Wibke Kochan

Der Reklamationsprozess
unter den Aspekten der
DIN ISO 9001 und dessen Auswertung
eingereicht als

DIPLOMARBEIT

Fakultät: Wirtschaftswissenschaften
Dresden, 01.11.2010

Erstprüfer: Prof. Dr. rer. oec. Johannes N. Stelling
Zweitprüfer: Prof. Dr. rer. pol. Andreas Hollidt
Matrikelnr.: 18014
Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als angebenden Quellen und Hilfsmittel benutzt habe, das alle Stellen der Arbeit die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht worden sind. Und das die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegt wurde.

…………………………………………………..

Wibke Kochan, 01.November 2010
Danksagung

An dieser Stelle möchte ich mich bei all denjenigen Bedanken die mich bei der Erstellung dieser Diplomarbeit unterstützt haben. Ganz gleich ob fachlich oder persönlich, die hilfreichen Anregungen und die Geduld haben mir sehr geholfen.

Besonders hervorzuheben sind dabei:

- Herrn Prof. Dr. Stelling für die Betreuung dieser Arbeit und Erstkorrektor, seitens der Hochschule Mittweida sowie für die Motivation in manch kritischen Momenten und die Vermittlung der theoretischen Grundlagen während meines Studiums.

- Herrn Prof. Dr. Hollidt für die Betreuung als Zweitkorrektor seitens der Hochschule.

- Sowie Andreas Böhme, Claudia Anke und Steffen Szauter die viele Abende mit dieser Arbeit und deren Korrektur verbracht haben.

 Vielen Dank
Inhaltsverzeichnis

Erklärung ... I

Danksagung ... II

Inhaltsverzeichnis .. III

Abbildungsverzeichnis ... VI

Tabellenverzeichnis .. VII

Anlagenverzeichnis .. VIII

1 Einleitung ... 1

2 Theoretische Grundlagen... 2

2.1 Qualitätsmanagement als Management Aufgabe......................... 2

2.2 Qualitätsmanagement im Wandel ... 6

2.3 Die Geschichte des Qualitätsmanagements 7

2.4 Die DIN EN ISO 9001 als Wegweiser für eine prozessorientierte
 Unternehmensführung ... 11

2.4.1 Der Geschäftsprozess als Voraussetzung für das Realisieren
 eines DIN EN ISO 9001:2008 Audits ... 11

2.4.2 Die Entstehung der Normreihe ISO 9000:2000 ff 12

2.4.3 Die DIN EN ISO 9001:2008 .. 14

2.5 Der Reklamationsprozess als Aufgabe des
 Qualitätsmanagements ... 16

2.6 Qualitätscontrolling ... 19

2.6.1 Allgemeine Aufgaben des Controllings innerhalb eines
 Unternehmens ... 19

2.6.2 Generelle Bedeutung von Kennzahlen in Unternehmen 20
3 Aufstellen eines Reklamationsprozesses

3.1 Gegenüberstellung von verschiedenen Methoden zur Bearbeitung eines Reklamationsprozesses

3.1.1 5 Why Methode

3.1.2 8D Methode

3.1.3 DMAIC Methode

3.1.3.1 DMAIC als Teil von Six Sigma

3.1.3.2 DMAIC – Der Kernprozess von Six Sigma

3.1.4 Vergleich der Methoden

3.1.5 Auswertung

3.2 Erstellen einer Verfahrensanweisung für den Reklamationsprozess

4 Aus dem Reklamationsprozess abzuleitende Kennzahlen

4.1 Reklamationscontrolling

4.2 Qualitätskennzahlen

4.3 Qualitätskennzahlen Systeme

5 Der kontinuierliche Verbesserungsprozess zur Prävention zukünftiger Reklamationen

5.1 Voraussetzungen

5.2 Einflussfaktoren der Prozesse

5.3 Methoden der Prozessverbesserung

5.3.1 Prozess Reengineering

5.3.2 Der kontinuierlicher Verbesserungsprozess

5.4 Mitarbeiter und der kontinuierliche Verbesserungsprozess

6 Resümee

Anlagen

IV
<table>
<thead>
<tr>
<th>Quellenverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Literaturverzeichnis</td>
<td>82</td>
</tr>
<tr>
<td>2. Normverzeichnis</td>
<td>83</td>
</tr>
<tr>
<td>3. Zeitschriftenverzeichnis</td>
<td>84</td>
</tr>
<tr>
<td>4. Internetverzeichnis</td>
<td>84</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb. 2-1: Die 5 Säulen des Qualitätsmanagements .. 5
Abb. 2-2: Qualitätskreis nach Masing.. 9
Abb. 2-3: Die ständige Verbesserung des Qualitätsmanagements 10
Abb. 2-4: Die Hauptnormen der ISO 9000:2000 ff .. 13
Abb. 2-5: Ziele des Reklamationsmanagements .. 17
Abb. 2-6: Die vier Beschwerde-Gruppen... 17
Abb. 2-7: Arten von Kennzahlen... 22
Abb. 2-8: Unterschiedliche Beziehungsarten zwischen Kennzahlen........... 23
Abb. 3-1: Baumdiagramm zur 5 Why Methode ... 27
Abb. 3-2: Das Fischgrätendiagramm nach Ishikawa..................................... 37
Abb. 3-2: Die DMAIC Methode ... 40
Abb.: 3-3 Verfahrensanweisung „Reklamationsprozess nach einer Kundenbeanstandung“... 52
Abb. 4-1: Ausrichtungen von Qualitätskennzahlen....................................... 58
Abb.: 5-1 Effekte im Unternehmen ... 64
Abb.: 5-2 Wirkungsweise von Reengineering und kontinuierlicher Verbesserungsprozess... 66
Abb.: 5-3 Deming Zyklus der kontinuierlichen Verbesserung.................... 68
Tabellenverzeichnis

Tabelle 3-1: Beschreibung zum Ablauf „Reklamationsbearbeitung nach einer Kundenbeanstandung“ ... 55

Tabelle 3-2: Änderungsdienst der Verfahrensanweisung „Reklamationsbearbeitung nach einer Kundenbeanstandung“ 56

Tabelle 4-1: Kriterien der Kennzahlen ... 61
Anlagenverzeichnis

Anlage 1: Artikel “Nach dem Boom” ... 74
Anlage 2: Beispiel Faktensammlung ... 79
Anlage 3: Vorlage 8D Report ... 80
Anlage 4: Kennzahlen-Stammbrett ... 81
1 Einleitung

Die Zufriedenheit der Kunden hat sich in den vergangenen Jahren zu einem der wichtigsten Unternehmensziele entwickelt. Auf den herrschenden Käufermärkten hat der Kunde eine große Auswahl an scheinbar gleichwertigen Produkten und Dienstleistungen. Die Unternehmen müssen ihre Kunden mehr als je zuvor an ihr Unternehmen binden und ein Abwandern zu Konkurrenzunternehmen unbedingt verhindern. Dies geschieht zu einem großen Teil über die konstant gute Qualität der Produkte und Dienstleistungen, aber auch im Falle einer Reklamation muss diese schnell und zuverlässig bearbeitet werden.

In der vorliegenden Diplomarbeit wird zunächst das Qualitätsmanagement im Allgemeinen sowie das Reklamationsmanagement als Teil dessen und die DIN EN ISO 9001:2008 als Wegweiser eines modernen Qualitätsmanagements betrachtet.

Zunächst werden verschiedene Methoden zur Reklamationsbearbeitung beschrieben, anschließend miteinander verglichen und daraus ein Fazit geschlussfolgert.

Im besten Falle werden die Probleme erkannt und behoben bevor sie negative Auswirkungen auf die Prozesse oder Produkte haben. Eine wichtige Methode hierfür ist der kontinuierliche Verbesserungsprozess. Dessen Voraussetzungen und Instrumente werden im Kapitel fünf beschrieben.
2 Theoretische Grundlagen

2.1 Qualitätsmanagement als Management Aufgabe

In der DIN EN ISO 8402 wird das Qualitätsmanagement als "Alle Tätigkeiten des Gesamtmanagements, die im Rahmen des Qualitätsmanagementsystems die Qualitätspolitik, die Ziele und Verantwortungen festlegen sowie durch die Mittel wie Qualitätsplanung, Qualitätslenkung, Qualitätssicherung/ Qualitätsmanagement-Darlegung und Qualitätsverbesserung verwirklichen." 1 Das bedeutet, dass das Qualitätsmanagement alle organisatorischen, betriebswirtschaftlichen und unternehmerischen Maßnahmen zur Verbesserung der Produkte, Prozesse und Leistungen eines Unternehmens, sowie die Qualitätszielsetzung beinhaltet. Die Qualitätsziele müssen sich aus den gesamten Unternehmenszielen ableiten. Die Ausrichtung für die Qualitätsstrategie hängt von den Visionen, Missionen und dem Leitbild als auch von der Marktposition des Unternehmens ab.

In der ISO/TC 176 sind die acht Management Grundsätze beschrieben. Sie gelten über das Qualitätsmanagement hinaus auch für alle weiteren Aufgaben des Managements. Der Ursprung dafür liegt in der Tatsache, dass die oberste Führung eine höhere Priorität in das Qualitätsmanagement legt.

Die acht Management Grundsätze:

1. Kundenorientierung
 Der Erfolg eines Unternehmens ist von seinen Kunden abhängig, darum sollten die gegenwärtigen und zukünftigen Bedürfnisse erfüllt bzw. die Erwartungen übertroffen werden.

1 Zitat: DIN EN ISO 8402
2. Führung
Die Führungskräfte geben dem Unternehmen eine Zielrichtung vor und motivieren die Mitarbeiter sich für die Erreichung dieser einzusetzen.

3. Involvierung der Mitarbeiter
Jeder Mitarbeiter, unabhängig von seiner Position, wird gemäß seiner Fähigkeiten für das Unternehmen eingesetzt und entsprechend motiviert.

4. Prozessorientierter Ansatz
Um die gestellten Ziele optimal zu erreichen, werden die benötigten Ressourcen und Tätigkeiten als Prozesse geführt.

