OPUS


Volltext-Downloads (blau) und Frontdoor-Views (grau)

Geometrische Unähnlichkeiten von konstruierten 3D-Rigs aus Pose Estimation-Daten : eine deskriptiv-statistische Analyse

Geometric Dissimilarities of constructed 3D Rigs from Pose Estimation Data : a descriptive statistical Analysis

  • Die Biometrie bildet in heutigen Zeiten in den Bereichen der forensischen Arbeit und der Sicherheit ein besonderen Teil. Dabei werden in heutigen Verfahren biometrische Merkmale wie Gesichtsmaße, Fingerabdrücke oder auch Irismuster verwendet. Jedoch stößt die Verwendung dieser Merkmale oft an ihrer Grenzen, wenn es darum geht, vermummte Täter auf Überwachungsaufnahmen zu identifizieren. An dieser Stelle soll der Täter mittels eines Rigs auf der Aufnahme vermessen werden. Die erhaltenen Maße sollen anschließend mit den Maßen von Personen im Reale verglichen werden, um dadurch den Täter von der Aufnahme zu identifizieren. In dieser Arbeit wird ein gegebener Datensatz näher untersucht. Der Datensatz enthält anthropometrische Maße, Front-Rigs (2D-Rigs) sowie 3D-Rigs von 170 Frauen und 170 Männern. Ziel soll es sein, die im Datensatz gegebene Separierbarkeit mittels eines optimalen Trenn- beziehungsweise Klassifikationsverfahrens nachzuweisen. Zum Einen wird die Vergleichbarkeit der Front- und 3D-Rigs überprüft. Dafür wird eine Möglichkeit gesucht, eine mögliche Abweichung zwischen den Dimensionen der Rigs mittels eines allgemeinen Fehlers beziehungsweise Verhältnisses auszudrücken. Zum Anderen werden verschiedene Klassifikationsverfahren durchgeführt, die zwischen zwei Körperhöhengruppen gegebene Separierbarkeit optimal nachzuweisen. Abschließend wird ein weiteres Merkmal neben der Körperhöhe gesucht, um Personen in Gruppen einzuteilen. Im Verlauf der Arbeit wird ersichtlich, dass zwischen den Front-Rigs und 3DRigs ein Unterschied besteht, der sich jedoch schwer in ein allgemeinen Fehler beziehungsweise ein allgemeines Verhältnis fassen lässt. Mittels der Manhattan-Distanz kann die Separierbarkeit nur schwer nachgestellt werden. Durch die Verwendung von k-NNs und logistischen Regressionen ist die Separierbarkeit trotz auftretender Falschklassifikationen nachzuweisen. Als weiteres Merkmal zur Körperhöhe wird das Verhältnis von Oberkörper zu Unterkörper betrachtet. Die mittels dieses Verhältnisses bestimmten Gruppen sind ebenfalls nachweisbar. In Zukunft sollte der Unterschied zwischen Front- und 3D-Rigs verkleinert beziehungsweise verallgemeinert werden, um die Vergleichbarkeit zu steigern. Des Weiteren sollte die Separierbarkeit mittels weiterer Klassifikationverfahren nachgewiesen werden. Außerdem sollte über eine Erweiterung des Datensatzes um weitere Individuen oder auch andere Körperhöhen nachgedacht werden. Zudem sollten auch andere Merkmale zur Gruppierung der Personen weiter untersucht werden.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Constantin Kühn
Advisor:Dirk Labudde, Florian Heinke
Document Type:Bachelor Thesis
Language:German
Year of Completion:2022
Granting Institution:Hochschule Mittweida
Release Date:2023/03/27
GND Keyword:Biometrie
Page Number:75
Institutes:Angewandte Computer‐ und Bio­wissen­schaften
DDC classes:006.4 Mustererkennung, Biometrie, Objekterkennung
Open Access:Frei zugänglich
Licence (German):License LogoUrheberrechtlich geschützt