OPUS


Volltext-Downloads (blau) und Frontdoor-Views (grau)

Crystal Structure Detection in Microgravity Experiments using Machine Learning Methods

  • In this thesis, we analyse Machine Learning methods for crystal structure detection in microgravity experiments. Our objective is to identify crystal structures of the particles by a 2D projection. We modify an already existing algorithm for 3D structures. Through extensive testing, we validate the accuracy and efficiency of our approach in various experimental conditions. Additionally, we explore the potential for integrating these methods to enhance the overall experimental workflow. Finally, we demonstrate the advantages of our modified implementations and discuss other possible approaches.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Ekaterina Filonenko
URN:urn:nbn:de:bsz:mit1-opus4-158522
Advisor:Florian Zausinger, Marika Kaden
Document Type:Bachelor Thesis
Language:English
Date of Publication (online):2025/01/09
Year of first Publication:2025
Publishing Institution:Hochschule Mittweida
Granting Institution:Hochschule Mittweida
Date of final exam:2024/12/04
Release Date:2025/01/09
GND Keyword:Maschinelles Lernen; Kristallstruktur
Page Number:73
Institutes:Angewandte Computer‐ und Bio­wissen­schaften
DDC classes:006.31 Maschinelles Lernen
Open Access:Frei zugänglich