5. Systematisiertes Managementvorgehen
Das systematische Definieren und Anwenden miteinander verflochtener Prozesse steigert die Effektivität und Effizienz bei der Zielerreichung in einem Unternehmen nochmals.

6. Kontinuierliche Verbesserung
Eine besonders wichtige und permanente Aufgabe in einem Unternehmen stellt die ständige Verbesserung aller Prozesse und Produkte dar.
(Darauf wird im Kapitel fünf „Der Kontinuierliche Verbesserungsprozess zur Prävention zukünftiger Reklamationen“ detailliert eingegangen.)

7. Sachliche Entscheidungsverfahren
Als Entscheidungsgrundlage dienen Analysen von Informationen und Daten.
8. Lieferantenbeziehung zum gegenseitigen Vorteil

Zur Erzeugung eines Mehrwertes für beide Seiten ist ein gutes Arbeitsverhältnis von Unternehmen und seinen Lieferanten notwendig. ²

Um diese Ziele strukturiert und schnell zu erreichen gibt es die fünf Säulen des Qualitätsmanagements, diese werden in der Abbildung 2-1 näher beschrieben. In einem Qualitätsmanagementsystem nach der DIN

² Vgl.: Geiger, Kotte, 2008: S. 13
³ Vgl.: Heider, 2007: Folie 04/01
9001:2008 können die Qualitätsziele gemessen bzw. kontrolliert und anschließend ausgewertet werden.

Abb. 2-1: Die 5 Säulen des Qualitätsmanagements
(Vgl. Heider, 2007: 01/15, eigene Darstellung)
2. 2 Qualitätssmanagement im Wandel

Bis in die sechziger Jahre gab es in Deutschland einen relativ stabilen Verkäufermarkt. Die Nachfrage der Verbraucher war höher als das Angebot. Die Unternehmen und Betriebe konnten sich ausreichend personelle, zeitliche und finanzielle Ressourcen leisten. Ähnlich großzügig gestalteten sie ihre Verkaufspreise: Kosten plus Kalkulation x. Bald reichte Qualität allein jedoch nicht mehr aus um die Verbraucher von den Produkten zu überzeugen. Immer mehr an Bedeutung gewann der Markteintrittszeitpunkt sowie die Flexibilität der Unternehmen den Kunden gegenüber. Die Verbraucher verwenden den Preis einer Ware oder Dienstleistung als Referenzgröße, um den Wert messen zu können und die Waren oder Dienstleistungen vergleichen zu können. Als Folge dieser Veränderung berechnete sich die Kalkulation der Unternehmen wie folgt: Preis den der Kunde bereit ist für ein Produkt oder eine Dienstleistung zu bezahlen minus Kalkulation. Bis heute hat sich der Markt zunehmend zu einem Käufermarkt bis hin zum Verdrängungswettbewerb entwickelt. 4

4 Vgl.: Eversheim, 1997: S. 49f
2. 3 Die Geschichte des Qualitätsmanagements

Ursprünge der Qualitätssicherung weit v. Chr.

Schon der König von Babylon (1728 – 1686 v. Chr.) hatte in seinem Gesetz „Codex Hammurabi“ festgelegt, dass Baumeister bei Einstürzen eines von ihnen errichteten Gebäudes mit dem Tode bestraft werden. Später wurden Elle (Dresdner Elle = 56,638 cm) und Fuß (in Sachsen 1 Fuß = 28,3 cm) als Maßeinheit eingeführt, um reproduzierbare nachprüfbare Merkmale zu schaffen.

1. Um 1900 – Sortierende Qualitätskontrolle

2. Um 1930 – Qualitätssteuerung

In dieser Epoche wurden Teilkontrollen während des Produktionsprozesses eingeführt, welche auf statistischen Prüfverfahren basierten. Diese Maßnahme sollte die Leistungsfähigkeit der Qualitätsprüfabteilung steigern. Zusätzlich begann man mit der Qualitätsplanung.
3. **Um 1950 – Qualitätssicherung**

4. **Um 1970 – Qualitätsmanagement**

5. **Um 1990 – Total Quality Management**

Die ständige Qualitätsverbesserung und das Erfüllen oder gar Übertreffen der Kundenanforderungen hat sich zum obersten Unternehmensziel entwickelt. Der moderne Qualitätsbegriff geht über das Produkt hinaus und schließt somit den wirtschaftlichen Erfolg eines Unternehmens mit ein. Unternehmen sehen ihre Qualitätspolitik als Kern ihrer Unternehmensphilosophie, sie streben nach Höchstleistung und stetigen Verbesserungen. Das moderne Qualitätsmanagement orientiert sich am Qualitätskreis (Abbildung 2-2) nach Walter Masing.

![Qualitätskreis nach Masing](image)

Abb. 2-2: Qualitätskreis nach Masing

(Vgl. Zollandz, 2006: S. 186, eigene Darstellung)

8 Vgl.: Grünewald, Pagenkemper, 2004: S. 6ff

6. 2000 bis zur Gegenwart

![Diagramm der ständigen Verbesserung des Qualitätsmanagements](attachment:image)

Abb. 2-3: Die ständige Verbesserung des Qualitätsmanagements
(Vgl. Schmelzer, Sesselmann, 2006: S., S.35, eigene Darstellung)

10 Vgl.: DIN EN ISO 9001:2008
2.4 Die DIN EN ISO 9001 als Wegweiser für eine prozessorientierte Unternehmensführung

2.4.1 Der Geschäftsprozess als Voraussetzung für das Realisieren eines DIN EN ISO 9001:2008 Audits

Der Geschäftsprozess setzt sich aus der funktionsübergreifenden Verkettung von wertschöpfenden Tätigkeiten zusammen. Sein Ziel ist es, die Anforderungen von internen sowie externen Kunden zu erfüllen.

Die DIN EN ISO 9004 definiert einen Geschäftsprozess innerhalb eines Unternehmens wie folgt: „Damit eine Organisation wirksam und effizient funktionieren kann, muss sie zahlreiche miteinander verknüpfte Tätigkeiten erkennen, leiten und lenken. Eine Tätigkeit, die Ressourcen verwendet und die ausgeführt wird, um die Umwandlung von Eingaben in Ergebnisse zu

\(^{11}\) Vgl.: Hirzel, Kühn, 2005: S. 108f
ermöglichen, wird als Prozess angesehen.“. 12 Oft bildet das Ergebnis des einen Prozesses die direkte Eingabe für den nächsten.

2. 4. 2 Die Entstehung der Normreihe ISO 9000:2000 ff

1987 wurde die erste Serie der weltweit anerkannten Norm ISO 9000 zunächst auf englisch und drei Jahre später auch auf deutsch veröffentlicht. Sie beinhaltet eine vereinheitlichte und branchenneutrale Qualitätsmanagementnorm.

12 Zitat: ISO EN DIN 9004
13 Vgl.: Grünewald, Pagenkemper, 2004: S. 36
Wie die Abbildung 2-4 zeigt unterteilt sich die Normreihe ISO 9000:2000 ff in drei Hauptnormen:

Abb. 2-4: Die Hauptnormen der ISO 9000:2000 ff
(Vgl. Grünewald, Pagenkemper, 2004: S. 36, eigene Darstellung)

0 Einleitung
1 Anwendungsbereich
2 Normative Verweisungen
3 Begriffe
4 Qualitätsmanagementsystem
5 Verantwortung der Leitung
6 Management von Ressourcen
7 Produkterealisierung
8 Messung, Analyse und Verbesserung\(^{14}\)

\(^{14}\)Vgl.: Grünwald, Pagenkemper, 2004: S.41

Die Gründe für ein Unternehmen die ISO 9001:2008 innerhalb der Produktionslinie anzuwenden sind vielseitig:

1. Alle Prozesse laufen nach dem selben Muster ab, auch wenn diese nicht täglich erledigt werden oder ein Mitarbeiter einen anderen vertritt.

2. Neue Mitarbeiter können schnell und strukturiert angelernt werden, sie erhalten alle nötigen Informationen in Form einer Arbeitsanweisung. Das Ergebnis ist, dass sie fehlerfrei und selbstständig in den Prozessen mitarbeiten können.

3. Bei Arbeiten die seltener anfallen und daher die benötige Routine fehlt, ermöglicht das Nachlesen in der entsprechenden Arbeitsanweisung eine korrekte Erledigung der Arbeitsschritte.

4. Miteinander verknüpfte Abläufe, vor allem auch mit anderen Bereichen, werden transparent, was die Zusammenarbeit vereinfach und beschleunigt.

5. Das Dokumentieren der Prozesse ist eine wichtige Grundlage für das kontinuierliche Verbessern der Prozesse, Produkte und Dienstleistungen.¹⁶

¹⁵ Vgl.: Zollondz, 2006: S. 271
¹⁶ Vgl.: Hirzel, Kühn, 2005: S.109
2. 5 Der Reklamationsprozess als Aufgabe des Qualitätsmanagements

Das Reklamationsmanagement umfasst alle systematischen Maßnahmen eines Unternehmens zur Bearbeitung von Kundenreklamationen sowie das Wiederherstellen der Kundenzufriedenheit und des Vertrauens in das Unternehmen.

Die **Fehlkosten** lassen sich in Fehlkosten externer und interner Art untergliedern. Fehlkosten externer Art sind beispielsweise Garantie- und Haftungskosten sowie Kosten, die das Unternehmen dem Kunden zusätzlich erstattet. Während Fehlkosten interner Art zum Beispiel Kosten zur Nachbesserung sein können. Dies sind Kosten die unternehmensintern verwendet werden um das Produkt den Kundenwünschen anzupassen.
Abb. 2-5: Ziele des Reklamationsmanagements
(Vgl.: Grafik Beschwerdemanagement von Rödl & Partner, 2010, eigene Darstellung)

Abb. 2-6: Die vier Beschwerde-Gruppen
(Vgl.: Horváth & Partner, 1997: S. 67, eigene Darstellung)
Technische als auch logistische Probleme lassen sich in den häufigsten Fällen schnell lösen, während organisatorische sowie personelle Probleme meist einer längeren Bearbeitungszeit bedürfen.

