OPUS


Volltext-Downloads (blau) und Frontdoor-Views (grau)

Multivariate Nonlinear Regression with Artificial Neural Networks on Dynamic and Static Data

  • Two data sets, one with sales data from Vodafone and another with a similar structure, were analyzed to predict a target variable. Five different models are compared with respect to the mean absolute error (MAE) of an independent test set. The models use a feedforward neural network (FFN), a long-term memory network (LSTM), and an auto-encoder network. The results show that a hybrid FFN-LSTM model performs best by reducing the MAE for the first data set to a value of 7.37, compared to 12.53 and 12.56 for other models.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Seema Ganpat More, Rolf Bardeli, Martin Golz
URN:urn:nbn:de:bsz:mit1-opus4-154246
DOI:https://doi.org/10.48446/opus-15424
ISSN:1437-7624
Parent Title (German):24. Nachwuchswissenschaftler:innenkonferenz
Subtitle (German):Wissenschaftliche Berichte | Scientific reports
Publisher:Hochschule Mittweida
Place of publication:Mittweida
Document Type:Conference Proceeding
Language:English
Year of Completion:2024
Publishing Institution:Hochschule Mittweida
Contributing Corporation:Hochschule Schmalkalden
Release Date:2024/07/11
Tag:Feedforward neural network; Long-term memory network; Mean absolute error
GND Keyword:Feedforward-Netz
Issue:3
Page Number:7
First Page:333
Last Page:339
Open Access:Frei zugänglich
Licence (German):License LogoUrheberrechtlich geschützt