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Referat

In this thesis, we implement, correct, and modify the compartmental model described in
“Transmission Dynamics of Large Coronavirus Disease Outbreak in Homeless Shelter, Chica-
go, Illinois, USA, 2020” [5]. Our objective is to engage in reading and understanding scienti�c
literature, reproduce the results, and modify or generalize an existing mathematical model.
We provide an overview of epidemiological models, focusing on simple compartmental SEIR
models. We correct inaccuracies and misprints in the original implementation and use the
limited-memory Broyden–Fletcher–Goldfarb–Shanno [13] algorithm to �t the model’s para-
meters. Furthermore, we modify the model of [5] by introducing an additional compartment.
The resulting model has a more intuitive interpretation and relies on fewer assumptions.
We also perform the �tting process for this alternative model. Finally, we demonstrate the
advantages of our modi�ed implementations and discuss other possible approaches.
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1 Introduction

The aim of this thesis is to implement and modify the model of the coronavirus disease
2019 (COVID-19) outbreak in a homeless shelter in Chicago, Illinois, USA, in 2020, which was
described in [5]. The objective is to read and understand scienti�c literature, reproduce the
results, and modify or generalize an existing mathematical model.

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing
COVID-19 has led to a pandemic with a profound impact on the world, a�ecting billions of
people and causing widespread disruption to daily life. The virus was �rst identi�ed inWuhan,
China in December 2019 and has since spread to become a global pandemic. This led the
WHO to declare a Public Health Emergency of International Concern (PHEIC) on 30 January 2020,
and to characterize the outbreak as a pandemic on 11 March 2020 [17].

For epidemiological prediction and to support decision-making, mathematical models are
standard tools in epidemiology. Such models are based on a variety of factors, including
the biology of the disease, the characteristics of the population, and the e�ectiveness of
interventions such as social distancing and vaccination. Predictions are utilized to guide deci-
sions in public health regarding planning for pandemics, allocating resources, implementing
measures for social distancing, and other interventions [6].

1.1 Biology of the virus

COVID-19 is caused by SARS-CoV-2, which belongs to the broad family of viruses known as
coronaviruses. These are positive-sense, single-stranded RNA viruses (Baltimore Group IV).
SARS-CoV-2 is an enveloped �-coronavirus, with a genetic sequence very similar to SARS-CoV-
1 (80%) and bat coronavirus RaTG13 (96.2%). The relatively large genome (29.7knt) codes,
like all coronaviruses, for four structural proteins, the nucleocapsid protein (N), spike (S)
glycoprotein coating the viral envelope, and the envelope (E) and membrane (M) proteins [3].

The virus primarily invades the respiratory system and gains entry into human cells via the
angiotensin-converting enzyme 2 (ACE2) receptor. Upon gaining entry, the viral RNA is in-
serted into a host cell, which uses the host cell’s replication mechanism to multiply. The host
cell releases new virions that infect other cells [3].

The peak SARS-CoV-2 load in the respiratory tract is observed at the time of symptom onset
or in the �rst week of illness, with subsequent decline thereafter, indicating the highest
infectiousness potential just before or within the �rst �ve days of symptom onset [3].

1.2 Disease spread and symptoms

SARS-CoV-2 is an airborne virus, which primarily is transmitted through the air are inhaled
at short range (short-range aerosol or short-range airborne transmission). The virus can
also spread by touching a surface or object contaminated with the virus and then touching
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one’s mouth, nose, or eyes. The virus is especially spreading well in enclosed spaces with
poor ventilation. It is important to note that people who are infected with COVID-19 can be
contagious even if they do not have symptoms [18].

The symptoms of COVID-19 can vary fromperson to person, but themost common symptoms
include fever or chills, cough, shortness of breath or di�culty in breathing, fatigue, muscle or
body aches, headache, loss of taste or smell, sore throat, congestion or runny nose, nausea,
or vomiting. It is important to note that not everyone with COVID-19 will experience all of
these symptoms, and some people may not have any symptoms at all [8]. However, COVID-
19 can be severe, if the virus enters the lower respiratory tract. Individuals with an intense
infection need hospitalization or even ICU treatment. Risk factors associated with severe
COVID-19 cases are age, obesity, and co-morbidities like diabetes, HIV, etc. [7]. Until now,
almost 7 million deaths worldwide have been attributed to COVID-19 [22].

1.3 Epidemiological models and evaluation

Many approaches to epidemiological models exist, such as deterministic (SIR-type), individual-
based, and stochastic models. The model and the approach need to be tailored to a speci�c
situation to be accurate [16].

Evaluating epidemiological models, such as for the spread of SARS-CoV-2 involves several
steps and considerations:

• Understanding the model type: Models can be deterministic or stochastic. Determin-
istic models as those considered here are typically compartmental models based on the
SIR (susceptible, infected, recovered) model. They typically vary in their complexity and
include additional compartments such as exposed or asymptomatic individuals, or age
groups [21]. Whether a determinist or stochastic model is more appropriate depends
on the magnitude of the disease outbreak and the phase to be studied. In general, due
to the stochastic nature of a disease outbreak, stochastic models are preferable at the
onset of an epidemic, while deterministic models are more convenient to model an
ongoing epidemic outbreak in a su�ciently large population in which random e�ects
can be ignored [2].

• Estimating key parameters: Important parameters include the basic reproduction
numberR0, which indicates howmany people an infected person will infect on average,
the case fatality rate, which is the proportion of infected people who die from the dis-
ease, the incubation period, the duration of various phases of the disease, the contact
behavior, etc. [21]. Ideally, a model is set up in such a way that parameters can be
estimated intuitively.

• Assessing assumptions: Models require assumptions about the biology of the disease
(mode of transmission, transmissibility, etc.) which must be based on biological facts
about the underlying pathogen. Model assumptions should be in accordance to empir-
ical evidence of past and current disease outbreaks. Empirical evidence includes facts
about the incubation period (i.e., the time between infection and disease outbreak)
and latency periods (i.e., the time between infection and infectiousness), the contact
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behavior, rates of transmission among di�erent age groups, and the number of people
who are immune [21]. These assumptions should be reasonable and based on available
data.

• Comparing Predictions with Real-World Data: Models should be validated by com-
paring their predictions with actual case data. Discrepancies can help to re�ne the
model [21].

It is important to remember that while models can provide important insights, they are
simpli�cations of reality and their predictions are subject to uncertainty. Therefore, their
results should be interpreted carefully.

1.4 Background

Persons living in congregate settings, including homeless shelters, have been dispropor-
tionately a�ected by the COVID-19 pandemic [10]. Individuals who are homeless are more
susceptible to SARS-CoV-2 infection due to their communal living conditions and challenges
in maintaining physical distancing. Additionally, they are more likely to experience severe
COVID-19 symptoms because of the higher occurrence of their underlying health condition
[9].

In this thesis, we implement and modify the model from [5]. Community transmission was
documented in Chicago, Illinois, USA, in early March, and a statewide stay-at-home order
was implemented on March 14, 2020. From March to May 2020, many homeless shelters in
Chicago experienced COVID-19 outbreaks [10].

We reproduce the compartmentalmathematicalmodel of an outbreak of COVID-19 in Chicago’s
largest homeless shelter, and correct errors and inaccuracies in the original article [5]. Fur-
thermore, we introduce an improvedmodel that allows di�erent incubation periods for symp-
tomatic and asymptomatic individuals. The advantage of this extension is that the model
interpretation is more intuitive and the extended models can be more easily parametrized.
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2 Methods

Here, we introduce the background and model of [5]. The presentation follows [5].

2.1 Population to be modeled

The city of Chicago, Illinois, USA, hosts the largest homeless shelter in the Midwest of the
United States, The Paci�c Garden Mission (PGM). The spread of COVID-19 at PGM was mod-
eled in [5], based on the contact behavior and population characteristics described below.

The shelter can house up to 950 people. The majority of individuals at PGM, known as
overnight residents, spend the night in large dormitories separated by gender, each holding
fewer than 200 people. These residents typically spend their days outside the shelter or in
large day rooms, also separated by gender. Each night, they return to the same dormitories
but with di�erent bed assignments. Prior to the implementation of the stay-at-home order,
residents could stay for a maximum of 30 days. A smaller group of residents, referred to as
program residents, have a di�erent routine. They sleep in smaller dormitories that range
from 4 to 20 beds and can spend their days either in the dormitories, day room, accessing
services, or outside the shelter. Depending on the services they are using, these residents
can stay at the shelter for up to two years. When the stay-at-home order was issued, more
than 50 residents and sta� left PGM. Following this order, residents were not allowed to
leave or return to the shelter unless they held essential roles such as employment in critical
infrastructure. As a result, 445 residents and sta� remained at PGM [5].

2.2 Origin of the Outbreak at PGM

On March 14, 2020, a female resident in her 40s from the Paci�c Garden Mission (PGM) was
diagnosed with COVID-19 at an acute-care hospital. Following this, nine other residents from
PGM started showing symptoms and sought medical attention inMarch. By the end of March,
a total of 10 individuals had been con�rmed to be infected with SARS-CoV-2 [5].

2.3 The Four-Phase Timeline

For the purposes of the modeling and analysis, the timeline of the COVID-19 outbreak was
split into 4 phases [5].

Phase 1 (March 1, 2020 – March 29, 2020): there was no established routine for symptom
screening or testing for SARS-CoV-2. If residents reported COVID-19 related symptoms to the
sta�, they were transported to nearby acute-care hospitals for diagnostic tests and medical
treatment [5].
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Phase 2 (March 30, 2020 – April 4, 2020): the measures to control infection were extended,
and included frequent cleaning of surfaces that are often touched, increasing the supply of
hand hygiene products like alcohol-based hand sanitizers, enforcing physical distancing rules,
and providing masks to all residents (enough masks for everyone were obtained by April 2).
Furthermore, daily temperature checks and symptom screenings were initiated. Residents
showing potential COVID-19 symptoms (referred to as persons under investigation [PUIs])
were isolated within the facility. A resident was considered a PUI if they had ameasured fever
of more than 37.8�C or reported symptoms such as a subjective fever, dry cough, shortness
of breath, muscle pain, sore throat, headache, fatigue, or if they had been in close contact
with a person con�rmed to have SARS-CoV-2 infection. This was in line with the de�nition
provided by the Centers for Disease Control and Prevention (CDC) at that time [5].

Phase 3 (April 5, 2020 – April 7, 2020): persons under investigation (PUIs) were moved to
an o�site hotel for isolation in individual rooms. Residents who started showing symptoms
were, on average, transferred to the hotel one day after they reported their symptoms. In the
meantime, they were isolated onsite. At the same time, residents who were at high risk of
severe disease due to their age or underlying health conditions (as determined by an onsite
doctor) were also moved o�site to individual hotel rooms for protective housing. A more
stringent shelter-in-place order was implemented on April 7, 2020. After this date, residents
were strongly advised against leaving the shelter, and those who left for any reason were not
allowed to return [5].

Phase 4 (April 8, 2020 – May 13, 2020): was marked by repeated cycles of extensive SARS-
CoV-2 testing. From April 8 to 10, healthcare workers from local academic healthcare centers
collected nasopharyngeal swab specimens from all sta� and residents who consented. The
testing was o�ered to all residents and sta� who had not previously tested positive for
SARS-CoV-2. The specimens were tested for SARS-CoV-2 using RT-PCR, and related clinical
and epidemiological data were gathered using a standardized questionnaire as previously
described [12]. Test results were typically returned 48 hours after the collection of the spec-
imen. Onsite isolation units, which were sta�ed by clinicians 24 hours a day and had the
capacity to accommodate 160 individuals, were set up for residents who tested positive for
SARS-CoV-2. These isolation units were equipped with a personal protective equipment (PPE)
station for medical personnel. Sta� and residents received regular training on PPE use, and
the PPE station was consistently stocked with surgical and N95 masks, gloves, and gowns.
Additional rounds of extensive testing were conducted on April 18, April 28, and May 6. After
each round, residents were isolated as previously described. Residents who developed symp-
toms between testing rounds but did not have an RT-PCR–con�rmed diagnosis continued to
be transferred to the hotel [5].

2.4 SEIR Model

For many diseases, there is a latent phase during which the individual is infected but not yet
infectious. This delay between the acquisition of infection and the infectious state can be
incorporated within the SIR model by adding a latent/exposed population, E, and assuming
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that Susceptible �rst enter the latent phase before they become infectious [11]. The resulting
SEIRmodel is a compartmental model in epidemiology that is used to describe the spread
of an infectious disease. The population is divided into four compartments:

1. Susceptible (S): individuals who have not yet been infected but are susceptible to the
disease;

2. Exposed (E): individuals who have been infected but are not yet infectious themselves.
They are in the latency period;

3. Infectious (I): individuals who have been infected and are capable of infecting suscep-
tible individuals;

4. Removed (R): individuals who have been infected and have either recovered from the
disease and are considered permanently immune, or died.