Die Reklamationsbearbeitung ist ein unternehmensinterner Prozess, trotzdem ist die Kommunikation mit dem Kunden dabei sehr wichtig, ebenso eine gewissenhafte Dokumentation des Prozesses.\(^\text{17}\)

Zur Auswertung und anschaulichen Darstellung der Reklamationen, aber auch der Qualitätsverbesserungen des Unternehmens, dient das Qualitätscontrolling, auf dieses wird im folgenden Kapitel 2.6 näher eingegangen.

\(^{17}\) Vgl.: Horváth & Partner, 1997: S. 63ff
2. 6 Qualitätscontrolling

2. 6. 1 Allgemeine Aufgaben des Controllings innerhalb eines Unternehmens

Qualitätscontrolling

Qualitätscontrolling ist die "zielorientierte Koordination aller Aktivitäten des Qualitätsmanagements". Es ist ein Instrument zur Messung der Effizienz und Effektivität des Qualitätsmanagements und es stellt alle Informationen für die Planung und Steuerung aller qualitätsbezogener Aktivitäten in einem Unternehmen zur Verfügung.

Eine Aufgabe des Qualitätscontrollings ist die Ermittlung aller benötigten Information, deren Aufarbeitung, Komprimierung und das regelmäßige Berichten an das Management und die verantwortlichen Mitarbeiter. Dazu erfasst und interpretiert das Qualitätsberichtwesen alle relevanten Qualitäts-, Zeit-, und Kostendaten. Davon lassen sich Maßnahmen zur Fehlerverhütung, Rationalisierung und ständigen Weiterentwicklung des Qualitätsmanagements ableiten, die mit Hilfe von Qualitätsmethoden geplant, durchgeführt und kontrolliert werden. Weiter ist die Organisation der Qualitätsplanung und die Weiterentwicklung des

18 Zitat: Horváth & Partner, 1997: S. 5

2.6.2 Generelle Bedeutung von Kennzahlen in Unternehmen

Kennzahlen geben einen quantitativ messbaren Inhalt in einfacher und konzentrierter Form wieder. Sie bestehen aus drei wichtigen Elementen: der Qualifizierbarkeit, dem Informationscharakter sowie der spezifischen Form der Information. Die Qualifizierbarkeit erlaubt eine präzise Aussage durch die Darstellung von Sachverhalten und Zusammenhängen in einem metrischen Skalenniveau. Daraus lässt sich der Informationscharakter ableiten, welcher besagt, dass Kennzahlen Urteile über Sachverhalte und Zusammenhänge ermöglichen. Ein weiteres wichtiges Element ist die spezifische Form der Information, sie stellt die einfache und übersichtliche Darstellung von komplexen Strukturen und Prozessen dar. Sie ermöglicht damit einen schnellen und umfassenden Überblick über die Situation. 20

Interner und Externen Zweck von Kennzahlen

Kennzahlen können sowohl extern als auch intern verwendet werden. Ihren externen Zweck erfüllen sie vor allem bei der Bilanzanalyse und dem Betriebsvergleich. Hierbei wird das Zahlenmaterial der vergangenen Jahre

20 Vgl.: Hováth, Reichmann, 2003: S. 380
zu Kennzahlen verdichtet und bildet so die Grundlage für betriebliche Entscheidungen. Zur besseren Entscheidungsfindung können die Kennzahlen durch nicht quantitative Informationen, wie die allgemeine wirtschaftliche Situation, ergänzt werden. Für ihre interne Verwendung werden vorrangig selbst gebildete Kennzahlen verwendet, diese können sich auf das gesamte Unternehmen oder nur auf einzelne Bereiche beziehen.21

\textbf{Kennzahlen in Unternehmen}

21 Vgl. Krampe, Lucke, 2006: S. 173
Arten von Kennzahlen

Wie in der Abbildung 2-7 aufgezeigt wird, lassen sich Kennzahlen in verschiedene Arten unterteilen.

Abb. 2-7: Arten von Kennzahlen
(Vgl.: Küpper, 2008: S. 390; eigene Darstellung)

Absolute Zahlen sind Einzelwerte und können ohne weitere Berechnung den betrieblichen Unterlagen entnommen werden. Es können Bestandsgrößen, Summen, Differenzen oder Mittelwerte sein. Diese Kennzahlen haben nur eine begrenzte Aussagekraft, darum werden vorwiegend Verhältniszahlen verwendet.

besitzen sie dieselbe Grundeinheit. Auch bei den **Indexzahlen** werden zwei gleichartige Grundgrößen in Beziehung zueinander gesetzt, diese haben aber zum Teil sehr unterschiedliche zeitliche und/ oder sachliche Grundgrößen.

Beziehungen zwischen Kennzahlen

![Diagramm der Beziehungen zwischen Kennzahlen](image)

Abb: 2-8: Unterschiedliche Beziehungsarten zwischen Kennzahlen
(Vgl.: Küpper, 2008: S. 390; eigene Darstellung)

Zwischen Kennzahlen gibt es drei Hauptbeziehungen (siehe Abbildung 2-8): die logischen, die empirischen sowie die hierarchischen oder auch systematischen. Die **logischen Beziehungen** lassen sich in die definitorischen, welche sich durch eine begriffliche Abgrenzung auszeichnen, sowie die mathematischen Beziehungen unterscheiden. Mathematische Beziehungen liegen einer mathematischen Regel der Transformation zu Grunde. Sie sind nur aufgrund von Begriffsdefinitionen

22 Vgl.: Krüpper, 2008: S. 389
und mathematischen Regeln logisch und damit tautologisch, dies bedeutet dass sie keine empirische Aussagekraft besitzen.

Zwischen Kennzahlen kann auch eine empirische Beziehung bestehen, ihre Zusammenhänge sind in der Realität begründet und durch empirische Untersuchungen bewiesen.

Kennzahlensysteme

Vgl.: Krüpper, 2008: S. 391
3 Aufstellen eines Reklamationsprozesses

3. 1 Gegenüberstellung von verschiedenen Methoden zu Bearbeitung eines Reklamationsprozesses

3. 1. 1 5 Why Methode

Die five Why Methode ist eine relativ einfache und unkonventionelle Methode zur Ergründung eines Problems bzw. der Ursache einer Kundenreklamation. Dabei ist es wichtig sich auf die konzentrierte Ursachenforschung und weniger auf das Umfeld des aufgetretenen Problems zu konzentrieren.

Als erster Schritt wird ein Team zur Problembearbeitung gebildet. Wichtig ist das mindestens ein Teammitglied über das entsprechende technische Fachwissen verfügt. Querdenker sind gern gesehene Diskussionsteilnehmer, weil sie unbefangen an die Problemstellung herantreten und damit ganz neue Ideen zur Problemlösung in die Diskussion einbringen. Im nächsten Schritt eröffnet der Moderator die Teamsitzung und erklärt allen Teilnehmer detailliert das zu lösende Problem. Wichtig ist das der Moderator die Five Why Methode sehr gut beherrscht und bei eventuellen Abschweifen der Diskussionen die Teilnehmer zu dem eigentlichen Thema zurück führt. Diese Methode erfordert von allen Teilnehmern ein hohes Maß an Disziplin, die Gruppe darf sich nicht an kleinen möglichen Einflussfaktoren festhalten. Es muss immer die schnelle Problemlösung im Mittelpunkt stehen, im optimalen Fall ist diese nach den fünf Warum Fragen gefunden.

Das erste Warum ist immer die Frage „Warum ist das Problem eingetreten?“. Die Teammitglieder nennen ihr Vorschläge für das Auftreten des Problems. Eine gut geeignete Methode zum Sammeln der verschiedenen Meinungen und Vorschläge ist die Brainstorming.

24 Why, engl., Warum
25 Brainstorming: engl., Ideenfindung, Denkanstöße
Zur Darstellung der verschiedenen Lösungsvorschläge eignet sich am besten ein Baumdiagramm. Einige der Äste werden kürzer als andere sein, an dieser Stelle wurde die Diskussionslinie frühzeitig beendet, weil erkannt wurde das dieser Ansatz zu keinem Ergebnis führt oder nur einen sehr geringen Einfluss auf das Problem hat. Von jedem regulären Astende ist eine Maßnahme abzuleiten, sonst erfüllt die five Why Methode ihren Sinn nicht. Somit steht zum Ende immer die Frage, „Wie können wir das zukünftig besser machen?“. Ein Baumdiagramm für die five Why Methode ist in der Abbildung 3-1 dargestellt.

Abb. 3-1: Baumdiagramm zur 5 Why Methode
(Vgl.: Roden, Klaus, 2006: S. 134, eigene Darstellung)

26 Vgl.: Roden, Klaus, 2006: S. 134ff
3. 1. 2 8D Methode

8D steht für die 8 Disziplinen die bei der Abarbeitung des Reklamationsprozesses und von Kundenanforderungen nötig sind. Vorangetrieben und standardisiert wurde diese Methode von der deutschen Automobilindustrie (VDA 27). Der 8D-Bericht muss beim erledigen des jeweiligen Prozessschrittes ausgefüllt werden, nur dann kann er als nützliches Arbeitsmittel zur Reklamationsbearbeitung effektiv eingesetzt werden. Eine Vorlage für einen 8D Bericht ist in Anlage 3 einzusehen.

Die **Ziele der 8D Methode** sind wie folgt definiert:

1. Um den Kunden nicht zu verlieren sondern an das Unternehmen zu binden, müssen die Kundenreklamationen schnell und effektiv bearbeitet werden.

2. Es sollte nicht nur das reklamierte Problem beseitigt werden, sondern nach der Grundursache gesucht und diese behoben werden.

3. Um den langfristigen Erfolg eines Unternehmens sicherzustellen, sollten Fehlerwiederholungen dringend vermieden werden.

4. Um das Ergebnis der teilweise komplexen Problemstellung zu optimieren sollte die Lösungssuche im Team bearbeitet werden. 28

27 Abkürzung: Verband der Automobilindustrie

28 Vgl.: Die 8D-Methode aus Management und Qualität, 09/2008; S.18 ff
Die **8 Prozessstufen** setzen aus folgenden acht Disziplinen zusammen:

D1 Teamarbeit
Zusammenstellen eines Teams aus Mitarbeitern mit entsprechender Prozesskenntnis, Zeit sowie der Bereitschaft ihr Wissen und ihre Kompetenzen einzusetzen, um das Problem zu analysieren, Korrekturmaßnahmen einzuleiten und später zu überprüfen.

