OPUS


Volltext-Downloads (blau) und Frontdoor-Views (grau)

Fingerprint minutiae extraction using Neural Network Model

  • Fingerprints contain small details called minutiae, key features for comparing fingerprint patterns. This thesis develops a framework that extracts and matches minutiae points for fingerprint matching. It applies preprocessing steps to enhance detection accuracy across fingerprints of varying qualities. The YOLOv8 model detects key points, and the fusion of You Only Look Once v8 (YOLOv8) with Scale-Invariant Feature Transform (SIFT) generates descriptors for matching. Fast Library for Approximate Nearest Neighbors (FLANN) performs descriptor matching using Lowe’s ratio test, followed by Random sample consenus (RANSAC) to remove incorrect matches and refine the results. The framework test on diverse datasets, and the mean Average Precision (mAP@0.5) evaluates the performance of the YOLOv8 model in fingerprint-matching.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Niyati Ajay Dave
URN:urn:nbn:de:bsz:mit1-opus4-160617
Advisor:Alexander Lampe, Hongwei Xu
Document Type:Master's Thesis
Language:English
Date of Publication (online):2025/05/09
Year of first Publication:2025
Publishing Institution:Hochschule Mittweida
Granting Institution:Hochschule Mittweida
Date of final exam:2025/01/10
Release Date:2025/05/09
GND Keyword:Daktylogramm
Page Number:60
Institutes:Angewandte Computer‐ und Bio­wissen­schaften
DDC classes:363.258 Daktyloskopie
Open Access:Frei zugänglich