The infectious rate, �, controls the rate of spread, which represents the probability of trans-
mitting the disease between a susceptible and an infectious individual. The rate, �, of which
exposed individuals become infectious (the average duration of incubation period is 1

� ). The
recovery rate, � = 1

D , is determined by the average duration,D, of the infection [11].

The SEIR model is described as a non-linear system of ordinary di�erential equations. The
number of Susceptible, exposed, infectious, and removed change according to

dS

dt
= �� ⇥ S ⇥ I, (2.1)

dE

dt
= � ⇥ S ⇥ I � � ⇥ E, (2.2)

dI

dt
= � ⇥ E � � ⇥ I, (2.3)

dR

dt
= � ⇥ I. (2.4)

A key parameter in the SEIR model is the basic reproduction number (R0). It represents the
expected number of secondary infections produced by a single infected individual introduced
into a population where all other individuals are susceptible, and is calculated as R0 = �

�

[11].
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Figure 2.1: An example plot of SEIR model with parameters � = 0.26, � = 0.5, � = 0.15 and starting
compartments S = 100, E = 0, I = 1, R = 0, where S - susceptible, E - exposed, I -
infected, R - recovered, CI - cumulative infected.

2.5 Chicago Shelter Model

To understand the dynamics of the PGM outbreak, the SEIR compartmental model was
adapted. The constructed model consisted of 4 separate systems of ordinary di�erential
equations corresponding to the 4 phases of outbreak response at PGM [5]. (Figure 2.2)

In each of these phases, the corresponding model parameters and compartments were al-
tered to represent relevant screening, testing, and isolationmeasures. Themodel introduced
a compartment for isolation units in phase 4 and a compartment for isolation dorms (before
the set-up of fully sta�ed, PPE-stocked isolation units) in phases 2 and 3. Finally, the model
included compartments for persons who were removed to the hotel or a hospital [5].
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Figure 2.2: Compartmental models corresponding to the 4 phases of the coronavirus disease out-
break response at PGM, a homeless shelter in Chicago, Illinois, USA, 2020.

2.5.1 Transmission Rate

Because transmission rate (�) varies as a function of the number of contacts per infectious
person and probability of transmission given contact, it is expected to vary over time in the
model because of removal of persons from the population (primarily into isolation units) and
infection control measures [5].

Considering that, � at any given time point was calculated by using following the transition
equation

� = �0 �
�0 � �f

1 + e(t�tTrans)/k
, (2.5)

where �0 corresponds to the initial transmission rate, �f = �f_pct_�0 ⇥ �0 (where �f_pct_�0
corresponds to �nal transmission rate as a percentage of �0), tTrans represents the time
point at which � reaches a value halfway between �0 and �f, and k represents the rate of
transformation between initial and �nal � [5].
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Figure 2.3: Comparison of the original � function with the corrected one. Parameters values are
�0 = 0.6, �f = 0.066, tTrans = 23 and k = 2.

However, the original transition equation produces a function increasing with time, which
contradicts the expectation stated (Figure 2.3). To correct the situation, the equation was
changed to

� = �0 �
�0 � �f

1 + e(tTrans�t)/k
. (2.6)

2.5.2 Di�erential Equations

The ordinary di�erential equations (ODEs) from the “Transmission Dynamics of Large Coro-
navirus Disease Outbreak in Homeless Shelter, Chicago, Illinois, USA, 2020” [5] had some
inaccuracies, which are corrected in the ODEs below. Compartments, variables, and their
descriptions are provided in the Table 2.1.
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Notation Description
S Susceptible persons
E Exposed persons
Is Infectious symptomatic persons
Ia Infectious asymptomatic persons
Rps Recovered symptomatic persons, PCR-positive
Rpa Recovered asymptomatic persons, PCR-positive
Rn Recovered persons, PCR-negative
H Hospitalized persons (phase 1, phase 2)
Q Soft-isolated persons (phase 2)
Ht Persons suspected of having COVID-19 and transferred to a hospital (phase 3,

phase 4)
Isol Isolated as a result of 4 rounds of PCR-testing (phase 4)
� Rate of transmission between Susceptible and Infectious persons
�s Rate of transition from E to Is �s = 1/tincubation ⇥ psymp, where tincubation is incu-

bation period and psymp is percent symptomatic
�a Rate of transition from E to Ia �a = 1/tincubation ⇥ pasymp, where tincubation is incu-

bation period and pasymp is percent asymptomatic
�sp Rate of transition from Is to Rps �sp = 1/tinfectious_s, where tinfectious_s is an infec-

tious period of symptomatic persons
�ap Rate of transition from Ia to Rpa �ap = 1/tinfectious_a, where tinfectious_a is an infec-

tious period of asymptomatic persons
�sn Rate of transition from Rps to Rn �sn = 1/(tpcrPos_s � tinfectious_s), where tpcrPos_s is

duration of PCR-positivity for symptomatic infected persons
�an Rate of transition from Rpa to Rn �an = 1/(tpcrPos_a � tinfectious_a), where tpcrPos_a

is duration of PCR-positivity for asymptomatic infected persons
!0 Rate of hospital admission of Is (Phase 1)
! Rate of transition from Q toH (Phase 2)
↵ Rate of transition from Is to Q (Phase 2); rate of transition from Is to Ht (Phase

3, Phase 4)
⇢ Rate of transition from Isol to Rn (Phase 4); ⇢ = 1/tisolation, where tisolation is

duration of isolation (14 days)

Table 2.1: Compartments and variables of ODEs for phases 1-4.

The following system of ODEs describes phase 1:
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dS

dt
= �� ⇥ S ⇥ (Is + Ia)

N
, (2.7)

dE

dt
= � ⇥ S ⇥ (Is + Ia)

N
� �s ⇥ E � �a ⇥ E, (2.8)

dIs

dt
= �s ⇥ E � �sp ⇥ Is � !0 ⇥ Is, (2.9)

dIa

dt
= �a ⇥ E � �ap ⇥ Ia, (2.10)

dRps

dt
= �sp ⇥ Is � �sn ⇥Rps, (2.11)

dRpa

dt
= �ap ⇥ Ia � �an ⇥Rpa, (2.12)

dRn

dt
= �sn ⇥Rps + �an ⇥Rpa, (2.13)

dH

dt
= !0 ⇥ Is. (2.14)

In phase 2 the isolation dorms (Q) were introduced, due to the commencement of symptom
screening. These are the ODEs for phase 2:

dS

dt
= �� ⇥ S ⇥ (Is + Ia)

N
, (2.15)

dE

dt
= � ⇥ S ⇥ (Is + Ia)

N
� �s ⇥ E � �a ⇥ E, (2.16)

dIs

dt
= �s ⇥ E � �sp ⇥ Is � ↵⇥ Is, (2.17)

dIa

dt
= �a ⇥ E � �ap ⇥ Ia, (2.18)

dRps

dt
= �sp ⇥ Is � �sn ⇥Rps, (2.19)

dRpa

dt
= �ap ⇥ Ia � �an ⇥Rpa, (2.20)

dRn

dt
= �sn ⇥Rps + �an ⇥Rpa, (2.21)

dQ

dt
= �! ⇥Q+ ↵⇥ Is, (2.22)

dH

dt
= ! ⇥Q. (2.23)

In phase 3 hospital (H) and isolation dorms (Q) compartments were replaced with Hotel
(Ht) due to the opening of a hotel for homeless persons suspected to have COVID-19. All
symptomatic persons were moved to the hotel once tested positive. These are ODEs for
phase 3:
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dS

dt
= �� ⇥ S ⇥ (Is + Ia)

N
, (2.24)

dE

dt
= � ⇥ S ⇥ (Is + Ia)

N
� �s ⇥ E � �a ⇥ E, (2.25)

dIs

dt
= �s ⇥ E � �sp ⇥ Is � ↵⇥ Is, (2.26)

dIa

dt
= �a ⇥ E � �ap ⇥ Ia, (2.27)

dRps

dt
= �sp ⇥ Is � �sn ⇥Rps, (2.28)

dRpa

dt
= �ap ⇥ Ia � �an ⇥Rpa, (2.29)

dRn

dt
= �sn ⇥Rps + �an ⇥Rpa, (2.30)

dHt

dt
= ↵⇥ Is. (2.31)

In phase 4 the isolation units for persons who tested positive during mass PCR screens
were implemented. At each of the 4 isolation time points (2 days after each testing), the
number of persons in the Is, Ia, Rps, and Rpa compartments who are simulated to test
positive (SensitivityPCR ⇥ number_of_individuals_in_each_compartment) are moved to the
Isolation compartment (Q). These are ODEs for phase 4:

dS

dt
= �� ⇥ S ⇥ (Is + Ia)

N
, (2.32)

dE

dt
= � ⇥ S ⇥ (Is + Ia)

N
� �s ⇥ E � �a ⇥ E, (2.33)

dIs

dt
= �s ⇥ E � �sp ⇥ Is � ↵⇥ Is, (2.34)

dIa

dt
= �a ⇥ E � �ap ⇥ Ia, (2.35)

dRps

dt
= �sp ⇥ Is � �sn ⇥Rps, (2.36)

dRpa

dt
= �ap ⇥ Ia � �an ⇥Rpa, (2.37)

dRn

dt
= �sn ⇥Rps + �an ⇥Rpa + ⇢⇥ Isol, (2.38)

dHt

dt
= ↵⇥ Is, (2.39)

dIsol

dt
= �⇢⇥ Isol. (2.40)
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2.6 Alternative Model

Although the incubation period is the same for symptomatic and asymptomatic individuals,
the model has to parametrize �s and �a, which have to be carefully interpreted. By extending
the model with an additional compartment, more straightforward interpretation of parame-
ters is achieved and the assumption that incubation period is the same for symptomatic and
asymptomatic individuals, can be relaxed. More precisely, we split the E compartment into
two parts: Ea and Es, which represent exposed individuals that later become asymptomatic
and symptomatic infected, respectively. In this variation of the model, the rate of transition
from Susceptible to Ea is � ⇥ p, where p is a fraction of asymptomatic infectious, or a prob-
ability of a person being asymptomatic. The rate of transition from S compartment to Es

in this case is � ⇥ (1 � p). After transition to either exposed compartments, a person can
be transitioned further only to a corresponding infectious compartment. Rates of transition
from exposed to Ia and Is, unlike the base model, are not a�ected by p. Those rates are

�s =
1

tincubation_symptomatic
, (2.41)

�a =
1

tincubation_asymptomatic
, (2.42)

where tincubation_symptomatic is incubation period for symptomatic persons, and tincubation_asymptomatic

is incubation period for asymptomatic persons. The alternativemodel of phase 1 is illustrated
in Figure 2.4.

The alternative model was implemented for every phase of the PGM outbreak alongside the
base model.

The ODEs for the alternative model are similar to the ones from the base model, with di�er-
ence only in exposed and infected compartments.

