Refine
Document Type
Language
- German (11)
Keywords
- Asphaltvermessung (2)
- Burst (2)
- Fluorlaser (2)
- Mikrooptik (2)
- UKP (2)
- hochenergetische Laserpulse (2)
- Abbildende Pump-Probe Reflektometrie (1)
- Biowissenschaften (1)
- Borkarbid (1)
- Brust Bearbeitung (1)
In dieser Studie wird über die Erzeugung und Nutzung von hochfrequenten kombinierten MHz- und GHz- Bursts aus ultrakurzen Laserpulsen berichtet, mit dem Ziel eine Oberflächenlegierung auf dem Verbundwerkstoff WC-Co zu bilden. Die resultierenden Topographien, Abtragtiefen und chemischen Zusammensetzungen der bestrahlten Materialoberflächen werden im Hinblick auf die Modifikation der Oberfläche des gewählten Verbundwerkstoffes charakterisiert. Die Bildung einer Oberflächenlegierung ist nur in einer gemeinsamen metastabilen flüssigen Phase der Elemente WC und Co möglich. Die Ergebnisse dieser Fallstudie zeigen, dass mit hochfrequenten Bursts ultrakurzer Laserpulse im untersuchten Parameterbereich die Bildung einer Oberflächenlegierung möglich ist, ohne dass sich die chemische zusammensetzung von WC und Co tendenziell ändert.
Im Rahmen der vorgestellten Ergebnisse wird das Potential von dünnen Borkarbid-Schichten (B4C) hinsichtlich tribologischer Anwendungen untersucht. Dafür werden stöchiometrische B4C-Schichten mit verschiedenen mechanischen Eigenschaften mittels Laserpulsabscheidung auf Stahl mit Schichtdicken von 1 μm abgeschieden. Diese teils superharten Schichten werden anschließend durch Lasermikrostrukturierung mit Mikrostrukturen versehen, deren Einflüsse auf die tribologischen Eigenschaften anschließend mittels ball-on-disc-Verfahren im Tribometerversuch bestimmt werden. Die Charakterisierung sowohl der unstrukturierten als auch der strukturierten Bereiche erfolgt neben Rasterelektronenmikroskopie und Atomkraftmikroskopie insbesondere durch Ultrananoindentation zur Bestimmung der mechanischen Eigenschaften.
Wir verglichen die Reib- und Verschleißeigenschaften von verschieden beschichteten CoCrMo-Proben unter Belastungen, wie sie typischerweise im Knie auftreten. Es wurden verschiedene ta-C-Beschichtungen und die in der Medizin verbreiteten TiNbN-Beschichtungen verglichen. Dabei wurden die bei Ball-on-Disk-Tribometerversuchen an der Tribometerspitze entstehenden Kalotten ausgewertet. Wir konnten feststellen, dass unsere strukturierten ta-C-Oberflächen, gegenüber den üblichen Beschichtungen, weniger als 1/40 des Verschleißes zeigen, bei einer gleichzeitigen Reibwertreduzierung um bis zu 80%.
