kargs[’maxiter ’])

10 else:
11 self.maxiter = None
12 if ’tolerance ’ in kargs:
13 self.tolerance = kargs[’tolerance ’]
14 else:
15 self.tolerance = None
16 self._eigu = [] # list with computed eigenvalues , one per

iteration
17 self._eigv = [] # list with computed eigenvectors , one per

iteration
18 self.eigu = None # computed eigenvalues
19 self.eigv = None # computed eigenvector matrix
20 self.exact_eigu = None
21 self.exact_eigv = None
22 self._times = []
23 self.time = None
24 self.iterations = []
25 self.tot_iterations = 0
26 self.debug = False
27 self.reorder = True
28 self.normalize_eigv = False
29 self.save_data_for_all_iterations = True
30

31 # set this to True to check the found eigenvalues against
numpy’s np.linalg.eig - this can be SLOW

32 self.check_result = False
33

34 def fit_transform(self , X):
35 self.mat_rows , self.mat_cols = X.shape
36 self._fit_transform(X)
37 self.n_computed_eigu = len(self.eigu)
38 if self.normalize_eigv:
39 eigvs = self.eigv
40 for idx , eigv in enumerate(eigvs.T):
41 norm = np.linalg.norm(eigv)
42 self.eigv[:, idx] = eigv/norm

66 Appendix A: Python code

43 assert self.n_computed_eigu == self.eigv.shape [1]
44 if self.n_computed_eigu > 1 and self.reorder:
45 eigu_argsort = np.argsort(np.abs(self.eigu))[:: -1]
46 self.eigu = self.eigu[eigu_argsort]
47 self.eigv = self.eigv.T[eigu_argsort].T
48 for it in range(len(self._eigu)):
49 eigu = self._eigu[it]
50 eigv = self._eigv[it]
51 self._eigu[it] = eigu[eigu_argsort]
52 self._eigv[it] = eigv.T[eigu_argsort].T
53

54 def _compute_exact(self , X):
55 self.exact_eigu , self.exact_eigv = np.linalg.eig(X)
56 eigu_argsort = np.argsort(self.exact_eigu)[:: -1]
57 self.exact_eigu = self.exact_eigu[eigu_argsort]
58 self.exact_eigv = self.exact_eigv.T[eigu_argsort].T
59

60 def _check_exact_ordering(self , X):
61 rows , cols = self.exact_eigv.shape
62 for i in range(cols):
63 v = self.exact_eigv [:, i]
64 l = self.exact_eigu[i]
65 print(f"||Av_{i} - lv_{i}|| = {np.linalg.norm(X.dot(v)

- l*v)}")
66

67 def pprint_result(self):
68 fmtD = "%20s: %5d\n"
69 fmtF = "%20s: %5.10f\n"
70 print(f"RESULTS - {dt.datetime.utcnow ().isoformat ()}")
71 print(
72 fmtD % (’N. Eigv computed ’, self.n_computed_eigu),
73 fmtD % (’Iterations ’, self.tot_iterations),
74 fmtF % (’Time (tot)’, self.time),
75 fmtF % (’Time (avg)’, np.average(self._times))
76)
77 if self.exact_eigu is not None:
78 toterr = 0
79 totverr = 0
80 for i in range(self.n_computed_eigu):
81 exu = self.exact_eigu[i]
82 eu = self.eigu[i]
83 toterr += (exu - eu)**2
84 exv = self.exact_eigv [:, i]. reshape(self.mat_cols ,

1)
85 ev = self.eigv[i]
86 totverr += np.linalg.norm(exv - ev)**2
87 toterr /= np.sum(self.exact_eigu **2)
88 totverr /= np.sum([np.linalg.norm(v) **
89 2 for v in self.exact_eigv.T])
90 print(
91 fmtF % ("Eigu rel. error", np.linalg.norm(toterr)),
92 fmtF % ("Eigv rel. error", totverr),

Appendix A: Python code 67

93)
94

95 def get_time_error_df(self , eigidx: int = 0):
96 timearr = np.cumsum(self._times).reshape(self.

tot_iterations , 1)
97 eig_list = [alleigs[eigidx] for alleigs in self._eigu]
98 errarr = np.abs(np.array(eig_list) -
99 self.exact_eigu[eigidx]).reshape(self.

tot_iterations , 1)
100 return pd.DataFrame(np.hstack ((timearr , errarr)), columns =[

’Time (s)’, ’Error’])
101

102 def get_cum_time_error_df(self):
103 timearr = np.cumsum(self._times).reshape(self.