D2 Problembeschreibung
Eine möglichst exakte Beschreibung und Quantifizierung des Problems unter Einbeziehung der internen und externen Kunden.

D3 Schadensbegrenzung
Sofortmaßnahmen zur Schadensbegrenzung einleiten sowie eine Ausbreitung des Problems unbedingt verhindern.

D4 Ursachenerkennung
Suchen und identifizieren der Hauptursache des Fehlers und diesen mit Hilfe von Experimenten, Tests und Vergleichen nachweisen.

D5 Planen von Abstellmaßnahmen
Ermittlung von Abstellmaßnahmen, die die Grundursache beheben sowie die Durchführung von Wirksamkeitsprüfungen aus Kundensicht und das Untersuchen von Prozessnebenwirkungen.

D6 Maßnahmenumsetzung
D7 Fehlerwiederholung verhindern

Durch die Einführung von Vorbeugemaßnahmen muss sichergestellt werden, dass die bekannten oder ähnliche Fehler nicht wieder auftreten können. Desweiteren muss das Qualitätsmanagement-System entsprechend angepasst werden.

D8 Abschluss

Zum Abschluss des Projektes wird die Teamleistung gewürdigt sowie die Erfahrung ausgetauscht und sichergestellt.

\(^{29}\) Win-Win-Situation: engl. Gewinn, Stellt eine Situation dar aus der beide beteiligten Parteien einen Nutzen erzielen.

\(^{30}\) Vgl.: www.faes.de (20.08.2010) und Heider, 2007: Folie 01/23
3. 1. 3 DMAIC Methode

3. 1. 3. 1 DMAIC als Teil von Six Sigma

Six Sigma ist eine Qualitätsphilosophie in deren Mittelpunkt der motivierte Mitarbeiter sowie die Erfüllung und Übererfüllung der Kundenanforderungen steht. Diese Anforderungen werden mit einem effizienten Datenmanagement erzielt. Bei einer konsequenten Anwendung von Six Sigma, was eine Verankerung im Managementsystem voraussetzt, erzielt das Unternehmen eine Qualitätsverbesserung sowie eine Produktivitätssteigerung. Six Sigma ist eine moderne und robuste Methode zur Qualitätsoptimierung. Sie ermöglicht eine kurzfristige Zielanpassung und Prozessänderung zur Minimierung des Fehlerniveaus.

31 Vgl.: Geiger, Kotte, 2008: S. 512f
3. 1. 3. 2 DMAIC – Der Kernprozess von Six Sigma

DMAIC ist eine Projektmanagement Strategie die in fünf Phasen gegliedert ist:

DEFINE
MEASURE
ANALYSE
IMPROVE
CONTROL

Das so genannte DMAIC Drehbuch kann auch zur Abarbeitung eines Reklamationsprozesses als Vorlage genutzt werden. Besonders eignet sich die DMAIC Methode, wenn sich der Fehler in einem Prozess und nicht im Produkt befindet. Wichtig ist auch hier die exakte Dokumentation der einzelnen Teilschritte. Die DMAIC Methode gibt nur das Gerüst vor, es ist die Aufgabe des Projektteams dieses mit Leben zu füllen. Das heißt auch, dass nicht zwangsläufig alle Schritte bei jedem Projekt im vollen Umfang angewandt werden müssen. Das Projektteam kann selbstständig entscheiden welche Etappen es zur Behebung des Prozessfehlers bzw. zur Prozessoptimierung benötigt.32

1. Phase – DEFINE – Planende Festlegung

32 Vgl.: Zollondz, 2006: S. 362f
Darstellung des Ist-Prozesses sowie alle bekannten Fakten des Problems zusammenzutragen. Dabei ist es hilfreich innerhalb des Teams folgende vier Fragen zu beachten:

1. “Was wissen wir?
2. Was wissen wir nicht?
3. Was müssen wir wissen?
4. Was müssen wir nicht wissen?” 33

Zusätzlich zu den Fakten können bei den regelmäßigen Teambesprechungen Ideen und Vermutungen aufkommen, diese werden in einer sogenannten Hypothesensammlung aufgelistet. Die folgenden zwei Fragen ermöglichen das Einordnen und kommentieren der Hypothesen:

1. “Wer vermutet was?
2. Wie können wir das nachweisen?” 34

Beispiel für eine Fakten- und Hypothesensammlung sind in Anlage 2 einzusehen.

2. Phase – MEASURE – Messung

In dieser zweiten Phase der DMAIC-Methode beginnt man mit einem Durchlauf der zu bearbeitenden Prozesse und beschreibt, untersucht und bewertet diesen nach folgenden fünf Punkten:

1. Was ist zu messen?
2. Wie wird der Zustand gemessen?
3. Bestimmung Erfassungs- und Reaktionsplan!
 Der Erfassungsplan beinhaltet Ort und Zeit der Messung sowie die Art der Dokumentation, während im Reaktionsplan die Folgeschritte nach dem Aufdecken eines Prozessfehlers beschrieben werden.

33 Zitat: Roden, Klaus, 2006: S 79
34 Zitat: Roden, Klaus, 2006: S. 79
4. Kontrolle des Messverfahrens, gegebenenfalls justieren!
5. Verfassen eines Messberichtes der Prozessleistung! 35

1. “Fokus
Bestimme immer eindeutig, was Du willst, bevor Du mit der Datensammlung beginnst.

2. Zuverlässigkeit
Stelle immer sicher, dass das Messsystem geeignet ist und dass es keine zusätzliche Streuung verursacht. Eindeutige Datenfehler sollen erkannt und gemeldet werden.

35 Vgl.: Roden, Klaus, 2006: S. 98
36 Gregory H. Watson, *16.07.1948 in Englewood, NJ (USA), Präsident International Academy for Quality, Professor an der Oklahoma State University
3. **Repräsentativ**
Stelle immer sicher, dass die Probe repräsentativ für die gemessene Menge ist und dass die Daten wirklich zufällig erhoben werden, so dass keine Verfälschung und keine Probenfehler in die Analyse eingehen.

4. **Ausführung**
Beobachte immer selbst die Datenerhebung und gehe nicht davon aus, dass die Daten automatisch entsprechend dem einem Plan erhoben werden.

5. **Prozessverlauf**
Untersuche immer die zeitliche Abfolge der Daten, um zeitabhängige Effekte und Abhängigkeiten zu erkennen.

6. **Vollständigkeit der Daten**

7. **Statistische Verteilung**
Untersuche immer die Daten darauf, welche grundsätzliche statistische Verteilung vorliegt. Die Verteilung kann Informationen zum Charakter des Prozesses liefern.
8. **Langfristiger Trend**
Stelle immer sicher, dass die Skala der Darstellung den langfristigen Trend der Daten weitergibt und dass die kurzfristigen Besonderheiten hervorgehoben werden.

9. **Verhältnis**
Stelle Daten immer so dar, dass einfach zu erkennen ist wie das Verhältnis zum angestrebten Ziel ist und wie der Trend im Verhältnis dazu aussieht.

10. **Klarheit**
Liefere immer eine klare Erläuterung der Daten inklusive der Definition aller Begriffe und Formeln. “37

3. **Phase – ANALYZE – Analyse**

1. Es gibt unerklärte Schwankungen in der Auswertung des Prozesses.

2. Es wirken scheinbar zu viele Einflüsse auf den Prozess ein.

37 Vgl.: Roden, Klaus, 2006: S. 97 nach G. H. Watson
4. Ganze Unternehmensbereiche oder Prozesse arbeiten uneffektiv.

5. Das Ergebnis ist nach dem Wirken der Einflussgrößen nicht oder nur teilweise bekannt. 38

Abb. 3-2: Das Fischgrätendiagramm nach Ishikawa
(Vgl.: Geiger, Kotte, 2008; S. 131, eigene Darstellung)

38 Vgl.: Roden, Klaus, 2006, S. 131
39 Kaoru Ishikawa, * 1915, Tokio, Japan; † 16. April 1989, japanischer Chemiker, Pionier des japanischen Qualitätsmanagements
4. Phase – IMPROVE - Verbesserung

In der vierten sogenannten Improve Phase werden aus den in der Analyse Phase entwickelten Lösungswegen, einige überzeugende ausgewählt und getestet. Im Anschluss an die Testläufe werden die Ergebnisse analysiert und von der Arbeitsgruppe bewertet. Es kann zu weiteren Testläufen kommen, auch können die verschiedenen Lösungswege kombiniert und nochmals getestet werden. Die verschiedenen gefundenen Lösungen werden im Anschluss nach Kriterien wie Aufwand, Effizienz und Risiko sortiert und wieder bewertet. Wenn bei keinem der entwickelten Lösungswege eine Verbesserung des Prozesses eintritt, kann die Ursache dafür in der Umsetzung der Lösungswege, im Lösungsansatz oder am nicht vorhandenen Prozess- bzw. Problemverständnis liegen.

Im Fall eins - die Lösungen werden falsch umgesetzt - sind die Pläne mit der Zielformulierung abzugleichen und bei Bedarf anzupassen oder detaillierter zu beschreiben.

Wenn das Problem wie im Fall zwei in der Lösung liegt, ist diese zu revidieren und neu zu formulieren und in der Analyse Phase neu zu beginnen.