Figure 2.4: Phase one compartments of the alternative model.
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The following system of ODEs describes phase 1:

dS

dt
= �� ⇥ S ⇥ (Is + Ia)

N
, (2.43)

dEs

dt
= (1� p)⇥ � ⇥ S ⇥ (Is + Ia)

N
� �s ⇥ Es, (2.44)

dEa

dt
= p⇥ � ⇥ S ⇥ (Is + Ia)

N
� �a ⇥ Ea, (2.45)

dIs

dt
= �s ⇥ Es � �sp ⇥ Is � !0 ⇥ Is, (2.46)

dIa

dt
= �a ⇥ Ea � �ap ⇥ Ia, (2.47)

dRps

dt
= �sp ⇥ Is � �sn ⇥Rps, (2.48)

dRpa

dt
= �ap ⇥ Ia � �an ⇥Rpa, (2.49)

dRn

dt
= �sn ⇥Rps + �an ⇥Rpa, (2.50)

dH

dt
= !0 ⇥ Is. (2.51)

The following system of ODEs describes phase 2:

dS

dt
= �� ⇥ S ⇥ (Is + Ia)

N
, (2.52)

dEs

dt
= (1� p)⇥ � ⇥ S ⇥ (Is + Ia)

N
� �s ⇥ Es, (2.53)

dEa

dt
= p⇥ � ⇥ S ⇥ (Is + Ia)

N
� �a ⇥ Ea, (2.54)

dIs

dt
= �s ⇥ Es � �sp ⇥ Is � ↵⇥ Is, (2.55)

dIa

dt
= �a ⇥ Ea � �ap ⇥ Ia, (2.56)

dRps

dt
= �sp ⇥ Is � �sn ⇥Rps, (2.57)

dRpa

dt
= �ap ⇥ Ia � �an ⇥Rpa, (2.58)

dRn

dt
= �sn ⇥Rps + �an ⇥Rpa, (2.59)

dQ

dt
= �! ⇥Q+ ↵⇥ Is, (2.60)

dH

dt
= ! ⇥Q. (2.61)

The following system of ODEs describes phase 3:
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dS

dt
= �� ⇥ S ⇥ (Is + Ia)

N
, (2.62)

dEs

dt
= (1� p)⇥ � ⇥ S ⇥ (Is + Ia)

N
� �s ⇥ Es, (2.63)

dEa

dt
= p⇥ � ⇥ S ⇥ (Is + Ia)

N
� �a ⇥ Ea, (2.64)

dIs

dt
= �s ⇥ Es � �sp ⇥ Is � ↵⇥ Is, (2.65)

dIa

dt
= �a ⇥ Ea � �ap ⇥ Ia, (2.66)

dRps

dt
= �sp ⇥ Is � �sn ⇥Rps, (2.67)

dRpa

dt
= �ap ⇥ Ia � �an ⇥Rpa, (2.68)

dRn

dt
= �sn ⇥Rps + �an ⇥Rpa, (2.69)

dHt

dt
= ↵⇥ Is. (2.70)

The following system of ODEs describes phase 4:

dS

dt
= �� ⇥ S ⇥ (Is + Ia)

N
, (2.71)

dEs

dt
= (1� p)⇥ � ⇥ S ⇥ (Is + Ia)

N
� �s ⇥ Es, (2.72)

dEa

dt
= p⇥ � ⇥ S ⇥ (Is + Ia)

N
� �a ⇥ Ea, (2.73)

dIs

dt
= �s ⇥ Es � �sp ⇥ Is � ↵⇥ Is, (2.74)

dIa

dt
= �a ⇥ Ea � �ap ⇥ Ia, (2.75)

dRps

dt
= �sp ⇥ Is � �sn ⇥Rps, (2.76)

dRpa

dt
= �ap ⇥ Ia � �an ⇥Rpa, (2.77)

dRn

dt
= �sn ⇥Rps + �an ⇥Rpa + ⇢⇥ Isol, (2.78)

dHt

dt
= ↵⇥ Is, (2.79)

dIsol

dt
= �⇢⇥ Isol. (2.80)
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2.7 Model Fitting

To �tmodel parameters, two functions to propagate all 4model phases sequentially were con-
structed, for the base and alternative model. Onward, the optim function from stats package
of R [19] was used with the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) op-
timization algorithm. The L-BFGS is an optimization algorithm in the family of quasi-Newton
methods that approximates the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) using
a limited amount of computer memory [13].

Table 2.2 presents the data points, values, and weights that were used to minimize the root
mean log squared error during the model �tting process.

Table 2.2: Data points for model �tting of coronavirus disease outbreak in PGM.

Description Phase Value Weight
Cum. number of hospital-based PCR+, March 14 I 1 1
Cum. number of hospital-based PCR+, March 15 I 1 1
Cum. number of hospital-based PCR+, March 16 I 1 1
Cum. number of hospital-based PCR+, March 17 I 2 1
Cum. number of hospital-based PCR+, March 18 I 3 1
Cum. number of hospital-based PCR+, March 19 I 3 1
Cum. number of hospital-based PCR+, March 20 I 4 1
Cum. number of hospital-based PCR+, March 21 I 4 1
Cum. number of hospital-based PCR+, March 22 I 5 1
Cum. number of hospital-based PCR+, March 23 I 6 1
Cum. number of hospital-based PCR+, March 24 I 6 1
Cum. number of hospital-based PCR+, March 25 I 6 1
Cum. number of hospital-based PCR+, March 26 I 7 1
Cum. number of hospital-based PCR+, March 27 I 9 1
Cum. number of hospital-based PCR+, March 28 I 9 1
Cum. number of hospital-based PCR+, March 29 I 9 1
Cum. number of hospital-based PCR+, March 30 I 10 1
Number of PCR+ persons II 18 1
Number of hospitalized persons II 7 1
Number of persons moved to the hotel III 26 1
Number of PCR+ in the �rst round of mass PCR testing IV 166 2
Number of PCR+ in the second round of mass PCR testing IV 24 2
Number of PCR+ in the third round of mass PCR testing IV 23 2
Number of PCR+ in the fourth round of mass PCR testing IV 1 2
Number of persons moved to the hotel between 1 and 2
rounds of mass PCR testing

IV 20 1

Number of persons moved to the hotel between 2 and 3
rounds of mass PCR testing

IV 4 1

Number of persons moved to the hotel between 3 and 4
rounds of mass PCR testing

IV 0 1
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Variable Range of values Phases
�0 — initial � 0-445 1, 2, 3, 4
�f_pct_�0 - �nal � as a percentage of �0 0-1 1, 2, 3, 4
k — rate of transformation of � 0.01–2 1, 2, 3, 4
tTrans — day when � reaches halfway between �0

and �f

1-50 1, 2, 3, 4

tincubation — time between E and I compartments 2.8-4.0 1, 2, 3, 4
p— asymptomatic percentage 0.18–0.87 1, 2, 3, 4
tinfectious_s — infectious duration for symptomatic
persons (days)

3-8 1, 2, 3, 4

tinfectious_a — infectious duration for asymptomatic
persons (days)

3-8 1, 2, 3, 4

tpcrPos_s — duration of RT-PCR–positivity of
symptomatic persons (days)

16-35 1, 2, 3, 4

tpcrPos_a — duration of RT-PCR–positivity of
asymptomatic persons (days)

3-35 1, 2, 3, 4

↵— rate of detection of symptomatic infectious
persons through screening

0.01-1 2, 3, 4

rt_pcr_sensitivity — RT-PCR sensitivity 0.72–0.90 4
!0 — rate of hospital admission of Infectious
symptomatic persons before screening

0.05–1.0 1

! — rate of hospital admission of soft-isolated
symptomatic persons

0.05–1.0 2

Table 2.3:Model parameters’ ranges for �tting.

Ranges of values for each optimized variable (Table 2.3) were derived from the literature[5]

The basic reproduction number (R0), which is calculated as �/� in a basic SEIR model, was
calculated as �0/(�ap ⇥ p + �sp ⇥ (1 � p)), where �ap is the inverse of infectious duration
for asymptomatic persons and �sp is the inverse of infectious duration for symptomatic
persons. The number of persons in di�erent compartments at various time points andmodel
parameters (representing transmission dynamics) were estimated from the �tted model [5].
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3 Results

Here, we present the results of the model simulations.

3.1 Base model

The optimmethod with L-BFGS algorithm converged, giving the following results (Table 3.1).

Based on the �tted variables, following derivative parameters were calculated (Table 3.2),
according to equations from Table 2.1.

Fitted value Result Description
�0 1 Initial �

�f_pct_�0 0.22 �nal � as a percentage of �0
tTrans 28.73 Moment where � reaches halfway between �0 and

�f (days)
k 0.01 Rate of transformation of �
p 0.36 Asymptomatic percentage

tincubation 2.8 Time between E and I compartments (days)
tinfectious_s 5.12 infectious duration for symptomatic persons

(days)
tinfectious_a 8 Infectious duration for asymptomatic persons

(days)
tpcrPos_s 35 Duration of RT-PCR–positivity of symptomatic

persons (days)
tpcrPos_a 35 Duration of RT-PCR–positivity of asymptomatic

persons (days)
!0 0.86 Rate of hospital admission of infectious

symptomatic persons before screening
↵ 0.29 Rate of detection of symptomatic infectious

persons through screening
! 0.7 rate of hospital admission of soft-isolated

symptomatic persons during phase 2
rt_pcr_sensitivity 0.9 RT-PCR sensitivity

Table 3.1: Fitted parameters for the base model
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Parameter Result Description
�s 0.23 Rate of transition from E to Is

�a 0.13 Rate of transition from E to Ia

�sp 0.2 Rate of transition from Is to Rps

�ap 0.13 Rate of transition from Ia to Rpa

�sn 0.03 Rate of transition from Rps to Rn

�an 0.04 Rate of transition from Rpa to Rn

Table 3.2: Derivative model parameters calculated based on �tted model parameters from Table 3.1

The trajectories of the compartmental model, which include susceptible, exposed, infectious,
recovered, and additionally total infected individuals over time, are shown in Figure 3.1.

The results show that the spread of infection was slowed down considerably with the start
of mass-testing in phase 4.

The model gave R0 value of 5.78, which suggest that one person with COVID-19 could infect
5–6 people. According to the modeling, a total of 276 people were infected at some point
during the observation.

Figure 3.1: Compartmental modeling results of the coronavirus disease outbreak at Paci�c Garden
Mission, a homeless shelter in Chicago, Illinois, USA, 2020. Time points corresponding to
each of the 4 rounds of mass testing and isolation are indicated by vertical dotted lines
and vertical dashed lines. The susceptible compartment corresponds to persons who are
estimated to have never been infected; exposed persons have been infected but are not
yet infectious; infectious includes persons in both Is and Ia; recovered include the Rps,
Rpa, and Rn compartments; Isol compartment refers to persons isolated as a result of
mass-testing rounds in phase 4; CI refers to cumulative infected persons.
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3.2 Alternative model

For the alternative model (2.43), the L-BFGS algorithm yielded the following results (Table 3.3).
The di�erence was, as mentioned previously, that the incubation period for symptomatic
and asymptomatic persons was �tted as two di�erent parameters.

Based on the �tted variables, following derivative parameters were calculated (Table 3.4).

Fitted value Result Description
�0 1 Initial beta

�f_pct_�0 0.08 �nal � as a percentage of �0
tTrans 29.15 Moment where � reaches halfway between �0 and

�f (days)
k 0.01 Rate of transformation of �
p 0.45 Asymptomatic percentage

tincubation_a 4 Time between Ea and Ia compartments (days)
tincubation_s 2.8 Time between Es and Is compartments (days)
tinfectious_s 8 infectious duration for symptomatic persons

(days)
tinfectious_a 8 Infectious duration for asymptomatic persons

(days)
tpcrPos_s 35 Duration of RT-PCR–positivity of symptomatic

persons (days)
tpcrPos_a 35 Duration of RT-PCR–positivity of asymptomatic

persons (days)
!0 0.84 Rate of hospital admission of infectious

symptomatic persons before screening
↵ 0.38 Rate of detection of symptomatic infectious

persons through screening
! 0.56 rate of hospital admission of soft-isolated

symptomatic persons during phase 2
rt_pcr_sensitivity 0.9 RT-PCR sensitivity

Table 3.3: Fitted model parameters for the alternative model

Parameter Result Description
�s 0.36 Rate of transition from Es to Is

�a 0.25 Rate of transition from Ea to Ia

�sp 0.13 Rate of transition from Is to Rps

�ap 0.13 Rate of transition from Ia to Rpa

�sn 0.04 Rate of transition from Rps to Rn

�an 0.04 Rate of transition from Rpa to Rn
Table 3.4: Derivative model parameters calculated based on �tted model parameters from Table 3.3
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The trajectories of the compartmental model, which include susceptible, exposed, infectious,
recovered, and additionally total infected individuals over time, are shown in Figure 3.2.

As in the base model, the results for the alternative model show that the spread of infection
was slowed down considerably with the start of mass-testing in phase 4.

While the results are not surprisingly similar, it is important to note that the estimated incu-
bation period for symptomatic and asymptomatic infectious di�er.

The model gave R0 value of 8, which is considerably greater than the R0 of the base model.
According to the modeling, a total of 271 people were infected at some point during the
observation.

Figure 3.2: Compartmental modeling results with the alternative approach of the coronavirus disease
outbreak at Paci�c GardenMission, a homeless shelter in Chicago, Illinois, USA, 2020. Time
points corresponding to each of the 4 rounds ofmass testing and isolation are indicated by
vertical dotted lines and vertical dashed lines. The susceptible compartment corresponds
to persons who are estimated to have never been infected; exposed persons have been
infected but are not yet infectious; infectious includes persons in both Is and Ia; recovered
include the Rps, Rpa, and Rn compartments; Isol compartment refers to persons isolated
as a result of mass-testing rounds in phase 4; CI refers to cumulative infected persons
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4 Discussion

Constructing such models allows discovering which of the virus control methods are most
e�ective, and it is crucially important in planning response to the future threats similar to
COVID-19.

In this study, we corrected and implemented a model of COVID-19 outbreak at PGM home-
less shelter, Chicago [5]. Additionally, an alternative approach based on fewer assumptions
was demonstrated, which gave evidence that the incubation periods for symptomatic and
asymptomatic individuals can di�er.