Ziel des Projektes war es, Implantate zu entwickeln, welche langlebiger als bisher übliche Knieimplantatslösungen sind, besonders in Bezug auf Verschleiß der artikulierenden Flächen. Hierfür sollten Verschleiß mindernde
Hartstoffschichten aus biokompatiblen Kohlenstoff (ta-C) und reibungsmindernde laserinduzierte Strukturen auf neuartigen CoCrMo-Implantaten aufgebracht werden. Wir konnten in angepassten tribologischen Untersuchungen zeigen, dass unsere Schicht-Struktur-Systeme, gegenüber TiNbN-Schichten auf gleichem Substrat, deutlich verbesserte mechanische Eigenschaften aufweisen. So zeigten diese einen auf 1/40 reduzierten Reibungsverschleiß bei gleichzeitiger Reibwertreduzierung ~1/5
Die Bestrahlung einer dünnen Goldschicht (Schichtdicke 𝑑𝑑𝑧𝑧 = 150 nm, 25 nm Haftvermittlerschicht aus Chrom, Substrat: Quarzglas) mit Einzel- und Doppelpulsen von ultrakurz gepulster Laserstrahlung (Pulsdauer 𝜏𝜏𝐻𝐻 = 40 fs, Wellenlänge 𝜆𝜆 = 800 nm, zeitlicher Pulsabstand 𝛥𝛥𝛥𝛥 = 400 ps, Spitzenfluenz pro Puls 𝐻𝐻0 = 1,5 𝐻𝐻𝑡𝑡ℎ𝑟𝑟 , 𝐻𝐻𝑡𝑡ℎ𝑟𝑟 − Ablationsschwelle) ergibt signifikante Unterschiede zwischen der Topologie der Ablationsstrukturen des Einzel- und des Doppelpulses. Durch Simulationen mit Hilfe des Zwei-Temperatur-Modells in Kombination mit der Hydrodynamik (TTM-HD) können diese unterschiedlichen Topologien erklärt werden. Die Ursache stellt dabei die Wechselwirkung des zweiten Pulses mit der durch den ersten Puls erzeugten Ablationswolke, deren Erhitzung durch die Absorption des zweiten Pulses und die anschließende allseitige Expansion des entstehenden Gas-Flüssigkeits-Gemisches dar. Die berechneten Ergebnisse werden durch ultraschnelle abbildende
Reflektometrie bestätigt und validiert.
Ziel dieser Untersuchungen war die Charakterisierung der laserinduzierten Signalerzeugung auf Asphaltkörpern, welche speziell für die Entwicklung und Anwendung einer neuartigen opto-akustischen Messtechnologie für eine mobile, berührungslose, zerstörungsfreie Bestimmungsmethode des strukturellen Zustands von Asphaltfahrbahnen von Bedeutung ist. Diese Art der Messtechnologie basiert auf der Impulseinkopplung hochenergetischer Laserpulse, die in die Fahrbahnoberfläche eingetragen werden und aus der Auswertung der Ausbreitungs- und Reflexionsmustern der so generierten Körperschallwellen. Notwendig hierfür waren Versuche in
Abhängigkeit von verschiedenen Laserparametern (Pulsenergie, Fluenz und Strahlradius) zur Generierung von Schockwellensignalen mit ausreichend hoher Signalstärke für die Anwendung einer MASW-Vermessungsmethode (MASW – „Multichannel Analysis of Surface Waves), welche so für die anschließende Signalzuordnung in einem horizontal geschichteten Medium (Asphaltfahrbahn) umgesetzt werden kann.
Die Autoren dieser Arbeit berichten über die Erzeugung und Nutzung von hochfrequenten kombinierten MHz - und GHz - Bursts aus ultrakurzen Laserpulsen, um eine Oberflächenlegierung auf dem Verbundwerkstoff WC - Co zu bilden. Die resultierenden Topographien, Abtragtiefen und chemischen Zusammensetzungen der bestrahlten Materialoberflächen wurden im Hinblick auf die Modifikation der Oberfläche des gewählten Verbundwerkstoffes
charakterisiert, dessen Elemente Wolframkarbid (WC) und Kobalt (Co) die Bildung einer Oberflächenlegierung nur in einer gemeinsamen metastabilen flüssigen Phase zulassen. Die Ergebnisse dieser Fallstudie zeigen, dass mit hochfrequenten Bursts ultrakurzer Laserpulse im untersuchten Parameterbereich die Bildung einer Oberflächenlegierung möglich ist, ohne dass sich die chemische Zusammensetzung von WC und Co tendenziell ändert.