Im Fall drei wird der gesamte Prozess sowie deren Ursachen falsch verstanden, somit ist ebenfalls in der Analyse Phase wieder anzufangen.

gegenüber dem Brainstorming, dass auch Teilnehmer die sich bei einer mündlichen Ideensammlung eher zurückhalten zu “Wort kommen“. Unabhängig von der Methode muss aus den zahlreichen Lösungsvorschlägen der Beste herausgefiltert werden. Bei der Bewertung der verschiedenen Lösungsvorschläge sind folgende Kriterien zu prüfen:

1. Komplexität der Lösung (Zeit, Personal und Aufwand)
2. Erwartetes Ergebnis der jeweiligen Lösung (Wirkungsart und –weise)
3. Zu erwartender finanzieller Gewinn bzw. Einsparung (Gewinn minus Kosten der Lösung)
4. Risiko der Lösung (Eintrittswahrscheinlichkeit)
5. Informationsverbreitung an Lieferanten und Kunden (wegen Prozess- bzw. Produktänderung)
6. Überzeugende Wirkungsanalyse (vor dem Anlaufen)
7. Sicherstellung, dass die Unternehmensleitung die anfallenden Kosten akzeptiert. 40

Besonders für den Prozesseigner ist die Entscheidung um den richtigen Lösungsweg wichtig. Darum muss er sich in der Improve Phase besonders einbringen. Nur er kennt die genauen Prozessziele, es gehört auch zu seinen Aufgaben darauf zu achten das diese mit den Gesamtunternehmenszielen übereinstimmen.

40 Vgl.: Roden, Klaus, 2006: S. 171
5. Phase – CONTROL – Überwachung

Auf die DMAIC Methode angewandt wird sie wie folgt interpretiert:

Abb. 3-2: Die DMAIC Methode
(Vgl.: Roden, Klaus, 2006: S. 182)

Die Kontrolle der Prozesse ist abhängig von der Produktionsart. Im Falle einer Massen- oder Serienproduktion kann die relativ simple statistische Prozesskontrolle angewandt werden. Da die Teilprozesse immer wieder durchgeführt werden, können diese Teilprozesse einerseits mit der Vorlage aus einer Arbeitsanweisung, andererseits auch miteinander verglichen werden. Anders bei der Einzelfertigung bei der jeder Teilprozess individuell

Nachdem alle Maßnahmen erfolgreich angelaufen sind, werden die Erfahrungen und Eindrücke des Projektteams dokumentiert. Nach erfolgreichem Abschluss wird das Projektteam aufgelöst.
3. 1. 4 Vergleich der Methoden

Team

Um möglichst viele Ideen und Meinungen bei der Lösungsfindung zu hören, sehen alle drei zu vergleichenden Methoden eine Bearbeitung im Team vor. Im ersten Schritt der jeweiligen Methode wird das Projektteam gegründet.

Die DMAIC Methode ist ein Teil der Six Sigma Philosophie. Bei dieser Philosophie steht der motivierte Mitarbeiter im Mittelpunkt. Jeder

Anwendung

Die **five Why Methode** ist einfach und ohne viele Hilfsmittel oder spezielles Methodenfachwissen anzuwenden, dies macht sie aber relativ starr. Es werden bis zu fünf Warum-Fragen gestellt und durch das Team beantwortet. Diese Methode führt nur zu einer Lösung, wenn alle Teammitglieder sich aktiv und kreativ an dem Lösungsfindungsprozess beteiligen und gewollt sind ihr Wissen und ihre Erfahrung für das Unternehmen einzusetzen. Einen Vorteil gegenüber den anderen beiden Methoden ist, dass die Lösungsfindungsphase bei konzentrierter Teamarbeit nach einer Woche abgeschlossen ist. Dadurch kann das Problem zügig gelöst und die Verbesserungsmaßnahmen schnell umgesetzt werden.

Ein weiterer Nachteil dieser Methode ist der relativ hohe bürokratische Aufwand, den die Mitarbeiter häufig als übertrieben bis unnötig empfinden. Der Teamleiter muss den Mitarbeitern an dieser Stelle den Nutzen für das Unternehmen erklären. Wenn der Fehler beim ersten Auftauchen gleich vollständig ergründet und behoben wurde, kann ein Wiederauftreten fast ausgeschlossen werden, womit die Mitarbeiter in Zukunft weniger Arbeit haben.

Die DMAIC Methode dient der Bearbeitung von komplexen kostenintensiven Problemen bzw. Reklamationen. Es setzt ein gut ausgebildetes Team voraus, zum einen mit dem benötigten technisches Fachwissen und zum anderen hinsichtlich der DMAIC Methode. Die Teammitglieder des Six Sigma Teams durchlaufen aufwendige Schulungen auf verschiedenen Niveaus zum so genannten Yellow, Green bzw. Black Belt. An die DMAIC Methode und dessen Projektteam werden sehr hohe Anforderungen gestellt, was oftmals mit hohen Ausgaben für die Lösungsfindung verbunden ist. Mehr noch als bei der 8D Methode ist

41 Yellow, engl. gelb; green, engl. grün; black, engl. schwarz; belt, engl. Gürtel
42 Weiterführende Literatur: Roden, Klaus, 2006, S. 36ff
darauf zu achten, dass die Kosten und die zu erwarteten Gewinne, auch im Sinne von Einsparungen, im Verhältnis zueinander stehen.

Die Entwicklung mit der DMAIC Methode ist eine längere Prozedur, Bearbeitungszeiten von 16 bis 24 Wochen je nach Komplexität der Reklamation, sind üblich.

Software

Bei der **five Why Methode** sind keine Softwarevoraussetzungen zu erfüllen. Die Erarbeitung der fünf-Warum-Fragen wird an einer Tafel o.ä. dokumentiert und zu jeder Teamsitzung wird ein Protokoll angefertigt, was anschließend an alle beteiligten Mitarbeiter und das Management weitergeleitet wird. Wenn die Lösungsfindung Auswirkungen auf die Arbeitsabläufe oder Stücken hat, ist dies mit dem entsprechenden im Unternehmen genutzten System zu aktualisieren. Bei der Änderung der Arbeitsanweisung ist der Dokumentenbesitzer bzw. der Prozessverantwortliche und das Qualitätsmanagement mit einzubeziehen.

Reklamationen. Dies bietet besonders bei wiederholten Reklamationen zu einem gleichen oder ähnlichen Problem eine hohe Zeitersparnis.

Für die **DMAIC Methode** gibt es aufgrund ihrer zahlreichen Varianten keine direkten Softwarelösungen, aber in vielen Schritten kann diese Methode durch verschiedene Programme unterstützt werden.

3.1.5 Auswertung

Zusammenfassend lässt sich sagen, dass sich die five Why Methode für kleine nicht sehr kosten intensive Reklamationen eignet, die einer schnellen Reaktion bedürfen.

Die 8D Methode, ist eine strukturierte aber relativ starre Methode zur Bearbeitung von Reklamationen.

Die DAMIC Methode eignet sich für große, kosten intensive Projekte, sie lässt dem Projektteam einen hohen Gestaltungsfreiraum. Gleichzeitig ist diese Methode aber sehr zeit- und kostenintensiv, verfügt aber über ein hohes Kosteneinsparpotential.
3. 2 Erstellen einer Verfahrensanweisung für den Reklamationsprozess

Eine Verfahrensanweisung wird von den im Prozess arbeitenden Mitarbeitern geschrieben, sie werden durch den Qualitätsmanagement Beauftragten unterstützt.

Folgende Punkte beinhaltet eine Verfahrensanweisung:

1. Titel
2. Zielsetzung und Zweck
3. Geltungsbereich
4. Begriffe und Abkürzungen
5. Verantwortlichkeiten
6. Ablauf
7. Schnittstelle zu anderen Prozessen
8. Dokumente
9. Mit geltende Dokumente
10. Verteiler
11. Änderungsdienst 44

43 Vgl.: Steinel, Kelm, Reiprich, 2010
44 Vgl.: Eversheim, 2000: S. 57ff
Nachfolgend wird eine Verfahrensanweisung zur Bearbeitung eines Reklamationsprozesses in einem Industrieunternehmen, nach einer Reklamation durch einen externen Kunden beschrieben:

Unternehmen XY GmbH
Verfahrensanweisung 0001
Reklamationsbearbeitung nach einer Kundenbeanstandung

2. Zielsetzung und Zweck
Diese Verfahrensanweisung regelt die Bearbeitung einer Kundenbeanstandung in der XY GmbH. Die Kundenbeanstandungen sind zu erfassen, zu bewerten, die Ursachen zu ermitteln, Korrekturmaßnahmen einzuleiten und ein Wiederauftreten zu verhindern. Ziel sollte es sein eine schnellst mögliche, für den Kunden zufriedenstellende Lösung zu finden.

3. Geltungsbereich
Dieses Dokument gilt für alle Unternehmensbereiche der XY GmbH am Standort Dresden.

4. Begriffe und Abkürzungen
Kundenbeanstandungen sind alle negativen Rückäußerungen von Kunden, die Qualitätssängel der Produkte der XY GmbH betreffen. Qualitätssängel können Liefermengendifferenzen, Fehlschleierungen, Beschädigung am äußeren oder inneren Verpackungsmaterial oder Beschädigung der Ware sein.

Der Process Owner ist der Mitarbeiter, der für das Funktionieren des Prozesses verantwortlich ist. Er ist sowohl für die Schulung der in diesem
Prozess arbeitenden Mitarbeiter verantwortlich sowie dafür das der Prozess richtig ausgeführt wird.