4.1 Comparison of implementations

Aside from the corrected transmission rate function mentioned in (2.5) and other minor
misprints, our implementation di�ers from the original implementation in [5] in usage of
an additional transmission rate parameter in phases 2 (�0) and 4 (�). Their presence in
the original implementation was explained by the addition of the isolation compartments
(Isolsoft and Isol). It was unclear how the addition of such compartments could increase
the speed of transition from S to E, and it contradicted the idea of the gradually decreasing
transmission rate over time due to the measures taken. Furthermore, the model with �0 and
� was implemented with the �tting ranges speci�ed in [5], but the �tted values were 0, which
e�ectively con�rmed their redundancy.

The basic reproduction number yielded by our implementation of the model is 5.78, which is
not only greater than early estimates (2.2 – 2.7[20]), but also greater than the result of the
original implementation (4.5) [5]. However, other studies indicate R0 value extremely close
to the value resulted by our model [20].

The original implementation of the model indicated that approximately 350 persons were
cumulatively infected, which was signi�cantly more than 253 cases detected by PCR testing
[5]. At the same time, the model in both implementations produces the PCR-sensitivity of
90%, which gives an approximation of 281 total infected, which is much closer to our value
of 276 cumulative infected persons.

Another signi�cant di�erence in the results could be seen in the value of p, the asymptomatic
percentage. The original implementation of the model yielded p = 72%, whereas our yielded
p = 36% [5]. More recent studies demonstrate value closer to 40% [15].

4.2 Base and alternative models

As could be seen from �gures 3.1 and 3.2, the alternative model yielded roughly the same
values for the compartments and cumulative infected persons. However, the �tted results
for the incubation rates for symptomatic and asymptomatic individuals are di�erent, which
could not be re�ected in the base model.
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Additionally, the alternative model is far more intuitive. In the base model, incubation period
can not be calculated as 1/�s or 1/�a, which could be expected. The model also implies that
the incubation period is the same for symptomatic and asymptomatic individuals, although
it has two di�erent parameters for incubation rate.

4.3 Limitations

The reported estimates, such as the duration of viral shedding, show high variance in the
population and may not be normally distributed [4]. One study of 21 patients with mild
symptoms found that 90% of them had repeated negative RT-PCR tests within 10 days of
symptom onset [14]. Another study of 56 patients with mild to moderate symptoms reported
a median viral RNA shedding duration of 24 days [1].

The underlying test data were limited by the lack of widespread testing. Widespread testing in
congregate settingswas not established in Chicago until April 2020, andnowidespread testing
data were available to characterize the �rst phase of this outbreak. Our model accounts
for this early lack of testing and �ts compartmental trajectories across the entire outbreak
timeline. It uses known ranges for parameters like infectious duration and RT-PCR-positive
duration, but it inevitably simpli�es some aspects of the context [5].

This simpli�cation, along with the large number of �tted parameters, necessitates careful
interpretation of the �tted parameter values. Other limitations include the assumption of a
closed system. Although the shelter did not allow residents to enter or leave, some high-risk
residents were preemptively moved to a hotel, and some residents inevitably left the shelter.
Additionally, some sta� members left the shelter and returned. The model also assumes
random mixing of the shelter population outside of isolation units, which was not fully the
case due to the factors such as gender-separated rooms [5].

Finally, the parameter uncertainties and the small population sizemight indicate the necessity
of an implementation of a stochastic or a hybrid model for achieving better results. Addition-
ally, sample size is too small to give con�dence in the results, such as di�erent incubation
periods for symptomatic and asymptomatic individuals in the alternative model.
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Appendix A: Common

A.1 Plots

Listing A.1: plot.R↵ �
1 red <- "#FF6347"
2 green <- "#006400"
3 blue <- "#003366"
4 orange <- "#FFA500"
5 gray <- "#808080"
6

7 lines_plot <- "l"
8 solid_line <- 1
9 dashed_line <- 2
10 line_thickness <- 4
11 bottom_side <- 1
12

13 axis_values_size <- 1.5
14 axis_labels_size <- 2
15 title_size <- 2
16 axis_title_margin <- 2
17 axis_label_margin <- 0.5
18 axis_line_margin <- 0
19

20 par(cex.main = title_size)
21 par(cex.axis = axis_values_size)
22 par(cex.lab = axis_labels_size)
23 par(mgp = c(axis_title_margin, axis_label_margin, axis_line_margin))
24

25 beta_plot <- function(df, header) {
26 number_of_columns <- length(df)
27 column_names <- colnames(df)[1:number_of_columns]
28 column_types <- rep(solid_line, number_of_columns)
29 column_colors <- c(red, green)[1:number_of_columns]
30

31 matplot(
32 x = 1:50,
33 y = df,
34 type = "l",
35 main = header,
36 xlab = "Days",
37 ylab = "Value",
38 col = column_colors,
39 lty = solid_line,
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40 lwd = line_thickness
41 )
42 legend("topright", legend=column_names, col=column_colors, lty =

column_types)
43

44 }
45

46 seir_plot <- function(df, header, starting_date = as.Date("2000-01-01")
) {

47 ci_present <- ("CI" %in% names(df))
48 if (ci_present) {
49 ci <- df$CI
50 df$CI <- NULL
51 }
52 df$time <- NULL
53

54 number_of_columns <- length(df)
55 number_of_rows <- nrow(df)
56 column_names <- colnames(df)[1:number_of_columns]
57 column_types <- rep(solid_line, number_of_columns)
58 column_colors <- c(blue, orange, red, green, gray, red)[1:number_of_

columns]
59

60 date_sequence <- seq(starting_date, by = "days", length.out = number_

of_rows)
61 matplot(
62 x = date_sequence,
63 y = df,
64 type = lines_plot,
65 lty = solid_line,
66 main = header,
67 xlab = "Days",
68 ylab = "Individuals",
69 col = column_colors,
70 xaxt = if (starting_date == as.Date("2000-01-01")) "n" else "s",
71 yaxt = "n",
72 lwd = line_thickness
73 )
74

75 if (ci_present) {
76 lines(date_sequence, ci, type=lines_plot, lty=dashed_line, col=red,

lwd = line_thickness)
77 column_names <- c(column_names, "CI")
78 column_types <- c(column_types, dashed_line)
79 column_colors <- c(column_colors, red)
80 }
81
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82 legend("topright", legend=column_names, col=column_colors, lty =
column_types)

83 }
84

85 shelter_plot <- function(df, header) {
86 df$time <- NULL
87

88 number_of_columns <- length(df)
89 column_names <- colnames(df)[1:number_of_columns]
90 column_types <- c(rep(solid_line, number_of_columns - 1), dashed_line

)
91 column_colors <- c(blue, orange, red, green, gray, red)[1:number_of_

columns]
92 observation_duration_days <- 61
93 date_sequence <- seq(as.Date("2020-03-14"), by = "days", length.out =

observation_duration_days)
94

95 # Creating a plot with an invisible line to set the correct scale
96 plot(
97 x = date_sequence,
98 y = 7.5 * seq(1, observation_duration_days),
99 type = lines_plot,
100 lty = 0,
101 main = header,
102 xlab = "",
103 ylab = "Individuals",
104 col=rgb(0, 0, 0, alpha = 0.0),
105 xaxt = "n"
106 )
107

108 # Displaying key dates
109 dates_to_show <- c(
110 as.Date("2020-03-14"),
111 as.Date("2020-03-30"),
112 as.Date("2020-04-05"),
113 as.Date("2020-04-10"),
114 as.Date("2020-04-16"),
115 as.Date("2020-04-28"),
116 as.Date("2020-05-11")
117 )
118 axis(side = bottom_side, at = dates_to_show, labels = format(dates_

to_show, "%B %d"))
119

120 # Marking 4 rounds of mass-testing in phase 4
121 abline(v = as.Date("2020-04-10"), col = rgb(0, 0, 0, alpha = 0.5),

lty = solid_line)
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122 abline(v = as.Date("2020-04-12"), col = rgb(0, 0, 0, alpha = 0.5),
lty = dashed_line)

123

124 abline(v = as.Date("2020-04-16"), col = rgb(0, 0, 0, alpha = 0.5),
lty = solid_line)

125 abline(v = as.Date("2020-04-18"), col = rgb(0, 0, 0, alpha = 0.5),
lty = dashed_line)

126

127 abline(v = as.Date("2020-04-28"), col = rgb(0, 0, 0, alpha = 0.5),
lty = solid_line)

128 abline(v = as.Date("2020-04-30"), col = rgb(0, 0, 0, alpha = 0.5),
lty = dashed_line)

129

130 abline(v = as.Date("2020-05-11"), col = rgb(0, 0, 0, alpha = 0.5),
lty = solid_line)

131 abline(v = as.Date("2020-05-13"), col = rgb(0, 0, 0, alpha = 0.5),
lty = dashed_line)

132

133 # Creating the lines by phases to get the correct connections on the
plot

134 part_one <- df[1:30, ]
135 part_one_dates <- date_sequence[1:30]
136 lines(part_one_dates, part_one$S, type=lines_plot, lty=solid_line,

col=blue, lwd = line_thickness)
137 lines(part_one_dates, part_one$E, type=lines_plot, lty=solid_line,

col=orange, lwd = line_thickness)
138 lines(part_one_dates, part_one$I, type=lines_plot, lty=solid_line,

col=red, lwd = line_thickness)
139 lines(part_one_dates, part_one$R, type=lines_plot, lty=solid_line,

col=green, lwd = line_thickness)
140 lines(part_one_dates, part_one$Isol, type=lines_plot, lty=solid_line,

col=gray, lwd = line_thickness)
141 lines(part_one_dates, part_one$CI, type=lines_plot, lty=dashed_line,

col=red, lwd = line_thickness)
142

143

144 # part two
145 part_two <- df[31:37, ]
146 part_two_dates <- date_sequence[30:36]
147 lines(part_two_dates, part_two$S, type=lines_plot, lty=solid_line,

col=blue, lwd = line_thickness)
148 lines(part_two_dates, part_two$E, type=lines_plot, lty=solid_line,

col=orange, lwd = line_thickness)
149 lines(part_two_dates, part_two$I, type=lines_plot, lty=solid_line,

col=red, lwd = line_thickness)
150 lines(part_two_dates, part_two$R, type=lines_plot, lty=solid_line,

col=green, lwd = line_thickness)
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151 lines(part_two_dates, part_two$Isol, type=lines_plot, lty=solid_line,
col=gray, lwd = line_thickness)

152 lines(part_two_dates, part_two$CI, type=lines_plot, lty=dashed_line,
col=red, lwd = line_thickness)

153

154 # part three
155 part_three <- df[38:50, ]
156 part_three_dates <- date_sequence[36:48]
157 lines(part_three_dates, part_three$S, type=lines_plot, lty=solid_line

, col=blue, lwd = line_thickness)
158 lines(part_three_dates, part_three$E, type=lines_plot, lty=solid_line

, col=orange, lwd = line_thickness)
159 lines(part_three_dates, part_three$I, type=lines_plot, lty=solid_line

, col=red, lwd = line_thickness)
160 lines(part_three_dates, part_three$R, type=lines_plot, lty=solid_line

, col=green, lwd = line_thickness)
161 lines(part_three_dates, part_three$Isol, type=lines_plot, lty=solid_

line, col=gray, lwd = line_thickness)
162 lines(part_three_dates, part_three$CI, type=lines_plot, lty=dashed_

line, col=red, lwd = line_thickness)
163

164 # part four
165 part_four <- df[51:64, ]
166 part_four_dates <- date_sequence[48:61]
167 lines(part_four_dates, part_four$S, type=lines_plot, lty=solid_line,

col=blue, lwd = line_thickness)
168 lines(part_four_dates, part_four$E, type=lines_plot, lty=solid_line,

col=orange, lwd = line_thickness)
169 lines(part_four_dates, part_four$I, type=lines_plot, lty=solid_line,

col=red, lwd = line_thickness)
170 lines(part_four_dates, part_four$R, type=lines_plot, lty=solid_line,

col=green, lwd = line_thickness)
171 lines(part_four_dates, part_four$Isol, type=lines_plot, lty=solid_

line, col=gray, lwd = line_thickness)
172 lines(part_four_dates, part_four$CI, type=lines_plot, lty=dashed_line

, col=red, lwd = line_thickness)
173

174 legend("topright", legend=column_names, col=column_colors, lty =
column_types)

175 }⌦  
A.2 Basic SEIR model

Listing A.2: seir.R↵ �
1 require(deSolve)
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2

3 # Basic SEIR model
4 SEIR <- function(time, current_state, params){
5 with(as.list(c(current_state, params)), {
6 N <- S + E + I + R
7 dS <- -(beta * S * I) / N
8 dE <- (beta * S * I) / N - sigma * E
9 dI <- sigma * E - gamma * I
10 dR <- gamma * I
11

12 return(list(c(dS, dE, dI, dR)))
13 })
14 }
15

16 # Setting some values to have an example plot
17 params <- c(
18 sigma = 0.26,
19 gamma = 0.15,
20 beta = 0.5
21 )
22 initial_state <- c(S = 100, E = 0, I = 1, R = 0)
23 times <- 0:100
24