tot_iterations , 1)
104 cumerrarr = np.vstack(
105 [np.linalg.norm(eigs - self.exact_eigu) for eigs in

self._eigu])
106 return pd.DataFrame(np.hstack ((timearr , cumerrarr)),

columns =[’Time (s)’, ’Error ’])
107

108 def compute_eigv_with_inverse_iteration(self , X, neigvs=None):
109 import utils
110 if neigvs is None or neigvs > self.n_computed_eigu:
111 neigvs = self.n_computed_eigu
112 start = time.time()
113 for idx , eigu in enumerate(self.eigu[: neigvs]):
114 print(f"inverse iteration: {idx }/{ neigvs}")
115 mat = X - eigu*np.eye(self.mat_cols)
116 arr = utils.inverse_iteration(
117 mat , initial_guess=self.eigv[:, idx], tolerance =1e

-12)
118 self.eigv[:, idx] = arr.reshape(self.mat_cols ,)
119 end = time.time()
120 print(f"Inverse iterations done in {end -start} seconds")

68 Appendix A: Python code

A.2 Oja’s method

1 import numpy as np
2 import math
3 import time
4 import base
5

6 class Oja(base.BaseMethod):
7 def __init__(self , learning_rate =1e-6, maxiter= 1e2, tolerance

=1e-2):
8 """
9 learning_rate: should be lower the more data points htere

are
10 maxiter: maximum number of iterations , used as stop

criteria
11 """
12 base.BaseMethod.__init__(self , maxiter=maxiter , tolerance=

tolerance)
13 self.learning_rate = learning_rate
14

15 def _fit_transform(self ,X):
16 """
17 Applies Oja’s rule to find 1st principal component of data

in X (rows).
18 """
19 #randomly initialize weights
20 weights = np.random.normal(scale =0.25, size=(self.mat_cols ,

1))
21 if self.debug:
22 print("Starting iterations for Oja rule ...")
23 Ysquare = np.square(X.dot(weights))
24 global_start_time = time.time()
25 for i in range(self.maxiter):
26 start_time = time.time()
27 prev_weights = weights.copy()
28 Y = np.dot(X, weights)
29 prev_ysquaremean = Ysquare.mean()
30 Ysquare = np.square(Y)
31 weights += self.learning_rate * np.sum(Y*X - Ysquare*

weights.T, axis =0).reshape ((self.mat_cols , 1))
32 residue = np.linalg.norm(weights - prev_weights)
33 if self.debug:
34 print(f"{i}: {residue}")
35 self._eigu.append(np.array(Ysquare.mean()).reshape (1,1)

)
36 self._eigv.append(weights.copy())
37 end_time = time.time()
38 self._times.append(end_time - start_time)
39 if i> 0 and np.abs(Ysquare.mean() - prev_ysquaremean) <

self.tolerance:
40 break
41 self.ystar = np.dot(X,weights)

Appendix A: Python code 69

42 global_end_time = time.time()
43 self.time = global_end_time - global_start_time
44 self.iterations = [i+1]
45 self.tot_iterations = i + 1
46 self.eigv = weights
47 self.eigu = np.array(Ysquare.mean()).reshape (1,1)

70 Appendix A: Python code

A.3 Oja-Sanger’s method

1 import numpy as np
2 import math
3 from sklearn.datasets import make_blobs
4 from sklearn.preprocessing import StandardScaler
5 import time
6 from base import BaseMethod
7 from oja import Oja
8

9 class OjaSanger(BaseMethod):
10 def __init__(self , learning_rate =1e-6, maxiter =1e5, tolerance =1

e-2, compute_n_eigs=None):
11 """
12 learning_rate: should be lower the more data points htere

are
13 """
14 BaseMethod.__init__(self , maxiter=maxiter , tolerance=

tolerance)
15 self.learning_rate = learning_rate
16 self.reorder = False
17 self.compute_n_eigs = compute_n_eigs
18

19 def _fit_transform(self ,X):
20 """
21 Applies Oja -Sanger ’s rule to find eigenvectors and

eigenvalues of covariance matrix of X.
22 """
23 if self.compute_n_eigs is None:
24 self.compute_n_eigs = self.mat_cols
25 if self.check_result:
26 print(f"Computing correct eigenvectors ...")
27 correct_eigv , correct_eigu = self._check(X)
28 workingX = X.copy()
29 eigu_list = []
30 eigv_list = []
31 global_start_time = time.time()
32 for i in range(self.compute_n_eigs): #i represents

eigenvalue index
33 print(f"Computing eigenvector {i}/{ self.mat_cols -

1}...")
34 oja = Oja(learning_rate=self.learning_rate ,maxiter=self

.maxiter ,tolerance=self.tolerance)
35 oja.fit_transform(workingX)
36 start_time = time.time()
37 if i == 0:
38 self.iterations.append(oja.tot_iterations)
39 else:
40 self.iterations.append(self.iterations [-1] + oja.