R – Reklamation
K – Kunde
CS – Customer Service, Kundenbetreuer
QM - Qualitätsmanagement
WE – Wareneingang
WT – Werktage
QP - Qualitätsprüfung

5. Verantwortlichkeiten

Verfasser: Process Owner
Abstimmung: Prozessmitarbeiter
 Kundenbetreuer
 Controlling
 Testlabor
 Produktentwicklung
 Qualitätsmanagement
Freigabe: Qualitätsmanagement
6. Ablauf

1. R durch K bei CS

2. Ankündigung R bei QM per Email

3. Fehler erfassen & Vergabe R-Nr.

4. Sofortmaßnahmen möglich?
 - ja: Sofortmaßnahmen einleiten
 - nein: Informationsan Verkauf & QM

4.1 Sofortmaßnahmen einleiten

4.2 Informationsan Verkauf & QM

4.3 Wert der Ware beim K > 500 €?
 - ja: Rückprache mit K, K zufrieden?
 - nein: Ware wie vom K beschrieben?

5. Ware beim K abholen

6. WE Kontrolle

7. Ware wie vom K beschrieben?
 - ja: Rückprache mit K, K zufrieden?
 - nein: Rückprache mit K

7.1 Rückprache mit K

8. Ware zu QP & Untersuchg. Ware

8.1 Feedback an K (innerhalb 3 WT)
Abb.: 3-3 Verfahrensanweisung „Reklamationsprozess nach einer Kundenbeanstandung“
(eigene Darstellung)
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Vorgang</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Der Kunde reklamiert beim Customer Service ein Produkt, die Verpackung oder eine Dienstleistung.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Weiterleitung der Reklamation an das Qualitätsmanagement per Email.</td>
<td>Customer Service</td>
</tr>
<tr>
<td>3.</td>
<td>Der Fehler wird im System mit Hilfe des 8D Reports (3.1) erfasst und es wird eine Reklamationsnummer vergeben.</td>
<td>Customer Service</td>
</tr>
<tr>
<td>4.</td>
<td>Es ist zu prüfen ob Sofortmaßnahmen möglich sind und welche Kosten dabei entstehen würden.</td>
<td>Customer Service</td>
</tr>
<tr>
<td>4.1</td>
<td>Wenn Sofortmaßnahmen möglich sind, sind diese in Rücksprache mit dem Kunden schnellstmöglich einzuleiten. Eine Sofortmaßnahme kann an dieser Stelle beispielsweise eine Ersatzlieferung sein.</td>
<td>Customer Service</td>
</tr>
<tr>
<td>4.2</td>
<td>Über die Sofortmaßnahmen wird der verantwortlicher Verkäufer sowie das Qualitätsmanagement informiert.</td>
<td>Customer Service</td>
</tr>
<tr>
<td>4.3</td>
<td>Wenn die beim Kunden verbliebene Ware einen Wert von 500,00 Euro überschreitet ist eine Abholung zu organisieren.</td>
<td>Customer Service</td>
</tr>
<tr>
<td>4.4</td>
<td>Es ist Rücksprache mit dem Kunden zu halten und die Zufriedenheit zu überprüfen.</td>
<td>Customer Service</td>
</tr>
<tr>
<td></td>
<td>Organisation der Abholung der reklamierten Ware beim Kunden.</td>
<td>Customer Service</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>5.</td>
<td>Wareneingangskontrolle</td>
<td>Wareneingang</td>
</tr>
<tr>
<td>6.</td>
<td>Überprüfung, ob die Ware wie vom Kunden beschrieben eingetroffen ist.</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>7.1</td>
<td>Untersuchung der reklamierten Ware und Ursachenforschung durch die Qualitätsprüfung.</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>8.1</td>
<td>Ursachenfindung innerhalb des 8D Teams.</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>9.</td>
<td>Als Richtlinie für die Ursachenfindung dient der 8D Report.</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>9.1</td>
<td>Dem Kunden ein wöchentliches Feedback über den aktuellen Status der Reklamationsbearbeitung schicken.</td>
<td>Customer Service</td>
</tr>
<tr>
<td>10.</td>
<td>Die entwickelten Korrekturmaßnahmen gemeinsam mit der Produktion testen.</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>11.</td>
<td>Überprüfen ob die Tests erfolgreich verlaufen sind. Wenn nicht, bei der Ursachenfindung erneut beginnen.</td>
<td>Qualitätsmanagement</td>
</tr>
</tbody>
</table>
Customer Service

13. Durchführung aller beschlossenen Korrekturmaßnahmen und intern die Lösung der Reklamation kommunizieren.
Qualitätsmanagement

Customer Service

Tabelle 3-1: Beschreibung zum Ablauf „Reklamationsbearbeitung nach einer Kundenbeanstandung“

7. Schnittstellen zu anderen Prozessen

Im Schritt 6. besteht eine Verknüpfung mit der allgemeinen Wareneingangskontrolle, im Besonderen ist darauf zu achten, dass die Ware im Unternehmen wie vom Kunden beschrieben eingetroffen ist.

Im Schritt 4.a und 12. gibt es eine Schnittstelle zum Prozess Warenauslieferung an den Kunden.

Im Schritt 13., wenn in Folge der beschlossenen Maßnahmen Prozessänderungen notwendig sind. In diesem Fall muss der Prozessbesitzer sowie das Qualitätsmanagement in das Genehmigungsverfahren einbezogen werden.

8. Dokumente

Verfahrensanweisung Wareneingang Reklamation
Formblatt Reklamationsanspruch
Formblatt Verbesserung Reklamationsprozess
Formblatt Fertigungsauftrag
Formblatt Lieferantenbeanstandung

9. Mitgeltene Dokumente

Formblatt 8D Report
Verfahrensanweisung Rückrufaktionen
Verfahrensanweisung Änderung von Produkten oder Prozessen

10. Verteiler
Qualitätsmanagement Handbuch der XY GmbH

11. Änderungsdienst

<table>
<thead>
<tr>
<th>Ausgabe</th>
<th>Datum</th>
<th>Angabe zur Änderung</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>01.08.2005</td>
<td>Erstausgabe</td>
<td>QM</td>
</tr>
<tr>
<td>02</td>
<td>06.09.2007</td>
<td>Aktualisierung aufgrund einer Normänderung</td>
<td>QM</td>
</tr>
<tr>
<td>03</td>
<td>15.04.2008</td>
<td>Änderung Formblatt 8D Report</td>
<td>QM</td>
</tr>
</tbody>
</table>

Tabelle 3-2: Änderungsdienst der Verfahrensanweisung „Reklamationsbearbeitung nach einer Kundenbeanstandung“
4 Aus dem Reklamationsprozess abzuleitende Kennzahlen

4.1 Reklamationscontrolling

Die Leistungsstandards beinhalten die Ansprüche der Kunden, des Managements sowie der Mitarbeiter des Unternehmens, welche das Unternehmen in der Lage ist zu realisieren. Vor allem bei starken Abweichungen zwischen den festgesetzten Leistungsstandards und den tatsächlich gemessenen Ist-Werten müssen die personellen sowie organisatorischen Gegebenheiten zu dem entsprechenden Zeitpunkt geprüft werden. Auch äußere Einflussfaktoren wie das Wetter können für einige Branchen einen Einfluss auf die Ergebnisse der Messungen haben. Wichtig ist die Abweichungsursache zu ermitteln um entsprechende Korrekturmaßnahmen einleiten zu können, sowie eine sorgfältige Dokumentation um die Statistik in welche diese Werte eingehen nicht zu verfälschen.
4.2 Qualitätskennzahlen

Qualitätskennzahlen sammeln messbare qualitätsrelevante Sachverhalte und Kosten, analysieren und verdichten sie. In einer übersichtlichen Form als Kennzahlensystem ermöglichen sie eine Vergleichbarkeit und bieten so die Grundlage für den Verbesserungsprozess, außerdem dienen sie der Planung und Steuerung im Qualitätsmanagement. Durch diese Transparenz machen Qualitätskennzahlen den Wettbewerbsfaktor Qualität plan- und beherrschbar. Sie bilden die Qualitätssituation in einem Unternehmen ab und unterstützen das Management bei der Lenkung aller Qualitätsaktivitäten sowie beim frühzeitigen Erkennen von Prozess- und Produktschwachstellen.

Qualitätskennzahlen gibt es in vier Ausrichtungen, hier sind einige Beispiele genannt. ⁴⁵

Abb. 4-1: Ausrichtungen von Qualitätskennzahlen
(Vgl.: Gründewald, Pagenkemper, 2004: S. 228, eigene Darstellung)

⁴⁵ Gründewald, Pagenkemper, 2004: S. 228
4.3 Qualitätskennzahlen Systeme

1. Es sind möglichst wenige aber aussagekräftige Kennzahlen zu verwenden, um eine Unübersichtlichkeit des Kennzahlensystems zu vermeiden.
2. Kennzahlen sind aus allen qualitätsrelevanten Unternehmensbereichen zu verwenden.
3. Die verwendeten Kennzahlen sollten so aktuell wie möglich sein.
4. Das Kennzahlensystem wird oftmals innerhalb des Unternehmens veröffentlicht, somit sollte es für alle Mitarbeiter leicht verständlich sein.
5. Dass setzt einen klar strukturierten Aufbau sowie eine gute Darstellbarkeit voraus.
7. Die Vergleichbarkeit der Kennzahlen muss gewährleistet sein. 46

Qualitätskennzahlen System beziehen ihre Kennzahlen vor allem aus folgenden vier Unternehmensbereichen.

Zum Ersten im **Wareneingang**, als erstes wird die Verpackung geprüft, entspricht sie den entsprechenden Vorschriften und ist sie unbeschädigt. Weiter ist zu überprüfen ob die Lieferungen der Roh-, Hilfs und Betriebsstoffe sowie Zulieferprodukte den Bestellungen in Anzahl,

46 Vgl.: Horváth & Partner, 1997: S. 211
Beschaffenheit und Qualität entsprechen. Die hier entstehenden Kennzahlen dienen vor allem der Lieferantenbewertung, sind aber auch für unternehmensinterne Statistiken notwendig.

Während der **Produktion** werden die einzelnen Halbfabrikate einer Qualitätskontrolle unterzogen. Diese Kontrolle findet in definierten regelmäßigen Zeitintervallen statt. Mit Hilfe dieser Kennzahlen lassen sich Qualitätsmängel vom Schichtteam oder der Produktionsuhrzeit ableiten. Sie ermöglichen eine Vergleichbarkeit der einzelnen Teams, was zu einer Motivationssteigerung der Mitarbeiter führen kann.

Ähnlich der Fertigungsprüfung wird nach der Fertigstellung der Produkte eine **Produktendprüfung** durchgeführt. Bei dieser wird besonders darauf geachtet, dass die Produkte den Kundenanforderungen entsprechen und alle geforderten Qualitätsstandards erfüllt sind, dies gilt im Besonderen für zertifizierte Produkte.

Ein weiterer Bereich des Qualitätskennzahlensystems ist der **Kundenservice** des Unternehmens, sind die Mitarbeiter hinsichtlich ihres technischen Wissens sowie ihrer sozialen Kompetenz ausreichend geschult. Auch die Lieferfähigkeit sowie die Liefertreue bezüglich der termingetreuen Lieferung zum Kunden werden innerhalb des Bereichs Kundenservice ausgewertet.

Die Kennzahlen der einzelnen Bereiche lassen sich nach sieben Kriterien spezifizieren.