25 model <- ode(initial_state, times, SEIR, params)
26 df <- as.data.frame(model)
27 df$CI <- df$I + df$R
28

29 seir_plot(df,"An example of a SEIR model")⌦  
A.3 Transition equation correction

Listing A.3: beta.R↵ �
1 beta_func_original <- function(beta_0, beta_f, t, t_trans, k) {
2 beta_0 - (beta_0 - beta_f) / (1 + exp((t - t_trans) / k))
3 }
4 beta_func <- function(beta_0, beta_f, t, t_trans, k) {
5 beta_0 - (beta_0 - beta_f) / (1 + exp((t_trans - t) / k))
6 }
7

8 beta_0 <- 0.6
9 beta_f <- 0.6 * 0.11
10 t_trans <- 23
11 k <- 2
12

13 # Beta function with values fitted from the paper
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14 beta_parametrized_original <- function (t) {
15 beta_func_original(beta_0 = beta_0, beta_f = beta_f, t = t, t_trans =

t_trans, k = k)
16 }
17

18 beta_parametrized <- function (t) {
19 beta_func(beta_0 = beta_0, beta_f = beta_f, t = t, t_trans = t_trans,

k = k)
20 }
21

22 times <- 1:50
23 df <- data.frame(Original = rep(1, 50), Corrected = rep(1, 50))
24 df$Original <- sapply(times, beta_parametrized_original)
25 df$Corrected <- sapply(times, beta_parametrized)
26

27 beta_plot(df, "Transition equation correction")⌦  
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Appendix B: Base model

B.1 Fitted parameters

Listing B.1: �tted_parameters.R↵ �
1 # Result of the fitting
2 # Run before plotting any of the phases
3

4 params <- c(
5 sigma_s = 0.22841296,
6 sigma_a = 0.12872989,
7 gamma_sp = 0.19536794,
8 gamma_ap = 0.12500000,
9 gamma_sn = 0.033460557,
10 gamma_an = 0.03703704,
11 omega = 0.70060133,
12 omega_0 = 0.86611411,
13 alpha = 0.29181595,
14 beta_0 = 1,
15 beta_f = 1 * 0.22213981,
16 t_trans = 28.73244939,
17 k = 0.01,
18 rho = 1 / 14,
19 sensitivity_pcr = 0.9,
20 p = 0.36044370
21 )⌦  
B.2 Phase one

Listing B.2: phase_one.R↵ �
1 require(deSolve)
2

3 # SEIR model implementation for phase 1
4 # Drawing an example plot for the test
5

6 phase_one <- function(time, current_state, params){
7 with(as.list(c(current_state, params)),{
8 beta <- beta_func(beta_0, beta_f, time, t_trans, k)
9

10 N <- S + E + I_s + I_a + R_pa + R_ps + R_n + H
11

12 dS <- -beta * S * (I_s + I_a) / N
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13

14 dE <- beta * S * (I_s + I_a) / N - sigma_s * E - sigma_a * E
15

16 dI_s <- (sigma_s * E - gamma_sp * I_s - omega_0 * I_s)
17 dI_a <- sigma_a * E - gamma_ap * I_a
18

19 dR_ps <- gamma_sp * I_s - gamma_sn * R_ps
20 dR_pa <- gamma_ap * I_a - gamma_an * R_pa
21 dR_n <- gamma_sn * R_ps + gamma_an * R_pa
22

23 dH <- omega_0 * I_s
24

25 return(list(c(dS, dE, dI_s, dI_a, dR_ps, dR_pa, dR_n, dH)))
26 })
27 }
28

29

30 phase_one_times <- 1:80
31

32 starting_state <- c(
33 S = 444,
34 E = 0,
35 I_s = 1,
36 I_a = 0,
37 R_ps = 0,
38 R_pa = 0,
39 R_n = 0,
40 H = 0
41 )
42

43 model <- ode(starting_state, phase_one_times, phase_one, params)
44

45 # Combining compartments into S-E-I-R
46 df <- as.data.frame(model)
47 df <- within(df, I <- I_s + I_a)
48 df <- within(df, R <- R_ps + R_pa + R_n)
49 df <- within(df, Isol <- H)
50 df <- within(df, CI <- I + R + Isol)
51 df <- subset(df, select = -c(I_s, I_a, R_ps, R_pa, R_n, H))
52

53 seir_plot(df, header = "Base model, Phase One (extended)", starting_

date = as.Date("2020-03-14"))⌦  
B.3 Phase two
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Listing B.3: phase_two.R↵ �
1 require(deSolve)
2

3 # SEIR model implementation for phase 2
4 # Drawing an example plot for the test
5

6 phase_two <- function(time, current_state, params){
7 with(as.list(c(current_state, params)),{
8 beta <- beta_func(beta_0, beta_f, time, t_trans, k)
9

10 N <- S + E + I_s + I_a + R_pa + R_ps + R_n + Q + H
11

12 dS <- -beta * S * (I_s + I_a) / N
13

14 dE <- beta * S * (I_s + I_a) / N - sigma_s * E - sigma_a * E
15

16 dI_s <- sigma_s * E - gamma_sp * I_s - alpha * I_s
17 dI_a <- sigma_a * E - gamma_ap * I_a
18

19 dR_ps <- gamma_sp * I_s - gamma_sn * R_ps
20 dR_pa <- gamma_ap * I_a - gamma_an * R_pa
21 dR_n <- gamma_sn * R_ps + gamma_an * R_pa
22

23 dQ <- -omega * Q + alpha * I_s
24 dH <- omega * Q
25

26 return(list(c(dS, dE, dI_s, dI_a, dR_ps, dR_pa, dR_n, dQ, dH)))
27 })
28 }
29

30 starting_state <- c(
31 S = 444,
32 E = 0,
33 I_s = 1,
34 I_a = 0,
35 R_ps = 0,
36 R_pa = 0,
37 R_n = 0,
38 H = 0,
39 Q = 0
40 )
41

42 phase_two_times <- 1:80
43 model <- ode(starting_state, phase_two_times, phase_two, params)
44

45 # Combining compartments into S-E-I-R
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46 df <- as.data.frame(model)
47 df <- within(df, I <- I_s + I_a)
48 df <- within(df, R <- R_ps + R_pa + R_n)
49 df <- within(df, Isol <- H)
50 df <- within(df, CI <- I + R + Isol)
51 df <- subset(df, select = -c(I_s, I_a, R_ps, R_pa, R_n, H, Q))
52

53 seir_plot(df, header = "Base model, Phase Two (extended)", starting_

date = as.Date("2020-03-14"))⌦  
B.4 Phase three

Listing B.4: phase_three.R↵ �
1 require(deSolve)
2

3 # SEIR model implementation for phase 3
4 # Drawing an example plot for the test
5

6 phase_three <- function(time, current_state, params){
7 with(as.list(c(current_state, params)),{
8 beta <- beta_func(beta_0, beta_f, time, t_trans, k)
9

10 N <- S + E + I_s + I_a + R_pa + R_ps + R_n + H
11

12 dS <- -beta * S * (I_s + I_a) / N
13

14 dE <- beta * S * (I_s + I_a) / N - sigma_s * E - sigma_a * E
15

16 dI_s <- sigma_s * E - gamma_sp * I_s - alpha * I_s
17 dI_a <- sigma_a * E - gamma_ap * I_a
18

19 dR_ps <- gamma_sp * I_s - gamma_sn * R_ps
20 dR_pa <- gamma_ap * I_a - gamma_an * R_pa
21 dR_n <- gamma_sn * R_ps + gamma_an * R_pa
22

23 dH <- alpha * I_s
24

25 return(list(c(dS, dE, dI_s, dI_a, dR_ps, dR_pa, dR_n, dH)))
26 })
27 }
28

29 phase_three_times <- 1:80
30 starting_state <- c(
31 S = 444,
32 E = 0,
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33 I_s = 1,
34 I_a = 0,
35 R_ps = 0,
36 R_pa = 0,
37 R_n = 0,
38 H = 0
39 )
40

41 model <- ode(starting_state, phase_three_times, phase_three, params)
42

43 # Combining compartments into S-E-I-R
44 df <- as.data.frame(model)
45 df <- within(df, I <- I_s + I_a)
46 df <- within(df, R <- R_ps + R_pa + R_n)
47 df <- within(df, Isol <- H)
48 df <- within(df, CI <- I + R + Isol)
49 df <- subset(df, select = -c(I_s, I_a, R_ps, R_pa, R_n, H))
50

51 seir_plot(df, header = "Base model, Phase Three (extended)", starting_

date = as.Date("2020-03-14"))⌦  
B.5 Phase four

Listing B.5: phase_four.R↵ �
1 require(deSolve)
2

3 # SEIR model implementation for phase 4
4 # Drawing an example plot for the test
5

6 phase_four <- function(time, current_state, params){
7 with(as.list(c(current_state, params)),{
8 beta <- beta_func(beta_0, beta_f, time, t_trans, k)
9

10 N <- S + E + I_s + I_a + R_pa + R_ps + R_n + H + Q
11

12 dS <- -beta * S * (I_s + I_a) / N
13

14 dE <- beta * S * (I_s + I_a) / N - sigma_s * E - sigma_a * E
15

16 dI_s <- sigma_s * E - gamma_sp * I_s - alpha * I_s
17 dI_a <- sigma_a * E - gamma_ap * I_a
18

19 dR_ps <- gamma_sp * I_s - gamma_sn * R_ps
20 dR_pa <- gamma_ap * I_a - gamma_an * R_pa
21 dR_n <- gamma_sn * R_ps + gamma_an * R_pa + rho * Q
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22

23 dH <- alpha * I_s
24 dQ <- -rho * Q
25

26 return(list(c(dS, dE, dI_s, dI_a, dR_ps, dR_pa, dR_n, dH, dQ)))
27 })
28 }
29

30 phase_four_times <- 1:80
31 starting_state <- c(
32 S = 444,
33 E = 0,
34 I_s = 1,
35 I_a = 0,
36 R_ps = 0,
37 R_pa = 0,
38 R_n = 0,
39 H = 0,
40 Q = 10
41 )
42

43 model <- ode(starting_state, phase_four_times, phase_four, params)
44

45 # Combining compartments into S-E-I-R
46 df <- as.data.frame(model)
47 df <- within(df, I <- I_s + I_a)
48 df <- within(df, R <- R_ps + R_pa + R_n + H)
49 df <- within(df, Isol <- Q)
50 df <- within(df, CI <- I + R + Isol)
51 df <- subset(df, select = -c(I_s, I_a, R_ps, R_pa, R_n, H, Q))
52

53 seir_plot(df, header = "Base model, Phase Four (extended)", starting_

date = as.Date("2020-03-14"))⌦  
B.6 Shelter model

Listing B.6: shelter.R↵ �
1 require(deSolve)
2

3 # Chicago shelter base model
4

5 shelter <- function(starting_state, params){
6 state <- starting_state
7

8 # Phase 1 from March 14 to March 29 (16 days)
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9 phase_one_times <- 1:16
10 model <- ode(state, phase_one_times, phase_one, params)
11 df <- as.data.frame(model)
12 # Saving last state for the next phase
13 last_state <- tail(df, n = 1)
14

15 # Combining compartments into SEIR
16 df <- within(df, Q <- 0)
17 df <- within(df, I <- I_s + I_a)
18 df <- within(df, R <- R_ps + R_pa + R_n + H)
19 df <- within(df, Isol <- 0)
20

21 # Saving phase one results into a common table
22 result <- data.frame(df)
23

24 # Phase 2 from March 30 to April 4 (6 days)
25 phase_two_times <- 16:22
26 state <- c(
27 S = last_state$S,
28 E = last_state$E,
29 I_s = last_state$I_s,
30 I_a = last_state$I_a,
31 R_ps = last_state$R_ps,
32 R_pa = last_state$R_pa,
33 R_n = last_state$R_n,
34 Q = 0,
35 H = last_state$H
36 )
37

38 model <- ode(state, phase_two_times, phase_two, params)
39 df <- as.data.frame(model)[-1, ]
40

41 # Saving last state for the next phase
42 last_state <- tail(df, n = 1)
43

44 # Combining compartments into SEIR
45 df <- within(df, I <- I_s + I_a)
46 df <- within(df, R <- R_ps + R_pa + R_n + Q + H)
47 df <- within(df, Isol <- 0)
48

49 result <- rbind(result, df)
50

51 # Phase 3 from April 5 to April 7 (3 days)
52 phase_three_times <- 22:25
53 state <- c(
54 S = last_state$S,
55 E = last_state$E,
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56 I_s = last_state$I_s,
57 I_a = last_state$I_a,
58 R_ps = last_state$R_ps,
59 R_pa = last_state$R_pa,
60 R_n = last_state$R_n,
61 H = last_state$H + last_state$Q
62 )
63