tot_iterations)
41 ystar = oja.ystar
42 eigv = oja.eigv

Appendix A: Python code 71

43 eigu = oja.eigu
44 if len(eigu_list) == 0:
45 prev_eigus = np.zeros(self.compute_n_eigs)
46 prev_eigvs = np.zeros((self.mat_cols , self.

compute_n_eigs))
47 else:
48 prev_eigus = eigu_list [-1]. copy() #array of prev

eigus approx
49 prev_eigvs = eigv_list [-1]. copy()
50 for it in range(oja.tot_iterations):
51 prev_eigus[i] = oja._eigu[it]
52 eigu_list.append(prev_eigus.copy())
53 prev_eigvs [:,i] = oja._eigv[it]. reshape(self.

mat_cols ,)
54 eigv_list.append(prev_eigvs.copy())
55 for rowIdx , row in enumerate(workingX):
56 row = row.reshape ((self.mat_cols ,1))
57 eigvSubspace = float(ystar[rowIdx])*eigv
58 x1 = row - eigvSubspace
59 workingX[rowIdx] = x1.reshape ((1,self.mat_cols))
60 end_time = time.time()
61 oja_times = oja._times
62 oja_times [-1] += end_time - start_time
63 self._times += oja_times
64 global_end_time = time.time()
65 self.tot_iterations = self.iterations [-1]
66 self.time = global_end_time - global_start_time
67 self.eigu = eigu_list [-1]
68 self.eigv = eigv_list [-1]
69 self._eigu = eigu_list
70 self._eigv = eigv_list

72 Appendix A: Python code

A.4 Jacobi’s method

1 import time
2 import numpy as np
3 from base import BaseMethod
4

5 def get_givens_theta(matrix , p, q):
6 x_pq = matrix[p, q]
7 x_pp = matrix[p, p]
8 x_qq = matrix[q, q]
9 theta = np.arctan ((2.0* x_pq)/(x_pp - x_qq))/2.0

10 return theta
11

12 def givens_rotation(matrix , k: int , l: int , theta: float):
13 n = matrix.shape [0]
14 rotated = matrix
15 ct = np.cos(theta)
16 st = np.sin(theta)
17 for j in range(n):
18 if j != k:
19 rotated[k, j] = matrix[j, k]*ct + matrix[j, l]*st
20 rotated[j, k] = rotated[k, j]
21 if j != l:
22 rotated[l, j] = - matrix[j, k]*st + matrix[j, l]*ct
23 rotated[j, l] = rotated[l, j]
24 rotated[k, k] = matrix[k, k] * \
25 (ct**2) + matrix[l, l]*(st**2) + 2* matrix[k, l]*st*ct
26 rotated[l, l] = matrix[k, k] * \
27 (st**2) + matrix[l, l]*(ct**2) - 2* matrix[k, l]*st*ct
28 rotated[k, l] = 0
29 rotated[l, k]= rotated[k, l]
30 return rotated
31

32 class Jacobi(BaseMethod):
33 def __init__(self , maxiter= 1e2, tolerance =1e-2):
34 """
35 Jacobi ’s method.
36 """
37 BaseMethod.__init__(self , maxiter=maxiter , tolerance =

tolerance)
38

39 def _fit_transform(self , X):
40 """
41 Applies Jacobi ’s method to find eigenvalues and

eigenvectors
42 """
43 workingX= X.copy()
44 self.pq_tuples= []
45 self.theta_list= []
46 global_start_time= time.time()
47 for i in range(self.maxiter):
48 if self.debug and i % 100 == 0:

Appendix A: Python code 73

49 print(f"Iteration {i}/{ self.maxiter}")
50 start_time= time.time()
51 max_val= -1
52 max_p= -1
53 max_q= -1
54 for p in range(self.mat_rows):
55 for q in range(p+1, self.mat_cols):
56 max_elem= abs(workingX[p, q])
57 if max_elem > max_val:
58 max_val= max_elem
59 max_p= p
60 max_q= q
61 assert max_p != max_q
62 if max_p > max_q:
63 temp= max_p
64 max_p= max_q
65 max_q= temp
66 assert max_p < max_q
67 self.pq_tuples.append ((max_p , max_q))
68 theta= get_givens_theta(workingX , max_p , max_q)
69 self.theta_list.append(theta)
70 workingX= givens_rotation(workingX , max_p , max_q , theta