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Möglichkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Zeitintervall</td>
<td>stündlich, schichtweise, täglich, wöchentlich, monatlich, quartalsweise, halbjährlich, jährlich</td>
</tr>
<tr>
<td>2. Datenaufnahme</td>
<td>einzelne Mitarbeiter, Gruppe, Schichtleiter, automatisch durch eine Systemlösung</td>
</tr>
</tbody>
</table>
3. Inhalt
Ressourcenbezogen (Material, Arbeitskraft, Zeit), Produktbezogen, Prozessbezogen

4. Dimension
Menge, Zeit, Wert

5. Darstellung
Grafiken, Text, Tabellen, Fotos

6. Informationsverbreitung
Berichte, Bildschirm, am Arbeitsplatz, Schautafel in Gruppenräumen, Info-Blätter, Unternehmenszeitung, Rundschreiben, Mitarbeiterversammlung

7. Verantwortlicher
Geschäftsleitung, Führungskräfte, Schichtleiter, Qualitätsmitarbeiter, Controller

Tabelle 4-1: Kriterien der Kennzahlen
(Vgl.: Horváth & Partner, 1997: S. 219)

5 Der kontinuierliche Verbesserungsprozess zur Prävention zukünftiger Reklamationen

In der DIN Norm ISO 9001:2008 wird unter dem Punkt 8. 5. 1 die ständige Verbesserung wie folgt beschrieben, “Die Organisation muss die Wirksamkeit des Qualitätsmanagementsystems durch Einsatz der Qualitätspolitik, Qualitätsziele, Auditergebnisse, Datenanalyse, Korrektur- und Vorbeugungsmaßnahmen sowie Managementbewertung ständig verbessern.” 47

Das soll heißen, dass die Qualität der Produkte und Prozesse eines Unternehmens nachhaltig und zielgerichtet stetig verbessert wird. Weitere Ziele sind, die Prozesseffizienz, das Input-Output-Verhältnis sowie die Steuerung und Kontrolle des Prozesses zu steigern. Um ein Unternehmen langfristig am Markt zu etablieren, muss es ein Qualitätsmanagementsystem mit einer klaren stabilen Struktur vorweisen. Das Qualitätsmanagementsystem stellt das Gerüst für eine KVP 48 Philosophie dar.

5.1 Voraussetzungen

Folgende Faktoren müssen erfüllt sein um einen kontinuierlichen Verbesserungsprozess erfolgreich in einem Unternehmen anzuwenden.

2. Um den Mitarbeitern die Wirksamkeit der kontinuierlichen Verbesserung zu verdeutlichen und Kritiker zu überzeugen, sollte

48 Abkürzung: Kontinuierlicher Verbesserungsprozess

3. Durch eine regelmäßige Beurteilung der Prozesse durch die mit ihnen befassenden Mitarbeiter, werden Probleme frühzeitig erkannt oder können gar ganz vermieden werden. Aufgrund der vorbeugenden Problemerkennung können Prozessverbesserungen schon durchgeführt werden, bevor betriebswirtschaftliche Verluste entstehen. ⁴⁹

⁴⁹ Vgl.: Horváth & Partner, 1997; S. 202
5.2 Einflussfaktoren der Prozesse

Der kontinuierliche Verbesserungsprozess kann sich, wenn er richtig angewendet wird, auf alle Bereiche eines Unternehmens positiv auswirken. Die wichtigsten Effekte sind der Abbildung 5-1 dargestellt.

Abb.: 5-1 Effekte im Unternehmen
(Vgl.: Gründewald, Pagenkemper, 2004: S. 225, eigene Darstellung)

Im Wesentlichen wirken drei Einflussfaktoren – Qualität, Zeit und Kosten – in einem Prozess, es gilt diese optimal einzusetzen und deren Einsparpotential zu erkennen.

1. Qualitätsverbesserung

Qualitätsfehlerquelle sind die Mitarbeiter; ist deren Qualifikation und Motivation ihrem Aufgabenbereich entsprechend. Ist das Problem ausfindig gemacht worden muss dieses analysiert und schnellstmöglich behoben werden. Desweiteren muss es dem Kunden kommuniziert werden; das kann in Form von Werbung oder – bei preisintensiven Investitionsgütern – auch durch persönlichen Kontakt geschehen.

2. Kostensenkung

3. Durchlaufzeitverkürzung
Der Kunde mit seinen Sonder- und Terminwünschen steht im Mittelpunkt eines prozessorientierten Unternehmens. Somit ist das Zeitmanagement ein wichtiger Ansatzpunkt für die Prozessverbesserung. Die Vermeidung von unnötigen Bearbeitungs- und Liegezeiten, insbesondere die Verkürzung der Transportzeiten und – wege sind die zentralen Themen der Prozessverbesserung im Zeitmanagement.50

50 Vgl.: Horváth & Partner, 1997: S. 198
5.3 Methoden der Prozessverbesserung

Es gibt zwei unterschiedliche Wege die Prozesse in einem Unternehmen zu verbessern. Zum einen die komplette Neugestaltung des Prozesses, das so genannte Prozess Reengineering und zum anderen die kontinuierliche Verbesserung der Prozesse, welcher im Abschnitt 5.3.2 beschrieben ist.

Die sinnvolle Kombination beider Methoden ist für die Geschäftsführung der beste Weg die Prozesse eines Unternehmens stetig zu verbessern. Wie in der Abbildung 5-2 zu sehen ist, verändert sich die Leistung eines Prozesses beim Prozess Reengineering sprunghaft, während sich der Prozess beim kontinuierlichen Verbessern in kleinen Schritten, aber ständig verbessert.

Abb.: 5-2 Wirkungsweise von Reengineering und kontinuierlicher Verbesserungsprozess
(Vgl.: Horváth & Partner, 1997, S. 200, eigene Darstellung)
5. 3. 1 Prozess Reengineering

51 Benchmarking, engl., Maßstäbe setzen, in der Betriebswirtschaftslehre: Das eigene Unternehmen wird regelmäßig mit den stärksten der Branche gemessen und verglichen.

52 Vgl.: Horváth & Partner, 1997: S. 201
5.3.2 Der kontinuierliche Verbesserungsprozess

Der kontinuierliche Verbesserungsprozess beruht auf dem Deming Zyklus und erfolgt in kleinen aber kontinuierlichen Schritten (siehe Abbildung 5-3). Der Verbesserungsprozess ist in vier Phasen unterteilt: PLAN – DO – CHECK – ACT.

Abb.: 5-3 Deming Zyklus der kontinuierlichen Verbesserung
(Vgl.: Horváth & Partner, 1997: S. 201, eigene Darstellung)

In der ersten Phase, der **PLAN Phase**, werden die Ursachen der entstandenen Probleme analysiert. Davon werden das Verbesserungspotential sowie die entsprechenden Maßnahmen abgeleitet.

In der zweiten Phase, der **DO Phase**, werden nachdem die Voraussetzungen für die entsprechenden Verbesserungsmaßnahmen geschaffen wurden, diese durchgeführt und dokumentiert.

In der anschließenden **CHECK Phase** werden die Ergebnisse der Verbesserung analysiert und mit der Zielstellung aus der PLAN Phase verglichen.
In der letzten sogenannten **ACT Phase** werden die Wirkungen der Verbesserungsmaßnahmen untersucht und hinsichtlich der Entscheidung ob weitere Maßnahmen nötig sind, ausgewertet. Außerdem wird das Optimierungspotential dieses Prozesses überprüft. Dieser Vorgang ist sorgfältig zu dokumentieren und an das Management und die entsprechenden Mitarbeiter zu kommunizieren.

Im nächsten Durchlauf des Deming Zyklus wird die erreichte Verbesserung in der PLAN Phase als Leistungsstandard festgesetzt.

53 Vgl.: Zollondz, 2006: S. 253f
5. 4 Mitarbeiter und der kontinuierliche Verbesserungsprozess

Der kontinuierliche Verbesserungsprozess ist nur durch ein hohes Engagement der Führungskräfte sowie aller Mitarbeiter eines Unternehmens möglich. KVP darf nicht nur als eine Verbesserungsmethode viel mehr als eine Unternehmens-Philosophie angesehen werden. Besonders die Führungskräfte müssen diese verinnerlichen und die Arbeit der KVP-Teams unterstützen und würdigen.

5. 4. 1 Das Verbesserungsteam

5. 4. 2 Struktur der Verbesserungsteams

Die Arbeit am kontinuierlichen Verbesserungsprozesses ist Gruppenarbeit und in verschiedene Ebenen unterteilt.

Die Prozessverantwortlichen stellen sich ein **Verbesserungsteam** zusammen, welches sich größtenteils aus Mitarbeiter der zu verbessernden Prozesse zusammen setzt. Der Prozessverantwortliche selbst ist in der Regel Bereichsleiter oder in einer vergleichbaren Position tätig, er ist zusätzlich für die Dokumentation während des gesamten Verbesserungsprozesses zuständig.

Das Verbesserungsteam trifft sich regelmäßig zu so genannten **Qualitätszirkeln**, dort besprechen sie Probleme oder Schwachstellen in ihren Teilprozessen. Sie entwickeln Lösungsvorschläge und Strategien zur Verbesserung der Ist-Situation. Nachdem der Projektverantwortliche oder bei umfangreicheren Änderungen der Steuerkreis der Verbesserung zugestimmt hat, wird sie durch das Verbesserungsteam geplant und umgesetzt.

Damit der Erfolg sofort für alle Beteiligten als auch für den Steuerkreis sicht- und messbar wird, sind die Maßnahmen schnell umzusetzen. Dies geschieht häufig schon nach einer Woche. Nach Fertigstellung der Verbesserung löst sich das Verbesserungsteam auf.\(^{54}\)

\(^{54}\) Vgl.: Horváth & Partner, 1997: S. 202
6 Resümee

Zusammenfassend lässt sich sagen, dass eine schnelle und zuverlässige Reklamationsbearbeitung zur vollen Zufriedenheit des Kunden in einem modernen Unternehmen nicht mehr nur Aufgabe des Qualitätsmanagement ist. Die Unternehmensführung muss hinter diesem Prozess stehen und alle betreffenden Bereiche entsprechend sensibilisieren und unterstützen.