64 model <- ode(state, phase_three_times, phase_three, params)
65 df <- as.data.frame(model)[-1, ]
66

67 # Saving last state for the next phase
68 last_state <- tail(df, n = 1)
69

70 # Combining compartments into SEIR
71 df <- within(df, Q <- 0)
72 df <- within(df, I <- I_s + I_a)
73 df <- within(df, R <- R_ps + R_pa + R_n + H)
74 df <- within(df, Isol <- 0)
75

76 result <- rbind(result, df)
77

78 # Phase 4.1 from April 8 to April 12 (5 days)
79 phase_four_1_times <- 25:30
80 state <- c(
81 S = last_state$S,
82 E = last_state$E,
83 I_s = last_state$I_s,
84 I_a = last_state$I_a,
85 R_ps = last_state$R_ps,
86 R_pa = last_state$R_pa,
87 R_n = last_state$R_n,
88 H = last_state$H,
89 Q = 0
90 )
91

92 model <- ode(state, phase_four_1_times, phase_four, params)
93 df <- as.data.frame(model)[-1, ]
94

95 # Saving last state for the next phase
96 last_state <- tail(df, n = 1)
97

98 # Combining compartments into SEIR
99 df <- within(df, I <- I_s + I_a)
100 df <- within(df, R <- R_ps + R_pa + R_n + H)
101 df <- within(df, Isol <- Q)
102
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103 result <- rbind(result, df)
104

105 # Phase 4.2 from April 13 to April 18 (7 days)
106 # I_s, I_a, R_ps, R_pa comparments lose (SensitivityPCR * n_

individuals in each compartment on test day)
107 # to Q (Isol)
108 sensitivity_pcr <- unname(params["sensitivity_pcr"])
109 phase_four_2_times <- 30:36
110 state <- c(
111 S = last_state$S,
112 E = last_state$E,
113 I_s = last_state$I_s * (1 - sensitivity_pcr),
114 I_a = last_state$I_a * (1 - sensitivity_pcr),
115 R_ps = last_state$R_ps * (1 - sensitivity_pcr),
116 R_pa = last_state$R_pa * (1 - sensitivity_pcr),
117 R_n = last_state$R_n,
118 H = last_state$H,
119 Q = last_state$Q + sensitivity_pcr * (last_state$I_s + last_state$I

_a + last_state$R_ps + last_state$R_pa)
120 )
121

122 model <- ode(state, phase_four_2_times, phase_four, params)
123 df <- as.data.frame(model)
124

125 # Saving last state for the next phase
126 last_state <- tail(df, n = 1)
127

128 # Combining compartments into SEIR
129 df <- within(df, I <- I_s + I_a)
130 df <- within(df, R <- R_ps + R_pa + R_n + H)
131 df <- within(df, Isol <- Q)
132

133 result <- rbind(result, df)
134

135 # Phase 4.3 from April 18 to April 30 (13 days)
136 # I_s, I_a, R_ps, R_pa comparments lose (SensitivityPCR *

nindividuals in each compartment on test day)
137 # to Q (Isol)
138 phase_four_3_times <- 36:48
139 state <- c(
140 S = last_state$S,
141 E = last_state$E,
142 I_s = last_state$I_s * (1 - sensitivity_pcr),
143 I_a = last_state$I_a * (1 - sensitivity_pcr),
144 R_ps = last_state$R_ps * (1 - sensitivity_pcr),
145 R_pa = last_state$R_pa * (1 - sensitivity_pcr),
146 R_n = last_state$R_n,
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147 H = last_state$H,
148 Q = last_state$Q + sensitivity_pcr * (last_state$I_s + last_state$I

_a + last_state$R_ps + last_state$R_pa)
149 )
150

151 model <- ode(state, phase_four_3_times, phase_four, params)
152 df <- as.data.frame(model)
153

154 # Saving last state for the next phase
155 last_state <- tail(df, n = 1)
156

157 # Combining compartments into SEIR
158 df <- within(df, I <- I_s + I_a)
159 df <- within(df, R <- R_ps + R_pa + R_n + H)
160 df <- within(df, Isol <- Q)
161

162 result <- rbind(result, df)
163

164 # Phase 4.4 from April 30 to May 13 (14 days)
165 # I_s, I_a, R_ps, R_pa comparments lose (SensitivityPCR *

nindividuals in each compartment on test day)
166 # to Q (Isol)
167 phase_four_4_times <- 48:61
168 state <- c(
169 S = last_state$S,
170 E = last_state$E,
171 I_s = last_state$I_s * (1 - sensitivity_pcr),
172 I_a = last_state$I_a * (1 - sensitivity_pcr),
173 R_ps = last_state$R_ps * (1 - sensitivity_pcr),
174 R_pa = last_state$R_pa * (1 - sensitivity_pcr),
175 R_n = last_state$R_n,
176 H = last_state$H,
177 Q = last_state$Q + sensitivity_pcr * (last_state$I_s + last_state$I

_a + last_state$R_ps + last_state$R_pa)
178 )
179

180 model <- ode(state, phase_four_4_times, phase_four, params)
181 df <- as.data.frame(model)
182

183 # Combining compartments into SEIR
184 df <- within(df, I <- I_s + I_a)
185 df <- within(df, R <- R_ps + R_pa + R_n + H)
186 df <- within(df, Isol <- Q)
187

188 result <- rbind(result, df)
189 rownames(result) <- NULL
190 result <- within(result, CI <- I + R + Isol)
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191 return(result)
192 }
193

194 starting_state <- c(
195 S = 444,
196 E = 0,
197 I_s = 1,
198 I_a = 0,
199 R_ps = 0,
200 R_pa = 0,
201 R_n = 0,
202 H = 0
203 )
204

205 result <- shelter(starting_state, params)
206 result <- subset(result, select = -c(I_s, I_a, R_ps, R_pa, R_n, H, Q))
207 shelter_plot(result, header = "Chicago Shelter COVID-19 Outbreak, Base

Model")⌦  
B.7 Parameters �tting

Listing B.7: �t.R↵ �
1 require(deSolve)
2

3 # Error function to be minimized
4 rmsle <- function(x) {
5 current_params <- c(
6 beta_0 = x[1],
7 beta_f = x[1] * x[2],
8 omega_0 = x[3],
9 t_trans = x[4],
10 k = x[5],
11 p = x[6],
12

13 sigma_s = 1 / x[7] * (1 - x[6]),
14 sigma_a = 1 / x[7] * x[6],
15

16 gamma_sp = 1 / x[8],
17 gamma_ap = 1 / x[9],
18

19 gamma_sn = 1 / (x[10] - x[8]),
20 gamma_an = 1 / (x[11] - x[9]),
21 alpha = x[12],
22 omega = x[13],
23 sensitivity_pcr = x[14],
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24 rho = 1 / 14
25 )
26

27 state <- c(
28 S = 444,
29 E = 0,
30 I_s = 1,
31 I_a = 0,
32 R_ps = 0,
33 R_pa = 0,
34 R_n = 0,
35 H = 0
36 )
37

38 df <- shelter(state, current_params)
39 sensitivity_pcr <- unname(current_params["sensitivity_pcr"])
40

41 result <- c(
42 (log1p(df$CI[1]) - log1p(1))^2,
43 (log1p(df$CI[2]) - log1p(1))^2,
44 (log1p(df$CI[3]) - log1p(1))^2,
45 (log1p(df$CI[4]) - log1p(2))^2,
46 (log1p(df$CI[5]) - log1p(3))^2,
47 (log1p(df$CI[6]) - log1p(3))^2,
48 (log1p(df$CI[7]) - log1p(4))^2,
49 (log1p(df$CI[8]) - log1p(4))^2,
50 (log1p(df$CI[9]) - log1p(5))^2,
51 (log1p(df$CI[10]) - log1p(6))^2,
52 (log1p(df$CI[11]) - log1p(6))^2,
53 (log1p(df$CI[12]) - log1p(6))^2,
54 (log1p(df$CI[13]) - log1p(7))^2,
55 (log1p(df$CI[14]) - log1p(9))^2,
56 (log1p(df$CI[15]) - log1p(9))^2,
57 (log1p(df$CI[16]) - log1p(9))^2,
58 (log1p(df$CI[17]) - log1p(10))^2
59 )
60 result <- c(result, (log1p(df$CI[22] - df$CI[17]) - log1p(18)) ^ 2)
61 result <- c(result, (log1p(df$H[22] - df$H[17]) - log1p(7)) ^ 2)
62

63 result <- c(result, (log1p(df$H[25] - df$H[22]) - log1p(26)) ^ 2)
64

65 result <- c(result,
66 2 * (log1p(sensitivity_pcr * (df$I_s[30] + df$I_a[30] + df$R_ps

[30] + df$R_pa[30])) - log1p(166)) ^ 2,
67 2 * (log1p(sensitivity_pcr * (df$I_s[37] + df$I_a[37] + df$R_ps

[37] + df$R_pa[37])) - log1p(24)) ^ 2,
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68 2 * (log1p(sensitivity_pcr * (df$I_s[50] + df$I_a[50] + df$R_ps
[50] + df$R_pa[50])) - log1p(23)) ^ 2,

69 2 * (log1p(sensitivity_pcr * (df$I_s[61] + df$I_a[61] + df$R_ps
[61] + df$R_pa[61])) - log1p(1)) ^ 2

70 )
71 result <- c(result,
72 (log1p(df$H[37] - df$H[31]) - log1p(20)) ^ 2,
73 (log1p(df$H[50] - df$H[38]) - log1p(4)) ^ 2,
74 (log1p(df$H[61] - df$H[51]) - log1p(0)) ^ 2
75 )
76 return(sqrt(abs(mean(result))))
77 }
78 # Fitting following params:
79

80 # beta_0 - initial Beta
81 # beta_f_pct - final Beta as a percentage of beta_0
82 # omega_0 - Rate of hospital admission of Infectious symptomatic

persons before screening
83 # t_trans - Day where beta reaches halfway between beta_0 and beta_f
84 # k - Rate of transformation of beta
85 # p - Asymptomatic percentage
86

87 # incubation_period - Time between E and I compartments (days)
88 # sigma_s = 1/(incubation period) * (% symptomatic),
89 # sigma_a = 1/(incubation period) * (% asymptomatic)
90

91 # Infectious period for symptomatic persons (days)
92 # gamma_sp = 1/(infectious period for symptomatic persons)
93

94 # Infectious period for asymptomatic persons (days)
95 # gamma_ap = 1/(infectious period for asymptomatic persons)
96

97 # Period of RT- PCR-positivity for symptomatic persons (days)
98 # gamma_sn = 1/[(duration of RT-PCR-positivity for symptomatic persons)

- (infectious period)]
99

100 # Period of RT- PCR-positivity for asymptomatic persons (days)
101 # gamma_an = 1/[(duration of RT-PCR-positivity for asymptomatic persons

) - (infectious period)]
102

103 # alpha - Rate of detection of symptomatic infectious persons through
screening

104 # omega - Rate of hospital admission of Isolsoft symptomatic persons
during phase 2

105 # sensitivity_pcr
106

107 # starting values are mean of the boundaries



Appendix B: Base model 44

108 lower_params <- c(0, 0, 0.05, 1, 0.01, 0.18, 2.8, 3, 3, 16, 3, 0.01,
0.05, 0.72)

109 upper_params <- c(1, 1, 1.0, 50, 2, 0.87, 4.0, 8, 8, 35, 35, 1, 1, 0.9)
110 starting_params <- (lower_params + upper_params) / 2
111

112 result <- optim(
113 par = starting_params,
114 fn = rmsle,
115 gr = NULL,
116 control = list(maxit = 100000, pgtol = 1e-16, retol=1e-16),
117 method = "L-BFGS-B",
118 lower = lower_params,
119 upper = upper_params,
120 hessian = TRUE
121 )
122

123 result_params <- c(
124 beta_0 = result$par[1],
125 beta_f_pct = result$par[2],
126 omega_0 = result$par[3],
127 t_trans = result$par[4],
128 k = result$par[5],
129 p = result$par[6],
130

131 sigma_s = 1 / result$par[7] * (1 - result$par[6]),
132 sigma_a = 1 / result$par[7] * result$par[6],
133

134 gamma_sp = 1 / result$par[8],
135 gamma_ap = 1 / result$par[9],
136

137 gamma_sn = 1 / (result$par[10] - result$par[8]),
138 gamma_an = 1 / (result$par[11] - result$par[9]),
139 alpha = result$par[12],
140 omega = result$par[13],
141 sensitivity_pcr = result$par[14]
142 )
143

144 print(result)
145 print(result_params)⌦  
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Appendix C: Alternative model

