OPUS


Volltext-Downloads (blau) und Frontdoor-Views (grau)

Themenmodellierung in forensischen Kommunikationsdaten

Topic Modelling for Forensic Communication Data

  • Die Auswertung von Kurznachrichten, die auf mobilen Endgeräten gespeichert sind, nimmt bei strafrechtlichen Ermittlungen immer mehr an Bedeutung zu. Häufig sind Ermittler hierbei mit umfassenden Nachrichtenmengen konfrontiert. Um einen Überblick zu erhalten, wäre eine kompakte Zusammenfassung der zahlreichen Nachrichten hilfreich. Eine Möglichkeit diese automatisiert zu erhalten, stellt die Themenmodellierung dar. Diese ist allerdings bei forensischen Kommunikationsdaten mit besonderen Herausforderungen verbunden. Zu diesen zählt die Tatsache, dass der Ermittler oft eine Erwartungshaltung an die Themen hat, wobei die für ihn interessanten Themen häufig nur zu einem geringen Anteil in den Daten vertreten sind. Um ihn bei dem Finden von Beweisen zu diesen Themen zu unterstützen, wurden zwei Methoden der halbüberwachten Themenmodellierung und Erweiterungen basierend auf Word Embeddings und paradigmatischen Relationen miteinander verglichen. Insbesondere für umgangssprachliche Kurznachrichten ist die Evaluierung der Themenmodellierung als schwierig anzusehen, da bisherige Studien gezeigt haben, dass gängige quantitative Evaluierungsmaße bei diesen nicht unbedingt die tatsächliche Interpretierbarkeit der Themen widerspiegeln. Daher bestand ein weiteres Ziel der Arbeit darin zu untersuchen, inwieweit die Ergebnisse einer regelmäßig angewendeten automatischen Evaluierungsmethode durch eine Nutzerstudie wiedergegeben werden. Insgesamt konnte festgestellt werden, dass nach der quantitativen Evaluierung die halbüberwachte Themenmodellierung unter Einbeziehung von paradigmatischen Relationen als besonders erfolgversprechend angesehen werden kann, während nach der Nutzerstudie vor allem die Word Embeddings die Ergebnisse der halbüberwachten Themenmodellierung verbessern konnten. Des Weiteren zeigte sich, dass keine Korrelation zwischen den Resultaten der automatischen Evaluierung und der Nutzerstudie vorlag.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Jenny Maria Felser
Advisor:Dirk Labudde, Michael Spranger
Document Type:Master's Thesis
Language:German
Date of Publication (online):2024/04/11
Publishing Institution:Hochschule Mittweida
Granting Institution:Hochschule Mittweida
Date of final exam:2023/10/20
Release Date:2024/04/11
GND Keyword:Textverarbeitung; Mobiles Endgerät; Computerforensik
Page Number:110
Institutes:Angewandte Computer‐ und Bio­wissen­schaften
DDC classes:005.8 Internetkriminalität, Computersicherheit, Datensicherung, Computerforensik, Identitätsverwaltung
Open Access:Frei zugänglich
Licence (German):License LogoUrheberrechtlich geschützt