Im optimalen Fall kann eine Reklamation ganz vermieden werden; eine Methode dafür ist der kontinuierliche Verbesserungsprozess. Mitarbeiter aller Ebenen und Bereiche sind damit an der ständigen Erhöhung der Effektivität sowie der Effizienz des Unternehmens beteiligt. Das heißt die Qualität sowie die Ausbringungsmenge wird ständig erhöht und auf der anderen Seite werden die Kosten als auch die Durchlaufzeiten minimiert.

Bei allen genannten Methoden steht die Zusammenarbeit im Team, die gemeinsame Lösungsfundung im Mittelpunkt. Jeder Mitarbeiter hat die Möglichkeit sich an der stetigen Verbesserung des Unternehmens zu beteiligen. Damit fühlt sich jeder Mitarbeiter dem Unternehmen zugehörig,
Anlagen

Anlage 1: Artikel “Nach dem Boom”

(Quelle: Bernreuter, 2010, S. 118ff)

Von daher verwundert es nicht, dass Auftragsanfragen für Handwerker, die Wert auf Ästhetik legen, das größte Absatzsegment der Firma sind. Dahinter folgen Flachdächer, für die Inventex ein eigenes Montagesystem entwickelt hat. Schon früh hat das Unternehmen in ein eigenes Vertriebsnetz investiert und legt Wert auf guten Kundendienst. Mit diesem Gesamtpaket lassen sich dann auch höhere Preise als für vergleichbare Dünnschichtmodule erzielen; wie hoch, verrät Inventex allerdings nicht.

Bei unserer Umfrage auf der Messe legten die Angaben für mikromorphe Module in einer relativ breiten Spanne zwischen 1 €/W und 150 €/W. Für a-Si-Module wurde am häufigsten 1,20 €/W genannt; manche Anbieter aus China und Taiwan scherten mit 0,80 €/W bis 1,60 €/W jedoch weit nach unten aus. Den Herstellern sei nichts anderes übriggeblieben, als dem Preisdruck kristalliner Module aus China zu folgen, berichtete ein Vertriebsmitarbeiter beim Großhändler Hawi Energie-technik AG. Jetzt baute es für Dünnschichtmodule „eigentlich hervorragend“. Auch der Fassadenprofispezialist Schico International KG verzeichnete großes Interesse für seine gebäudeintegrierten Lösungen mit a-Si-Modulen. Viele Hersteller äußerten die Einschätzung, dass vorerst der Boden der Preisbindung erreicht sei.

Einstieg von AUO und Samsung

Bei Freitragenanlagen haben Silizium-Dünnfilmmodule erstarrte Chancen offensichtlich nur noch südlichen Regionen aufgrund ihres besseren Temperaturkoeffizienten. Die Masca PV GmbH aus Lünenhausen bei Erfurt vermeldete zum Beispiel ein 5-MW-Projekt in Irland. In Deutschland dagegen sein Module mit einem Wirkungsgrad von 8.5 % nur noch unter 1,1 €/W installiert, sagte der Dünnfilmexperte eines Großhandlungs, der nicht namentlich genannt werden wollte. Erzeigte sich anschließend des Preiszuwächs auf 1,40 €/W für Kristalline Module aus China und 1,70 bis 1,85 €/W für die Pendants aus Europa deutlich erheblich und preiswertere weiteren Insolvenzen bei Herstellen von Silizium-Dünnfilmmodulen – nicht nur bei Kunden von Auro, sondern auch von Oelikon.

Bewegung im CIGS-Sektor

Am meisten scheint sich derzeit unter den Herstellern von CIGS-Modulen zu tun. Ascent Solar Technologies Inc. präsentierte die ersten kommerziell Exemplare seiner flexiblen Module auf der SOL.

Quelle: Unternehmenangaben
In den Startlöchern: Ritek
Corporation (SRC), das Welt-
vorlaufige Unternehmen für
photovoltaische Amorilexien
derzeitige Produktion von
CDs und DVDs, will Ende 2020
mit der Produktion von
Solar-Cellen beginnen.

Wichtig für die Zukunft

Die britische Firma Photovoltaik
Ltd. hat im Rahmen einer
Branchenkonferenz erklärt,

folgende Aussage: "In den
Startlöchern: Ritek
Corporation (SRC), das Welt-
vorlaufige Unternehmen für
photovoltaische Amorilexien
derzeitige Produktion von
CDs und DVDs, will Ende 2020
mit der Produktion von
Solar-Cellen beginnen."
Anlage 2: Beispiel Faktensammlung

(Quelle: Roden, Klaus; S. 80)

Six Sigma -- Faktensammlung

<table>
<thead>
<tr>
<th>Nr</th>
<th>Phase</th>
<th>Fakten, Erkenntnisse, Resultate</th>
<th>von wem</th>
<th>wie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>Nur 80% der Kundenbestellungen werden vollständig erfüllt. Lieferungen sind z.T. unvollständig, zu spät oder enthalten falsche Teile.</td>
<td>Quality Manager</td>
<td>Lieferstatistik</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>Es gibt keine vollständigen Historien aller Lieferungen. Die Information über Vollständigkeit und Zeitpunkt steht im SAP System</td>
<td>Orderdesk</td>
<td>Interview</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>Informationen über Fehlleiterungen (Verwechslungen) lassen sich nur über Kundenbeschwerden nachvollziehen</td>
<td>Orderdesk</td>
<td>Interview</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>Es gibt keinen Performance Indikator der monatlich die Lieferleistung bewertet.</td>
<td>Geschäftsleitung</td>
<td>Interview</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>Es gibt keinen direkten Informationsweg über SAP zwischen dem Zentrallager Polan und den Produktionsbereichen Zulieferer.</td>
<td>Orderdesk</td>
<td>Interview</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>Die Lieferungen werden von vier Sachbearbeitern gesteuert, wovon nur zwei eine Einarbeitung und SAP Schule haben.</td>
<td>Personalabteilung</td>
<td>Trainingsplan</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>Im Durchschnitt liegen 85% der Teile pro Lieferung im Zentrallager, der Rest wird direkt vom Hersteller zum Kunden gelenkt.</td>
<td>Orderdesk</td>
<td>Lieferstatistik</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>Bei beanspruchten Lieferungen lag der Anteil der direkt vom Hersteller zum Kunden gelenkten Teile bei 80%.</td>
<td>Orderdesk</td>
<td>Lieferstatistik</td>
</tr>
</tbody>
</table>

Six Sigma -- Hypothesen

<table>
<thead>
<tr>
<th>Nr</th>
<th>Phase</th>
<th>Ideen & Vermutungen</th>
<th>von wem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Die Fehler haben mit den Direktlieferungen vom Hersteller zum Kunden zu tun. Zugen werden zu optimistisch gemacht.</td>
<td>QM</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Die SachbearbeiterInnen kommunizieren unterschiedlich gut mit den Herstellern und den Kunden.</td>
<td>QM</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>Die Forderungen der Lieferpräzision von den Kunden liegen höher als das derzeitige Logistiksystem leisten kann.</td>
<td>Orderdesk</td>
</tr>
</tbody>
</table>
Anlage 3: Vorlage 8D Report

(eigene Darstellung in Microsoft Excel)

<table>
<thead>
<tr>
<th>8D Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunde:</td>
</tr>
<tr>
<td>Problemtitel:</td>
</tr>
</tbody>
</table>

1. TEAM
Mitglieder inkl. Erreichbarkeit

Verantwortlicher:

2. PROBLEM

<table>
<thead>
<tr>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Charge</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fehlerbeschreibung</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Auftreten</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Anteil</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

3. SOFORTMASSNAHMEN

<table>
<thead>
<tr>
<th>Wer/ Wo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Wann</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Wirksamkeit</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kdn.- Feedback</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

4. URSACHSENAANLYSE

Fehlermeldung

<table>
<thead>
<tr>
<th>Ursache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Wer</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Wann</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Anteil</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

5. MÖGLICHE ABSTELLMASSNAHMEN

<table>
<thead>
<tr>
<th>Wer/ Wo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Wann</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Wirksamkeit</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Überführ. in 6.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

6. EINGEFÜHRTE MASSNAHMEN

<table>
<thead>
<tr>
<th>Wer/ Wo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Wann</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Erfolg</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Änderung. QM HB</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

7. VERMEIDUNG DER PROBLEMWIEDERHOLUNG

<table>
<thead>
<tr>
<th>Wann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Wer/ Wo</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

8. ABSCHLUSS

Belohnung des Teams:

Datum:

FAZIT

Unterschrift Verantwortlicher:

KUNDE ABSCHLUSSBERICHT GESCHICKT

Wer:

Anerkannt:

Wann:

Legende:

Kdn. - Kunde
QM - Qualitätsmanagement
R - Reklamation
HB - Handbuch
Anlage 4: Kennzahlenstammbild

(Quelle: Horváth & Partner; S. 217)
Quellenverzeichnis

1 Literaturverzeichnis

Hanser, Wolfgang; Kamiske, Gerd: Qualitätsmanagement: Methoden, Praxisbeispiele, Hintergründe. Düsseldorf: Symposion, 2004 (Digitale Fachbibliothek auf CD Rom)

Roden, Herbert; Klaus, Christoph: lean six sigma taschenbuch: Erfolg durch Verbesserung. 1. Aufl. Aachen: Shaker Verlag, 2006

2 Normverzeichnis

DIN Norm EN ISO 8402

DIN Norm EN ISO 9000:8000

DIN Norm EN ISO 9001:2008
3 Zeitschriftenverzeichnis

4 Internetverzeichnis

http://quality.kenline.de/ (01.06.2010, 11:59 Uhr)

http://hauswirtschaft.loel.hs-anhalt.de/selbstlernkurs/kurs/themen_anzeige.php?kurs=2&lenr=10&id=14&index=0 (20.08.2010, 12:00 Uhr)

www.faes.de (20.08.2010, 12:05 Uhr)

http://w2.wa.uni-hannover.de/QMan/Kap01/Def_qm.htm (02.06.2010, 11:25 Uhr)