C.1 Fitted parameters

Listing C.1: �tted_parameters.R↵ �
1 params <- c(
2 sigma_s = 0.35714286,
3 sigma_a = 0.25000000,
4 gamma_sp = 0.12500000,
5 gamma_ap = 0.12500000,
6 gamma_sn = 0.03703704,
7 gamma_an = 0.03703704,
8 omega = 0.56447563,
9 omega_0 = 0.83792416,
10 alpha = 0.37555100,
11 beta_0 = 1,
12 beta_f = 1 * 0.07572578,
13 t_trans = 29.15235226,
14 k = 0.01,
15 rho = 1 / 14,
16 sensitivity_pcr = 0.9,
17 p = 0.44804812
18 )⌦  
C.2 Phase one

Listing C.2: phase_one.R↵ �
1 require(deSolve)
2

3 # Alternative SEIR model implementation for phase 1
4 # Drawing an example plot for the test
5

6 phase_one_alternative <- function(time, current_state, params){
7

8 with(as.list(c(current_state, params)),{
9 beta <- beta_func(beta_0, beta_f, time, t_trans, k)
10

11 N <- S + E_s + E_a + I_s + I_a + R_pa + R_ps + R_n + H
12

13 dS <- -beta * S * (I_s + I_a) / N
14

15 dE_s <- (1 - p) * beta * S * (I_s + I_a) / N - sigma_s * E_s
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16 dE_a <- p * beta * S * (I_s + I_a) / N - sigma_a * E_a
17

18 dI_s <- sigma_s * E_s - gamma_sp * I_s - omega_0 * I_s
19 dI_a <- sigma_a * E_a - gamma_ap * I_a
20

21 dR_ps <- gamma_sp * I_s - gamma_sn * R_ps
22 dR_pa <- gamma_ap * I_a - gamma_an * R_pa
23 dR_n <- gamma_sn * R_ps + gamma_an * R_pa
24

25 dH <- omega_0 * I_s
26

27 return(list(c(dS, dE_s, dE_a, dI_s, dI_a, dR_ps, dR_pa, dR_n, dH)))
28 })
29 }
30

31 phase_one_times <- 0:80
32 starting_state <- c(
33 S = 444,
34 E_s = 0,
35 E_a = 0,
36 I_s = 1,
37 I_a = 0,
38 R_ps = 0,
39 R_pa = 0,
40 R_n = 0,
41 H = 0
42 )
43

44 model <- ode(starting_state, phase_one_times, phase_one_alternative,
params)

45

46 # Combining compartments into SEIR
47 df <- as.data.frame(model)
48 df <- within(df, I <- I_s + I_a)
49 df <- within(df, E <- E_s + E_a)
50 df <- within(df, R <- R_ps + R_pa + R_n)
51 df <- within(df, Isol <- H)
52 df <- within(df, CI <- I + R + Isol)
53 df <- subset(df, select = -c(E_s, E_a, I_s, I_a, R_ps, R_pa, R_n, H))
54

55 seir_plot(df, "Alternative Model, Phase One (Extended)", starting_date
= as.Date("2020-03-14"))⌦  

C.3 Phase two



Appendix C: Alternative model 47

Listing C.3: phase_two.R↵ �
1 require(deSolve)
2

3 # Alternative SEIR model implementation for phase 2
4 # Drawing an example plot for the test
5

6 phase_two_alternative <- function(time, current_state, params){
7 with(as.list(c(current_state, params)),{
8 beta <- beta_func(beta_0, beta_f, time, t_trans, k)
9

10 N <- S + E_s + E_a + I_s + I_a + R_pa + R_ps + R_n + Q + H
11

12 dS <- -beta * S * (I_s + I_a) / N
13

14 dE_s <- (1 - p) * beta * S * (I_s + I_a) / N - sigma_s * E_s
15 dE_a <- p * beta * S * (I_s + I_a) / N - sigma_a * E_a
16

17 dI_s <- sigma_s * E_s - gamma_sp * I_s - alpha * I_s
18 dI_a <- sigma_a * E_a - gamma_ap * I_a
19

20 dR_ps <- gamma_sp * I_s - gamma_sn * R_ps
21 dR_pa <- gamma_ap * I_a - gamma_an * R_pa
22 dR_n <- gamma_sn * R_ps + gamma_an * R_pa
23

24 dQ <- -omega * Q + alpha * I_s
25 dH <- omega * Q
26

27 return(list(c(dS, dE_s, dE_a, dI_s, dI_a, dR_ps, dR_pa, dR_n, dQ,
dH)))

28 })
29 }
30

31 phase_two_times <- 1:80
32 starting_state <- c(
33 S = 444,
34 E_s = 0,
35 E_a = 0,
36 I_s = 1,
37 I_a = 0,
38 R_ps = 0,
39 R_pa = 0,
40 R_n = 0,
41 H = 0,
42 Q = 0
43 )
44
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45 model <- ode(starting_state, phase_two_times, phase_two_alternative,
params)

46

47 # Combining compartments into S-E-I-R
48 df <- as.data.frame(model)
49 df <- within(df, E <- E_s + E_a)
50 df <- within(df, I <- I_s + I_a)
51 df <- within(df, R <- R_ps + R_pa + R_n)
52 df <- within(df, Isol <- H)
53 df <- within(df, CI <- I + R + Isol)
54 df <- subset(df, select = -c(E_s, E_a, I_s, I_a, R_ps, R_pa, R_n, H, Q)

)
55

56 seir_plot(df, header = "Alternative Model, Phase Two (Extended)",
starting_date = as.Date("2020-03-14"))⌦  

C.4 Phase three

Listing C.4: phase_three.R↵ �
1 require(deSolve)
2

3 # Alternative SEIR model implementation for phase 3
4 # Drawing an example plot for the test
5

6 phase_three_alternative <- function(time, current_state, params){
7 with(as.list(c(current_state, params)),{
8 beta <- beta_func(beta_0, beta_f, time, t_trans, k)
9

10 N <- S + E_s + E_a + I_s + I_a + R_pa + R_ps + R_n + H
11

12 dS <- -beta * S * (I_s + I_a) / N
13

14 dE_s <- (1 - p) * beta * S * (I_s + I_a) / N - sigma_s * E_s
15 dE_a <- p * beta * S * (I_s + I_a) / N - sigma_a * E_a
16

17 dI_s <- sigma_s * E_s - gamma_sp * I_s - alpha * I_s
18 dI_a <- sigma_a * E_a - gamma_ap * I_a
19

20 dR_ps <- gamma_sp * I_s - gamma_sn * R_ps
21 dR_pa <- gamma_ap * I_a - gamma_an * R_pa
22 dR_n <- gamma_sn * R_ps + gamma_an * R_pa
23

24 dH <- alpha * I_s
25

26 return(list(c(dS, dE_s, dE_a, dI_s, dI_a, dR_ps, dR_pa, dR_n, dH)))



Appendix C: Alternative model 49

27 })
28 }
29

30 phase_three_times <- 1:80
31 state <- c(
32 S = 444,
33 E_s = 0,
34 E_a = 0,
35 I_s = 1,
36 I_a = 0,
37 R_ps = 0,
38 R_pa = 0,
39 R_n = 0,
40 H = 0
41 )
42

43 model <- ode(state, phase_three_times, phase_three_alternative, params)
44

45 # Combining compartments into S-E-I-R
46 df <- as.data.frame(model)
47 df <- within(df, E <- E_s + E_a)
48 df <- within(df, I <- I_s + I_a)
49 df <- within(df, R <- R_ps + R_pa + R_n)
50 df <- within(df, Isol <- H)
51 df <- within(df, CI <- I + R + Isol)
52 df <- subset(df, select = -c(E_a, E_s, I_s, I_a, R_ps, R_pa, R_n, H))
53

54 seir_plot(df, header = "Alternative Model, Phase Three (Extended)",
starting_date = as.Date("2020-03-14"))⌦  

C.5 Phase four

Listing C.5: phase_four.R↵ �
1 require(deSolve)
2

3 # Alternative SEIR model implementation for phase 4
4 # Drawing an example plot for the test
5

6 phase_four_alternative <- function(time, current_state, params){
7 with(as.list(c(current_state, params)),{
8 beta <- beta_func(beta_0, beta_f, time, t_trans, k)
9

10 N <- S + E_s + E_a + I_s + I_a + R_pa + R_ps + R_n + H + Q
11

12 dS <- -beta * S * (I_s + I_a) / N
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13

14 dE_s <- (1 - p) * beta * S * (I_s + I_a) / N - sigma_s * E_s
15 dE_a <- p * beta * S * (I_s + I_a) / N - sigma_a * E_a
16

17 dI_s <- sigma_s * E_s - gamma_sp * I_s - alpha * I_s
18 dI_a <- sigma_a * E_a - gamma_ap * I_a
19

20 dR_ps <- gamma_sp * I_s - gamma_sn * R_ps
21 dR_pa <- gamma_ap * I_a - gamma_an * R_pa
22 dR_n <- gamma_sn * R_ps + gamma_an * R_pa + rho * Q
23

24 dH <- alpha * I_s
25 dQ <- -rho * Q
26

27 return(list(c(dS, dE_s, dE_a, dI_s, dI_a, dR_ps, dR_pa, dR_n, dH,
dQ)))

28 })
29 }
30

31 phase_four_times <- 1:80
32 state <- c(
33 S = 444,
34 E_s = 0,
35 E_a = 0,
36 I_s = 1,
37 I_a = 0,
38 R_ps = 0,
39 R_pa = 0,
40 R_n = 0,
41 H = 0,
42 Q = 10
43 )
44

45 model <- ode(state, phase_four_times, phase_four_alternative, params)
46

47 # Combining compartments into S-E-I-R
48 df <- as.data.frame(model)
49 df <- within(df, E <- E_s + E_a)
50 df <- within(df, I <- I_s + I_a)
51 df <- within(df, R <- R_ps + R_pa + R_n + H)
52 df <- within(df, Isol <- Q)
53 df <- within(df, CI <- I + R + Isol)
54 df <- subset(df, select = -c(E_s, E_a, I_s, I_a, R_ps, R_pa, R_n, H, Q)

)
55

56 seir_plot(df, header = "Alternative Model, Phase Four (Extended)",
starting_date = as.Date("2020-03-14"))
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⌦  
C.6 Shelter model

Listing C.6: shelter.R↵ �
1 require(deSolve)
2 shelter_alternative <- function(starting_state, params){
3 state <- starting_state
4

5 # Phase 1 from March 14 to March 29 (16 days)
6 phase_one_times <- 1:16
7 model <- ode(state, phase_one_times, phase_one_alternative, params)
8 df <- as.data.frame(model)
9 # Saving last state for the next phase
10 last_state <- tail(df, n = 1)
11

12 # Combining compartments into SEIR
13 df <- within(df, Q <- 0)
14 df <- within(df, E <- E_s + E_a)
15 df <- within(df, I <- I_s + I_a)
16 df <- within(df, R <- R_ps + R_pa + R_n + H)
17 df <- within(df, Isol <- 0)
18

19 # Saving phase one results into a common table
20 result <- data.frame(df)
21

22 # Phase 2 from March 30 to April 4 (6 days)
23 phase_two_times <- 16:22
24 state <- c(
25 S = last_state$S,
26 E_s = last_state$E_s,
27 E_a = last_state$E_a,
28 I_s = last_state$I_s,
29 I_a = last_state$I_a,
30 R_ps = last_state$R_ps,
31 R_pa = last_state$R_pa,
32 R_n = last_state$R_n,
33 Q = 0,
34 H = last_state$H
35 )
36

37 model <- ode(state, phase_two_times, phase_two_alternative, params)
38 df <- as.data.frame(model)[-1, ]
39

40 # Saving last state for the next phase
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41 last_state <- tail(df, n = 1)
42

43 # Combining compartments into SEIR
44 df <- within(df, E <- E_s + E_a)
45 df <- within(df, I <- I_s + I_a)
46 df <- within(df, R <- R_ps + R_pa + R_n + Q + H)
47 df <- within(df, Isol <- 0)
48

49 result <- rbind(result, df)
50

51 # Phase 3 from April 5 to April 7 (3 days)
52 phase_three_times <- 22:25
53 state <- c(
54 S = last_state$S,
55 E_s = last_state$E_s,
56 E_a = last_state$E_a,
57 I_s = last_state$I_s,
58 I_a = last_state$I_a,
59 R_ps = last_state$R_ps,
60 R_pa = last_state$R_pa,
61 R_n = last_state$R_n,
62 H = last_state$H + last_state$Q
63 )
64

65 model <- ode(state, phase_three_times, phase_three_alternative,
params)

66 df <- as.data.frame(model)[-1, ]
67

68 # Saving last state for the next phase
69 last_state <- tail(df, n = 1)
70

71 # Combining compartments into SEIR
72 df <- within(df, Q <- 0)
73 df <- within(df, E <- E_s + E_a)
74 df <- within(df, I <- I_s + I_a)
75 df <- within(df, R <- R_ps + R_pa + R_n + H)
76 df <- within(df, Isol <- 0)
77

