Multivariate Nonlinear Regression with Artificial Neural Networks on Dynamic and Static Data
- Two data sets, one with sales data from Vodafone and another with a similar structure, were analyzed to predict a target variable. Five different models are compared with respect to the mean absolute error (MAE) of an independent test set. The models use a feedforward neural network (FFN), a long-term memory network (LSTM), and an auto-encoder network. The results show that a hybrid FFN-LSTM model performs best by reducing the MAE for the first data set to a value of 7.37, compared to 12.53 and 12.56 for other models.
Author: | Seema Ganpat More, Rolf Bardeli, Martin Golz |
---|---|
URN: | urn:nbn:de:bsz:mit1-opus4-154246 |
DOI: | https://doi.org/10.48446/opus-15424 |
ISSN: | 1437-7624 |
Parent Title (German): | 24. Nachwuchswissenschaftler:innenkonferenz |
Subtitle (German): | Wissenschaftliche Berichte | Scientific reports |
Publisher: | Hochschule Mittweida |
Place of publication: | Mittweida |
Document Type: | Conference Proceeding |
Language: | English |
Year of Completion: | 2024 |
Publishing Institution: | Hochschule Mittweida |
Contributing Corporation: | Hochschule Schmalkalden |
Release Date: | 2024/07/11 |
Tag: | Feedforward neural network; Long-term memory network; Mean absolute error |
GND Keyword: | Feedforward-Netz |
Issue: | 3 |
Page Number: | 7 |
First Page: | 333 |
Last Page: | 339 |
Open Access: | Frei zugänglich |
Licence (German): | Urheberrechtlich geschützt |