OPUS


Volltext-Downloads (blau) und Frontdoor-Views (grau)

Explorative Untersuchung der Eignung qualitativer Datenanalysemethoden für die Identifikation anwendungsfallbezogener relevanter Korrelationen und Gruppierungen in einem divers aufgebauten Datensatz

  • Im Prozess der Masterarbeit und des vorangegangenen Forschungsmoduls wurden drei verschiedenartige Anbieter*innen von Escape Spielen untersucht. Zu diesem Zweck wurden Vor-Umfragen eingeholt, um Informationen über populäre und bekannt Reihen dieser Art zu erkennen. Aufbauend auf diesen Fragebögen wurden anschließend drei Anbieter*innen gewählt, welche eine möglichst unterschiedliche Herangehensweise an die Umsetzung eines Escape-Raumes mit minimalistischen Mitteln haben. Nachdem diese ausgemacht wurden, konnten die Proband*innen-Gruppen eingeteilt werden, um, basierend auf diesen Konstellationen, verschiedene Boxen der Herausgeber einer Reihe auszuwählen. Auch bei diesen lag ein besonderer Schwerpunkt auf der Vergleichbarkeit, wodurch auf mögliche Zusammenhänge der Storylines geachtet wurde. Um die folgende Testphase planen zu können, musste jede der vierzehn Ausgaben zunächst selbst getestet und analysiert werden. Hierzu wurden alle Rätsel versucht zu lösen und zu verstehen, um den Kern der Aufgabenstellung erfassen zu können. Zudem wurde ein Zusammenhang zwischen den Karten in Form von Ablauf-Diagrammen ermittelt, wobei festgestellt werden konnte, dass mit zunehmender, ausgeschriebener Schwierigkeit diese breiter werden. Das bedeutet, dass zu Rätseln, welche als schwerer markiert waren, mehr Karten gegeben wurden. Eine der Herausforderungen lag darin, die benötigten Karten auszumachen. Da diese Methodik jedoch nicht zwingend mit der Art der Rätsel und den Hindernissen diese zu Lösen verknüpft ist, sondern als unterstützendes Element angesehen werden kann, wurde sie in der vorliegenden Arbeit nicht berücksichtigt. Nachfolgend konnten aufgrund der gewonnenen Erkenntnisse Fragebögen erstellt werden, welche sowohl allgemein auf die gesamte Box, als auch speziell auf die einzelnen Rätsel eingehen. Hierbei wurden klare Ziele gesteckt, welche Informationen erhoben werden sollten. Anhand dieser Strukturierung war es möglich eine umfassende Sammlung an sehr verschiedenartigen Fragen zu erstellen, wodurch im Verlauf der Tests eine Vielzahl an Informationen gewonnen werden konnte. Zusätzlich zu dieser Erhebung wurden Videodateien während des laufenden Tests erstellt, welche eine detailliertere und unabhängigere Betrachtung der Proband*innen ermöglichen. Nachdem diese Datenerhebungsphase abgeschlossen werden konnte, also alle Boxen verwendet wurden, begann die Vorverarbeitung der Daten. Hierzu wurden zunächst die Videodateien gesichtet und strukturiert und die Fragebögen in eine einheitliche Form gebracht. Es lagen nach dieser Phase strukturierte Videodateien vor, welche den gesamten Prozess des Lösens abbildeten, aber auch Dateien zu den einzelnen, definierten Rätseln. Diese einzelnen Rätsel wurden weitergehend kategorisiert und in ein vergleichbares Schema eingeordnet. Diese einzelnen Rätselvideos konnten zudem durch einen Algorithmus verarbeitet werden, welcher die unterschiedlichen Gesichter der Proband*innen erfassen, analysieren und in sieben Emotionen unterteilen kann. Aus diesem Verarbeitungsschritt entstanden zu jedem Rätsel drei CSV Dateien, welche diese Wahrscheinlichkeiten in Abhängigkeit des aktuellen Bildes wiedergeben. In Bezug auf die Fragebögen wurden Tabellenstrukturen erreicht, welche die unterschiedlichen Arten und Teile dieser in einer einheitlichen Struktur wiedergeben. Nach diesem Schritt war es möglich die Daten auf eine sinnvolle Weise zu kombinieren und aus diesen Rückschlüsse auf Korrelationen zu ziehen. Auch eine Analyse mit umfangreicheren Anwendungen, wie „Rapid Miner“ sind denkbar, jedoch haben die beschriebenen Methoden für die anvisierten Fragestellungen genügt. Auch andere Hypothesenuntersuchungen können aufgrund der aufgearbeiteten Daten erreicht werden, da sicherlich noch andere Zusammenhänge in dieser Masse an Informationen stecken. Jedoch wurde mit dieser Aufnahme und diesen Auswertungen die Fragestellungen beantwortet, welche am Anfang des Praxismoduls aufgekommen waren

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Elena Pistorius
Advisor:Marc Ritter, Manuel Heinzig
Document Type:Master's Thesis
Language:German
Year of Completion:2022
Granting Institution:Hochschule Mittweida
Release Date:2023/05/09
GND Keyword:Datenanalyse; Denkspiel
Page Number:157
Institutes:Angewandte Computer‐ und Bio­wissen­schaften
DDC classes:519.53 Datenanalyse, Cluster-Analyse
Open Access:Frei zugänglich
Licence (German):License LogoUrheberrechtlich geschützt