78 result <- rbind(result, df)
79

80 # Phase 4.1 from April 8 to April 12 (5 days)
81 phase_four_1_times <- 25:30
82 state <- c(
83 S = last_state$S,
84 E_s = last_state$E_s,
85 E_a = last_state$E_a,
86 I_s = last_state$I_s,



Appendix C: Alternative model 53

87 I_a = last_state$I_a,
88 R_ps = last_state$R_ps,
89 R_pa = last_state$R_pa,
90 R_n = last_state$R_n,
91 H = last_state$H,
92 Q = 0
93 )
94

95 model <- ode(state, phase_four_1_times, phase_four_alternative,
params)

96 df <- as.data.frame(model)[-1, ]
97

98 # Saving last state for the next phase
99 last_state <- tail(df, n = 1)
100

101 # Combining compartments into SEIR
102 df <- within(df, E <- E_s + E_a)
103 df <- within(df, I <- I_s + I_a)
104 df <- within(df, R <- R_ps + R_pa + R_n + H)
105 df <- within(df, Isol <- Q)
106

107 result <- rbind(result, df)
108

109 # Phase 4.2 from April 13 to April 18 (7 days)
110 # I_s, I_a, R_ps, R_pa comparments lose (SensitivityPCR *

nindividuals in each compartment on test day)
111 # to Q (Isol)
112 sensitivity_pcr <- unname(params["sensitivity_pcr"])
113 phase_four_2_times <- 30:36
114 state <- c(
115 S = last_state$S,
116 E_s = last_state$E_s,
117 E_a = last_state$E_a,
118 I_s = last_state$I_s * (1 - sensitivity_pcr),
119 I_a = last_state$I_a * (1 - sensitivity_pcr),
120 R_ps = last_state$R_ps * (1 - sensitivity_pcr),
121 R_pa = last_state$R_pa * (1 - sensitivity_pcr),
122 R_n = last_state$R_n,
123 H = last_state$H,
124 Q = last_state$Q + sensitivity_pcr * (last_state$I_s + last_state$I

_a + last_state$R_ps + last_state$R_pa)
125 )
126

127 model <- ode(state, phase_four_2_times, phase_four_alternative,
params)

128 df <- as.data.frame(model)
129
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130 # Saving last state for the next phase
131 last_state <- tail(df, n = 1)
132

133 # Combining compartments into SEIR
134 df <- within(df, E <- E_s + E_a)
135 df <- within(df, I <- I_s + I_a)
136 df <- within(df, R <- R_ps + R_pa + R_n + H)
137 df <- within(df, Isol <- Q)
138

139 result <- rbind(result, df)
140

141 # Phase 4.3 from April 18 to April 30 (13 days)
142 # I_s, I_a, R_ps, R_pa comparments lose (SensitivityPCR *

nindividuals in each compartment on test day)
143 # to Q (Isol)
144 phase_four_3_times <- 36:48
145 state <- c(
146 S = last_state$S,
147 E_s = last_state$E_s,
148 E_a = last_state$E_a,
149 I_s = last_state$I_s * (1 - sensitivity_pcr),
150 I_a = last_state$I_a * (1 - sensitivity_pcr),
151 R_ps = last_state$R_ps * (1 - sensitivity_pcr),
152 R_pa = last_state$R_pa * (1 - sensitivity_pcr),
153 R_n = last_state$R_n,
154 H = last_state$H,
155 Q = last_state$Q + sensitivity_pcr * (last_state$I_s + last_state$I

_a + last_state$R_ps + last_state$R_pa)
156 )
157

158 model <- ode(state, phase_four_3_times, phase_four_alternative,
params)

159 df <- as.data.frame(model)
160

161 # Saving last state for the next phase
162 last_state <- tail(df, n = 1)
163

164 # Combining compartments into SEIR
165 df <- within(df, E <- E_s + E_a)
166 df <- within(df, I <- I_s + I_a)
167 df <- within(df, R <- R_ps + R_pa + R_n + H)
168 df <- within(df, Isol <- Q)
169

170 result <- rbind(result, df)
171

172 # Phase 4.4 from April 30 to May 13 (14 days)
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173 # I_s, I_a, R_ps, R_pa comparments lose (SensitivityPCR *
nindividuals in each compartment on test day)

174 # to Q (Isol)
175 phase_four_4_times <- 48:61
176 state <- c(
177 S = last_state$S,
178 E_s = last_state$E_s,
179 E_a = last_state$E_a,
180 I_s = last_state$I_s * (1 - sensitivity_pcr),
181 I_a = last_state$I_a * (1 - sensitivity_pcr),
182 R_ps = last_state$R_ps * (1 - sensitivity_pcr),
183 R_pa = last_state$R_pa * (1 - sensitivity_pcr),
184 R_n = last_state$R_n,
185 H = last_state$H,
186 Q = last_state$Q + sensitivity_pcr * (last_state$I_s + last_state$I

_a + last_state$R_ps + last_state$R_pa)
187 )
188

189 model <- ode(state, phase_four_4_times, phase_four_alternative,
params)

190 df <- as.data.frame(model)
191

192 # Combining compartments into SEIR
193 df <- within(df, E <- E_s + E_a)
194 df <- within(df, I <- I_s + I_a)
195 df <- within(df, R <- R_ps + R_pa + R_n + H)
196 df <- within(df, Isol <- Q)
197

198 result <- rbind(result, df)
199 rownames(result) <- NULL
200 result <- within(result, CI <- I + R + Isol)
201 return(result)
202 }
203

204 starting_state <- c(
205 S = 444,
206 E_s = 0,
207 E_a = 0,
208 I_s = 1,
209 I_a = 0,
210 R_ps = 0,
211 R_pa = 0,
212 R_n = 0,
213 H = 0
214 )
215

216 result <- shelter_alternative(starting_state, params)
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217 result <- subset(result, select = -c(E_a, E_s, I_s, I_a, R_ps, R_pa, R_

n, H, Q))
218 shelter_plot(result, header = "Chicago Shelter COVID-19 Outbreak,

Alternative Model")⌦  
C.7 Parameters �tting

Listing C.7: �t.R↵ �
1 require(deSolve)
2

3 rmsle_imrpoved <- function(x) {
4 params <- c(
5 beta_0 = x[1],
6 beta_f = x[1] * x[2],
7 omega_0 = x[3],
8 t_trans = x[4],
9 k = x[5],
10 p = x[6],
11

12 sigma_s = 1 / x[7],
13 sigma_a = 1 / x[8],
14

15 gamma_sp = 1 / x[9],
16 gamma_ap = 1 / x[10],
17

18 gamma_sn = 1 / (x[11] - x[9]),
19 gamma_an = 1 / (x[12] - x[10]),
20 alpha = x[13],
21 omega = x[14],
22 sensitivity_pcr = x[15],
23 rho = 1 / 14
24 )
25

26 state <- c(
27 S = 444,
28 E_s = 0,
29 E_a = 0,
30 I_s = 1,
31 I_a = 0,
32 R_ps = 0,
33 R_pa = 0,
34 R_n = 0,
35 H = 0
36 )
37 df <- shelter_alternative(state, params)
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38 sensitivity_pcr <- unname(params["sensitivity_pcr"])
39

40 result <- c(
41 (log1p(df$CI[1]) - log1p(1))^2,
42 (log1p(df$CI[2]) - log1p(1))^2,
43 (log1p(df$CI[3]) - log1p(1))^2,
44 (log1p(df$CI[4]) - log1p(2))^2,
45 (log1p(df$CI[5]) - log1p(3))^2,
46 (log1p(df$CI[6]) - log1p(3))^2,
47 (log1p(df$CI[7]) - log1p(4))^2,
48 (log1p(df$CI[8]) - log1p(4))^2,
49 (log1p(df$CI[9]) - log1p(5))^2,
50 (log1p(df$CI[10]) - log1p(6))^2,
51 (log1p(df$CI[11]) - log1p(6))^2,
52 (log1p(df$CI[12]) - log1p(6))^2,
53 (log1p(df$CI[13]) - log1p(7))^2,
54 (log1p(df$CI[14]) - log1p(9))^2,
55 (log1p(df$CI[15]) - log1p(9))^2,
56 (log1p(df$CI[16]) - log1p(9))^2,
57 (log1p(df$CI[17]) - log1p(10))^2
58 )
59 result <- c(result, (log1p(df$CI[22] - df$CI[17]) - log1p(18)) ^ 2)
60 result <- c(result, (log1p(df$H[22] - df$H[17]) - log1p(7)) ^ 2)
61

62 result <- c(result, (log1p(df$H[25] - df$H[22]) - log1p(26)) ^ 2)
63

64 result <- c(result,
65 2 * (log1p(sensitivity_pcr * (df$I_s[30] + df$I_a[30] +

df$R_ps[30] + df$R_pa[30])) - log1p(166)) ^ 2,
66 2 * (log1p(sensitivity_pcr * (df$I_s[37] + df$I_a[37] +

df$R_ps[37] + df$R_pa[37])) - log1p(24)) ^ 2,
67 2 * (log1p(sensitivity_pcr * (df$I_s[50] + df$I_a[50] +

df$R_ps[50] + df$R_pa[50])) - log1p(23)) ^ 2,
68 2 * (log1p(sensitivity_pcr * (df$I_s[61] + df$I_a[61] +

df$R_ps[61] + df$R_pa[61])) - log1p(1)) ^ 2
69 )
70 result <- c(result,
71 (log1p(df$H[37] - df$H[31]) - log1p(20)) ^ 2,
72 (log1p(df$H[50] - df$H[38]) - log1p(4)) ^ 2,
73 (log1p(df$H[61] - df$H[51]) - log1p(0)) ^ 2
74 )
75 return(sqrt(abs(mean(result))))
76

77 }
78 # Fitting following params:
79

80 # beta_0 - initial Beta
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81 # beta_f_pct - final Beta as a percentage of beta_0
82 # omega_0 - Rate of hospital admission of Infectious symptomatic

persons before screening
83 # t_trans - Day where beta reaches halfway between beta_0 and beta_f
84 # k - Rate of transformation of beta
85 # p - Asymptomatic percentage
86

87 # incubation_period (symptomatic) - Time between E_s and I_s
compartments (days)

88 # sigma_s = 1/(incubation period) * (% symptomatic),
89

90 # incubation_period (asymptomatic) - Time between E_a and I_a
compartments (days)

91 # sigma_a = 1/(incubation period) * (% asymptomatic)
92

93 # Infectious period for symptomatic persons (days)
94 # gamma_sp = 1/(infectious period for symptomatic persons)
95

96 # Infectious period for asymptomatic persons (days)
97 # gamma_ap = 1/(infectious period for asymptomatic persons)
98

99 # Period of RT- PCR-positivity for symptomatic persons (days)
100 # gamma_sn = 1/[(duration of RT-PCR-positivity for symptomatic persons)

- (infectious period)]
101

102 # Period of RT- PCR-positivity for asymptomatic persons (days)
103 # gamma_an = 1/[(duration of RT-PCR-positivity for asymptomatic persons

) - (infectious period)]
104

105 # alpha - Rate of detection of symptomatic infectious persons through
screening

106 # omega - Rate of hospital admission of Isolsoft symptomatic persons
during phase 2

107 # sensitivity_pcr
108

109 # starting values are mean of the boundaries
110 lower_params <- c(0, 0, 0.05, 1, 0.01, 0.18, 2.8, 2.8, 3, 3, 16, 3,

0.01, 0.05, 0.72)
111 upper_params <- c(1, 1, 1.0, 50, 2, 0.87, 4.0, 4.0, 8, 8, 35, 35, 1, 1,

0.9)
112 starting_params <- (lower_params + upper_params) / 2
113

114 result <- optim(
115 par = starting_params,
116 fn = rmsle_imrpoved,
117 gr = NULL,
118 control = list(maxit = 100000),
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119 method = "L-BFGS-B",
120 lower = lower_params,
121 upper = upper_params,
122 hessian = TRUE
123 )
124

125 result_params <- c(
126 beta_0 = result$par[1],
127 beta_f_pct = result$par[2],
128 omega_0 = result$par[3],
129 t_trans = result$par[4],
130 k = result$par[5],
131 p = result$par[6],
132

133 sigma_s = 1 / result$par[7],
134 sigma_a = 1 / result$par[8],
135

136 gamma_sp = 1 / result$par[9],
137 gamma_ap = 1 / result$par[10],
138

139 gamma_sn = 1 / (result$par[11] - result$par[9]),
140 gamma_an = 1 / (result$par[12] - result$par[10]),
141 alpha = result$par[13],
142 omega = result$par[14],
143 sensitivity_pcr = result$par[15]
144 )
145 print(result)
146 print(result_params)⌦  
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