Die Mikrostrukturierung mittels Fluorlaser ermöglicht die Herstellung von Mikrooptiken in Gläsern und anderen Materialien mit großer Energiebandlücke. Für die Strukturierung von Mikrolinsen haben wir eine neue Herstellungsmethode und den dafür benötigen Experimentaufbau entwickelt. Der Prozess basiert auf dem Maskenprojektionsverfahren und nutzt eine Vielzahl unterschiedlicher Kreismasken, die nacheinander im Laserstrahlengang platziert werden, um einen ringförmigen Ablationsbereich zu formen. Durch die Verwendung eines
entsprechend konzipierten Maskensatzes ist es möglich, eine Oberfläche mit einer definierten sphärischen Form herzustellen. Es werden der gesamte Prozess, der Experimentaufbau sowie die Ergebnisse vorgestellt
Ziel dieser Untersuchungen war die Erforschung und Entwicklung einer neuartigen opto-akustischen Messtechnologie für eine mobile, berührungslose, zerstörungsfreie Bestimmungsmethode des strukturellen Zustands von Asphaltfahrbahnen, speziell der dafür notwendigen laserinduzierten Signalerzeugung. Diese Messtechnologie basiert auf der Impulseinkopplung hochenergetischer Laserpulse, die in die Fahrbahnoberfläche eingetragen werden und auf der Auswertung der Ausbreitungs- und Reflexionsmuster der so generierten Körperschallwellen.
Hierfür wurden Versuche zur Bestimmung der generellen Einflussparameter hinsichtlich der laserinduzierten Signalgenerierung vorgenommen. Ziel war die Generierung von Schockwellensignalen mit Frequenzen von 1 Hz bis 20 kHz mit ausreichender Signalstärke & -reichweite für die Anwendung einer MASW-Vermessungsmethode (MASW – „Multichannel Analysis of Surface Waves), welche für die anschließende Signalzuordnung in einem horizontal geschichteten Medium (Asphaltfahrbahn, notwendig ist.
Ziel dieser Untersuchungen war die Erforschung der Grundlagen für die Entwicklung einer neuartigen optoakustischen Messtechnologie für eine mobile, zerstörungsfreie Bestimmungsmethode des strukturellen Zustands von Asphaltfahrbahnen. Diese basiert auf der Impulseinkopplung hochenergetischer Laserpulse, die in die Fahrbahnoberfläche eingetragen werden und auf der Auswertung der Ausbreitungs- und Reflexionsmuster der so generierten Körperschallwellen. Hierfür wurden in einem ersten Schritt Laborversuche zur generellen Signalgenerierung durch laserinduzierte Schockwellen in Asphaltkörpern vorgenommen und deren potenzielle Ausbreitungsreichweite für die Anwendung auf realen Asphaltfahrbahnen untersucht. Für die Untersuchung an den Asphaltprobekörpern wurde eine Laboranlage mit einem integrierten KrF-Excimerlaser LPX Pro 305F (Wellenlänge 248 nm, Pulsdauer 30 ns, Pulswiederholfrequenz 1-50 Hz & maximale Pulsenergie 1,2 J) verwendet
In Zusammenarbeit mit dem Laserinstitut Hochschule Mittweida und gefördert im InnoTeam Programm der Sächsischen Aufbaubank wurde der Einfluss der Pulsdauer und des Burstmodus auf die Effizienz und Oberflächenqualität bei der Gravur von Werkzeugmaterialien mittels ultrakurzer Laserpulse erforscht und optimale Bearbeitungsregime gefunden. Die Kombination geeigneter Gravur- und Glättungsparameter sowie die Verwendung des Burstmodus im optimalen Fluenzbereich ermöglicht einen hochproduktiven Materialabtrag bei minimaler Anlagerung von Debris und minimaler Rauheit des Gravurbodens. Ebenfalls wurden Untersuchungen zu den bei der Ultrakurzpulslaserbearbeitung emittierten Röntgenstrahlung durchgeführt. Daraus resultiert eine gesteigerte Verantwortung für die Betreiber von Laseranlagen mit Ultrakurzpulslaser und den
Lasermaschinenbau.