)
71 end_time= time.time()
72 self._times.append(end_time - start_time)
73 if self.save_data_for_all_iterations:
74 self._eigu.append(np.diag(workingX).copy())
75 global_end_time= time.time()
76 self.time= global_end_time - global_start_time
77 prevQ= np.eye(self.mat_cols)
78 for idx , pqt in enumerate(self.pq_tuples):
79 theta= self.theta_list[idx]
80 p, q= pqt
81 Q= np.eye(self.mat_cols)
82 ct= np.cos(theta)
83 st= np.sin(theta)
84 Q[p, p]= ct
85 Q[p, q]= -st
86 Q[q, p]= st
87 Q[q, q]= ct
88 newQ = prevQ.dot(Q)
89 if self.save_data_for_all_iterations:
90 self._eigv.append(newQ)
91 prevQ= newQ.copy()
92 self.iterations= [i + 1 for k in range(self.mat_cols)]
93 self.tot_iterations= i + 1
94 if self.save_data_for_all_iterations:
95 self.eigu= self._eigu[-1]
96 self.eigv= self._eigv[-1]
97 else:
98 self.eigu= np.diag(workingX)
99 self.eigv= prevQ

74 Appendix A: Python code

100

101 def _fit_transform_(self , X): # Jacobi method
102 workingX= X.copy()
103 def maxElem(a): # Find largest off -diag. element a[k,l]
104 n= len(a)
105 aMax= 0.0

Appendix A: Python code 75

A.5 Power method
1 import time
2 import numpy as np
3 from base import BaseMethod
4

5

6 class Power(BaseMethod):
7 def __init__(self , maxiter= 1e2, tolerance =1e-2):
8 """
9 Power method.

10 """
11 BaseMethod.__init__(self , maxiter=maxiter , tolerance=

tolerance)
12

13

14 def _fit_transform(self ,X):
15 """
16 Applies Power method to find eigenvalues and eigenvectors
17 """
18 global_start_time = time.time()
19 x = np.random.normal(size=(self.mat_cols)).reshape ((self.

mat_cols , 1))
20 ev = x.T.dot(X.dot(x))
21 for i in range(self.maxiter):
22 start_time = time.time()
23 Xv = X.dot(x)
24 x_new = Xv / np.linalg.norm(Xv)
25 ev_new = x_new.T.dot(X.dot(x_new))
26 self._eigu.append(np.array(ev_new).reshape (1,1))
27 self._eigv.append(x_new.reshape(self.mat_cols ,1))
28 end_time = time.time()
29 self._times.append(end_time - start_time)
30 if np.abs(ev - ev_new) < self.tolerance:
31 break
32 x = x_new
33 ev = ev_new
34 global_end_time = time.time()
35 self.time = global_end_time - global_start_time
36 self.iterations = [i + 1]
37 self.tot_iterations = i + 1
38 self.eigu = self._eigu [-1]
39 self.eigv = self._eigv [-1]

76

Erklärung 77

Erklärung

Hiermit erkläre ich, dass ich meine Arbeit selbstständig verfasst, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und die Arbeit noch nicht anderweitig für
Prüfungszwecke vorgelegt habe.

Stellen, die wörtlich oder sinngemäß aus Quellen entnommen wurden, sind als solche
kenntlich gemacht.

Mittweida, 13/07/2021

HSMW-Thesis

	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Matrix norms
	Computational cost and big-O notation
	The Eigenvalue Problem
	Matrix diagonalization

	Numerical stability and Conditioning
	Covariance matrix and Principal Component Analysis
	Principal Component Analysis for dimension reduction

	Graphs and eigenvector centrality

	Numerical methods for computing eigenvalues and eigenvectors
	Oja and Oja-Sanger's method
	Hebbian learning
	Oja's method
	Oja-Sanger's Method

	Jacobi's method
	Givens rotation
	The algorithm

	Power method
	Inverse Power Method

	Numerical simulations
	Convergence of methods
	Stability
	Computing eigenfaces
	Denoising images
	Computing eigenvector centrality

	Conclusion
	Bibliography
	Python code
	Base class
	Oja's method
	Oja-Sanger's method
	Jacobi's method
	Power method

